
Local Reasoning and Dynamic Framing for the
Composite Pattern and Its Clients

Stan Rosenberg1,�, Anindya Banerjee2,��, and David A. Naumann1,� � �

1 Stevens Institute of Technology, Hoboken NJ 07030, USA
2 IMDEA Software Institute, Madrid, Spain

Abstract. The Composite design pattern is an exemplar of specification and ver-
ification challenges for sequential object-oriented programs. Region logic is a
Hoare logic augmented with state dependent “modifies” specifications based on
simple notations for object sets. Using ordinary first order logic assertions, it sup-
ports local reasoning and also the hiding of invariants on encapsulated state, in
ways similar to separation logic but suited to off-the-shelf SMT solvers. This pa-
per uses region logic to specify and verify a representative implementation of the
Composite design pattern. To evaluate efficacy of the specification, it is used in
verifications of several sample client programs including one with hiding. Veri-
fication is performed using a verifier for region logic built on top of an existing
verification condition generator which serves as a front end to an SMT solver.

1 Introduction

The Composite pattern [7] captures a frequently encountered idiom in program design.
The pattern centers on a collection of mutable data objects organized hierarchically,
forming a rooted and possibly ordered tree. The operations include the addition and
removal of subtrees anywhere in the tree. In contrast with the use of a tree as an encap-
sulated representation for an abstract set, this pattern exposes an interface that allows
clients to directly access every node. The pattern was featured in a recent survey of
challenges for reasoning about sequential object-oriented programs [11] and was the
challenge problem of a workshop [18]. In this paper we present a novel solution aimed
at current verification tools: indeed we machine-check the verification of the pattern
and some sample clients using the Z3 SMT solver [6] via its Boogie 2 [14] front end.

The usual presentation of the Composite pattern involves two classes:
class Component has subclass Composite, and the latter maintains a set of children
of type Component . For brevity we sometimes refer to objects of type Component
as nodes. Any particular use of the Composite pattern will involve application-specific
operations, often supported by invariants that involve many or all of the nodes. The
challenge problem [11,18] is an illustrative example. There is an operation, getTotal ,
that returns the number of descendants of a given node, counting the node itself. Method

� Partially supported by US NSF awards CNS-0627338, CRI-0708330.
�� Partially supported by US NSF award CNS-0627448, CM Project S2009TIC-1465 Prometi-

dos, MICINN Project TIN2009-14599-C03-02 Desafios, EU IST FET Project 231620 Hats.
��� Partially supported by US NSF awards CNS-0627338, CRI-0708330, CCF-0915611.

G.T. Leavens, P. O’Hearn, and S.K. Rajamani (Eds.): VSTTE 2010, LNCS 6217, pp. 183–198, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 S. Rosenberg, A. Banerjee, and D.A. Naumann

getTotal is declared in Component , because one purpose of the pattern is to provide
clients with a single interface for components, whether or not they are composite. If
getTotal is invoked more often than adding and removing subtrees, it may be desirable
to cache the result by declaring in Component an integer field, total , and to main-
tain the invariant that each node’s total is the number of all descendants of the node.
An invocation n.add(p), which adds component p as child of composite n , increases
the number of descendants of node n and of each of its ancestors. Method add must
reestablish the ancestors’ invariants and the challenge problem is how to streamline the
specification and verification.

An attractive technique for reasoning about object-oriented programs is to focus on
object invariants, declared in classes and pertaining to each instance individually. For an
example, suppose Composite declares field children which is a sequence of objects.
Consider the parameterized predicate ok(o), defined at the top of Fig. 1, which says
that the total at o is one plus the sum of total of all the children of o. This has the
attractive feature of being “local” to node o and its children. Moreover, if every1 o of
type Composite satisfies ok(o) then each o.total is in fact the number of descendants.

The beauty of this formulation (stipulated in [11]) is that it does not involve recur-
sion, which makes it more amenable to automated first-order reasoning. The notion
of sequence sum, however, is inherently recursive. In other works this is avoided by
treating composites as having exactly two children, as it is not the central issue of the
challenge. Our work, however, alleviates reasoning about sequence sum by appealing
to “local reasoning”.

Because adding p as child of n falsifies ok for ancestors of n , class Component
includes field parent :Composite (with “protected” visibility). Parent pointers can be
traversed in order to fix the invariant at each ancestor. But what forces the implementa-
tion of add to fix the invariants of ancestor nodes? What lets us conclude that no other
node’s total needs to be updated? How can the specifications be formulated so that
clients are neither able to break the invariant nor directly be responsible for maintaining
it? We shall answer these questions without using specialized invariant disciplines or
higher-order logic.

For some design patterns, reasoning about object invariants can be based on the idea
that a client-visible object “owns” its reps, i.e., the objects that comprise its internal
representation [19]. A discipline is imposed to ensure that the object invariant depends
only on the reps and that clients cannot update the reps directly, so clients cannot fal-
sify a candidate invariant. Thus the invariant may be hidden [8] in the sense that it is
not mentioned in the public specification of a method like add . (While verifying the
implementation of add , the invariant is assumed as the precondition and asserted as
postcondition.) Ownership also supports reasoning that is “local” to the relevant part of
the heap. A client can reason that the value of some query method invocation o.m() is
preserved over updates of some distinct object o′, if o.m() is known to depend only on
the reps of o and moreover distinct objects have disjoint reps.

The Composite pattern was posed as a challenge problem because client access to
internal nodes of a tree, rather than just the root, is incompatible with ownership disci-
plines. There are other design patterns, such as Observer and Iterator [7], that do not fit

1 Quantification in region logic is bounded by a region expression.

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 185

well with ownership due to back and forth dependencies and reentrant callbacks. Pro-
posed extensions of ownership that support hiding of invariants in these patterns [16,21]
seem ad hoc. The difficulties led some researchers to abandon the traditional notion of
hiding encapsulated invariants [8] in favor of making them explicit in contracts, ab-
stracted in some way for information hiding [5]. We address the first posed question by
using explicit invariants—each visible method’s pre- and postconditions are conjoined
with all the invariants; e.g., specification of add requires and ensures that the total is
correct for each (allocated) node.

Procedure specifications are often phrased in terms of an effect (or “modifies”) clause,
separate from the designated postcondition (“ensures” clause), which lists the variables
that may be written by the procedure. To deal with anonymous objects in the heap,
and to hide effects on objects not supposed to be visible to clients, one technique is
for the semantics of specifications to allow owned objects to be updated even when
not explicitly mentioned in a write effect. Kassios [10] introduced a much more gen-
eral technique, not for hiding but rather for abstracting from write effects. Auxiliary
(“ghost”) state is used in expressions that denote sets of locations2—for example, an
object field reps may be used to hold the locations of the fields of all its rep objects—
and such expressions are used in effect specifications. This is called dynamic framing
because the locations on which an effect is allowed may be designated by an expres-
sion involving mutable ghost variables or fields of type “set of location”. Others have
explored this idea using pure methods that return sets of locations [26]. By specifying
expressive (write) effects, we address the second question; i.e., effect specification of
add allows us to conclude that the total field of any node other than an ancestor was
not written.

In previous work [1], we formalized dynamic frames in region logic, a straightfor-
ward adaptation of Hoare logic that allows ghost fields/variables of type region in effect
clauses. Regions are sets of object references. Our assertion language and effect clauses
feature expressions of the form G‘f where G is itself a region expression and f a field
name. As an r-value, G‘f is the set of values in f -fields of objects in G . Effect specifica-
tions refer to the l-value, i.e., the locations of those fields. As witnessed in our previous
work [2], a judicious use of regions in effect specifications facilitates local reasoning
(c.f. [22]) and its automation, which served as impetus for this work. We also find that
regions support information hiding, without recourse to induction, higher-order logic,
or method calls in specifications [26]. The solution to the last posed question is sketched
in Sect. 5 where we show how to hide a conjunct from a client’s view of the specification
of add .

This paper. Using a simplified version of our specification of the Composite pat-
tern, Sect. 2 reviews the basics of region logic. It also introduces our approach of
using explicitly quantified invariants as opposed to hiding quantification via a built-
in notion of object invariant. In Sect. 3 we discuss automated verification in our ap-
proach, i.e., using an automated prover for code annotated with loop invariants and other
assertions.

2 We are considering a Java-like state model, so the mutable locations are pairs (o, f) with o an
object reference and f a field name.

186 S. Rosenberg, A. Banerjee, and D.A. Naumann

A number of publications on reasoning about design patterns [4,9,24] focus on ver-
ifying the classes that make up the pattern. But the test of specifications is in their use
by clients. Sect. 4 refines the specifications of Sect. 2 and shows their use in reason-
ing about nontrivial clients that manipulate several composites. Information hiding is
sketched in Sect. 5. Sect. 6 discusses our experience and related work.

Contribution. We have successfully applied region logic to specify and verify the orig-
inal challenge problem, and beyond, including well-chosen clients, which hints at the
usability of our specification. We have implemented a verifier for region logic, VERL,
built on top of the Boogie 2, Z3 tool chain. All of our code has been mechanically
verified. It is available together with the verifier in [23].

2 Region Logic in a Composite Nutshell

In this section, we consider a simple illustrative implementation of the Composite pat-
tern accompanied by specifications in region logic. Salient features of region logic are
introduced as we explain the specifications.3

Implementation. Fig. 1 depicts a simple implementation (including all annotations)
of the composite pattern. The pattern centers on a collection of mutable data objects
organized as a tree. Class Comp is used to represent leaf nodes as well as internal
nodes of the tree. Field parent contains an immediate ancestor (if any) of the current
object (self) and field total contains a count of all descendants including self. Field
children is a sequence of objects. We use a mathematical sequence for simplicity, to
avoid the distraction of heap-allocated arrays. Addition of an element to a sequence is
performed using the + operation. Sequence membership is written as o ∈ p.children ,
which is a shorthand for ∃i : int | 0≤ i < len(p.children)∧o = p.children[i]. Note that
the specifications in Fig. 1 are preliminary; later we refine them to provide more precise
write effects suitable for clients and to illustrate hiding of some of the invariants.

Specification of add . Public method add inserts an existing composite into the children
of self and then invokes private method addToTotal which repairs the total of self and
all of its ancestors (if any).

As usual, requires and ensures clauses express pre- and postconditions. The effects
clause expresses write effects, that is, what variables and fields (of objects in add ’s pre
state, i.e., state which satisfies the preconditions) may be written. We list write effects
following keyword wr. A region is a set of references; region expressions, G , have
type rgn and can occur in assertions and in effects. The region expression ∅ denotes
the empty region, whereas {E} (singleton region) denotes a singleton set containing
the value, possibly null, denoted by expression E . Region expressions of the form G‘f
(read “G’s image under f ”) when used for their r-values are restricted to fields f of
reference type or of type rgn. If f is a field of reference type then the r-value of G‘f is

3 For a more thorough exposition of region logic please refer to [1]. In the journal version (under
preparation) we generalize and simplify some of the features of the logic, and those changes
are also adopted herein.

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 187

ok(o) : o.total = 1+(sum i ; 0 ≤ i < len(o.children) | o.children[i].total)

I 0: ∀o :Comp | o.total ≥ 1
I 1(r :rgn) : ∀o :Comp ∈ alloc− r | ok(o)
I 2: ∀p :Comp,o :Comp | o ∈ p.children ⇔ o.parent = p
I 3: ∀o :Comp, i : int, j : int | 0 ≤ i < j < len(o.children) ⇒

o.children[i] �= o.children[j]
I (r :rgn) : I 0∧ I 1(r)∧ I 2∧ I 3 and I =̂ I (∅)

public class Comp {
seq<Comp> children; int total ; // initially total = 1 and children is empty sequence
Comp parent; // initially parent = null

void add(Comp c)
requires c �= null ∧ c.parent = null;
requires self �= c ∧ I;
ensures c.parent = self ∧ I;

effects wr {c}‘parent, {self}‘children;

effects wr alloc‘total;
{

assert c �∈ self.children;
preserves I1({self}) {

c.parent := self;
self.children := [c] + self.children;

}
self.addToTotal(c.total);

}

int getTotal()
requires I;
ensures result = self.total ∧ I;

{
result := self.total;

}

void addToTotal(int t)
requires t ≥ 1;
requires self.total + t =

1 + sum i; 0 ≤ i < len(self.children) |
self.children[i].total;

requires I({self});
ensures I;

effects wr alloc‘total;
{

Comp p; int prv total;
p := self;
while (p �= null)

inv I({p})
inv p �= null ⇒ p.total + t =

1 + sum i; 0 ≤ i < len(p.children) |
p.children[i].total;

{
assert p.parent �= null ⇒

p ∈ p.parent.children;
preserves I1({p} + {p.parent}) {

prv total := p.total;
p.total := prv total + t;

}
assert p �= p.parent ⇒ p �∈ p.children;
p := p.parent;

}
}

Fig. 1. Composite pattern: preliminary specifications and implementation. Complete code and
annotations lifted from the VERL input file, composite.rl.

188 S. Rosenberg, A. Banerjee, and D.A. Naumann

the set of v such that v = o.f for some o ∈G . However, if f :rgn then the r-value of G‘f
denotes the union of the f -images (so we have no sets of sets). In effects, a use of G‘f
refers to its l-value, and then f can have any type (c.f. wr{c}‘parent , wralloc‘total in
Fig. 1).

The assertions G ⊆ G ′ and G # G ′ say, respectively, that region G is a subset of
G ′ and G∩G ′ ⊆ {null}. In particular, G‘f ⊆ G says that G is closed under f and
G‘f #G ′ says that G ′ is disjoint from G’s f -image (but allows null in the intersection).
The dual of write effects is read effects. Whereas write effects express a footprint of
a command, read effects express a frame of an assertion, that is, variables and fields
whose modification may cause a change in the assertion’s denotation. A read effect
rdG‘f of an assertion says that the meaning of the assertion can vary with updates to
f fields of G-objects, i.e., it depends on those fields.

In quantified assertions such as I 0 (see Fig. 1), the bound variable ranges over allo-
cated (thus non-null) references only. The default range is alloc, i.e., the region of all
allocated references,4 but any smaller range can be specified as bound. Thus in I 2, both
p and o range over alloc whereas the o in I 1(r) ranges over all objects in the region
alloc− r . Here ’−’ denotes set subtraction. Write I 1 for I 1(∅) and I for I (∅).

Leaving aside condition I , the specification of add says: Given an initial state where
c is an allocated component distinct from self and has no ancestors (c.parent = null),
a final state is one in which c’s parent is self. Furthermore the following updates (but
no other) are licensed by the write effects: the parent field of c, the children field
of self, and the total field of any allocated component. Condition I is intended to be
invariant in the sense that it holds in all client-visible states; so it appears as both pre-
and postcondition of add and getTotal . The conjunct I 0 says every component’s total
is positive; I 1(r) says every component except those in r has as total one more than the
sum of its children’s total ; I 2 says that p is o’s unique parent iff o is p’s child; I 3 says
that children does not contain any duplicates. In conjunction with the invariant, I , the
specification of add says that c was added to children of self: initially, c.parent = null
and I 2 together entail c �∈ self.children; finally, c.parent = self and I 2 together entail
c ∈ self.children . An astute reader will note that the specification is partially correct,
but not totally correct. The reason is that the precondition of add does not preclude the
creation of a multi-node cycle; e.g., consider b.add(a) where a �= b and a.parent =
null but b.parent = a. In such a case the call to add will diverge. Note, however, that
the I -invariants entail5 acyclicity. The strengthened preconditions in Sect. 4 prevent
add from creating any cycle. (They should suffice to show total correctness of add .)

Last but not least, Fig. 1 contains the requisite annotations. Aside from the standard
ones, i.e., loop invariants and assert statements, there appear preserves annotations.
We shall explain them in Sect. 3 under the rubric of “Localized framing”.

Proof system by example. The proof system of region logic features “local rules”
empowered by the FRAME rule which we will see soon. The formal details can be
gleaned from [1]; here we explain those informally. Let’s consider proving a part of the

4 The semantics is instrumented in that newly allocated objects are automatically added to alloc.
A command that allocates must report effect wralloc.

5 The proof has not been mechanized but can be easily shown by induction.

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 189

specification needed in the proof of add , in particular, establishing the assertion
I 1({self}) which is required, as a conjunct of I ({self}), immediately before the in-
vocation of addToTotal . From the local specification (“small axiom”) of c.parent :=
self we get c �= null as the precondition, c.parent = self as the postcondition, and
wr{c}‘parent as the write effect which licenses the update. Observe locality at play:
the rule refers only to the immediate state of the assignment at hand: c,self and {c}
‘parent ; the write effect specifies only the location which is pertinent to the field up-
date. Intuitively, one can deduce that an assertion that does not “depend” on the write
effect must be preserved by the field update: in this case, the truth of I 1 is unaffected by
the update of c.parent because I 1 does not read the parent field of any object in alloc.
Consequently, we can conjoin I 1 to the pre- and postconditions. Then by the standard
rule of CONSEQUENCE we can weaken the postcondition to obtain I 1({self}). For the
next command that updates self.children , I 1({self}) holds in the pre-and postcondition
because the write effect is {self}‘children , whereas I 1({self}) reads the children field
of all objects in alloc except self.

The above informal discourse is justified by the FRAME rule of region logic,

FRAME

� {P } C {P ′ } [ε] P � δ frm Q P ⇒ δ ·/. ε
� {P ∧Q } C {P ′ ∧Q } [ε]

read: Q is preserved by C under precondition P if ε , the write effects of C , is separate
from δ , the read effects of Q . The frames judgement P � δ frm Q asserts δ are at
least the read effects of Q . (We use syntax-driven analysis for read effects of atomic
assertions, and an inductive definition of this judgement for all other formulas [1].) The
antecedent P ⇒ δ ·/. ε asserts that the precondition may be assumed to prove that the
read effects are separate from the write effects. We call δ ·/. ε a separator. The func-
tion ·/. computes a conjunction R of disjointness formulas such that in R-states, writes
allowed by ε cannot falsify a formula framed by δ . (Frames judgements in conjunction
with separators formalize the notion of (in)dependence—whether or not an assertion
may depend on write effects.)

Above, the read effects of I 1 are rdalloc,alloc‘children,alloc‘total , which do not
refer to parent , hence are separated from wr{c}‘parent ; thus I 1 can be conjoined by
FRAME. Read effects of I 1({self}) are rdalloc,self,(alloc−{self})‘children,(alloc−
{self})‘total . These are separated from wr{self}‘children because alloc−{self} is
disjoint from {self}. So I 1({self}) can be conjoined by FRAME.

3 Region Logic Can Boogie: Automated Verification

We describe key steps in translating programs specified in region logic to Boogie 2 pro-
grams. We also share our experience with the translation and verification as it pertains
to the Composite.

VERL. Our VErifier for Region Logic [23] translates a program specified in region
logic to a Boogie 2 [14] program. We started with Dafny [13] and adapted its specifica-
tion language while keeping its programming language mostly the same. Key features

190 S. Rosenberg, A. Banerjee, and D.A. Naumann

of VERL’s specification language include the full generality of region assertions and
effects as well as “localized framing”—code blocks annotated with formulas whose
truth must be preserved by essentially appealing to FRAME. A distinguishing feature of
VERL is an automatic (syntax-directed) computation6 of read effects of formulas and
expressions. For example, only the sum expression needed a read effect specification;
read effects of all other formulas and invariants were inferred automatically.

Boogie. The Boogie 2 [14] verification platform consists of an intermediate procedu-
ral verification language Boogie [14], a verification condition generator (VCGen) and
an SMT solver. Given a specified Boogie program, and a list of procedures to verify,
VCGen computes the weakest precondition of each specified procedure relative to its
implementation and specified loop invariants. These verification conditions (VCs) are
handed off to a prover, such as Z3, together with the “background predicate” that axiom-
atizes the semantics of Boogie and any additional user-defined axioms (which typically
encode the semantics of the source language).

A Boogie program may consist of logical declarations and definitions, procedures, as
well as specifications thereof. The logical definitions may consist of variables, constants,
function symbols and axioms. Procedure implementation can use ordinary assignment,
control-flow commands such as while, typically annotated with loop invariants, if-then-
else, return and goto, procedure call commands, as well as special (meta) commands:
assume,assert,havoc. Procedure specifications consist of pre-/postconditions and write
effects (of global variables). Specifications can be two-state, allowing a postcondition
to refer to the pre state by way of old; e.g., old(x) = x equates the values of x in the
pre- and post states. Boogie comes equipped with some primitive types: bool, int, type
constructors, as well as map types (corresponding to the theory of arrays). For example,
given a type constructor ref we can define the map type rgn =̂ ref → bool to encode
regions as characteristic functions.

Encoding region logic. The encoding of the heap is similar to Dafny, except allocated
objects are represented by the alloc region. Thus, the heap is essentially a pair consisting
of the global variable Heap—a map indexed by (ref,Fieldα) pairs, where α ranges
over any type [17], and the global region variable alloc; e.g., in(o,alloc) says that o is
allocated, where in :ref× rgn → bool.

The translation of region assertions and hence pre- and postconditions is straightfor-
ward. To translate write effects, including for example wrG‘f , we conjoin the follow-
ing postcondition in Boogie:

∀〈α〉o :ref,g :Fieldα | in(o,old(alloc)) ⇒
Heap[o,g] = H [o,g]∨ (in(o, [[G]]H)∧ g = f)

where H =̂ old(Heap), and [[·]]H is a translation function from VERL to Boogie, pa-
rameterized by the heap variable; e.g., [[x .f]]H =̂ H [x , f]. That is, for any object o,
allocated in the pre state, and any field g , if the value o.g has changed, then o must
belong to G , evaluated in the pre state, and g must be f . There will be additional dis-
juncts if additional write effects are specified. When wralloc is not specified in the

6 Derived from frames judgements formalized in our earlier work [1].

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 191

write effects, we also conjoin the postcondition old(alloc) = alloc that asserts absence
of allocation.

Localized framing. Local reasoning can aid the prover in two ways: firstly, by avoiding
direct reasoning about complex formulas, and secondly by reducing the number of case
splits performed when reasoning about heap updates. VERL supports code blocks anno-
tated with preserves clauses as already witnessed in Fig. 1. For example, the preserves
annotation in add instructs VERL to conjoin I 1({self}) by essentially instantiating
FRAME. In detail, preserves P {C} is encoded as

H := Heap; [[C]]Heap ; assert H ,Heap agree on ε ; assume [[P]]H = [[P]]Heap ;

where � ε frm P has been established, e.g., by a syntax-directed analysis. Prior to ex-
ecuting C we snapshot the heap into H . The assert statement ensures the heaps, before
and after the execution of C , agree on the read effects ε—roughly, for every o which
was allocated before the execution of C , and for every rdG‘f in ε , if in(o, [[G]]H),
then H [o, f] = Heap[o, f]—thus we can assume P is preserved by C . The soundness
of the above is a direct consequence of the frame agreement lemma [1, Lemma 4] that
underlies soundness of the FRAME rule. Therefore, a preserves annotation establishes
preservation of arbitrary formulas over the enclosed updates by merely appealing to the
formulas’ read effects as opposed to using the formulas’ actual meaning. We call this
“localized framing” to contrast with “framing axioms” [26,13].

Our experience. The sequence sum axiomatization draws on the axioms of Leino and
Monahan [15]. We needed an additional axiom to express that the sum distributes over
catenation. Our earlier verification efforts relied on framing axioms of [13] for all in-
variants. However, the prover exhibited difficulty (manifested by timeouts) in reasoning
about the preservation of formulas containing sum. By switching to localized framing
we were able to avoid timeouts and remove a significant number of assert annotations
needed to guide the prover. By default, VERL does not generate framing axioms. How-
ever, a declaration of a function can be tagged to override the default. We used this
feature to generate a single framing axiom for the function which encodes sequence
sum. While the preserves annotations deal with the framing of I 1, the generated fram-
ing axiom is used to reason about the preservation of sum expressions.

4 Refining Specifications: Smaller Footprints for Client Reasoning

The specifications in Fig. 1 are weak: they permit cycle creation (c.f. Sect. 2) and the
effect wralloc‘total is too imprecise for some client reasoning (as we see soon). This
section refines the specification of add .

Consider a simple client program: a.add(b), where a,b :Comp. By method call
rule, we substitute actuals a and b for formals self and c resp. in the specification
of add in Fig. 1, to obtain {P } a.add(b) {P ′ } [ε], where P =̂ b �= null∧ b �= a ∧
b.parent = null, P ′ =̂ b.parent = a, ε =̂ wr{b}‘parent , {a}‘children, alloc‘total ,
and we elide the invariant I . A client could appeal to FRAME to show, e.g., a.parent = x
is preserved: the obligation is to show P ⇒ (rd{a}‘parent ,x) ·/. ε which amounts to

192 S. Rosenberg, A. Banerjee, and D.A. Naumann

P ⇒{a}#{b}. The disjointness evaluates to true using P . On the other hand, reasoning
about total will not work because the effect, wralloc‘total , is too coarse. In detail,
if the assertion to be preserved is b.total = t , then FRAME requires establishing the
disjointness {b} # alloc — which is patently false.

We now consider clients that want to reason about total across calls to the add
method. Our solution is based on exposing smaller, fine-grained footprints to the client.
Consider composites c0, . . . ,c4 and the client code in Fig. 2. Here the composite tree

tBefore := c2.getTotal();
c0.add(c1); c1.add(c2); c0.add(c3); c3.add(c4);
tAfter := c2.getTotal();
assert tBefore = tAfter; // c2’s total is preserved

Fig. 2. Client reasoning about the preservation of total across calls to add

at c0 is updated so that c2 is a child of c1 which in turn is a child of c0; similarly c3
is a child of c0 and c4 is a child of c3. To show the preservation of c2’s total , the key
information that the client needs is disjointness: roughly, the trees need to have disjoint
descendants and c1, . . . ,c4 must be roots (i.e., their parents are null). Furthermore, the
effect specification of add must pin down the region whose total field is permitted to be
written so that the client can deduce that c2 is not in this region. Consequently we need
revised specifications for add and addToTotal — see Fig. 3. The figure also contains
the definition of ancestors (in terms of descendants), and the supporting invariants
J ,K that capture sufficient “structural” information.

Specifications of add . We add ghost field desc :rgn to keep track of the set of descen-
dants of a node. We also add ghost field root :Comp to point to the root of a composite
tree. Note, by maintaining descendants and roots, we can express a common idiom:
components with distinct roots have disjoint descendants. The set of ancestors is de-
fined in terms of descendants by a means of a comprehension expression. (This saves
us a ghost field declaration and corresponding updates.) Invariants J0,J1 constrain
desc to be a reflexive, transitive relation; J2 states that root is always non-null, and
that descendants of o.root include those of o; J3 states that components with distinct
roots have disjoint descendants; J4,J5 constrain every parent path to have the same
root; J6 says that for any o which is a proper descendant of p, o.parent .desc must be
included in p.desc, whence by J1, o.parent ∈ p.desc. So J6 helps pin down that desc
contains only reachable components.

The above ghost fields and invariants were derived out of necessity to strengthen the
specification of add . We are currently unaware of any general technique to derive the
“right” set of essential annotations. However, we have some evidence to believe that
the chosen invariants may be helpful in reasoning about other tree-like structures. For
example, we can prove using induction on the length of a parent path, that desc is the
smallest, owing to J6 and acyclicity which follows, by induction, from the I invariants.

The postcondition of add is the same as before but with J ∧K conjoined. However,
note that c ∈ self.root .desc is entailed by the postcondition. (From c.parent = self and

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 193

requires c �= null∧c.parent = null∧c.root �= self.root ∧ I ∧J ∧K
ensures c.parent = self∧ I ∧J ∧K

effects wr{c}‘parent , ancestors(self)‘(total ,desc), c.desc‘root , {self}‘children

ancestors(o :Comp) : {p | o ∈ p.desc}
J0: ∀o :Comp | o.desc‘desc ⊆ o.desc
J1: ∀o :Comp | o ∈ o.desc
J2: ∀o :Comp | o.root �= null∧o.desc ⊆ o.root .desc
J3: ∀o :Comp,p :Comp,q :Comp | o ∈ p.desc∧o ∈ q .desc ⇒ p.root = q .root
J4: ∀o :Comp | o.parent = null ⇒ o.root = o
J5: ∀o :Comp | o.parent �= null ⇒ o.root = o.parent .root ∧o ∈ o.parent .desc
J6: ∀o,p :Comp | o ∈ p.desc∧o �= p ⇒ o.parent �= null∧o.parent .desc ⊆ p.desc
I : I 0∧ I 1∧ I 2∧ I 3 (as in Fig. 1)
J : J0∧J1∧J2∧J3∧J4∧J5∧J6
K : ∀o :Comp | ∀i : int | 0 ≤ i < len(o.children) ⇒ o.children[i] ∈ o.desc

Fig. 3. Strengthened specification of add , definition of ancestors and invariants. In J0,
o.desc‘desc is a region expression whose r-value is the union of all p.desc where p ranges
over elements of the region o.desc.

J5, we obtain c ∈ self.desc; J2 finishes the proof.) Finally, the most precise write effect
for field total is wrancestors(self)‘total . It says that add may modify total of every
ancestor of self (including self). Observe how cycles are precluded by the precondition
c.root �= self.root , which, together with J3 entails that c’s descendants are disjoint
from self’s descendants.

Client verification. We have mechanically verified the client in Fig. 2 using add ’s speci-
fication in Fig. 3. Note, the client code needs no annotations; Z3 proves the preservation
of c2’s total automatically. For a lack of space, we do not sketch a decutive proof but
note the key insight: wrc.desc‘root helps establish the requisite root disjointedness
after each add which in turn with wrancestors(c)‘total establishes that c2.total was
not written.

Implementation of add . We require two changes to Fig. 1: subsequent to the addition
of c to self.children , we perform two bulk updates7 of ghost fields desc and root .
The desc field of all objects in ancestors(self) is updated to contain c, and the root
field of all objects in c.desc is updated to point to self.root . See composite.rl in
distribution; methods add simple, addToTotal simple correspond to Fig. 1 while
add, addToTotal correspond to the strengthened version, i.e., this section.

5 Information Hiding

One dimension of the Composite challenge problem that we explore is information hid-
ing. We argue that representation invariants—of which I 1 is an example—should be

7 Specification statements as embodied in Dafny and more generally in refinement calculus.

194 S. Rosenberg, A. Banerjee, and D.A. Naumann

completely hidden from clients, to streamline the specifications and avoid unnecessary
proof obligations on clients. The idea is very standard. The implementation of a method
is verified with respect to a contract in which the invariant is an explicit pre- and post-
condition, but the invariant does not appear in the contract used to reason about clients
[8]. This mismatch is justified as follows: the invariant is supposed to depend only on
the state that is encapsulated, and clients cannot write to that part of the state.

As a more general technique for hiding of internal invariants, we propose [20] that a
module can declare a dynamic boundary, i.e., a read effect, in suitably abstract terms,
that delimits its encapsulated state and frames the invariant to be hidden. (It is dynamic
in that our effects are stateful, just like dynamic frames in method contracts.) Framing
of the invariant involves nothing more than the framing judgement discussed in Sects. 2
and 3. For it to be sound to hide the invariant, client code must respect the dynamic
boundary: it is subject to the proof obligation that it does not write within the dynamic
boundary. In other words, intermediate steps in client code execution are required to
respect the boundary, so that the write effects of the client are separate from the bound-
ary. This notion can be captured by a second order rule of framing, as exemplified and
formalized in [20].

In the sequel, we consider the clients from Sect. 4. Let us consider the invariants I
and K . These can be framed by the effect rdalloc‘(desc,parent ,children,root , total).
For this to be a dynamic boundary, we require that clients never write any of these fields.
In general, enforcement of a dynamic boundary may require reasoning about regions,
but in this case it is entirely a matter of scope. Field children should be private to class
Comp. Because they are used in public contracts, the other fields need to be private,
spec-public in the terminology of JML and similar formalisms. That is, they cannot be
read or written in client code but are allowed in specifications visible to clients. Because
it is impossible for the clients to write within the boundary, it is sound to hide I and K ,
i.e., omit them from the specifications with respect to which the clients are verified.

Invariant J is framed by rdalloc‘(desc,parent ,root) and again for reasons of scope
the clients respect the boundary rdalloc‘(desc,parent ,children,root , total). Invariant
J provides information needed for reasoning about clients as in Sect. 4. So J could
be exported to the client as a public invariant [12]. That is, like I and K it is omit-
ted from the public contracts, so clients are not responsible for establishing it. But it
may be assumed at any point in client code. Boogie does not include this feature and
instead of complicating our translation, we found it suffices to include J as explicit
pre- and post-condition in the public specification of add . (In the distribution, the ver-
sion with hidden invariants is in files composite.rl, client.rl; look for methods
addHidden, client hiding, resp.)

6 Discussion

On automating local reasoning about global invariants. In order to have a precise
footprint for add we need to consider the ancestors of a node; ancestors are defined
in terms of descendants. To reason about descendants we need universally quantified
formulas with explicit ghost state (such as desc,root). There are two aspects to this
reasoning: we need enough invariants—but not necessarily the minimal set—to get the

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 195

inductive properties of interest (e.g., transitivity of descendants, and a limited form of
reachability) and we need to tackle framing issues that arise because of universally
quantified formulas.

The ubiquitous use of global invariants, as witnessed by the prevalence of universal
quantifiers (often nested), ostensibly contradicts notions such as object-centric invari-
ants, locality, or adherence to a particular programming methodology (see, e.g., the
Composite verification in [27]). However, as we demonstrated, our approach is to use
local reasoning in order to establish global invariants. In many cases, when updates
are “shallow”, the prover can automatically find the right instantiations without going
astray. In more difficult cases, typically involving definitions inductive in flavor, we ap-
peal to the user to add preserves annotations. Relying on such annotations is not all that
different from relying on loop invariants; the user usually has some intuition about what
invariants and where in the code. Arguably, we still achieve a high degree of automation
in exchange for a reasonable request of user guidance.

Related work. We draw heavily on Kassios’ [10] dynamic framing, which has been
explored in a number of research efforts (e.g., [26]), as well as the frame rule and local
reasoning in separation logic [22]. Because Kassios developed his ideas in a relational
calculus of refinement, his effect specifications can be freely mixed with functional
specifications, e.g., to express that a write effect takes place only under a certain condi-
tion. In contrast, our adoption of the popular “modifies clause” format fits with standard
verification techniques. In recent work, Smans et. al. [25] avoid the need for a modifies
clause somewhat in the manner of separation logic, but instead of a non-standard con-
nective they use special “access predicates”, acc, with a permission-based semantics
and special program constructs. Every read/write of an expression E .f is permitted by
asserting acc(E .f).

The most closely related works directly address the Composite challenge. Bierhoff
and Aldrich [4] achieve fully automated checking of the add implementation using
typestates (and no theorem proving at all) to express the total invariant, our I 1, in finite
state form (i.e., the parity of each total). Permissions and data groups are used to track
dependencies between typestates of different objects, to enforce separation and allow
sharing (fractional permissions) where needed. The program needs to be instrumented
with pack/unpack notations, to an extent similar to the ghost assignments needed in
our approach. The specification notations also use operators from linear type systems.
Presumably, their types and permissions could be used for reasoning about clients at the
level of precision we have considered.

Jacobs et al [9] present a specification of the Composite using separation logic with a
number of inductive definitions, e.g., instead of the non-inductive I 1 the main invariant
uses an inductive definition of the descendant count to specify the value of total at each
node. The logic has been implemented in a tool that verifies the implementation of add
as well as a client that constructs a tree with several nodes. A very interesting feature
is that the specification describes a tree together with a focus node, to facilitate client
access at any node. A “lemma function” is used in annotations to move the focus around,
with the effect of folding and unfolding the inductive definition of a tree-with-focus. A
dispose operation is included. Abstract predicates are used for hiding, as in [5].

196 S. Rosenberg, A. Banerjee, and D.A. Naumann

Shaner et al [24] address invariant I 1 and an implementation of add essentially like
ours (which follows [11] but avoids arrays). The specification of add uses JML’s model
program feature which stipulates the implementation must call addToTotal properly.
The idea is to ensure preservation of a hidden invariant by specifying “mandatory calls”
that must also be made in any override of a method like add . Framing for clients is not
addressed in detail.

Summers and Drossopoulou [27] propose a methodology for (a) specifying object
invariant semantics, i.e., which invariant(s) must hold and at what (program) location;
(b) verifying preservation of invariants by computing an upper approximation on the set
of objects for which an invariant may get invalidated and asserting the invariant holds
for this set, thereby establishing that the invariant holds for all objects. The methodol-
ogy is applied to the Composite problem by specifying and verifying an implementation
of add which is nearly identical, (but weaker, e.g., no effects are specified and postcon-
dition “forgets” that c was added) to our preliminary specification depicted in Fig. 1.

We expect that in future other automatic verification tools will address the Compos-
ite challenge as well. Rustan Leino has recently informed us of his specification and
implementation of the Composite in Dafny (personal communication, May 2010).

Future work. While Sect. 5 shows how invariants I and K may be hidden, the full
handling of abstraction is outside the scope of this paper. For that, one would need to
verify that representations of internal heap-based data structures are such that client
reasoning is unaffected: to wit, whether children is stored in an array or a list instead
of a sequence, should not affect the behavior of add on client observable objects.

Automatically inferred preserves clauses could potentially relieve a number of re-
quired user annotations. A simple static analysis which computes the write effects of
a command can be used to infer locations in code where relevant assertions must be
preserved owing to separation (of reads from writes).

VERL currently uses quantified axioms to encode region assertions. Such an en-
coding does not constitute a decision procedure, yet we conjecture that an integrated
decision procedure would improve reasoning about regions. A decision procedure for
quantifier-free region assertions has been sketched in the first author’s thesis proposal
and will be implemented in an SMT solver.

Conclusion. Bierhoff and Aldrich [4] nicely summarize the challenge of the Composite
pattern: “If nodes depend on invariants over their children then it becomes challenging
to verify that adding a child to a node correctly notifies the node’s parents of changes.”
We have used elementary and mostly familiar means to specify the Composite pattern
and to mechanically verify its implementation and its clients. In our view, the specifi-
cations of the methods are fairly succinct and transparent. Their verification, and the
verification of interesting client code, relies on a number of global invariants that cap-
ture inductive properties in non-inductive ways.

Acknowledgements. We thank Mike Barnett, Sophia Drossopoulou, Rustan Leino, Peter
Müller, Shaz Qadeer, Jan Smans, and Alex Summers for helpful discussions. We thank
the referees for their careful reading of the manuscript and for numerous suggestions
on improving the presentation.

Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients 197

References

1. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning about global
invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 387–411. Springer, Heidel-
berg (2008)

2. Barnett, M., Banerjee, A., Naumann, D.A.: Boogie meets regions: a verification experience
report. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 177–191.
Springer, Heidelberg (2008)

3. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W., Venter, H.:
The Spec# programming system: Challenges and directions. In: Meyer, B., Woodcock, J.
(eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer, Heidelberg (2008)

4. Bierhoff, K., Aldrich, J.: Permissions to specify the composite design pattern. In: [18]
5. Bierman, G., Parkinson, M.: Separation logic and abstraction. In: POPL (2005)
6. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
8. Hoare, C.A.R.: Proofs of correctness of data representations. Acta Inf. 1, 271–281 (1972)
9. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separation logic.

In: [18]
10. Kassios, I.T.: Dynamic framing: Support for framing, dependencies and sharing without re-

striction. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268–283. Springer, Heidelberg (2006)

11. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Aspects of Computing 19(2), 159–189 (2007)

12. Leavens, G.T., Müller, P.: Information hiding and visibility in interface specifications. In:
ICSE (2007)

13. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: LPAR
(2010)

14. Leino, K.R.M.: This is Boogie 2. Technical report, Microsoft Research (2010)
15. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT

solvers. In: SAC (2009)
16. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)

ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)
17. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and

logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
312–327. Springer, Heidelberg (2010)

18. Robby et al: Proc. Seventh SAVCBS Workshop. Technical Report CS-TR-08-07, School of
Electrical Engineering and Computer Science, University of Central Florida (2008)

19. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-
tures. Sci. Comput. Programming 62(3), 253–286 (2006)

20. Naumann, D.A., Banerjee, A.: Dynamic boundaries: Information hiding by second order
framing with first order assertions. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
2–22. Springer, Heidelberg (2010)

21. Naumann, D.A., Barnett, M.: Towards imperative modules: Reasoning about invariants and
sharing of mutable state. Theoretical Comput. Sci. 365, 143–168 (2006)

22. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 1.
Springer, Heidelberg (2001)

198 S. Rosenberg, A. Banerjee, and D.A. Naumann

23. Rosenberg, S., Banerjee, A., Naumann, D.A.: Verifier for region logic (VERL),
http://www.cs.stevens.edu/~naumann/pub/VERL/

24. Shaner, S.M., Rajan, H., Leavens, G.T.: Model programs for preserving composite invariants.
In: [18]

25. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and
separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148–172.
Springer, Heidelberg (2009)

26. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for Java-like programs
based on dynamic frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 261–275. Springer, Heidelberg (2008)

27. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 328–344.
Springer, Heidelberg (2010)

http://www.cs.stevens.edu/~naumann/pub/VERL/

	Local Reasoning and Dynamic Framing for the Composite Pattern and Its Clients
	Introduction
	Region Logic in a Composite Nutshell
	Region Logic Can Boogie: Automated Verification
	Refining Specifications: Smaller Footprints for Client Reasoning
	Information Hiding
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

