
Automatic Generation of Staged Geometric Predicates

Aleksandar Nanevski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

aleks@cs.cmu.edu

Guy Blelloch
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

blelloch@cs.cmu.edu

Robert Harper
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

rwh@cs.cmu.edu

ABSTRACT
Algorithms in Computational Geometry and Computer Aid-
ed Design are often developed for the Real RAM model of
computation, which assumes exactness of all the input argu-
ments and operations. In practice, however, the exactness
imposes tremendous limitations on the algorithms – even
the basic operations become uncomputable, or prohibitively
slow. When the computations of interest are limited to de-
termining the sign of polynomial expressions over floating-
point numbers, faster approaches are available. One can
evaluate the polynomial in floating-point first, together with
some estimate of the rounding error, and fall back to exact
arithmetic only if this error is too big to determine the sign
reliably. A particularly efficient variation on this approach
has been used by Shewchuk in his robust implementations
of Orient and InSphere geometric predicates.

We extend Shewchuk’s method to arbitrary polynomial
expressions. The expressions are given as programs in a
suitable source language featuring basic arithmetic opera-
tions of addition, subtraction, multiplication and squaring,
which are to be perceived by the programmer as exact. The
source language also allows for anonymous functions, and
thus enables the common functional programming technique
of staging. The method is presented formally through several
judgments that govern the compilation of the source expres-
sion into target code, which is then easily transformed into
SML or, in case of single-stage expressions, into C.

1. INTRODUCTION
Algorithms in Computational Geometry and Computer

Aided Design are often created for the Real RAM model of
computation. Real RAM model assumes exactness of all the
arguments and operations involved in the calculations, thus
making it easy to carry out the mathematical arguments
behind the algorithm. Unfortunately, this very fact implies
that the computations have to be done with unbounded or
infinite precision, which can render the basic operations and
predicates prohibitively slow or even uncomputable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

A practical and very useful compromise, when applicable,
is to assume that the input arguments are of floating-point
type. It is also very common that the required functional-
ity involves computation of only the sign of a given polyno-
mial expression. Such calculations are, for example, used in
the geometric predicates for determining whether a point is
in/out/on a given line, circle, plane, sphere... These predi-
cates are, in turn, fundamental building blocks of algorithms
for some basic geometric structures such as convex hulls and
Delaunay triangulations.

However, floating-point alone is not sufficient to guarantee
that the evaluation of a polynomial expression will correctly
obtain its sign. The rounding error accumulated during the
computation, if sufficiently large, can perturb and change
the final result. If this computation is part of a geometric
algorithm, it can present the program with an inconsistent
view of the data set, and cause it to produce incoherent
results, diverge, or even crash. On the other hand, under
the stated assumptions, the exact sign can always be com-
puted, albeit slowly, by first converting the floating-point
arguments into rational numbers, and then carrying out the
prescribed operations in rational arithmetic.

One method that has been proposed as an efficiency im-
provement to the exact rational arithmetic involves the use
of floating-point filters. A floating-point filter carries out the
given computation in floating-point first, together with some
sort of estimate of the rounding error, and falls back to exact
arithmetic only if the estimated error is too big to reliably
determine the sign [1, 2, 6, 3, 9]. Thus, it “filters out” the
easy computations whose sign can be quickly determined
and only leaves the hard ones for the exact arithmetic. A
particularly efficient variation of this approach has been de-
scribed by Jonathan Shewchuk in his PhD thesis [11]. Aside
from performing the floating-point part of the computation
as the first phase of the filter, it introduces additional fil-
tration phases of ever-increasing precision. The phases are
attempted in order, each phase building on the result from
the previous one, until the correct sign is obtained.

There are two difficulties related to Shewchuk’s method
that this paper addresses:

1. Developing robust geometric predicates in this style
can be very cumbersome and error prone. For exam-
ple, the basic InSphere predicate which tests whether
a point is in/out/on the sphere determined by three
other points is represented by a simple 4 × 4 matrix.
However, Shewchuk’s implementation of InSphere con-
sists of about 580 lines of C code. In addition, one
needs to perform the error analysis of the given poly-

nomial expression, which is also a tedious procedure.
A solution is to automate this process by using an ex-
pression compiler [2, 5]. However, to the best of our
knowledge, none of the existing expression compilers
is capable of performing the analysis required by the
multi-phase floating-point filters.

2. We are also interested in designing predicates for func-
tional languages and exploiting the common functional
programming technique of staging to speed up the
computation. For example, consider filtering a set of
points to see on what side of a plane defined by three
points they lie. The test can be staged by first form-
ing the plane and then checking the position of each
point from the set. This obviates the need to repeat
the part of the computation pertinent to the plane
whenever a new point is tested, and can potentially
save a lot of work. Such staging of programs is natu-
rally exploited in functional programming languages,
but unfortunately, the expression compilers available
to date work only with C.

This paper reports on an expression compiler that han-
dles these shortcomings. The input to the compiler is a
function written in an appropriate source language offer-
ing the basic arithmetic operations of addition, subtraction,
multiplication and squaring, and allowing for nested anony-
mous functional expressions (stages). All the operations in
the source language are perceived as exact. The output of
the compiler is a program in the target language designed
to be easily converted into Standard ML (SML) or, in the
case of single-stage programs, to C. The resulting SML or
C program will determine the sign of the source function
at the given floating-point arguments, using a floating-point
filter with several phases, when exact computation needs to
be performed. In particular, in the case of Shewchuk’s ba-
sic geometric predicates, the expression compiler will gener-
ate code that, to a considerable extent, reproduces that of
Shewchuk.

The rest of the paper is organized as follows. Section 2
summarizes the main ideas behind floating-point filters and
arbitrary precision floating-point arithmetic. The source
and target languages are presented in Section 3, and the pro-
gram transformation process is described in Section 4. Per-
formance comparison with Shewchuk’s predicates is given in
Section 5 and a definition of selected judgments governing
the compilation follows in the Appendix.

2. BACKGROUND
From here on we assume floating-point arithmetic as pre-

scribed by the IEEE standard and the to-nearest rounding
mode with the round-to-even tie-breaking rule [4]. We also
assume that no overflows or underflows occur.

One of the most important properties of a floating-point
arithmetic is the correct rounding of the basic arithmetic
operations. It requires that the computed result always look
as if it were first computed exactly, and then rounded to the
number of bits determined by the precision of the arithmetic.
If x and y are floating-point numbers, ~ is the “rounded”
floating-point version of the operation ∗ ∈ {+,−,×}, and
x~ y is a floating-point number with a normalized mantissa
(i.e. is not a denormalized number), a consequence of the

correct rounding is that

|x ∗ y − x~ y| ≤ ε|x~ y| and |x ∗ y − x~ y| ≤ ε|x ∗ y|

The quantity ε in the above inequality is called “machine
epsilon”. If m is the precision of the arithmetic, i.e. the
number of bits reserved for the normalized mantissa (with-

out the hidden leading bit), then ε = 2−(m+1). In the IEEE
standard for double precision, for example, ε = 2−53. By
abuse of notation, the above inequalities are often stated
respectively as

x ∗ y = (1± ε)(x~ y) = x~ y ± ε|x~ y| (1)

and

x ∗ y = x~ y ± ε|x ∗ y|

The equation (1) provides a bound on absolute error of
the expression when the expression consists of only a single
floating point operation. Notice that the error is composed
of two multiples, ε and |x ∗ y|, the first of which does not
depend on the arguments x and y. The rounding error for a
composite expression can also be split into two multiples, one
of which does not depend on the arguments of the expres-
sion. This part of the error need not be computed in run-
time when all the arguments of the expression are supplied,
but can rather be completely obtained while preprocessing
the expression. To this end, assume that the exact values
Xi are approximated in floating-point as xi with absolute
error δipi, i.e. that for i = 1, 2 we have

Xi = xi ± δipi

Assume in addition that the quantities δi do not depend
on any run-time arguments and that the invariant |xi| ≤
pi holds. This is clearly true in the base case when xi is
obtained from a single operation on exact arguments, as can
be seen from (1) where δi = ε and pi = |xi|. The quantities
δi are rational numbers, and the values pi are floating-point.
Diverging slightly from the customary nomenclature, we call
these two multiples respectively the “relative error” and the
“permanent” of the approximation xi.

Using the inequalities for rounded floating-point arith-
metic from above, we can derive

|(X1 +X2)− (x1 ⊕ x2)| =

= |(X1 +X2)− (x1 + x2) + (x1 + x2)− (x1 ⊕ x2)|
≤ |(X1 +X2)− (x1 + x2)|+ |(x1 + x2)− (x1 ⊕ x2)|
≤ (δ1p1 + δ2p2) + ε|x1 ⊕ x2|
≤ max(δ1, δ2)(p1 + p2) + ε(p1 ⊕ p2)

≤ max(δ1, δ2)(1 + ε)(p1 ⊕ p2) + ε(p1 ⊕ p2)

=
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

The above inequality is, by abuse of notation, customarily
written as

X1 +X2 = x1 ⊕ x2 ±
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

The relative error of the composite expression X1 + X2 is
then ε + max(δ1, δ2)(1 + ε) and its permanent is p1 ⊕ p2.
Notice that the relative error again does not depend on the
run-time arguments, and that the invariant |x1⊕x2| ≤ p1⊕

p2 is preserved. Similar derivations produce

X1 −X2 = x1 	 x2 ±
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

X1X2 = x1 ⊗ x2
±
(
ε+ (δ1 + δ2 + δ1δ2)(1 + ε)

)
(p1 ⊗ p2) (2)

X2
1 = x1 ⊗ x1 ±

(
ε+ (2δ1 + δ21)(1 + ε)

)
(p1 ⊗ p1)

The above formulas provide a quick test for the sign of Xi.
Obviously, xi and Xi have the same sign if |xi| > δipi. How-
ever, this test is not completely satisfactory since it contains
exact multiplication of a rational number δi and a floating-
point number pi. A simpler, although less tight test is

|xi| > d(1 + ε)δiefp ⊗ pi (3)

where dQefp denotes the smallest floating-point value above
the rational number Q. This is indeed the inequality we use
in our expression compiler to test the sign of an evaluated
expression.

Another important feature of round-to-nearest arithmetic
complying with the IEEE standard is that the roundoff error
of the basic operations is always representable as a floating-
point number and can be recovered from the result and the
arguments of the operation.

Theorem 1 (Knuth). In floating-point arithmetic with
precision m ≥ 3, if x = a ⊕ b and c = x 	 a then a + b =
x+ ((a	 (x	 c))⊕ (b	 c)).

Knuth’s theorem is significant since it provides a way to
quickly perform exact addition of two floating-point num-
bers. First the addition x = a ⊕ b is performed approxi-
mately, and then the roundoff error e = (a	(x	c))⊕(b	c) is
recovered. This takes only 6 floating-point operations, which
is generally much faster than first converting a and b into
rational numbers, and then adding them in rational arith-
metic. The two values (x, e) put together represent the exact
sum of a and b. One can view this pair as a sparse represen-
tation of the sum in a digit system with a radix 2m+1. Clos-
ing up the set of sparse representations under addition leads
to a very efficient data structure for exact computation. The
values of this data type are lists of floating-point numbers
sorted by magnitude and satisfying certain technical condi-
tions about the alignment of their mantissas. These lists are
called expansions, and each expansion represents the exact
sum of its elements. For the sake of illustration, here we
only picture the process of adding a floating-point number
to an expansion (Figure 1) and of summing up two expan-
sions (Figure 2). Quick algorithms for other basic arithmetic
operations on this data type have been devised as well [8,
11].

Another consequence of Knuth’s theorem is a convenient
ordering of operations that makes it possible to separate the
computation into a sequence of filtering phases. Each phase
is attempted after the previous one had failed to determine
the sign reliably, and each computes with increasing preci-
sion, building on the result of the previous one.

The following example, although admittedly a bit con-
trived, is illustrative. Consider the expression X = (ax −
bx)2 + (ay − by)2 where ax, ay, bx and by are floating-
point values. To find the sign of X, let vx = ax 	 bx and
vy = ay 	 by, and let ex and ey be the roundoffs from the

roundoff roundoff roundoff roundoff

e e e e
2 3 41

sum
b

h h h h h
54321

sum sum sum

Figure 1: Adding a floating-point number to an
expansion. The float b is added to the expansion
e1+e2+e3+e4, to produce a new expansion h1+· · ·+h5.

sum

h h h h h54321

sum sum sum

roundoff

g g g2 3 41

roundoff roundoff roundoff

g5g

Figure 2: Summing two expansions. The compo-
nents of e1 + e2 + e3 and f1 + f2 are first merged by
decreasing magnitude into the list [g1, . . . , g5], which
is then “normalized” into an expansion h1 + · · ·+ h5.

two subtractions. Then

X = (vx + ex)2 + (vy + ey)2

= (v2x + v2y) + (2vxey + 2vyex) + (e2x + e2y)

In this sum, the summand v2x + v2y is dominant, since |ex| ≤
ε|vx| and |ey| ≤ ε|vy| by (1). It is then a good heuristic to
first compute v2x + v2y and test it for sign before proceed-
ing, because it is likely that v2x + v2y will already have the
same sign as X. The process can be sped up even more
if this expression is first computed approximately to obtain
XA = (vx ⊗ vx) ⊕ (vy ⊗ vy). Then only if XA has too big
an error bound, as determined by the test (3), the compu-
tation of XB = v2x+v2y is undertaken exactly using the data

type of expansions. If XB is also too crude an approxima-
tion of X, we can correct it by adding up the smaller terms
(2vxey + 2vyex), first approximately, and then correctly. Fi-
nally, if all of these approximations fail to give an answer, we
can compute the exact result by adding the last summand
e2x + e2y to the expansion computed in the previous phase.
Using this approach, we will compute the exact value only
if absolutely necessary, and even then, the efforts spent on
previous phases will not be wasted, but will rather be reused
to obtain the exact result in an efficient way.

This idea to generalize floating-point filters into a hierar-
chy of adaptive precision filtering phases is due to Shewchuk.
While the number and type of adaptive phases, strictly
speaking, can vary with the expression, his experiments
pointed to a scheme with four phases as the optimal in prac-
tice for the basic geometric predicates that he considered.
We adopt this scheme and present its formalization in Sec-
tion 4. The arbitrary precision floating-point arithmetic and
the data type of expansions is invented by Priest, and fur-
ther optimized by Shewchuk. Detailed description and anal-
ysis of adaptive precision arithmetic and of the algorithms
for basic operations can be found in their respective PhD
theses ([8] and [11]).

The whole method described above relies on the fact that

phrases φ ::= x | c | e
expressions e ::= φ1 + φ2 | φ1 - φ2 | φ1 × φ2

| ~φ | sq φ
assignment lists α ::= val x = e | val x = e α
programs π ::= fn [x1, . . . , xn] => let α end

| fn [x1, . . . , xn] => let α π end

Figure 3: Source language

orient2(A,B,C) = sgn

∣∣∣∣ ax − cx bx − cx
ay − cy by − cy

∣∣∣∣
fn [ax, ay, cx, cy] =>

let val acx = ax - cx

val acy = ay - cy

fn [bx, by] =>

let val d = acx × (by - cy) -

acy × (bx - cx)

end

end

Figure 4: Orient2D predicate: definition and imple-
mentation in the source language.

the required floating-point operations will execute without
any exceptions, i.e. that neither overflow nor underflow will
occur during the computation. If exceptions do happen,
the expansions holding the exact intermediate values may
lose bits of precision and produce a distorted answer. A
possible solution in such cases is to rerun the computation
in some other, slower, form of exact arithmetic (for example
in infinite precision rational numbers).

3. SOURCE AND TARGET LANGUAGES
The source language of the compiler is shown in Figure 3.

Its syntax supports the basic arithmetic operations (includ-
ing squaring), assignments and staged functional expres-
sions. The arguments of the functions should be perceived as
floating-point values, while the intermediate results are as-
sumed to be computed exactly. Squaring is included among
the arithmetic operations because it can often be executed
quicker than the multiplication of two equal exact values,
and has a better error bound. In addition, it provides the
compiler with the knowledge that its result is non-negative,
which can be used in some cases to optimize the code. In
order to simplify the compilation process, the source lan-
guage requires that all the assignments are non-trivial, i.e.
it disallows assignments of variables or constants. A func-
tion defined in the source language is designed to compute
the sign of the last expression in the assignment list of the
function’s last stage. Of course, a staged source function can
be partially instantiated with an appropriate subset of the
arguments in order to return a new function that encodes
the rest of the computation. The source language does not
have any syntactic constructs for the sgn function, but this
function is always assumed at the last assignment of the last
stage of the program.

As an example, consider the Orient2D geometric predi-
cate and its implementation in Figure 4. Orient2D deter-

reals r ::= x | c | r1 ∗ r2 | r1 ~ r2 | sq r
| ~r | abs r | double r | approx r
| tail∗(r1, r2, r3) | tailsq(r1, r2)

assignment lists λ ::= val (x1, . . . , xn) = lforce x λ
| val (x1, . . . , xn) = rforce x λ
| val x = susp λ in

((x1, . . . , xn),
(x1, . . . , xm))

end λ
| val x = r λ | empty

sign tests σ ::= sign r | signtest (r1 ± r2)
with λ in σ end

functions ϕ ::= fn (x1, . . . , xn) =>

let λ in σ end
| fn (x1, . . . , xn) =>

let λ in ϕ end

Figure 5: Target language.

mines the position (in/out/on) of point B = (bx, by) with
respect to the line from A = (ax, ay) to C = (cx, cy). The
implementation in Figure 2 is staged in the coordinates of A
and C. Once the predicate is applied to these two points, its
result is a new function specialized to compute relative to
the line AC, without recomputing the intermediate results
acx and acy.

The target language of the compilation is presented in
Figure 5. It is designed to be easily converted to SML, so
its semantics is best explained by referring to SML. In the
syntactic category of reals, the symbol ∗ varies over the op-
erations {+,−,×}. The values of the syntactic category of
reals are translated either into floating-point numbers, or ex-
pansions. Each of the operations in the target language has
a very definite notion of which of the two types it expects
(and floats are considered subtypes of expansions). How-
ever, we chose not to make this distinction explicit and did
not introduce separate types for floats and expansions in the
target language. The reason is that we do not plan to do any
programming in this language directly, but rather just use
it for intermediate representation of programs before they
are converted into SML or C.

The target language operations ⊕, 	 and ⊗ are inter-
preted as corresponding floating-point operations. They ex-
pect floating-point input, and produce floating-point out-
put. The exact operations +, − and × are translated into
the appropriate exact operations on the data type of expan-
sions. Constants are always floating-point values. The tail

constructs compute the roundoffs from their correspond-
ing floating-point operation. For example, tail+(a, b, a⊕ b)
will compute the roundoff from the addition a⊕ b following
Knuth’s theorem. The construct double is multiplication by
2 on expansions, and approx returns a floating-point number
approximating the passed expansion with a relative error of
2ε.

To describe the role of susp, lforce and rforce con-
structs, we need to make a clear distinction between stages
and phases of computation in the target language. The
source program contains nested functional expression which
we refer to as stages. Once it is compiled into the target lan-
guage, every stage gets transformed into a stage of the tar-
get language, which consists of four computational phases of
increased precision. The first phase carries out the computa-

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

X

X

X

previous

phases

Phase C

Phase D (exact phase)

Phase C

previous

phases

STAGE 0

STAGE 1

V = rforce X

V = rforce X

Phase D (exact phase)

C

X = susp(
C . . .

in (W , V) end)
D C

C

X = susp(D
let val W = lforce XD C. . .
in (0, V) end)

D

D

C C. . .

D D. . .

Figure 6: Passing intermediate results between
phases and stages using susp, lforce and rforce.

tion in floating-point, and the other phases mix in elements
of exact computation as hinted in the previous section. The
computation of these other phases have to be suspended,
since their results are needed only when the floating-point
calculations carried out by the first phase of the final stage
failed to determine the sign. Thus, the notion of stages refers
to partial evaluation of code, while the notion of phases refers
to lazy evaluation of code.

Going back to the target language, susp creates a piece
of code, a suspension, to be evaluated when requested by
rforce or lforce. It gives a mechanism to pass intermedi-
ate results between different stages, and between different
phases of the same stage. The output from a suspension
contains two tuples of intermediate values. The first tuple
consists of intermediate values to be passed to some later
phase of the current stage, and the second tuple consists of
intermediate values intended for the following stage. The
first tuple can be recovered by lforce-ing the suspension,
and the second tuple by rforce-ing it (see Figure 6).

The sign function returns a sign of an expansion. The
construct signtest first checks whether the magnitude |r1|
of the tested value is bigger than the magnitude |r2| of the
roundoff error. If so, it returns the sign of r1. Otherwise, it
cannot determine the sign of r1 with certainty, so it under-
takes the computation of the next phase λ, followed by sign
test σ. Values r1 and r2 are assumed to be floating-point.

4. COMPILATION
To describe the compilation process, first notice that the

source program, according to the grammar of the source lan-
guage (Figure 3), can be viewed as a nonempty sequence of
assignment lists, each representing a single stage of compu-
tation. Each of these stages is separately compiled into four
target phases which are meant to perform the computation
of the stage with increasing precision, as described in Section
2. At the end, these pieces of target code are pasted together
in a target program, according to specific templates, so that
sign checks are performed between subsequent phases, while
respecting the staging specified in the source program.

The whole process is formalized using five judgments –

four for compiling source stages into their target counter-
parts, and one judgment to compose all the obtained tar-
get stages and phases together into a target program. This
section describes the compilation process in more detail,
explains some decisions in designing the compilation judg-
ments and illustrates representative rules of the judgments
through several examples. Selected subset of rules is pre-
sented in the appendix. The complete definition of the judg-
ments can be found in [7].

Before proceeding further, there is one technicality to no-
tice. Namely, it can be assumed, without loss of generality,
that the source program to be compiled is in a very specific
format. First, we require that all of its assignments consist
of a single binary operation acting on two other variables
(rather then on two arbitrary source expressions), or of a
single unary operation acting on another variable. The sec-
ond requirement is that the source program does not contain
any floating-point constants – all the constants are replaced
by fresh variables for error analysis purposes, and then put
back into the target code at the end of the compilation.

It is trivial to transform the source program so that it
complies with these two prerequisites, so we do not present
the formalization of this procedure. In our implementation
it is carried out in parallel with the parsing of the source
program.

In the following section, we illustrate the various phases
of the process with the compilation of the source expression

F = fn [a, b] =>

let val ab = a - b

val ab2 = sq ab

fn [c] =>

let val d = c × ab2

end

end

4.1 Compiling the stages
The first phase, phase A, of the predicate performs all the

source operations approximately in floating-point. The ex-
pression compiler determines the appropriate error bounds
for the generated code following the equations (2). As can
be noticed from these formulas, the relative error is a ra-
tional quantity that depends solely on the structure of the
source program, while its permanent depends on the input
arguments as well, and hence must be computed at run-
time. The job of the expression compiler is to determine
the relative error of the expression, and insert code into the
target program that will compute the permanent and per-
form checks to see whether the obtained results correctly
determine the sign of the source expression.

The rest of this section presents a formalization of the er-
ror analysis and program transformation mentioned above.
In order to describe the compilation for the phase A, we rely
on the judgment

E1 `A α; λ; r1, r2
/
E2

This judgment relates a list α of source assignments to the
list λ of corresponding phase A target assignments. Expres-
sions r1 and r2 are from the syntactic category of reals in
the target language (Figure 5). The expression r1 is to be
tested for sign at the end of the phase, and the expression r2
is an upper bound on the roundoff error. The assignments

source code target code context
phase A
val ab = a− b val abA = aA 	 bA abA : OA(ε)

abP � abs(abA)
val ab2 = sq ab val ab2A = abA ⊗ abA ab2A : OA(3ε+ 3ε2 + ε3)
phase B
val ab = a− b – abB : OB(ε)

abB � abA

val ab2 = sq ab val ab2B = sq abA ab2B : OB(2ε+ 3ε2 + ε3)
phase C

val ab = a− b val abC = tail−(aA, bA, abA) abC : OC(0, ε, 0)

val ab2 = sq ab val ab2C = double(abA ⊗ abC) ab2C : OC(3ε2 + 3ε3, 2ε 1+ε
1−ε , ε)

phase D
val ab = a− b – abD � abC

val ab2 = sq ab val ab2D = double(abA × abC) + sq(abC) –

Table 1: Compilation of the first stage of F .

target code testing value error estimate context
phase A

val dA = cA ⊗ ab2A dA d (1+ε)
2(3ε+3ε2+ε3)

1−ε efp ⊗ abs(dA) dA : OA(4ε+ 6ε2 + 4ε3 + ε4)

dP � abs(dA)
phase B

val dB = cA × ab2B approx(dB) d (1+ε)
2(2ε+3ε2+ε3)
1−2ε

efp ⊗ abs(dA) dB = OB(2ε+ 5ε2 + 4ε3 + ε4)

phase C

val dC = cA ⊗ ab2C dC d 5ε
2+12ε3+6ε4−4ε5−3ε6

(1−ε)2 efp ⊗ abs(dA) dC : OC(5ε2+2ε3−3ε4

1−ε , 2ε(1+ε
1−ε)

2, 2ε+ ε2)

phase D
val dD = cA × ab2D dB + dD –

Table 2: Compilation of the second stage of F . The source code for this stage consists of the single assignment
val d = c× ab2.

in λ will perform the phase A calculations and compute the
appropriate permanent.

The contexts E1 and E2 deserve special attention. They
are sets relating target language variables with their error
estimates. The grammar for their generation is presented
below.

contexts E ::= · | x : τ, E | x� r, E
errors τ ::= OA(δ) | OB(δ) | OC(δ, ι, ρ) | OD | P

Each variable in a context is bound in one of the four phases
of the computation (A, B, C or D), and will have error es-
timates that are appropriate for that phase of the compu-
tation (OA(δ), OB(δ), OC(δ, ι, ρ) and OD), where δ, ι and
ρ are rational numbers (Figure 7). For example, if the er-
ror relation x : OA(δ) ∈ E, that means that the variable
x which is bound in phase A, has been estimated by the
compiler to have a relative error bounded from above by the
rational number δ. Similar meaning can be ascribed to the
error assignments x : OB(δ) for phase B. Phase C, on the
other hand, is a mix of approximate and exact computa-
tions, and there are three rational values δ, ι and ρ that
govern phase C error estimations. We don’t describe their
meaning in this paper, as it would take too much space, but
selected formulas for their derivation can be found in the
appendix and the complete definition is in [7]. Phase D is
the exact phase, so there are no error estimates to associate
with phase D variables. Finally, the temporary variables in-
troduced to hold parts of the permanent are not analyzed
for error. We still place them into the error contexts, just

for clarity, but with the error tag P. To reduce clutter, the
error estimate of a variable x in a context E will be denoted
simply as E(x), as it will always be clear from the rule in
which phase the variable is bound. In addition to the error
estimates, the contexts contain substitutions of variables by
target language real expressions (x � r). If some compila-
tion rule needs to emit into target code a variable for which
there is a substitution in the context, the substituting ex-
pression will be emitted instead. This serves two purposes.
First, we can use it to express that certain variables in the
code are just placeholders for floating-point constants – a
situation occurring, as explained before, because of an as-
sumed stricter form of the source programs. Second, it lets
us optimize, in a single pass of the compiler, the code for
computing the permanent of the expression - a process that
will be illustrated below.

Now that we have lain out the structure of the contexts
E1 and E2 in the judgment we are defining, we can describe
their purpose. Simply, the compilation with the judgment
starts with the context E1, and ends with E2. So, E2 is
in fact E1 enlarged with the new variables, error estimates
and substitutions introduced during the compilation. The
context E2 is returned so that it can be threaded into other
rules.

Going back to the analysis for the expression F , given
on the previous page, we illustrate how its phase A can
be compiled using the above judgment. First of all, the
expression F is specified as two stages: the one executing

val ab = a− b and val ab2 = sq ab, and the other one ex-
ecuting the assignment val d = c× ab2. Each of the stages
will be compiled into four phases of assignments. The com-
pilation for phase A starts by breaking down each stage of
the source program into individual assignments. The rule is
the following.

E1 `A val x = e; λH ; s1, s2
/
E′

E′ `A α; λT ; r1, r2
/
E2

E1 `A val x = e α; λHλT ; r1, r2
/
E2

The rule “folds” the functionality of the compiler across
the list of source assignments, carrying the context from one
assignment to the next. Notice that the expressions s1 and
s2 are never used – only the last expression in the assignment
list is ever tested for sign. Now, to compile the assignment
val ab = a− b, we need a rule applicable to subtraction of
input arguments. Input arguments are assumed to be error-
less, so the following rule applies.

E(xA1) = E(xA2) = 0

E `A val y = x1 - x2 ; val yA = xA1 	 xA2 ;
yA, 0

/
E, yA : OA(ε), yP : P, yP � abs(yA)

When applied to the assignment val ab = a− b, the meta
variables y, x1 and x2 are instantiated to ab, a and b respec-
tively. The rule then emits the target code for the assign-
ment to abA (the superscripts A indicate that the target
variable is bound in the phase A of the predicate). For
the purpose of bookkeeping, the rule must also extend the
context with information about the relative error and the
permanent of abA. The relative error of abA is ε, so the rule
generates the error estimate abA : OA(ε). Finally, the per-
manent abP of abA is equal to |abA|, and the substitution

context is extended with abP � abs(abA).
Next in the assignment list from our example is the assign-

ment val ab2 = sq ab. The squaring operation is handled
by the rule

xP1 � xA1 or xP1 � abs(xA1) ∈ E
E `A val y = sq(x1) ; val yA = xA1 ⊗ xA1 ;

yA, d (1+ε)
2(2δ1+δ

2
1)

1−ε efp ⊗ yA
/

E, yA : OA(ε+ (1 + ε)(2δ1 + δ21)),
yP : P, yP � yA

In the assignment to ab2, the meta variables x1 and y of
this rule are instantiated to ab and ab2 respectively. Then
the meta variable xP1 becomes abP . But abP has already
been introduced into the context with a substitution abP �

abs(abA). Thus, the premises of this rule are satisfied, and
it can be applied. The meta variable δ1 from the rule refers
to the relative error of the variable xA1 as read from the con-
text, i.e. OA(δ1) = E(xA1). In our example of assignment
to ab2, the variable xA1 is instantiated to abA and δ1 is in-
stantiated to ε. The produced permanent for ab2A is ab2A

itself, explaining why we avoided emitting any code for per-
manent computation so far. Any separate computation of
the permanent for ab2 would have been just a waste of ef-
fort, since it is already computed by the main thread of the
filter. For future use, however, this rule stores the substi-
tution ab2P � ab2A into the context. The relative error for
ab2 is computed as ε + (1 + ε)(2δ1 + δ21) = (3ε + 3ε2 + ε3)
and is stored into the context.

That finishes the compilation of phase A of the first stage.
The next stage contains the assignment val d = c× ab2,

and its phase A target code is obtained by the rule

E(xA1) = 0 xP2 � xA2 or xP2 � abs(xA2) ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)
2δ2

1−ε efp ⊗ abs(yA)
/

E, yA : OA(ε+ (1 + ε)δ2), yP : P,
yP � abs(yA)

The rule compiles the source assignment into val dA= cA⊗
ab2A and expands the current context with the error es-
timate dA : OA(4ε + 6ε2 + 4ε3 + ε4) and the substitution
dP � abs(dA).

The remaining phases for F are obtained in a similar way,
and the reader is refered to the Appendix for a selected set of
rules for the described judgments. The complete definition
of the rules can be found in [7]. The steps in the derivation
for the two stages, including the changes in the judgment
contexts, are presented in Table 1 and Table 2 respectively.
In addition to the target code and the contexts, Table 2 also
shows, for each of the phases, the testing value and error
estimate (recall that only the testing value and the error es-
timate of the last stage are actually emitted into the target
code). As can be seen from Table 2, the testing values for

the four phases of the second stage are dA, approx(dB), dC

and dB+dD, respectively. In the first three phases, these will
be checked against the rounding errors to determine if they
have the correct sign. In phase D, the testing value is actu-
ally the exact value of the expression. The error estimates
for the second stage are obtained from the corresponding
rounding errors using (3), producing a quick floating-point
test for the sign of the testing value. The error estimates are
represented in the table in a symbolic form. It is important
to notice that all of them are known in compile time, and
are emitted into target code as floating-point constants1.

So, for example, d (1+ε)
2(3ε3ε

2+ε3)
1−ε efp = 3.33067e−16 and

d (1+ε)
2(2ε+3ε2+ε3)
1−2ε

efp = 2.22045e−16.

4.2 Compiling the program
Once all the stages of the source program have been com-

piled, they need to be pasted together into a target program,
but in such a way that the phases can “communicate” their
intermediate results. For illustration, the target code result-
ing from the compilation of the expression F is presented in
Figure 7. The translation is done through a new judgment

E1 `P π;xB , xC , xD ; ϕ
/
VB , VC , VD

which takes a source program π and compiles it into a target
program ϕ. This judgment works in a bottom-up manner –
the later stages are pasted in first (recall that a source pro-
gram is a “list” of stages; the judgment first processes the
tail of the list, and then pastes in the head stages). Thus, it
is possible that the target program ϕ will not have all of its
variables bound – some of them might have been introduced
in one of the previous stages, and thus will be compiled and
bound by the judgment only later. The meta variables xB ,
xC and xD hold object-code variables, freshly allocated in
the previous stage to hold that stage’s suspensions, and then
passed to the current stage to be rforce’d if needed. The

1In the actual SML and C implementations, these values are
calculated in an initialization routine, rather than placed in
the code as decimal constants, in order to avoid rounding
errors in the decimal-to-binary conversion.

fn [aA, bA] =>

let val abA = aA 	 bA

val ab2A = abA ⊗ abA

val yB = susp

val ab2B = sq abA

in ((), ab2) end

val yC = susp

val abC = tail−(a
A, bA, abA)

val ab2C = double(abA ⊗ abC)

in ((abC), (ab2C)) end

val yD = susp

val (abC) = lforce yC
val ab2D = double(abA × abC)

+ sq abC

in ((), ab2D) end

in

fn [cA] =>

let val dA = cA ⊗ ab2A

in

signtest (dA ± (3.33067e−16⊗ abs(dA)))

with

val (ab2B) = rforce yB
val dB = cA × ab2B

val yBX = approx(dB)
in signtest

(yBX ± (2.22045e−16⊗ abs(dA)))
with

val (ab2C) = rforce (yC)
val dC = cA ⊗ ab2C

in signtest

(dC ± (2.22045e−16⊗ yBX ⊕
6.16298e−32⊗ abs(dA)))

with

val (ab2D) = rforce yD
val dD = cA × ab2D

in sign(dB + dD) end

end

end

end

end

Figure 7: Target code for the example expression F .

variables VB , VC and VD hold the object-code variables that
the mentioned suspensions should populate with intermedi-
ate values. They are passed back to the previous stage so
that the stage can be correctly constructed.

To determine which object-code variables will be passed
via suspensions to a particular phase, we use the following
function.

fv(λ, S) = (S ∪ free variables of λ) \ bound variables of λ

For example, if λD is the assignment list for the exact phase
(phase D) of the last stage in a program π, its free variables
will be VD = fv(λD, ∅). Some of these free variables will
be bound in the λA, λB or λC list of the same stage, but
some will have to be passed by a suspension from the exact
phase of the previous stage (see Figure 6). The variables to
be placed in this suspension are therefore all characterized
by the fact that they are introduced in the exact phase of
some previous stage. Thus, their set is VD ∩domD E, where

domD E is the set of variables from the context E that have
phase D error estimates.

We can similarly determine the suspensions for the phase
C of the last stage. Since phase C needs to bind some of the
variables from λD, we don’t just consider the free variables
of λC , but rather set VC = fv(λC , VD). As before, some
of these variables will be bound in λA and λB , but those
that are not will need to be passed via suspension from the
phase C of the preceding stage. These variables are in the set
VC ∩domC E, where domC E is, analogously to the phase D
case, the set of object-code variables from context E bound
in some of the previous C phases.

In a similar way, the phase B will request the set VB ∩
domB E where VB = fv(λB , VC) passed as a suspension from
phase B of the preceding stage. Finally, phase A doesn’t
require any variable passing, since the computations of this
phase are always carried out immediately in each stage, and
are never suspended.

The above discussion motivates the following rule of the
`P judgment. The rule applies only if π is a single-stage
program, and since the judgment is recursively applied, it
serves to compile the last stage of the source program.

E, xAi : OA(0) `A α; λA; rA1 , r
A
2

/
E1

E1 `B α; λB ; rB1 , r
B
2

/
E2

E2 `C α; λC ; rC1 , r
C
2

/
E3

E3 `D α; λD; rD1
/
E4

E `P fn [x1, . . . , xn] => let α end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where Φ is defined as

fn [x1,...,xn] =>

let λA
in signtest (rA1 ± rA2) with

val (VB ∩ domB E) = rforce(xB)
λB
val yBX = rB1

in signtest (yBX ± rB2) with

val (VC ∩ domC E) = rforce(xC)
λC

in signtest (rC1 ±
⌈

2ε(1+ε)2

1−ε

⌉
fp
⊗ yBX ⊕ rC2)

with

val (VD ∩ domD E) = rforce(xD)
λD

in sign (rD1) end

end

end

end

Similar analysis of variable passing can be performed if the
stage considered is not the last one. Then one only needs
to take into account that some object-code variables might
be requested from the subsequent stage, and factor them in
when creating the suspensions. The rule that handles this
case is

E, xAi : O(0) `A α; λA; rA1 , r
A
2

/
E1

E1 `B α; λB ; rB1 , r
B
2

/
E2

E2 `C α; λC ; rC1 , r
C
2

/
E3

E3 `D α; λD; rD1
/
E4

E4 `P π; yB , yC , yD ; ϕ
/
UB , UC , UD

E `P fn [x1, . . . , xn] => let α π end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where VD = fv(λD, UD), VC = fv(λC , UC ∪ VD), VB =
fv(λB , UB ∪ VC), and the program Φ is defined as follows.

fn [x1, . . . , xn] =>

let λA
val yB = susp

val (VB ∩ domB E) = rforce xB
λB

in (VD ∩ domB E, UB) end

val yC = susp

val (VC ∩ domC E) = rforce xC
λC

in (VD ∩ domC E, UC) end

val yD = susp

val (VD ∩ domD E) = rforce xD
val (VD ∩ domB E) = lforce yB
val (VD ∩ domC E) = lforce yC
λD

in ((), UD) end

in

ϕ
end

Finally, if π is a source program, then as described before,
it can be assumed that all its assignment expressions consist
of a single operation acting only on variables, and that its
constants ci are replaced by free variables yi. The target
program ϕ for π is obtained through the judgment after
all these new variables are placed into context with relative
error 0 together with their substitutions with constants.

E, yAi : OA(0), yAi � ci `P π;xB , xC , xD ; ϕ
/
VB , VC , VD

Notice how the pieces of target code shown in Tables 1 and
2, which represent various stages and phases of computation,
are pasted together into the target program from Figure 7.
For clarity, the empty suspensions and forcings have been
deleted from this target program.

5. PERFORMANCE
We have already mentioned that our automatically gen-

erated code for 2- and 3-dimensional Orient, InCircle and
InSphere predicates to a large extent resembles that of Shew-
chuk [11]. Of course, this similarity is hard to quantify, if
for no other reason than because our predicates are gen-
erated in our target language, while Shewchuk’s predicates
are in C. Nevertheless, we wanted to measure the extent
to which the logical and mathematical differences in the
code influence the efficiency of our predicates. For that pur-
pose we translated (automatically) the generated predicates
from target language into C and compared the translations
against Shewchuk’s C implementations. The first test con-
sisted of running the compared predicates on a common set
of input entries. Each set had 1000 entries, and each entry
was a list of point coordinates, in cardinality and dimension
appropriate for the particular predicate. The coordinates
of the points were drawn with a uniform random distribu-
tion from the set of floating-point numbers with exponents
between −63 and 63. The summary of the results is rep-
resented in Table 3. As can be seen, our C predicates are
of comparable speed with Shewchuk’s, except in the case of
InSphere where Shewchuk’s hand-tuned version is about 2.4
times faster. The InSphere predicate is the most complex of
all and it is only natural that it can benefit the most from
optimizations.

Shewchuk’s Automatically Ratio
version generated version

Orient2D 0.208 ms 0.249 ms 1.197
Orient3D 0.707 ms 0.772 ms 1.092

InCircle 6.440 ms 5.600 ms 0.870
InSphere 16.430 ms 39.220 ms 2.387

Table 3: Performance comparison with Shewchuk’s
predicates. The presented results are times for an
average run of a predicate on random inputs.

Shewchuk’s Automatically Ratio
version generated version

random 1187.1 ms 1410.3 ms 1.19
tilted grid 2060.4 ms 3677.5 ms 1.78
co-circular 1190.2 ms 1578.3 ms 1.33

Table 4: Performance comparison with Shewchuk’s
predicates for 2d divide-and-conquer Delaunay tri-
angulation.

In particular, one of the most visible differences between
our InSphere predicate and Shewchuk’s is the number of
variables declared in the program. Our version of InSphere
declares a new double array (which can be of considerable
size) for every local variable in the target code intended to
hold an exact value of an expansion type. However, a lot of
this memory can actually be reused, because only a minor
portion of the exact values needs to be accessible through-
out the run of the program. This will improve the cache
management of the automatically generated programs and
certainly increase their time efficiency. However, it is im-
portant to notice that this problem is not inherent to the
automatically generated predicates, but is due to the naive
translation from our target language into C. A better trans-
lator could probably decrease these differences considerably.

For the second test we modified Triangle, Shewchuk’s 2d
Delaunay triangulator [10] to use automatically generated
predicates. The testing included triangulations of three dif-
ferent sets of 50,000 sample points: uniformly random in
a unit square, tilted grid and uniformly random on a unit
circle. The summary of the results is represented in Ta-
ble 4. As can be seen, our predicates are a bit slower in
the degenerate cases of tilted grid and co-circular points.
Triangulation of such point-distributions often requires the
higher phases of the filter, which are better optimized in
Shewchuk’s hand-tuned versions.

All the results are obtained on a Pentium II on 266 MHz
and 96 MB of RAM.

6. FUTURE WORK
The most immediate extensions of the compiler should fo-

cus on exploiting the paradigm of staging even better. Stag-
ing of expressions prevents recomputing already obtained
intermediate results. However, each stage in the source pro-
gram translates into four phases of the target program, with
four approximations of different precision to the given inter-
mediate result. If a computation ever carries out its phase
D it will obtain the exact value of this intermediate result,
and could potentially use it to increase the accuracy of the
approximations from the inexact phases. It would be in-
teresting and useful to devise a scheme that would exploit

both the adaptive precision arithmetic and the staging in
this broader manner.

A longer term goal could be to exploit the structure of
the computation to obtain better error bounds. Priest has
derived sufficient conditions which guarantee that the re-
sult from a certain floating-point operation will actually be
computed exactly, i.e. will not incur any roundoff error [8].
While putting this idea in practice will likely require a non-
trivial amount of theorem proving, it might still be feasible,
since geometric predicates are typically short expressions,
and that the time for their compilation is not really crucial.

Finally, one may wonder how to extend the source lan-
guage with the standard programming constructs such as
products, coproducts and functions. Adding functions for
the sake of structuring the code will most likely require
that every single intermediate variable in the program be
replaced with a tuple containing that variable phase A value
and a suspension for the other three phases. This is required
since now functions in the language can test signs of arbi-
trary values, even those produced by other functions, so the
values have to be equipped with means to compute them-
selves exactly. But this is likely to be too slow, defeating
the whole purpose of the expression compiler. On the other
hand, adding recursive functions is even less realistic. Per-
forming error analysis for recursive functions is hard – it is
one of the main goals of the whole mathematical field of
numerical analysis. Therefore, it seems to be more useful
to just add coproducts, since products lose much of their
purpose if functions are not around.

7. CONCLUSION
This paper has presented an expression compiler for au-

tomatic generation of functions for testing the sign of a
given arithmetic expression over floating-point constants and
variables. In addition to the basic operations of addition,
subtraction, multiplication, squaring and negation, our ex-
pressions can contain anonymous functions and thus exploit
the optimization technique of staging, that is well-known
in functional programming. The output of the compiler is
a target program in a suitably designed intermediate lan-
guage, which can be easily converted to SML or, in case of
single-stage programs, to C.

Our method is an extension to arbitrary expressions of
the idea of Shewchuk [11], which he employed to develop
quick robust predicates for the Orient and InSphere geo-
metric test. In particular, when applied to source expres-
sions for these geometric predicates, our compiler generates
code that, to a large extent, resembles that of Shewchuk.
The idea behind the approach is to split the computation
into several phases of increasing precision (but decreasing
speed), each of which builds upon the result of the previous
phase, while using forward error analysis to achieve reliable
sign tests.

There remain, however, two caveats when generating pred-
icates with this general approach – the produced code works
correctly (1) only if no overflow or underflow happen, and
(2) only in round-to-nearest, tie-to-even floating-point arith-
metic complying with the IEEE standard.

If overflow or underflow happens in the course of the run
of some predicate, the expansions holding exact intermedi-
ate results may lose bits of information and distort the final
outcome. Thus, we need to recognize such situations and,
in those supposedly rare cases, rerun the computation in

another form of exact arithmetic (say in infinite precision
rational numbers). Unfortunately, even though the IEEE
standard prescribes flags that can be read to check for over-
flow and underflow, the Standard Basis Library of ML does
not provide any functions for their testing.

As concerning the second requirement, the IEEE standard
is implemented on most modern processors. Unfortunately,
on the Intel x86 family this is not a default setup. This
family uses internal floating-point registers that are larger
than 64-bits reserved for values of floating-point type. This
property can occasionally make them round incorrectly in
the to-nearest mode (for an example, see [8] page 103) and
thus destroys the soundness of the language semantics. This
default can be changed by setting a processor flag, but again,
the Standard Basis Library does not provide any means for
it.

We believe that these two described insufficiencies can
easily be remedied, and should be if SML is to become a
language with serious applications in numerical analysis and
scientific computing.

8. REFERENCES
[1] M. O. Benouamer, P. Jaillon, D. Michelucci, and J. M.

Moreau. A lazy exact arithmetic. In E. E. Swartzlander,
M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th
IEEE Symposium on Computer Arithmetic, pages 242–249,
Windsor, Canada, June 1993. IEEE Computer Society
Press, Los Alamitos, CA.

[2] S. Fortune and C. J. V. Wyk. Efficient exact arithmetic for
computational geometry. In Ninth Annual Symposium on
Computational Geometry, pages 163–172. Association for
Computing Machinery, May 1993.

[3] S. Funke and K. Mehlhorn. LOOK – a lazy object-oriented
kernel for geometric computation. In Proceedings of the
16th Symposium on Computational Geometry, pages
156–165. ACM, June 2000.

[4] IEEE. IEEE standard for binary floating-point arithmetic.
ACM SIGPLAN Notices, 22(2):9–25, Feb. 1985.

[5] K. Mehlhorn and S. Näher. LEDA: A Platform for
Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[6] D. Michelucci and J. M. Moreau. Lazy arithmetic. IEEE
Transactions on Computers, 46(9), September 1997.

[7] A. Nanevski, G. Blelloch, and R. Harper. Automatic
generation of staged geometric predicates. Technical Report
CMU-CS-01-141, School of Computer Science, Carnegie
Mellon University, June 2001.

[8] D. M. Priest. On Properties of Floating Point Arithmetics:
Numerical Stability and the Cost of Accurate
Computations. PhD thesis, University of California at
Berkeley, Berkeley, California, November 1992.

[9] S. A. Seshia, G. E. Blelloch, and R. W. Harper. A
performance comparison of interval arithmetic and error
analysis in geometric predicates. Technical Report
CMU-CS-00-172, School of Computer Science, Carnegie
Mellon University, December 2000.

[10] J. R. Shewchuk.
http://www.cs.cmu.edu/~quake/triangle.html.

[11] J. R. Shewchuk. Delaunay Refinement Mesh Generation.
PhD thesis, Carnegie Mellon University, 1997.

APPENDIX
A. COMPILATION RULES

The expression compiling is governed by five judgments. Four
of them correspond to the four phases of adaptive computation.
They take lists of source language assignment in context and
produce lists of target language assignment. They also return

a target floating-point expression (an expression in the syntactic
category of reals) to be tested for sign and a target floating-point
expression representing the upper bound on the relative error (or
a part of it in the case of phase C). The fifth judgment compiles
the whole program by putting together all the pieces of target
code obtained by the other judgments. It takes a source program
and three variables naming suspensions for B, C and D phases,
and returns a target program plus lists of variables to be bound
in those suspensions, as described Section 4.

In the following text, concatenation of lists of assignments is
represented by their juxtaposition. The relative error of a variable
x in context is E is refered to as E(x). Only selected rules of each
judgement are presented. For the complete definition, the reader
is refered to [7].

A.1 First phase
Phase A of the compilation is handled by the judgment E1 `A

α ; λ; r1, r2
/
E2. We abbreviate δ1 = E(xA1) and δ2 = E(xA2)

when the quantities on the right are defined. The rules for the
judgment follow below.

E1 `A val x = e; λH ; s1, s2
/
E′

E′ `A α; λT ; r1, r2
/
E2

E1 `A val x = e α; λHλT ; r1, r2
/
E2

A.1.0.1 Addition.
Denote errA+(δ1, δ2) = ε+ (1 + ε) max(δ1, δ2).

E(xA1) = E(xA2) = 0

E `A val y = x1 + x2 ; val yA = xA1 ⊕ xA2 ;
yA, 0

/
E, yA : OA(ε), yP : P, yP � abs(yA)

E(xA1) = 0
E `A val y = x1 + x2 ;

val yA = xA1 ⊕ xA2
val yP = abs(xA1) ⊕ xP2 ;
yA, d 1+ε

1−ε δ2efp ⊗ y
P
/
E, yA : OA(ε+ δ2), yP : P

Symmetrically if E(xA2) = 0.

xP1 � xA1 ∈ E xP2 � xA2 ∈ E
E `A val y = x1 + x2 ; val yA = xA1 ⊕ xA2 ;

yA, d (1+ε)
2

1−ε max(δ1, δ2)efp ⊗ yA
/

E, yA : OA(errA+(δ1, δ2)), yP : P, yP � yA

E `A val y = x1 + x2 ;

val yA = xA1 ⊕ xA2 val yP = xP1 ⊕ xP2 ;

yA, d (1+ε)
2

1−ε max(δ1, δ2)efp ⊗ yP
/

E, yA : OA(errA+(δ1, δ2)), yP : P

A.1.0.2 Multiplication.
Denote errA×(δ1, δ2) = ε+ (1 + ε)(δ1 + δ2 + δ1δ2).

E(xA1) = E(xA2) = 0

E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;
yA, 0

/
E, yA : OA(ε), yP : P, yP � abs(yA)

E(xA1) = 0 xP2 � xA2 or xP2 � abs(xA2) ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)
2δ2

1−ε efp ⊗ abs(yA)
/

E, yA : OA(ε+ (1 + ε)δ2), yP : P,
yP � abs(yA)

E(xA1) = 0
E `A val y = x1 × x2 ;

val yA = xA1 ⊗ xA2 val yP = abs(xA1)⊗ xP2 ;

yA, d (1+ε)
2δ2

1−ε efp ⊗ yP
/

E, yA : OA(ε+ (1 + ε)δ2), yP : P

Symmetrically if E(xA2) = 0.

xP1 � xA1 ∈ E xP2 � xA2 ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)
2(δ1+δ2+δ1δ2)

1−ε efp ⊗ yA
/

E, yA : OA(errA×(δ1, δ2)), yP : P, yP � yA

xP1 � xA1 or xP1 � abs(xA1) ∈ E
xP2 � xA2 or xP2 � abs(xA2) ∈ E

E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)
2(δ1+δ2+δ1δ2)

1−ε efp ⊗ yA
/

E, yA : OA(errA×(δ1, δ2)), yP : P, yP � abs(yA)

E `A val y = x1 × x2 ;

val yA = xA1 ⊗ xA2 val yP = xP1 ⊗ xP2 ;

yA, d (1+ε)
2(δ1+δ2+δ1δ2)

1−ε efp ⊗ yP
/

E, yA : OA(errA×(δ1, δ2)), yP : P

A.2 Second phase
The judgment handling phase B is E1 `B α ; λ; r1, r2

/
E2.

As before, we denote δ1 = E(xB1) and δ2 = E(xB2).

E1 `B val x = e; λH ; s1, s2
/
E′

E′ `B α; λT ; r1, r2
/
E2

E1 `B val x = e α; λHλT ; r1, r2
/
E2

A.2.0.3 Addition.
Denote errB+(δ1, δ2) = (1 + ε) max(δ1, δ2).

E(xA1) = E(xA2) = 0
E `B val y = x1 + x2 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E(xA1) = 0

E `B val y = x1 + x2 ; val yB = xA1 + xB2 ;

approx(yB),
⌈

1+ε
1−2ε

δ2
⌉
fp
⊗ xP2

/
E, yB : OB(δ2)

Similarly if E(xA2) = 0.

E `B val y = x1 + x2 ; val yB = xB1 + xB2 ;

approx(yB),
⌈

1+ε
1−2ε

errB+(δ1, δ2)
⌉
fp
⊗ yP

/
E, yB : OB(errB+(δ1, δ2))

A.2.0.4 Multiplication.
Denote errB×(δ1, δ2) = (1 + ε)(δ1 + δ2 + δ1δ2).

E(xA1) = E(xA2) = 0
E `B val y = x1 × x2 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E(xA1) = 0

E `B val y = x1 × x2 ; val yB = xA1 × xB2 ;

approx(yB),
⌈
(1+ε)2

1−2ε
δ2
⌉
fp
⊗ yP

/
E, yB : OB((1 + ε)δ2)

Similarly if E(xA2) = 0.

E `B val y = x1 × x2 ; val yB = xB1 × xB2 ;

approx(yB),
⌈

1+ε
1−2ε

errB×(δ1, δ2)
⌉
fp
⊗ yP

/
E, yB : OB(errB×(δ1, δ2))

A.3 Third phase
The judgment for phase C is E1 `B α ; λ; r1, r2

/
E2. The

expression r2 is now just one summand in the bound on the ab-
solute error. See the definition of the judgment `P for its use in
the target program. Notational abbreviation for this section are
∆1 = (δ1, ι1, ρ1) = E(xC1) and ∆2 = (δ2, ι2, ρ2) = E(xC2) when

the context E contains variables xC1 and xC2 .

E1 `C val x = e; λH ; s1, s2
/
E′

E′ `C α; λT ; r1, r2
/
E2

E1 `C val x = e α; λHλT ; r1, r2
/
E2

A.3.0.5 Addition.
To simplify the presentation, we introduce the following nota-

tion.

errC+((δ1, ι1, ρ1), (δ2, ι2, ρ2))

= (δC+ ,
1 + ε

1− ε
max(ι1, ι2), errA+(ρ1, ρ2))

where
δC+ = (1 + ε)(εmax(ι1, ι2) + max(δ1, δ2))

E(xA1) = E(xA2) = 0
E `C val y = x1 + x2 ;

val yC = tail+(xA1 , x
A
2 , y

A); 0, 0
/

E, yC : OC(0, ε, 0)

E(xA1) = 0
E `C val y = x1 + x2 ; empty;

xC2 ,
⌈
(1+ε)2

1−ε δ2
⌉
fp
⊗ xP2

/
E, yC : OC(∆2), yC � xC2

Similarly for E(xA2) = 0.

E `C val y = x1 + x2 ; val yC = xC1 ⊕ xC2 ;

yC ,
⌈
(1+ε)2

1−ε δC+

⌉
fp
⊗ yP

/
E, yC : OC(errC+(∆1,∆2))

A.3.0.6 Multiplication.
Here, the error functions are as follows.

errC0
× (δ, ι, ρ) = (ει+ δ,

1 + ε

1− ε
ι, ε+ (1 + ε)ρ)

errC×((δ1, ι1, ρ1), (δ2, ι2, ρ2))

= (δC× ,
1 + ε

1− 2ε− ε2
(ι1 + ι2), errA×(ρ1, ρ2))

where

δC× =
[
(2ε+ ε2)(ι1 + ι2) +

+ (ρ1ι2 + ι1ρ2) + δ1(1 + ι2 + ρ2) +

+ δ2(1 + ι1 + ρ1) + ι1ι2 + δ1δ2
]
(1 + ε)

E(xA1) = E(xA2) = 0
E `C val y = x1 × x2 ;

val yC = tail×(xA1 , x
A
2 , y

A) λ; 0, 0
/

E, yC : OC(0, ε, 0)

E(xA1) = 0

E `C val y = x1 × x2 ; val yC = xA1 ⊗ xC2 ;

yC ,
⌈
(1+ε)2

1−ε (ει2 + δ2)
⌉
fp
⊗ yP

/
E, yC : OC(errC0

× (∆2))

Similarly for E(xA2) = 0.

E `C val y = x1 × x2 ;

val yC = (xA1 ⊗ xC2)⊕ (xC1 ⊗ xA2);

yC ,
⌈
(1+ε)2

1−ε δC×

⌉
fp
⊗ yP

/
E, yC : OC(errC×(∆1,∆2))

A.4 Fourth phase
The phase D of the filter is exact, so there is no need for error

functions or estimates in the judgment. Thus, the judgment has
the form E1 `D α; λ; r

/
E2, and is defined below.

E1 `D val x = e; λH ; s
/
E′ E′ `D α; λT ; r

/
E2

E1 `D val x = e α; λHλT ; r
/
E2

A.4.0.7 Addition.

E(xA1) = E(xA2) = 0
E `D val y = x1 + x2 α; empty; 0

/
E, yD : OD, yD � yC

E(xA1) = 0

E `D val y = x1 + x2 ; empty; yB + xD2
/

E, yD : OD, yD � xD2

Similarly if E(xA2) = 0.

E `D val y = x1 + x2 ;

val yD = xD1 + xD2 ; yB + yD
/
E, yD : OD

A.4.0.8 Multiplication.

E(xA1) = E(xA2) = 0
E `D val y = x1 × x2 ; empty; 0

/
E, yD : OD, yD � yC

E(xA1) = 0
E `D val y = x1 × x2 ;

val yD = xA1 × xD2 ; yB + yD
/
E, yD : OD

Similarly if E(xA2) = 0.

E `D val y = x1 × x2 ;

val yD = (xB1 × xD2)+(xD1 × xB2)+(xD1 × xD2);
yB + yD

/
E, yD : OD

