
Dependent Type Theory of Stateful Higher-Order Functions

Aleksandar Nanevski and Greg Morrisett
Harvard University

{aleks|greg}@eecs.harvard.edu

Abstract

We present a dependent Hoare Type Theory (HTT) which
provides support for reasoning about programs with higher-
order functions and effects, including non-termination,
state with aliasing and pointer arithmetic. The type struc-
ture encapsulates effectful commands using a monad in-
dexed by pre- and post-conditions in the style of Hoare
logic. The theory carefully distinguishes between an ap-
propriate notion of definitional equality and propositional
equality, in order to maintain the relative decidability of
type-checking.

1 Introduction

This paper describes a type theoretic approach to de-
veloping a programming language for higher-order stateful
functions together with its associated program logic.

Hoare logic [10] has been most successfully employed
to reason about first-order imperative programs, whereas
extensions to programs with procedures and more gener-
ally higher-order functions have been known to be sub-
tle [5, 7, 6, 1, 2]. As discussed by Apt in his survey of Hoare
Logic, the problems usually appear because “... the seman-
tics of parameter passing is always modeled syntactically
by some form of variable substitution in a program, and
this leads to various subtle problems concerning variable
clashes. These difficulties are especially acute in the pres-
ence of recursion and static scoping” [2, page 462]. That is,
the modularity features that make typed lambda calculus so
successful appear to be in direct conflict with Hoare-style
reasoning.

The goal of this work is to marry dependent type
theory and Hoare logic in a fashion that preserves the
strengths of each. In particular, we seek a Hoare-like
logic for higher-order, imperative programs while retain-
ing the proof-theoretic reasoning of the Curry-Howard iso-
morphism. To that end, we describe a system called HTT
(short for Hoare Type Theory) that revolves around a pure,
dependently-typed functional core extended with impera-

tive commands, together with the associated type theory
which is extended to account for encapsulation of effects
and logical specifications of their behavior. The specifi-
cations are based upon the classical work of Cartwright
and Oppen [6] (first-order, multi-sorted classical logic with
McCarthy-style arrays [16]). We use classical, rather than
a substructural logic (e.g. Separation logic [22, 25, 23]),
mainly because it has a well-studied proof theory, and has
been employed in several practical verification systems, like
ESC/Java [14, 8] and Cyclone [12], but we believe the
framework is extensible to other logics.

At any rate, our main focus and contribution is not any
particular assertion logic, but the formulation of HTT as a
dependent type theory which reconciles state and higher-
order functions. This formulation has several important
consequences: First, the treatment of variables at the term,
command, type, and specification levels is handled uni-
formly which avoids many inconvenient side conditions that
are usually present in Hoare logics. Second, the encapsula-
tion of effects, via an indexed monad [17, 27, 13], makes it
possible for both types and specifications to depend upon
terms (including effectful computations). Third, the lan-
guage treats heap addresses as natural numbers, and thus
easily supports reasoning about aliasing and pointer arith-
metic. Fourth, the separation of definitional and proposi-
tional equality on terms makes it possible to reduce the de-
cidability of type-checking to provability in the specifica-
tion logic, and soundness of the type system to soundness of
the specification logic. Fifth, HTT re-establishes the Curry-
Howard isomorphism between logic and higher-order func-
tional programming with side effects, in the important spe-
cial case when the side effects in question concern non-
termination and state with first-class locations and aliasing.
This naturally leads to a degree of modularity in the speci-
fication and reasoning about programs. Finally, type theory
in general has certain advantages over Hoare logic. To men-
tion but an example, in type theory, data invariants can be
captured in the types to facilitating abstraction and program
re-use. In Hoare logic, data invariants can only be specified
in the pre- and postconditions of the code, which may make
it cumbersome to write specifications that are parametric in

the data invariants.
To achieve the features described above, HTT is split

into two fragments. The first fragment consist of constructs
for which we can employ Hoare-like reasoning by pre- and
post-conditions. This includes the stateful commands, con-
ditionals and recursion. The second fragment consists only
of pure, dependent, higher-order functions, and the equa-
tional reasoning about this fragment follows the traditional
approach of type theory. Stateful computations can be inter-
nalized into the pure fragment, by means of a monadic type
constructor {P}x:A{Q}. This type classifies suspended
computations that when executed in a state satisfying the
proposition P , produce a value of type A and a new state
satisfying Q, if they terminate. The variable x names the
return value of the computation, and Q may depend on x.
Our approach is based on the judgmental presentation of
monads by Pfenning and Davies [24], and we also employ
a dependently typed formulation with canonical forms and
hereditary substitutions as proposed by Watkins et al. [28],
with significant extensions that are particular to our appli-
cation.

The main monadic judgment, and the type {P}x:A{Q}
which internalizes it, may be seen as a formalization of a
verification condition generator in the style of Necula [20].
This sets HTT apart from the usual approaches to Hoare
logics, where the meaning of Hoare triples is defined se-
mantically based on program evaluation. Because in HTT
the Hoare triples are types, arranging the theory around ver-
ification condition generation, rather than evaluation, avoids
the circular dependence between typing and evaluation, and
preserves the predicative nature of the system.

We have proven progress and preservation theorems for
the language with respect to a standard, call-by-value inter-
pretation, thus establishing the soundness of HTT (relative
to the soundness of the underlying logic of assertions used
in the Hoare triples). The detailed technical development of
HTT is presented in the accompanying report [18].

2 Overview

In this section we describe the constructs of our Hoare
type theory, the intuition behind our memory model, and
define several different notions of substitution that will be
used in the later sections to provide the semantic founda-
tions. We start by presenting the HTT syntax in Table 1.

Types and propositions. The primitive types of HTT are
natural numbers and booleans. We also have the unit type
1, function type Πx:A. B (where B can depend on the vari-
able x) and computation type {P}x:A{Q}.

The type {P}x:A{Q} classifies computations that exe-
cute under a precondition P and, if they terminate, return a
value x:A and a postcondition Q. Here, P and Q are propo-

Types A, B, C ::= bool | nat | 1 | Πx:A. B | {P}x:A{Q}
Propositions

P, Q, R, I ::= IdA(M, N) | HId(H,G) | indom(H,M)
| > | ⊥ | P ∧ Q | P ∨ Q | P ⊃ Q | ¬P
| ∃x:A. P | ∀x:A. P | ∃h:heap. P | ∀h:heap. P

Heaps H, G ::= h | emp | updA(H,M, N)
Elim terms K, L ::= x | K M | M : A
Intro terms

M, N, O ::= K | () | λx. M | dia E | true | false

| eq(M, N) | z | s M | M + N | M × N
Computations

E, F ::= M | let dia x = K in E | c; E
Commands c ::= x = allocA(M) | x = [M]A

| [M]A = N | x = ifA(M, E1, E2)
| x = fixA(f.y.F, M)

Variable contexts ∆ ::= · | ∆, x:A
Heap contexts Ψ ::= · | Ψ, h
Prop contexts Γ ::= · | Γ, P

Table 1. Syntax of HTT.

sitions that describe and relate the properties of the memory
(i.e., the heap) at the beginning and the end of the compu-
tation. The variable x is bound in the type, and its scope
extends through the postcondition Q.

The syntactic category of propositions contains the
primitive propositions IdA(M, N), HId(H, G) and
indom(H, M). The first asserts the equality of terms
M and N of type A, and we refer to it as propositional
equality. The second asserts the equality of the heaps H
and G; it is propositional heap equality. The third asserts
that the heap H allocates a chunk of memory at address
given by the integer M ; however, it does not state the
type of the value stored at that address. The rest of the
propositional constructs includes the standard classical
connectives, together with quantification over types and
quantification over heaps. Keeping with the tradition of
Hoare logic, we will frequently refer to propositions used
in the computation types as assertions.The assertion logic
is multi-sorted, where the sorts include heaps and all the
elements of the type hierarchy.

Locations and the memory model. Each heap is a finite
collection of assignments M 7→A N , where A is a type,
M is a natural denoting an address in the heap, and N is
an element of type A. If a heap contains an assignment
M 7→A N , we say that the M points to N . Heaps are
partial functions, as each address can point to at most one
term.

The syntax of HTT provides the following con-
structs to represent heaps: emp is the empty heap, and
updA(H, M, N) is a heap in which the location M points
to N of type A, but all the other assignments equal those of

2

the heap H . We use h to range over heap variables.
We now define several propositions that will appear

prominently in HTT assertions.

seleqA(H, M, N) = ∃h:heap. HId(H, updA(h, M, N))

seleqA(H,M,−) = ∃x:A. seleqA(H, M, x)

M ∈ dom(H) = indom(H,M)

M 6∈ dom(H) = ¬(M ∈ dom(H))

Terms. Terms form the pure fragment of HTT, and con-

tain the basic operations on primitive types (e.g. equal-
ity, arithmetic), as well as the constructs for introduction
and elimination of non-primitive types like 1, Πx:A. B and
{P}x:A{Q}. Following Watkins et al. [28], we separate the
syntactic categories of introduction terms (or intro terms)
and elimination terms (or elim terms).

This distinction allows that a significant amount of type
information may be omitted from the programs, because the
types of elim terms can be inferred automatically. For intro
terms, the type information may be provided explicitly by
the construct M : A, if needed. Most importantly, this for-
mulation naturally leads to a syntactic criterion for normal-
ity of terms: a term is in normal form iff it does not con-
tain a beta redex iff it does not contain the term constructor
M : A.

Computations. Computations form the effectful fragment
of HTT. They correspond rather closely to programs in a
generic imperative and sequential programming language.
Intuitively, each computations is a semicolon-separated se-
quence of commands that perform effects and return with a
result that is subsequently bound to a designated variable.
The commands of HTT are: (1) x = allocA(M), which
allocates a portion of the heap, and initializes it with the
value of M . The address of the heap segment is bound
to x; (2) x = [M]A, looks up the contents of the loca-
tion M , and stores the value in x. Before the lookup can
be performed, we must prove that M points to a value of
type A; (3) [M]A = N , mutates the contents of the heap
space assigned to the location M , by writing N (of type
A) into it; (4) x = ifA(M, E1, E2), is a conditional with
branches E1 and E2 guarded by the Boolean term M ; (5)
x = fixA(f.y.F, M) is a recursion construct, adapted for
the monadic presentation of HTT. Here A is a type of the
form A = Πz:B.{R1}x:C{R2}. The semantics of fix first
defines the function f of type A, which is the least fixed
point of the equation f = λy. dia F . The function f is
immediately applied to M : B to obtain a computation that
is subsequently executed and its result (of type [M/z]C,
where [M/z] is a capture-avoiding substitution of M for z)
is bound to x; (6) The computation that simply consist of
the term M is the trivial computation that immediately re-
turns M , without performing any effects; (7) The construct
let dia x = K in E sequentially composes the computation

encapsulated in the term K, with the computation E. This
construct is the elimination form for the computation types.

In the usual presentation of the monadic lambda calcu-
lus [17, 27, 13], the last two constructs above correspond
to the monadic unit and bind, respectively. The term con-
structor dia E suspends a computation E, and coerces it
into the pure fragment. This is the introduction form for
the monadic types. The HTT formulation results in an eas-
ier proof theory and is directly adopted from the work of
Pfenning and Davies [24].
Reductions, expansions and substitutions. The equa-
tional theory of HTT is based on beta reductions and eta
expansions for the various non-primitive types. In case of
the unit type and function types, the reductions and expan-
sions are rather standard. In the case of computation types,
eta expansion is given as in the equation below, where we
assume that y is not a free variable of M : {P}x:A{Q}.

M : {P}x:A{Q} =⇒η dia (let dia y = M : {P}x:A{Q} in y)

Beta reduction for computations is a bit more involved,
as it needs to implement a sequential composition of two
computations. To this end, we define an appropriate auxil-
iary operation of monadic substitution 〈E/x : A〉F , which
composes E and F sequentially. The operation is defined
by induction on the structure of E, and we again follow the
presentation of Pfenning and Davies [24].

〈M/x : A〉F = [M : A/x]F
〈let dia y = K in E/x : A〉F = let dia y = K in 〈E/x : A〉E
〈c; E/x : A〉F = c; 〈E/x : A〉F

With the monadic substitution defined, the beta reduction
for computation types is given as:

let dia x = dia E : {P}y:A{Q} in F =⇒β 〈E/x : A〉F

Examples. Our first example presents the HTT version of a
function for swapping the contents of two (possibly aliased)
locations. We allow the preconditions in the computation
types to depend on one heap variable mem which stands for
the heap at the time when the computation starts. The post-
condition may depend on two heap variables: init stands for
the heap prior to the computation, and mem stands for the
heap obtained after the computation. These three variables
are assumed bound by the precondition and postcondition
respectively.

swap : Πx:nat. Πy:nat.
{seleq(mem, x, -) ∧ seleq(mem, y, -)} r : 1
{∀v1:A, v2:A. seleq(init, x, v1) ∧ seleq(init, y, v2) ⊃

HId(mem, upd(upd(init, x, v2), y, v1))} =
λx. λy. dia(v1 = [x]; v2 = [y];

[y] = v1; [x] = v2; ())

The function swap takes the locations x and y, and then
returns a suspended computation, which, when activated,

3

binds the contents of x and y to variables v1 and v2 re-
spectively, and writes them back into the memory, but in
a swapped order. We have implicitly assumed that all the
seleq and upd constructs out of x and y are indexed by some
type A (which we omit for brevity).

Activation of suspended computations is forced with the
letdia construct, as in the following function which swaps
the contents of two locations, and then swaps them again:

identity : Πx:nat. Πy:nat.
{seleq(mem, x, -) ∧ seleq(mem, y, -)} r : 1
{HId(init, mem)} =
λx. λy. dia(let dia u = swap x y

dia v = swap x y in ())

The types of these two functions deserves further com-
ments. For example, the precondition in the Hoare types re-
quires that x and y are locations that are actually allocated
when the computation starts. If this condition is not satis-
fied, the computation will get stuck because it dereferences
x and y.

The precondition does not specify the values that x and
y point to. It is the job of the postcondition to describe how
these values may be changed by the computation. More
generally, the postcondition relate the starting heap with the
ending heap of the computation.

At this point we would like to relate our approach to
computation typing, with the classical approach of Hoare
logic [10, 11, 3, 25]. In most variants of Hoare logic,
the program like swap x y that swaps the contents of lo-
cations x and y would be specified with the precondition
seleq(mem, x, v1) ∧ seleq(mem, y, v2) and the postcondi-
tion seleq(mem, x, v2)∧ seleq(mem, y, v1), where the vari-
ables v1 and v2 are not bound anywhere and can appear in
the assertions, but not in the program itself. Such variables
are frequently called logic variables. Because the scope of
logic variables is global, they can appear simultaneously in
the precondition and the postcondition, thus establishing the
connection between the starting and ending states of the
computation. Logic variables are somewhat cumbersome
to reconcile with the type theoretic approach, precisely be-
cause they cannot appear in programs, so we avoid them
in HTT and instead relate the input and output heaps of a
computation via the postcondition, as discussed above.

3 Normal forms and hereditary substitutions

Equational reasoning about terms in type theories usu-
ally requires that terms be converted into some kind of nor-
mal form before they can be compared for equality. The
conversion to normal form is usually defined only on well-
typed terms, making the equational reasoning and type-
checking mutually dependent on each other. For HTT, we
adopt the approach due to Watkins et al. [28], where equa-

tional reasoning and typechecking are disentangled, essen-
tially by allowing normalization of terms that are not neces-
sarily well typed. This leads to significant conceptual sim-
plifications of the system and its meta theory.

The main idea is to consider the syntactic structure of
(not necessarily well-typed) normal terms and define sub-
stitutions which preserve this structure. For example, in
places where ordinary capture-avoiding substitution of a
normal term into another normal term creates a redex, like
(λx. M) N , we need to continue the substitution process
by substituting N for x in M . This may produce another re-
dex, which must be immediately reduced, initiating another
substitution, and so on. Following [28], we call this kind of
repeated substitution operation hereditary substitution. To
ensure termination, hereditary substitutions are parameter-
ized by a metric based on types which is reduced as the
substitution proceeds.

Hereditary substitutions will operate only on normal
terms. As explained in Section 2, normal terms do not con-
tain beta redexes, or equivalently, they do not contain the
constructor M : A. Here, we extend the notion further by
requiring that terms of a primitive type are in as simple form
as possible. For example, an integer expression s M +N , is
not consider normalized, and it reduces to s (M +N). More
generally, terms M + N and M × N are normal only if M
and N are normal, but different from z or s M ′ for some
term M ′. Similarly, the comparison eq(M, N) is normal
only if at least one of the arguments M , N does not start
with z or s.

We denote by [M/x]∗S(−) the hereditary substitution
that substitutes a normal expression M for a variable x
into a given argument. The superscript ∗ ranges over
{a, p, k, m, e, h} and determines the syntactic category of
the argument (type, proposition, elim term, intro term, com-
putation or a heap, respectively). The subscript S is a sim-
ple type which is the decreasing metric that prevents the
hereditary substitutions from diverging. In the typing judg-
ments in Section 4, S is the dependency-free version of the
type associated with M and x. We also have a hereditary
monadic substitution 〈E/x〉S(−) into computations.

Hereditary substitutions are defined by nested induction,
first on the structure of S, and second on the structure of
the expression being substituted into. For illustration, we
only present here the cases for the hereditary substitution
[M/x]kS(−) into elim terms, which may either return an
elim term, or an intro term decorated with a type S ′. From
this definition, it should be clear that hereditary substitu-
tions are well-defined, as we always either decrease the in-
dex type S (in which case the expression we substitute into
may become larger), or the index type remains the same,

4

but the expressions decrease.

[M/x]kS(x) = M : S
[M/x]kS(y) = y if y 6= x

[M/x]kS(K N) = K′ N ′ if [M/x]kS(K) = K′

and [M/x]kS(N) = N ′

[M/x]kS(K N) = O′ : S2 if [M/x]kS(K) = λy. M ′ : S1 → S2

where S1 → S2 is subexpression of S

and [M/x]kS(N) = N ′

and O′ = [N ′/y]mS1
(M ′)

[M/x]kA(K′) fails otherwise

Theorem 1 (Termination of hereditary substitutions)
1. If [M/x]kS(K) = N ′ : S1, then S1 is a subexpression of S.

2. [M/x]∗S(−), and 〈E/x〉S(−) terminate, either by re-
turning a result, or failing in a finite number of steps.

We write [M/x]∗A(−) instead of [M/x]∗S(−) when S is
the simple type obtained by erasing the dependencies in A.

4 Type system

The HTT type system uses canonical forms to facilitate
equational reasoning [28]. Canonical form is beta normal
and eta long (i.e. all of its intro subterms are eta expanded),
so that comparing two terms for equality modulo beta re-
duction and eta expansion can be done by simply comparing
the respective canonical forms for alpha equivalence.

The typing judgments of HTT synthesize the canonical
forms of terms in parallel with type checking, and the syn-
thesis employs hereditary substitutions. Hereditary substi-
tutions were defined on normal forms, but here we restrict
them to canonical forms. In [18], we show that heredi-
tary substitutions over canonical forms produce canonical
results.

The type system consists of the following judgments.
∆ ` K ⇒ A [N ′]
∆ ` M ⇐ A [M ′]
∆; P ` E ⇒ x:A. Q [E′]
∆; P ` E ⇐ x:A. Q [E′]
∆; Ψ; Γ1 =⇒Γ2

` ∆ ctx

∆; Ψ ` Γ pctx

∆; Ψ ` P ⇐ prop [P ′]
∆ ` A ⇐ type [A′]
∆; Ψ ` H ⇐ heap [H ′]

The first four judgments on the left are explicitly oriented,
so that each of the involved expressions is either considered
given as input, or is synthesized as output. The judgment
∆ ` K ⇒ A [N ′] infers the canonical type A of the elimi-
nation term K, and synthesizes the canonical form N ′ of K.
Of course, K is arbitrary, i.e., it is not necessarily canonical.

The judgment ∆Γ ` M ⇐ A [M ′] checks whether intro
term M matches against the canonical type A. Naturally,
M and A are inputs. If the two match, the canonical form
M ′ is synthesized as output.

Similarly, ∆; P ` E ⇒ x:A. Q [E ′] infers the strongest
postcondition Q for the input computation E. The precon-
dition P and the type A are inputs (assumed canonical), and

Q and E′ are outputs, which will also be canonical. The
judgment ∆; P ` E ⇐ x:A. Q [E ′] checks that P and Q
are a pre- and postcondition for E, but Q is not required
to be strongest. The computation E is arbitrary, A, P and
Q are canonical inputs, and E ′ is the output which is the
canonical form of E.

The judgment ∆; Ψ; Γ1 =⇒Γ2 defines a sequent calcu-
lus for a multi-sorted variant of classical first-order logic.
Here Ψ is a list of heap variables, and Γ1, Γ2 are lists
of propositions. The judgment holds if assuming that all
propositions in Γ1 are true, one of the propositions in Γ2 is
true.

The judgments on the right side of the above table deal
with formation of canonical contexts, proposition contexts,
propositions, types and heaps, respectively. In the last three
cases, the judgments return the canonical form of the input
expression.
Terms. We only present the rules for the derived types of
HTT, as the rules for bools and nats are trivial. We first need
two auxiliary functions: applyA(M, N) and expandA(N).
In applyA(M, N), A is a canonical type, and the arguments
M and N are canonical intro terms. The function normal-
izes the application M N , if it is well-typed.

applyA(K, M) = K M if K is an elim term
applyA(λx. N, M) = N ′ where N ′ = [M/x]mA (N)
applyA(N, M) fails otherwise

In the function expandA(N), A is a canonical type, and the
argument N is a term. The function turns N into a canonical
intro term (if it is not already) by computing its eta long
form.

expanda(K) = K if a is a primitive type
expand

1
(K) = ()

expand
Πx:A1. A2

(K) = where M = expandA1
(x)

λx. expandA2
(K M) and x 6∈ FV(K)

expand{P}x:A{Q}(K) = where M = expandA(x)

dia (let dia x = K in M)
expandA(N) = N if N is an intro term

Now we can present the main typing rules.

∆, x:A, ∆1 ` x ⇒ A [x]
var

∆ ` () ⇐ 1 [()]
unit

∆, x:A ` M ⇐ B [M ′]

∆ ` λx. M ⇐ Πx:A. B [λx. M ′]
ΠI

∆ ` K ⇒ Πx:A. B [N ′] ∆ ` M ⇐ A [M ′]

∆ ` K M ⇒ [M ′/x]aA(B) [applyA(N ′, M ′)]
ΠE

∆ ` K ⇒ A [N ′] A = B

∆ ` K ⇐ B [expandA(N ′)]
⇒⇐

∆ ` A ⇐ type [A′] ∆ ` M ⇐ A′ [M ′]

∆ ` M : A ⇒ A′ [M ′]
⇐⇒

5

The introduction forms are associated with the checking
judgment, and thus the rule ΠI checks that the term λx. M
has the given function type. The rule also computes the
canonical form λx. M ′.

The elimination rule ΠE first synthesizes the type
Πx:A. B and the canonical form N ′ of the function part
of the application. Then the synthesized type is used in
checking the argument part of the application. The result
type is synthesized using hereditary substitutions in order
to remove the dependency of the type B on the variable x.
Notice that the arguments to this hereditary substitution are
canonical. Finally, we compute the canonical form of the
whole application, with the auxiliary function apply.

In the rule ⇒⇐, we are checking an elim form against
a type B. But for elim forms we can already synthesize a
type A, so we simply check if A and B are actually equal
canonical types. The canonical form synthesized from K in
the premise, may not be an intro form (because K itself is
elim), so we may need to appropriately expand it.

In the rule ⇐⇒, if M checks against the type A, we we
return the canonical form A′ as a type synthesized for M .
Computations. Before we state the rules for the com-
putation judgments, we need several additional constructs.
We first introduce the auxiliary function reduceA(M, x. E)
which normalizes the term let dia x = M in E:

reduceA(K, x. E) = if K is an elim term
let dia x = K in E

reduceA(dia F, x. E) = E′ where E′ = 〈F/x〉A(E)
reduceA(N, x. E) fails otherwise

Given the propositions P and Q, we write P ; Q for
∃h:heap. [h/mem]P ∧ [h/init]Q. This new connective cap-
tures how the heap evolves with the computation, as P ; Q
holds of the current heap mem, if Q is true of mem, and
there exist a prior heap h of which P was true.

We can now present the typing rules for computations,
which are essentially a formalization of a verification con-
dition generator that works by computing strongest post-
conditions. We start with the rules that correspond to the
monadic types, and then proceed with the rules for the indi-
vidual effectful commands.
∆; P ` E ⇒ x:A. R [E′] ∆, x:A; init, mem; R =⇒Q

∆; P ` E ⇐ x:A. Q [E′]
consq

∆ ` M ⇐ A [M ′]

∆; P ` M ⇒ x:A. P ∧ IdA(expandA(x), M ′) [M ′]
comp

∆; HId(init, mem) ∧ P ` E ⇐ x:A. Q [E′]

∆ ` dia E ⇐ {P}x:A{Q} [dia E′]
{ }I

∆ ` K ⇒ {R1}x:A{R2} [N ′] ∆; init, mem; P =⇒R1

∆, x:A;P ; R2 ` E ⇒ y:B. Q [E′]

∆; P ` let dia x = K in E

⇒ y:B. (∃x:A. Q) [reduceA(N ′, x. E′)]

{ }E

The consq rule coerces the inference judgment E ⇒
x:A. R into the checking judgment E ⇐ x:A. Q, if the as-
sertion logic can establish that R implies Q. In other words,
this rule allows weakening of the consequent into an arbi-
trary postcondition.

The comp rule types the trivial computation that immedi-
ately returns the result x = M and performs no changes to
the heap. Thus, the generated postcondition equals the pre-
condition extended with the proposition stating the equality
between the canonical forms of x and M .

The { }I rule internalizes the monadic judgment into the
computation type. A suspended computation dia E has the
type {P}x:A{Q} if E is a computation with a precondition
P and a postcondition Q. Before typechecking E we need
to establish that P marks the starting heap of the computa-
tion, by equating the heap variable mem from P to the heap
variable init from Q.

The { }E rule describes how a suspended computation
K ⇒ {R1}x:A{R2} is sequentially composed with an-
other computation E. The two can be composed if the the
assertion logic proves that the precondition R1 for K is im-
plied by the precondition P for the composite command,
and if the computation E checks against the postcondition
P ; R2, which should hold of the heap after the computa-
tion encapsulated by K is executed. The normal form of
the whole computation is obtained by invoking the auxil-
iary function reduce. Because the type B which is the result
type of the computations E and let dia x = K in E is an in-
put of the typing judgments, we implicitly assume that B is
well-formed in the context ∆, and in particular, B does not
depend on the variable x. Thus, the rule does not need need
to make any special considerations about x when passing
from the premise about the typing of E to the conclusion.
No such convention applies to the postcondition Q, so we
need to existentially abstract x in the postcondition of the
conclusions. A similar remark applies to the rules for the
specific effectful constructs that we present below.

The rules for allocation, lookup and mutation first com-
pute the canonical forms of the involved types and terms.
Then, in order to compose a command with an arbitrary
computation E, we need to check E against a precondition
obtained as a postcondition of the command. But first, we
define the strongest postconditions for each of these com-
mands.

sp(x = allocA(M)) = HId(mem, updA(init, x, M)) ∧
x 6∈ dom(init)

sp(x = [M]A) = HId(mem, init) ∧
seleqA(mem, M, expandA(x))

sp([M]A = N) = HId(mem, updA(init, M, N))

The postcondition for a command is a proposition that most
precisely captures the relationship between the heap init

prior to the execution of the command, and the heap mem

obtained after the execution. Dually, the command may be

6

seen as a witness for its strongest postcondition. In the def-
inition of sp we assume that all the involved expressions
are canonical. The strongest postcondition for allocation
x = allocA(M) states that the new heap init differs from
the old heap mem in that there is a location x pointing to
a term M . The location x is fresh, because it does not ap-
pear in the domain of init. The strongest postcondition for
lookup x = [M]A states that the new and the old heap are
equal, but the variable x equals the value stored in the lo-
cation M . Because the propositions we consider here are
in canonical form, instead of x, we must use the canoni-
cal form expandA(x) in the definition of sp(x = [M]A).
The strongest postcondition for mutation [M]A = N sim-
ply states that the new heap extends the old heap with an
assignment where M points to N .

Now we can state the typing rules.
∆ ` A ⇐ type [A′] ∆ ` M ⇐ A′ [M ′]

∆, x:nat; P ; sp(x = allocA′ (M ′)) ` E ⇒ y:B. Q [E′]

∆; P ` x = allocA(M); E

⇒ y:B. (∃x:nat. Q) [x = allocA′ (M ′); E′]

∆ ` A ⇐ type [A′] ∆ ` M ⇐ nat [M ′]

∆; init, mem; P =⇒ seleqA′ (mem, M ′,−)

∆, x:A′; P ; sp(x = [M ′]A′) ` E ⇒ y:B. Q [E′]

∆; P ` x = [M]A; E ⇒ y:B. (∃x:A′. Q) [x = [M ′]A′ ; E′]

∆ ` A ⇐ type [A′] ∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ A′ [N ′]

∆; init, mem; P =⇒ seleqA′ (mem, M ′,−)

∆; P ; sp([M ′]A′ = N ′) ` E ⇒ y:B. Q [E′]

∆; P ` [M]A = N ; E ⇒ y:B. Q [[M ′]A′ = N ′; E′]

In the cases of lookup and mutation, the sequent
∆; init, mem; P =⇒ seleqA′(mem, M ′,−) is used to prove
that the location being dereferenced or updated is actually
allocated in the current heap, and is initialized with a value
of an appropriate type. The sequent is invoked with para-
metric heap variables init and mem because these may ap-
pear in the involved propositions.

The typing rule for x = ifA(M, E1, E2) first checks the
two branches E1 and E2 against the preconditions stating
the two possible outcomes of the boolean expression M .
The respective postconditions P1 and P2 are generated, and
their disjunction is taken as a precondition for the subse-
quent computation E.

∆ ` A ⇐ type [A′] ∆ ` M ⇐ bool [M ′]

∆; P ∧ Idbool(M
′, true) ` E1 ⇒ x:A′. P1 [E′

1]

∆; P ∧ Idbool(M
′, false) ` E2 ⇒ x:A′. P2 [E′

2]

∆, x:A′; P1 ∨ P2 ` E ⇒ y:B. Q [E′]

∆; P ` x = ifA(M, E1, E2); E

⇒ y:B. (∃x:A′. Q) [x = ifA′ (M ′, E′
1, E

′
2); E

′]

The recursion construct requires the body of a recursive
function f. x. E, and the term M which is supplied as
the initial argument to the recursive function. The body
of the function may depend on the function itself (variable
f) and one argument (variable x). As an annotation, we
also need to present the type of f , which is a dependent
function type Πx:A. {R1}y:B{R2}, expressing that f is
a function whose range is a computation with precondition
R1 and postcondition R2.

∆ ` Πx:A.{R1}y:B{R2} ⇐ type [Πx:A′.{R′
1}y:B′{R′

2}]

∆ ` M ⇐ A′ [M ′]

∆; init, mem; P =⇒[M ′/x]pA′ (R
′
1)

∆, f :Πx:A′. {R′
1}y:B′{R′

2}, x:A′;

HId(init, mem) ∧ R′
1 ` E ⇐ y:B′. R′

2 [E′]

∆, y:[M ′/x]pA′ (B
′); P ; [M ′/x]pA′ (R

′
2) ` F ⇒ z:C. Q [F ′]

∆; P ` y = fixΠx:A.{R1}y:B{R2}(f.x.E, M); F

⇒ z:C. (∃y:[M/x]pA′ (B
′).Q)

[y = fixΠx:A′.{R′

1
}y:B′{R′

2
}(f.x.E′, M ′); F ′]

Before M can be applied to the recursive function, and the
obtained computation executed, we need to check that the
main precondition P implies R1. Because after the recur-
sive call we are in a heap of which R2 holds, the computa-
tion following the recursive call is checked with a precondi-
tion P ; R2. Of course, because the recursive call was started
with using M for the argument x, we need to substitute M
in R1, B and R2 for x everywhere.
Sequents. The sequent calculus of the the assertion logic
formalizes a multi-sorted first-order logic with equality,
where the sorts include naturals (with the usual Peano ax-
ioms), bools, heaps, functions (with extensionality) and
computations. We present here only the rules pertaining to
heaps, as all the other sorts are rather standard. Currently
HTT has no axioms dealing with computations, because in
this paper we do not consider propositions over computa-
tions (except the equality Id, which is applicable to any type,
and is axiomatized parametrically in this type).

Heaps that differ up to the permutation of assignments
are considered equal.

∆; Ψ; Γ1 =⇒ Idnat(M1, M2),

HId(updA(updB(H,M1, N1), M2, N2),

updB(updA(H,M2, N2), M1, N1)), Γ2

If a heap updates the same address twice, only the latter
assignment counts.

∆; Ψ; Γ1 =⇒HId(updA(updB(H,M, N1), M, N2),

updA(H,M, N2)), Γ2

Each address in a heap can point to at most one term.

∆; Ψ; Γ1, HId(updA(H1, M, N1),

updA(H2, M, N2))=⇒ IdA(N1, N2), Γ2

7

Empty heaps do not contain any assignments.

∆; Ψ; Γ1, HId(emp, updA(H,M, N)) =⇒Γ2

If an address points to something, then it is in the heap’s
domain.

∆; Ψ; Γ1, HId(H1, updA(H2, M,−))=⇒ indom(H1, M), Γ2

We note here that the sequent calculus proves the
usual McCarthy-style axioms about heaps [16], e.g.
seleqA(updA(H, M, N), M, N), and seleqA(H, M1, N1)∧
¬Id(M1, M2) ⊃ seleqA(updA(H, M2, N2), M1, N1).

Examples. Consider the function double below, which
takes two integer locations and doubles their contents, be-
fore returning the sum of the original contents. We anno-
tated the function with propositions (enclosed in /slashes/)
that are generated at the various control points during type-
checking. We denote by P and Q respectively, the precon-
dition and the postcondition listed below. For simplicity, we
use the decimal instead of Peano numerals.

double : Πx:nat. Πy:nat.
{seleq(mem,x,-) ∧ seleq(mem,y,-) ∧ ¬Id(x,y)} r : nat
{∀v1:nat, v2:nat. seleq(init, x, v1) ∧ seleq(init, y, v2) ⊃

Id(r, v1+v2) ∧
HId(mem, upd(upd(init, x, 2×v1), y, 2×v2))} =

λx.λy. dia (/P /
w1 = [x];
/P1 = P ; HId(mem,init)∧seleq(mem, x, w1)/
[x] = w1 + w1;
/P2 = P1; HId(mem, upd(init, x, 2×w1))/
w2 = [y];
/P3 = P2; HId(mem, init)∧seleq(mem, y, w2)/
[y] = w2 + w2;
/P4 = P3; Hid(mem, upd(init, y, 2×w2))/
w1 + w2)

Typechecking requires that the following sequents be
proved, which correspond to the verification condition
of double. The sequents can easily be proved, af-
ter expanding the definition of the operator “;”: (1)
P =⇒ seleq(mem, x,−) so that x can be dereferenced
in the first command; (2) P1 =⇒ seleq(mem, x,−) so
that x can be updated in the second command; (3)
P2 =⇒ seleq(mem, y,−) so that y can be dereferenced
in the third command. (4) P3 =⇒ seleq(mem, y,−) so
that y can be updated in the fourth command, and (5)
∃w1, w2:nat. P4 ∧ Id(r, w1 +w2) =⇒Q so that Q is a valid
postcondition.

As a second example, consider a function that loops
through the first n naturals, and computes their sum. We
assume the primitive ordering relations (≤, <, >, ≥),
and their implementations as boolean functions (<=, <,
>,>= respectively). We assume that the relations and the
boolean functions are tied through the assertion logic, so

that x <= y can be proved equal to true iff x ≤ y is prov-
able as a proposition of the assertion logic. We use the cus-
tomary if M then E else F instead of if(M, E, F).

sumfunc : Πn:nat. {true} r : nat
{HId(mem, init) ∧ Id(2×r, n×(n + 1))} =

λn. dia(y = fix(f. x. /P0 = Hid(init, mem)∧ true/
t = if x > n then

/P1 = P0; HId(init, mem) ∧ x > n/
0

else
/P2 = P0; HId(init, mem) ∧ x ≤ n/
let dia s = f (x + 1)
in

/P3 = P2; [x + 1/x, s/y]pnat(Q)/
s + x

end;
/P4 = (P1 ∧ Id(t, 0)) ∨

(∃s:nat. P3 ∧ Id(t, s + x))/
t, 1);

/P5 = P0; [1/x]pnat(Q)/
y)

Recursion requires a type annotation for the function
variable f . In this case, the type is

Πx:nat. {true}y:nat{HId(mem, init) ∧
(x ≤ n ⊃ Id(2 × y + x × x, n × (n + 1) + x))∧
(x > n ⊃ Id(y, 0))}

essentially expressing that the fixpoint construct computes
the sum y = x + (x + 1) + · · · + n. We denote by
Q the postcondition from this type. The sequents gen-
erated during typechecking are: (1) P2 =⇒ true, so that
the computation obtained from f (x + 1) can be exe-
cuted, (2) P4 ∧ Id(y, t) =⇒Q, so that the body of the re-
cursive function satisfies the specified postcondition, (3)
P5 ∧ Id(r, y) =⇒HId(mem, init) ∧ Id(2 × r, n × (n + 1)),
so that the function sumfunc satisfies the specified postcon-
dition.

5 Properties

In this section we present the two most characteristic
properties of HTT. For the thorough development, includ-
ing the substitution principles and all the proofs, we refer
the reader to the accompanying technical report [18].

The first property establishes the decidability of the typ-
ing judgments of HTT, under the assumption of an oracle
that decides the sequents of the assertion logic.

Theorem 2 (Relative decidability of type checking)
If the validity of every assertion logic sequent
∆; Ψ; Γ1 =⇒Γ2 can be determined, then all the typ-
ing judgments of the HTT are decidable.

8

The proof relies on the fact that the judgments of HTT are
syntax directed, and involve typechecking smaller expres-
sions, or deciding syntactic equality of types, or computing
hereditary substitutions, or deciding sequents of the asser-
tion logics. Checking syntactic equality is obviously a ter-
minating algorithm, and as shown in Theorem 1, hereditary
substitutions are terminating as well. Thus, if the validity of
each assertion logic sequent can be decided, so too can the
typing judgments.

Clearly, in the above theorem, an oracle deciding the se-
quents from the assertion logic may potentially be substi-
tuted with a proof that serves as a checkable witness of the
sequent’s validity. In the spirit of Proof-carrying code [20],
it is possible to embed such proofs into HTT terms and com-
putations, which we plan to do in the future work.

The second property that we present shows that a compu-
tation does not depend on how the heap in which it executes
may have been obtained.
Lemma 3 (Preservation of history)
Suppose that ∆; P ` E ⇐ x:A. Q [E ′]. If ∆; init, mem `
R ⇐ prop [R], then ∆; (R; P) ` E ⇐ x:A. (R; Q) [E ′].
We emphasize here the relationship between history preser-
vation and the frame rule of Separation logic [22, 25, 23].
In Separation logic, if E is a computation satisfying the
Hoare triple {P}E {Q}, we can use the frame rule to derive
{P ∗C} E {Q∗C}. Here C is an arbitrary proposition and
∗ is a propositional connective defined so that P ∗Q holds of
a heap if the heap can be split into two disjoint parts so that
P holds of the first and Q holds of the second part. Thus, in
essence, the frame rule states that the parts of the heap that
are not touched by E actually remain invariant.

Our preservation of history can be given a similar in-
terpretation. If E does not modify certain locations in the
heap, then the history of these locations (and in particular,
their present state) is transferred into the postcondition. But
notice that preservation of history is a slightly stronger than
the frame rule. The frame rule states the invariance of the
untouched locations, but does not say anything about loca-
tions that may have been touched, but not necessarily mod-
ified (e.g., locations may have only been looked up). In
contrast, preservation of history can establish the invariance
of untouched as well as touched but unchanged locations.

This is not to say that HTT possesses all the facilities that
make the reasoning in Separation logic local and modular.
In particular, in order to fully employ Preservation of his-
tory, the postcondition of E has to express the ending heap
mem in terms of the accumulated changes to the beginning
heap given by the variable init. A related problem is that
HTT currently cannot specify that a certain heap can be split
into disjoint parts, because this requires universal quantifi-
cation over types. These problems are well-known short-
comings of assertion logics based on arrays, and we plan to
overcome them in the future work by moving into stronger

assertion logics which allow quantification over types and
propositions.

6 Operational semantics

In the previous sections, we have defined HTT as a logic,
with the associated notions of proof equality, normalization
and canonical forms. We now proceed to develop the view
of HTT proofs as programs that can be executed. For that
purpose, in this section we define the call-by-value left-
to-right structured operational semantics, and present the
Preservation and Progress theorems, which establish that
HTT is sound with respect to evaluation. The proofs (here
omitted, but presented in [18]) are relative to the assumed
soundness of the HTT assertion logic. The soundness of the
assertion logic is not established here and is left for future
work.

The operational semantics assumes the following syntac-
tic categories.

Values v, l ::= () | λx. M | dia E
| true | false | z | s v

Heap values χ ::= · | χ, l 7→A v
Continuations κ ::= · | x:A. E; κ
Control expressions ρ ::= κ . E
Abstract machines α ::= χ, κ . E

The definition of values is rather standard. We use v to
range over values, and l to range over numbers when they
are used as pointers into the heap. Heap values are func-
tions assigning naturals to values, where each assignment
is indexed by a type, and two heap values are considered
equal up to the reordering of their assignments. We will
frequently need to convert heap values into heap canonical
forms, for reasoning purposes, so we introduce the follow-
ing conversion function from heap values into heaps from
Section 2.

[[·]] = emp

[[χ, l 7→A v]] = updA([[χ]], l, M), where · ` v ⇐ A [M]

We abbreviate ∆; mem; HId(mem, [[χ]]) =⇒P as ∆; χ `
P . This judgment denotes that the proposition P holds of
the heap value χ.

A continuation is a sequence of computations of the form
x:A.E, where each computation in the sequence depends
on a bound variable x:A. The continuation is executed by
passing a value to the variable x in the first computation E.
If that computation terminates, its return value is passed to
the second computation, and so on.

A control expression κ . E pairs up a computation E
and a continuation κ, so that E provides the initial value
with which the execution of κ can start. Thus, a control
expression is in a sense a self-contained computation.

We make the similarity with computations more explicit
by providing a typing judgment for control expressions.

9

The judgment has the form ∆; P ` κ . E ⇐ x:A. Q,
and its meaning is similar to the one for computations: if
executed in a heap of which the proposition P holds, the
control expression ρ = κ . E results with a value x:A and
a heap of which the proposition Q holds. We omit the rules
of the judgment here, but it suffices to say that they closely
follow the typing rules for computations.

An abstract machine α is a pair of a heap value χ and a
control expression κ.E. The idea is that κ.E can be eval-
uated against χ, to eventually produce a result and possibly
change the starting heap. The typing judgment for abstract
machines has the form ` χ, κ . E ⇐ x:A. Q, where A is
the result type and Q is a proposition describing the result-
ing heap. The judgment holds iff ·; P ` κ . E ⇐ x:A. Q,
where P = HId(mem, [[χ]]). In other words, we first con-
vert the heap value χ into a canonical proposition P which
uniquely defines χ, and then check that the control expres-
sion κ . E is well-typed with respect to P , A and Q.
Evaluation. There are three evaluation judgments in HTT;
one for elimination terms K ↪→k K ′, one for introduction
terms M ↪→m M ′ and one for abstract machines χ, κ .
E ↪→e χ′, κ′ . E′. Each judgment relates an expression
with its one-step reduct.

The evaluation rules are mostly straightforward, with
several peculiarities arising from the syntactic structure of
HTT. For example, HTT is dependently typed, so we must
substitute into types and not only into terms. Furthermore,
in substitutions, a value must always be paired up with a
type, as in v : A. Substituting the value alone may result
in syntactically ill-formed terms, because of the intro/elim
distinction.

Due to space considerations, here we only present sev-
eral characteristic evaluation rules for abstract machines.

M ↪→m M ′

χ, κ . M ↪→e χ, κ . M ′

χ, x:A. E; κ . v ↪→e χ, κ . [v : A/x]E

χ, κ . let dia x = (dia F) : {P}x:A{Q} in E

↪→e χ, (x:A. E; κ) . F

· ` A ⇐ type [A′] l 6∈ dom(χ)

χ, κ . x = allocA(v); E ↪→e (χ, l 7→A′ v), κ . [l:nat/x]E

· ` A ⇐ type [A′] l 7→A′ v ∈ χ

χ, κ . x = [l]A; E ↪→e χ, κ . [v : A/x]E

· ` A ⇐ type [A′]

(χ1, l 7→A′ v′, χ2), κ . [l]A = v; E

↪→e (χ1, l 7→A′ v, χ2), κ . E

The preservation theorem, as usual, states that the eval-
uation step on a well-typed expression results with well-

typed result. In the pure fragment of HTT (i.e., in the case of
elim and intro terms), there is an additional claim that eval-
uation preserves the canonical form of the evaluated term,
so that evaluation agrees with normalization.

Theorem 4 (Preservation)
1. if K0 ↪→k K1 and ` K0 ⇒ A [N ′], then ` K1 ⇒ A [N ′].

2. if N0 ↪→m N1 and ` N0 ⇐ A [N ′], then ` N1 ⇐ A [N ′].

3. if α0 ↪→e α1 and ` α0 ⇐ x:A. Q, then ` α1 ⇐ x:A. Q.

When evaluating abstract machines, occasionally we
must check that the types given at the input abstract ma-
chine are well-formed, so that the output abstract machine
is well-formed as well. The type information does not in-
fluence which rule applies to any given abstract machine,
but may influence whether the evaluation gets stuck. If the
evaluation starts with well-typed expressions, then no stuck
state can be reached, as the Progress theorem below states.
In this sense, Progress theorem establishes the soundness of
typing with respect to evaluation. But we first need to de-
fine the property of the assertion logic which we call heap
soundness.

Definition 5 (Heap soundness)
The assertion logic of HTT is heap sound iff for every
heap value χ, the existence of a derivation for the sequent
·; mem; HId(mem, [[χ]]) =⇒ seleqA(mem, l,−) implies that
l 7→A v ∈ χ, for some value v.

We do not prove in this paper that our assertion logic is
heap sound, and we leave that proof as an important future
work, especially since in the future we plan to significantly
extend the assertion logic with second-order features and
with inductive definitions, as we discuss in Section 7.

In the light of this comment, the Progress theorem should
be consider as a relative soundness, because it relies on the
unproved heap soundness of the assertion logic.

Theorem 6 (Progress)
Suppose that the assertion logic of HTT is heap sound. If `
χ0, κ0 . E0 ⇐ x:A. Q, then either E0 = v and κ0 = ·, or
χ0, κ0 . E0 ↪→e χ1, κ1 . E1, for some χ1, κ1, E1.

7 Related and future work

In this section we compare against some of the recent
related work on reasoning about languages with effectful
higher-order functions.

Honda et al. [11, 3] present a succession of increasingly
powerful Hoare logics for reasoning about functional pro-
grams with references. Their main feature is a proposition
asserting a total correctness of function applications. In
HTT, functions are pure and are not subject to Hoare-like

10

reasoning, which we believe leads to significant conceptual
simplifications. Furthermore, HTT is a type theory, and thus
is better suited than a Hoare logic to support abstraction and
modularity in the specification of data invariants (as dis-
cussed in the Introduction). One of the main ingredients
in this kinds of specifications is the type constructor Σ for
dependent products, which is omitted here for simplicity,
but should not be hard to add.

Shao et al. [26] and Xi et al. [29, 30] present dependent
type systems for effectful programs, based on the separa-
tion between the levels of effectful and pure terms. Only
pure terms can appear in specifications, and the connection
between the two language levels is established via single-
ton types. In HTT, all terms (including the encapsulated
effectful computations) can be used in the specifications,
obviating the need for singleton types.

Mandelbaum et al. [15] present a theory of type refine-
ments for reasoning about behavior of effectful programs.
Here the pure terms correspond to the customary ML-style
type system, while reasoning about effectful terms em-
ploys Hoare-like pre- and postconditions. The assertions are
drawn from a substructural logic, and can be parametrized
with respect to various effectful commands. The assertion
logic, however, is rather restricted in order for typecheck-
ing to be decidable, so it is not clear whether it can be ex-
tended with equational reasoning about programs with state
and aliasing. The language supports a variant of dependent
typing via singleton types, somewhat similar in nature to the
systems discussed previously [29, 26].

Hamid and Shao [9] and Ni and Shao [21] consider rea-
soning frameworks for assembly programs, and [21] al-
lows embedded code pointers (and thus higher-order func-
tions). The main technical feature of the later is a predicate
expressing the safety of jumping to a given code pointer
if a certain precondition is satisfied. All such predicates
are later interpreted and proved correct with respect to the
whole-program heap. In HTT, we use a type, rather than
a proposition to capture the semantics of Hoare triples, and
the semantics of Hoare triples is established not by interpre-
tation, but directly as a meta theorem expressing the substi-
tution properties for computations.

Recently, a type theoretic approach to Separation logic
has been advocated by Birkedal et al. [4]. This work is sim-
ilar to ours – at least in spirit – in the sense that it contains
dependent types and a type of stateful computations. How-
ever, it is also significantly restricted; for example, the inte-
ger expressions that can appear in the dependent types are to
be strictly second-class in the sense that they cannot appear
as function arguments or be returned as function results. No
such restrictions exist in HTT.

Abadi and Leino in [1] describe a logic for reasoning
about object-oriented program, where, as in HTT, specifi-
cations are treated in a similar way as types. One of the

described problems with this logic concerns the treatment
of local variables; certain specifications cannot be proved
because the inference rules for let val x = E in F do not
allow sufficient interaction between the specifications for E
and F .

In HTT, the problem with local variables does not ap-
pear, as witnessed by our substitution principles, but we
would like to mention that HTT currently cannot type com-
putations with local state. The difficulty is that the type of
Hoare triples can effectively describe only the state that is
reachable from the local variables in ∆, or from the result
of the computation, whereas we would like to have com-
putations that manipulate state reachable from anonymous
pointers. We plan to address this question in future work by
enriching a computation type into {P}∆′, x:A{Q}, where
∆′ is a context from which all of the local state of the com-
putation is reachable. This system would be similar to the
Contextual modal type theory presented in [19]. A truly lo-
cal state may then be obtained by introducing parameters
that abstract over contexts, as also briefly discussed in [19].
Two computations that share the same context parameter
will share the same local state.

A further issue that we plan to address in the future
involves the addition of data structures, reasoning about
which will also require introduction of inductive predi-
cates into the assertion logic. We will also consider spa-
tial propositional connectives, in the style of Separation
logic [22, 25, 23], to support assertions about disjointness
of heaps.

References

[1] M. Abadi and K. R. M. Leino. A logic of object-oriented
programs. In Verification: Theory and Practice, pages 11–
41. Springer-Verlag, 2004.

[2] K. R. Apt. Ten years of Hoare’s logic: A survey – part I.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 3:431–483, 1981.

[3] M. Berger, K. Honda, and N. Yoshida. A logical analysis of
aliasing in imperative higher-order functions. In O. Danvy
and B. C. Pierce, editors, International Conference on Func-
tional Programming, ICFP’05, pages 280–293, Tallinn, Es-
tonia, September 2005.

[4] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of
separation-logic typing and higher-order frame rules. In
Symposium on Logic in Computer Science, LICS’05, pages
260–269, Chicago, Illinois, June 2005.

[5] R. Cartwright and D. C. Oppen. Unrestricted procedure calls
in Hoare’s logic. In Symposium on Principles of Program-
ming Languages, POPL’78, pages 131–140, 1978.

[6] R. Cartwright and D. C. Oppen. The logic of aliasing. Acta
Informatica, 15:365–384, 1981.

11

[7] E. M. Clarke Jr. Programming language constructs for which
it is impossible to obtain good Hoare axiom systems. Journal
of the ACM, 26(1):129–147, January 1979.

[8] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Ex-
tended static checking. Compaq Systems Research Center,
Research Report 159, December 1998.

[9] N. A. Hamid and Z. Shao. Interfacing Hoare logic and type
systems for foundational proof-carrying code. In Applica-
tions of Higher Order Logic Theorem Proving, TPHOL’04,
volume 3223 of Lecture Notes in Computer Science, pages
118–135, Park City, Utah, 2004. Springer.

[10] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[11] K. Honda, N. Yoshida, and M. Berger. An observation-
ally complete program logic for imperative higher-order
functions. In Symposium on Logic in Computer Science,
LICS’05, pages 270–279, Chicago, Illinois, June 2005.

[12] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, pages 275–288, Monterey, Canada,
June 2002.

[13] S. L. P. Jones and P. Wadler. Imperative functional program-
ming. In Symposium on Principles of Programming Lan-
guages, POPL’93, pages 71–84, Charleston, South Carolina,
1993.

[14] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java User’s
Manual. Compaq Systems Research Center, October 2000.
Technical Note 2000-002.

[15] Y. Mandelbaum, D. Walker, and R. Harper. An effective
theory of type refinements. In International Conference on
Functional Programming, ICFP’03, pages 213–226, Upp-
sala, Sweden, September 2003.

[16] J. L. McCarthy. Towards a mathematical science of compu-
tation. In IFIP Congress, pages 21–28, 1962.

[17] E. Moggi. Notions of computation and monads. Information
and Computation, 93(1):55–92, 1991.

[18] A. Nanevski and G. Morrisett. Dependent type theory of
stateful higher-order functions. Technical Report TR-24-05,
Harvard University, December 2005.

[19] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal
type theory. Under consideration for publication in the ACM
Transactions on Computation Logic, September 2005.

[20] G. C. Necula. Proof-carrying code. In Symposium on Princi-
ples of Programming Languages, POPL’97, pages 106–119,
Paris, January 1997.

[21] Z. Ni and Z. Shao. Certified assembly programming
with embedded code pointers. In Symposium on Princi-
ples of Programming Languages, POPL’06, pages 320–333,
Charleston, South Carolina, January 2006.

[22] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In International Work-
shop on Computer Science Logic, CSL’01, volume 2142 of
Lecture Notes in Computer Science, pages 1–19. Springer,
2001.

[23] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In Symposium on Principles of Program-
ming Languages, POPL’04, pages 268–280, 2004.

[24] F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science,
11(4):511–540, 2001.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Symposium on Logic in Computer Science,
LICS’02, pages 55–74, 2002.

[26] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type
system for certified binaries. ACM Transactions on Program-
ming Languages and Systems, 27(1):1–45, January 2005.

[27] P. Wadler. The marriage of effects and monads. In Inter-
national Conference on Functional Programming, ICFP’98,
pages 63–74, Baltimore, Maryland, 1998.

[28] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A
concurrent logical framework: The propositional fragment.
In S. Berardi, M. Coppo, and F. Damiani, editors, Revised
selected papers from the Thirds International Workshop on
Types for Proofs and Programs, April 2003, Torino, Italy,
volume 3085 of Lecture Notices in Computer Science, pages
355–377. Springer, 2004.

[29] H. Xi. Applied Type System (extended abstract). In
TYPES’03, pages 394–408. Springer-Verlag LNCS 3085,
2004.

[30] D. Zhu and H. Xi. Safe programming with pointers through
stateful views. In Practical Aspects of Declarative Lan-
guages, PADL’05, volume 3350 of Lecture Notices in Com-
puter Science, pages 83–97, Long Beach, California, January
2005. Springer.

12

