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Abstract
In previous work, we proposed a Hoare Type Theory (HTT) which
combines effectful higher-order functions, dependent types and
Hoare Logic specifications into a unified framework. However, the
framework did not support polymorphism, and failed to provide a
modular treatment of state in specifications. In this paper, we ad-
dress these shortcomings by showing that the addition of polymor-
phism alone is sufficient for capturing modular state specifications
in the style of Separation Logic. Furthermore, we argue that poly-
morphism is an essential ingredient of the extension, as the treat-
ment of higher-order functions requires operations not encodable
via the spatial connectives of Separation Logic.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Type Theory, Hoare Logic, Separation Logic

1. Introduction
The static type systems of today’s programming languages, such
as Java and Haskell, provide a degree of lightweight specification
and verification that has proven remarkably effective at eliminating
a class of coding errors. Furthermore, these type systems have
scaled to cover and integrate with necessary linguistic features such
as higher-order functions, objects, and imperative references and
arrays.

Nevertheless, there is a range of errors, such as array-index-out-
of-bounds and division-by-zero, which are not caught by today’s
type systems. And of course, there are higher-level correctness
issues, such as invariants or protocols on mutable data structures,
that fall well outside the range where types are effective.

An alternative approach to address these issues is to utilize a
form of dependent types in conjunction with refinements (i.e., a
type theory) to provide precise specifications of these requirements.
Dependent types work well with higher-order features and are con-
venient for capturing relations on functional data structures, but
do not work so well in the presence of side-effects, such as state
updates and non-termination. Yet another approach is to consider
some form of program logic, such as Hoare’s original logic [12]
or the more recent forms of Separation Logic [30, 36, 31], which
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are tuned for specifying and reasoning about imperative programs.
However, these logics do not integrate into the type system. Rather,
specifications, such as invariants on data structures or refinements
on types, must be separately specified as pre- and postconditions on
expressions that manipulate these data. In turn, this makes it diffi-
cult to scale the logics so that they integrate well with linguistic
abstraction mechanisms such as higher-order functions, polymor-
phism, and modules.

In previous work [26], we demonstrated a new approach that
smoothly integrates dependent types and a Hoare-style logic for
a language with higher-order functions and imperative commands
(i.e., core, monomorphic ML.) The key mechanism is a distin-
guished type constructor of Hoare (partial) triples {P}x:A{Q},
which serves to simultaneously isolate and describe the effects of
imperative commands. Intuitively, such a type can be ascribed to a
stateful computation if when executed in a heap satisfying the pre-
condition P , the computation diverges or results in a heap satisfy-
ing the postcondition Q and returns a value of type A. The monadic
isolation of effects is crucial for ensuring the soundness of the de-
pendent types, and makes it possible to safely abstract over refined
computations within terms, types, and assertions.

As with any sufficiently rich specification system, checking
that HTT programs respect their types is generally undecidable.
However, type-checking in HTT is carefully designed to split into
two independent phases: The first performs a combination of basic
type-checking and verification-condition generation, both of which
are decidable. The second phase must then show the validity of the
generated verification-conditions. These conditions can either be
ignored, fed to an automated theorem prover, or even discharged by
hand. This makes it possible to provide various levels of correctness
assurance, and to gracefully scale the complexity of verification.

We believe that the HTT approach enjoys many of the benefits
and few of the drawbacks of the alternatives mentioned above. In
particular, we believe HTT is the right foundational framework for
modeling emerging tools, such as ESC/Java [10, 19], SPLint [11],
Spec# [2], and Cyclone [16] that provide support for extended static
checking of programs.

Nevertheless, if we are to model these rich languages, the cur-
rent formulation of HTT falls short in several ways. First, the lan-
guage of HTT does not support polymorphism, which is neces-
sary for Java, ML or Cyclone. Second, the approach to specify-
ing program heaps—which in HTT is based on functional arrays of
Cartwright and Oppen [7] and McCarthy [23]—is itself not modu-
lar. Pre- and postconditions in HTT describe the whole heap, rather
than just the heap fragment that any particular program requires.
Furthermore, the postconditions must explicitly describe how the
heap in which the program terminates differs from the heap in
which it started. Keeping track of both heaps in the postcondition
is cumbersome as it requires careful tracking of location inequal-
ities (i.e., lack of aliasing.) It is much better to simply assert the
properties of the ending heap, and automatically assume that all
unspecified disjoint heap portions remain invariant throughout the



computation. This is known as the “small footprint” approach to
specification, and has been advocated recently by the work on Sep-
aration Logic.

In this paper, we extend HTT with type polymorphism (includ-
ing abstraction over Hoare triples) and small footprints. It is in-
teresting that these two additions significantly overlap, as in the
presence of second-order features like polymorphism, functional
arrays could already define the separation connectives of spatial
conjunction and implication [?], that are needed to describe heap
disjointness.

Not only that, but in order to accommodate higher-order func-
tions, we needed additional operators that are not expressible using
the separation connectives, but that are definable in the presence
of polymorphism. Thus, functional arrays with polymorphism are
utilized in an essential way to obtain the small footprints.

An important example that becomes possible in HTT, but is
formally not admitted in Separation Logic, is naming and explicitly
manipulating individual fragments of the heap. We contend that it
is useful to be able to do so directly. In particular, it alleviates the
need for an additional representation of heaps in assertions as was
used in the verification of Cheney’s garbage collection algorithm
in Separation Logic by Birkedal et al. [5]. An additional feature
admitted by polymorphism is that HTT can support strong updates,
whereby a location can point to values of different types in the
course of the execution.

Most of this paper presents and discusses the typing rules of the
extended HTT, including the important meta-theoretic properties
of the system. We also sketch a call-by-value operational semantics
for the language, and a proof that the type system is sound with
respect to this semantics. The proof depends on the soundness of
the assertion logic, which we establish using denotational methods.
The full technical development, including the proofs, is available
in the accompanying report [27].

2. Syntax and overview
A crucial operation in any type system is comparing types for
equality. In the case of dependent types, which we use in HTT to
express partial correctness, types can contain terms, so type equal-
ity must compare terms as well, which is an undecidable problem
in any Turing complete language (in fact, it is not even recursively
enumerable). It is therefore crucial for HTT that we select equations
on terms that strike the balance between the preciseness and decid-
ability of the equality relation. In this choice, we are guided by the
decision to separate typechecking from proving of program speci-
fications. We introduce two different notions: definitional equality,
which is coarse but decidable, and is employed during typecheck-
ing, and propositional equality, which is fine but undecidable and
is used only in proving. The split into definitional and propositional
equalities is a customary way to organize equational reasoning in
type theories [13].

Almost all of HTT design is geared towards facilitating a formu-
lation of a decidable definitional equality (propositional equality
can be arbitrarily complex, so it does not require as much atten-
tion). For example, we split the HTT programs into two fragments:
pure and impure – precisely in order to separate the concerns about
equality. The pure fragment consists of higher-order functions, and
constructs for type polymorphism. It admits the usual term equa-
tions of beta reduction and eta expansion. We do not include condi-
tionals into the pure fragment because they do not allow an easy use
of eta expansion. The impure fragment contains the constructs usu-
ally found in first-order imperative languages: allocation, lookup,
strong update, deallocation of memory, conditionals and loops (in
HTT formulated as recursion). All of these constructs admit reason-
ing in the style of Hoare Logic by pre- and postconditions, so we
use the Hoare type {P}x:A{Q} to classify the impure programs.

The split between pure and impure fragments is a familiar one in
functional programming. For example, it is the driving idea behind
the programming language Haskell [33], which uses monads [24,
17, 40], to classify impure code. It should therefore not come as a
surprise that the Hoare type in HTT is a monad, and that we admit
the usual monadic laws [34, 25] for reasoning about the impure
code.

However, it may be interesting that HTT monads take a slightly
bigger role than to simply serve as type markers for effects. The
HTT monadic judgments actually formalize the process of gen-
erating the verification condition for an effectful computation by
calculating strongest postconditions. If the verification condition is
provable, then the computation matches its specification [29]. The
verification condition is computed during typechecking, but it can
be proved separately, so that the complexity and undecidability of
proving does not have any bearing on the typechecker.

We also note that verification conditions are obtained from the
computation in a syntax-directed and compositional manner, so
that an HTT computation can be seen as (part of) a proof of its
specification1 — there is no need for whole-program reasoning.

We next present the syntax of HTT and comment on the various
constructors.
Types A, B, C ::= α | bool | nat | 1 | ∀α. A |

Πx:A.B | Ψ.X.{P}x:A{Q}
Monotypes τ, σ ::= α | bool | nat | 1 | Πx:τ . σ |

Ψ.X.{P}x:τ{Q}
Assertions P,Q,R ::= IdA(M, N) | seleqτ (H, M, N) | > | ⊥ |

P ∧ Q | P ∨ Q | P ⊃ Q | ¬P |
∀x:A.P | ∀α. P | ∀h:heap. P |
∃x:A.P | ∃α. P | ∃h:heap. P

Heaps H, G ::= h | empty | updτ (H, M, N)
Elim terms K,L ::= x | K M | K τ | M : A
Intro terms M,N, O ::= K | ( ) | λx. M | Λα. M | dia E |

true | false |
z | s M | M + N | M × N | eq(M,N)

Commands c ::= x = allocτ (M) | x = [M ]τ | [M ]τ = N |
dealloc(M) | x = ifA(M, E1, E2) |
x = fixA(M, f.y.F )

Computations E,F ::= M | let dia x = K in E | c;E
Variable context ∆, Ψ ::= · | ∆, x:A | ∆, α
Heap context X ::= · | X, h
Assertion context Γ ::= · | Γ, P

Terms. Terms form the purely functional part of HTT. They are split
into introduction (intro) terms and elimination (elim) terms, accord-
ing to their standard logical classification. For example, λx.M is
an intro term for the dependent function type, and K M is the ap-
propriate elim term. Similarly, Λα. M and K τ are the intro and
elim terms for polymorphic quantification. The intro term for the
unit type is ( ), and, as customary, there is no corresponding elim-
ination term. The intro term for computations is dia E. It encap-
sulates and suspends the computation E. The corresponding elim
form activates a suspended computation. However, this elim form
is not a term, but a computation, and is described below.

The separation into intro and elim terms facilitates bidirectional
typechecking [35], whereby most of the type information can be
omitted from the terms, and inferred automatically. When type in-
formation must be supplied explicitly, the elim term M :A can be
used. In the typing rules in Section 3, M :A will indicate direction
switch during bidirectional typechecking. More importantly for our
purposes, this kind of formulation also facilitates equational rea-
soning via hereditary substitutions (described below), as it admits a
simple syntactic criterion for normality with respect to beta reduc-
tion. For example, the reader may notice that an HTT term which
does not use the constructor M :A may not contain beta redexes.

1 The remaining part must, of course, certify the verification condition.



This is the primary reason why we do not use the more familiar
monadic constructs return and bind in this presentation.
Computations. Computations form the effectful fragment of HTT,
and are loosely similar to programs in a generic imperative first-
order language, with several important distinctions. First, variables
in HTT are statically scoped and immutable, as customary in mod-
ern functional programming. Second, computations can freely in-
voke any kind of terms, including higher-order functions and other
suspended computations. Third, computations return a result, un-
like in imperative languages where programs are usually evaluated
for their effect.

Each computation is a semicolon-separated list of commands.
The primitive commands are as follows (where x is always a bound
variable): (1) x = allocτ (M) allocates space in the heap and ini-
tializes it with M :τ . The address of the allocated space is returned
in x, and is guaranteed to be “fresh”. (2) [M ]τ = N updates the
heap so that the location M points to the term N :τ . To perform
this operation, we must prove that the location M is allocated, but
we need not establish that it holds a value of type τ . That is, the
operation supports strong updates—the ability to change the con-
tents of a location to a value of arbitrary type. (3) x = [M ]τ looks
up the term that the current heap assigns to the location M , and
binds the result to x. To perform this operation, we must prove
that the location M indeed points to a term of type τ in the cur-
rent heap. (4) dealloc(M) frees the heap space pointed to by M .
To perform this operation, we must prove that M is allocated. (5)
x = ifA(M, E1, E2) is a conditional which executes the computa-
tion E1 or E2 depending on the value of the Boolean term M . The
resulting value is stored in x. (6) x = fixA(M, f.y.E) is a recur-
sion construct. It first computes the least fixpoint of the equation
f = λy. dia E, immediately applies it to the initial value M , and
the resulting computation is activated to compute a result which
gets bound to x. (7) The computation that simply consists of an
intro term M is the trivial computation that just returns M as its
result. (8) The computation let dia x = K in E activates the com-
putation that is encapsulated and suspended by K, binds the result
to x and proceeds to evaluate E, achieving the sequential compo-
sition of K and E. The construct is the elimination form for the
Hoare types in HTT. A suspended computation can only be acti-
vated by another computation, and thus once we enter the effectful
fragment of the language, we cannot get out. This is a characteris-
tic property of monadic type systems [24, 40]. In the literature, the
let dia construct is often denoted as let val or bind.
Types. The types of HTT include the primitive types of Booleans
and natural numbers, unit type 1, dependent functions Πx:A. B,
Hoare triples Ψ.X.{P}x:A{Q}, and polymorphic types ∀α. A.
We write A → B to abbreviate Πx:A. B when B does not depend
on x, and 3A to abbreviate {>}x:A{>}.

The type Ψ.X.{P}x:A{Q} specifies an effectful computation
with a precondition P and a postcondition Q, returning a result of
type A. The variable x names the return value of the computation,
and Q may depend on x. The contexts Ψ and X list the variables
and heap variables, respectively, that may appear in both P and Q,
thus helping relate the properties of the beginning and the ending
heap. In the literature on Hoare Logic, these are known under the
name of logic variables. As usual in the literature, logic variables
can only appear in the assertions, but not in the programs. Also, in
our setting, the type A cannot contain any variables from Ψ and X .

The type ∀α. A polymorphically quantifies over the monotype
variable α. For our purposes, it suffices to define a monotype as any
type that does not contain polymorphic quantification, except in the
assertions. For example, Ψ.X.{P}x:A{Q} is a monotype when A
is a monotype, even if Ψ, P and Q contain polymorphic types. Note
that allowing polymorphism in the assertions does not change the
predicative nature of HTT. The type system will be formulated so

that logic variables and the assertions do not influence the computa-
tional behavior or equational properties of effectful computations:
if two terms of some Hoare type are semantically equal, then they
are equal under any other Hoare type to which they may belong.

Predicative polymorphism (quantification over monotypes) is
sufficient for modeling languages such as Standard ML, but not
more recent languages such as Haskell. However, extending HTT
to support impredicative polymorphism seems difficult as it signifi-
cantly complicates the termination argument for normalization (see
below), which is a crucial component of type equality. Therefore,
we leave the treatment of impredicative polymorphism to future
work.
Heaps and locations. In this paper, we model memory locations as
natural numbers. One advantage of this approach is that it supports
some forms of pointer arithmetic which is needed for languages
such as Cyclone. We model heaps as finite functions, mapping a
location N to a pair (τ, M) where τ is the monotype of M . In
this case we say that N points to M , or that M is the contents of
location N , or that the heap assigns M to the location N .

We introduce the following syntax for heaps: empty denotes the
empty heap, and updτ (H,M, N) is the heap obtained from H by
updating the location M so that it points to N of type τ , while
retaining all the other assignments of H .

Heap terms and variables play a prominent role in our encod-
ing of assertions about (propositional) equality and disjointness of
heaps. If heaps could hold values of polymorphic type, then en-
coding these properties would require impredicative quantification.
Consequently, we limit heaps to hold only values of monotype.
Assertions. Assertions comprise the usual connectives of classi-
cal multi-sorted first-order logic. The sorts include all the types
of HTT, but also the domain of heaps. We allow polymorphic
quantification ∀α. P and ∃α. P over monotypes. IdA(M, N) de-
notes propositional equality between M and N at type A, and
seleqτ (H, M, N) states that the heap H at address M contains a
term N of monotype τ .

We now introduce some derived assertions that will frequently
feature in our Hoare types.

P ⊂⊃ Q = P ⊃ Q ∧ Q ⊃ P
HId(H1, H2) = ∀α.∀x:nat.∀v:α. seleqα(H1, x, v) ⊂⊃

seleqα(H2, x, v)
M ∈ H = ∃α.∃v:α. seleqα(H, M, v)
M 6∈ H = ¬(M ∈ H)

share(H1, H2, M) = ∀α.∀v:α. seleqα(H1,M, v) ⊂⊃
seleqα(H2,M, v)

splits(H, H1, H2) = ∀x:nat. (x 6∈ H1 ∧ share(H, H2, x))∨
(x 6∈ H2 ∧ share(H, H1, x))

HId is the heap equality, M ∈ H iff the heap H assigns to the
location M , share states that H1 and H2 agree on the location M ,
and splits states that H can be split into disjoint heaps H1 and H2.

We next define the assertions familiar from Separation Logic [30,
36, 31]. All of these are relative to the free variable mem, which
denotes the current heap fragment of reference.

emp = HId(mem, empty)
M 7→τ N = HId(mem, updτ (empty,M,N))
M 7→τ − = ∃v:τ.M 7→τ v
M 7→ − = ∃α. M 7→α −

M ↪→τ N = seleqτ (mem,M,N)
M ↪→τ − = ∃v:τ.M ↪→τ v
M ↪→ − = ∃α. M ↪→α −

P ∗ Q = ∃h1:heap.∃h2:heap. splits(mem, h1, h2)∧
[h1/mem]P ∧ [h2/mem]Q

P —∗Q = ∀h1:heap.∀h2:heap. splits(h2, h1, mem) ⊃
[h1/mem]P ⊃ [h2/mem]Q

this(H) = HId(mem,H)

Here emp states that the current heap mem is empty; M 7→τ N iff
mem consists of a single location M which points to the term N :τ ;



M ↪→τ N iff mem contains at least the location M pointing to
N :τ . P ∗ Q holds iff mem can be split into two disjoint fragments
so that P holds of one, and Q holds of the other. P —∗Q holds of
mem if any extension by a heap of which P holds, produces a heap
of which Q holds. this(H) is true iff mem equals H .

The operation [H/h] used in the above definitions substitutes
the heap H for the heap variable h into heaps and assertions. The
substitution commutes with most of the constructors, except that it
leaves terms and types invariant. This is justified as terms and types
will not depend on free heap variables.

We will frequently write ∀Ψ. A and ∃Ψ. A for an iterated uni-
versal (resp. existential) abstraction over the term and type vari-
ables of the context Ψ. Similarly, we write ∀X. A and ∃X. A for
iterated quantification over heap variables of the context X .
Monadic and hereditary substitutions. The equational theory of
HTT is based on the usual beta and eta reductions for the vari-
ous type constructors. The most interesting equations are the ones
dealing with Hoare types. These equations should capture the prop-
erties of sequential composition of effectful computations. To that
end, we define the operation of monadic substitution 〈E/x:A〉F ,
which composes E and F sequentially. The operation is defined by
induction on the structure of E.

〈M/x:A〉F = [M :A/x]F
〈let dia y = K in E/x:A〉F = let dia y = K in 〈E/x:A〉E
〈c;E/x:A〉F = c; 〈E/x:A〉F

Now we can specify the beta and eta equations for the Hoare types.
let dia x = (dia E):(Ψ.X.{P}y:A{Q}) in F =⇒β 〈E/x:A〉F

M :Ψ.X.{P}x:A{Q} =⇒η

dia (let dia y = M :Ψ.X.{P}x:A{Q} in y)

where y 6∈ FV(M :Ψ.X.{P}x:A{Q}). The definition of monadic
substitution and the corresponding reduction and expansion are
taken directly from the work of Pfenning and Davies [34]. Pfen-
ning and Davies show that these equations are equivalent to the
standard monadic equational laws [25], with the benefit that the
monadic substitution subsumes the associativity laws of [25], thus
simplifying the equational theory.

The general strategy that HTT employs in the equational rea-
soning is to reduce the expressions to their canonical form (defined
below), and then compare the canonical forms for alpha equiva-
lence. This reduction is carried out during type checking, as will be
explained in Section 3.

A term is in canonical form if it is beta-normal (i.e. it contains
no beta redexes), and eta-long (i.e., all of its intro subterms are
eta expanded). For example, if f :(nat→nat)→(nat→nat)→nat
and g:nat→nat, then the canonical version of the term f g is
λh. f (λy. g y) (λx. h x). This definition of canonicity accounts
for both beta and eta equations. In order to treat polymorphism,
we also need to add a new term constructor etaα K which is only
used in canonical forms, and serves to record that K should be eta
expanded, once α is substituted with a concrete monotype.

The main insight, due to Watkins et al. [41], is that conversion to
canonical forms can be defined on (possibly) ill-typed terms, and
can be shown to terminate. This is important, as it will allow us
to avoid the mutual dependency between equational reasoning and
typechecking, which is one of the main sources of complexity in
dependent type theories.

At the center of the development are hereditary substitu-
tions [41], which are defined only on canonical forms, and pre-
serve canonicity. For example, in places where an ordinary capture-
avoiding substitution creates a redex like (λx.M) N , a hereditary
substitution continues by immediately substituting N for x in M .
This may produce another redex, that is immediately reduced ini-
tiating another hereditary substitution and so on. To ensure termi-
nation, hereditary substitutions are parametrized by a metric based
on types, which decreases as the substitution proceeds.

Space precludes us from presenting the formal definition of
hereditary substitutions here (see [27] for details), but they have
the form [M/x]∗A(−), and they substitute the canonical form M
for a variable x into a given argument. The superscript ∗ ranges
over {k, m, e, a, p, h} and determines the syntactic domains of the
argument (elim terms, intro terms, computations, types, assertions
and heaps, respectively). The subscript A is a putative type of
M , and is used to ensure the termination of the substitution. We
also need a monadic hereditary substitution 〈E/x〉A(−), and a
monotype substitution [τ/α]∗(−). The later performs an on-the-
fly eta expansion with respect to τ of any subterms in the argument
of the form etaα K.

The substitutions are defined by nested induction, first on the
structure of A, and then on the structure of the term being sub-
stituted into (in case of the monadic substitution, we use the sub-
stituted computation instead). In other words, we either go to a
smaller type, in which case the expressions may become larger, or
the type remains the same, but the expressions decrease. Note that
without the restriction to predicative polymorphism, types could
actually grow after a substitution, hence our restriction to polymor-
phism over monotypes.

Theorem 1 (Termination of hereditary substitutions)
[M/x]∗A(−), 〈E/x〉A(−) and [τ/α]∗(−) terminate, either by re-
turning a result, or failing in a finite number of steps.

Example. In this example we present a polymorphic function swap
for swapping the contents of two locations. In a simply-typed
language like ML, with a type A ref of references, swap can be
given the type α ref×α ref→1. This type is an underspecification,
of course, as it does not describe how the function works. In HTT,
we can be more precise. Furthermore, in HTT we can use strong
updates to swap locations pointing to values of different types. One
possible definition of swap is presented below.

swap : ∀α.∀β.Πx:nat.Πy:nat.
m:α,n:β.{x 7→α m * y 7→β n} r : 1

{x 7→β n * y 7→α m}
= Λα.Λβ.λx.λy. dia(u = [x]α; v = [y]β;

[y]α = u; [x]β = v; ())

The function takes two monotypes α and β, two locations x and
y and produces a computation which looks up both locations, and
then writes them back in a reversed order.

The precondition of this computation specifies a heap in which
x and y point to values m:α and n:β, respectively, for some logic
variables m and n. The locations must not be aliased, due to the use
of ∗ which forces x and y to appear in disjoint portions of the heap.
Similar specifications that insists on non-aliasing are possible in
several related systems, like Alias Types [38] and ATS with stateful
views [44]. However, in HTT, like in Separation Logic, we can
include the non-aliasing case as well.

One possible specification which covers both aliasing and non-
aliasing has the precondition (x 7→α m * y 7→β n) ∨ (x 7→α m
∧ y 7→β n), with the symmetric postcondition. The second disjunct
uses ∧ instead of ∗, and can be true only if the heap contains exactly
one location, thus forcing x = y. This specification is interesting
because it precisely describes the smallest heap needed for swap as
the heap containing only x and y.

Another possibility is to admit an arbitrarily large heap in the
assertions, but then explicitly state the invariance of the heap frag-
ment not containing x and y. Such a specification will have the pre-
condition (x ↪→α m) ∧ (y ↪→β n) ∧ this(h), and postcondition
this(updβ(updα(h, y, m), x, n)), where h is a logic variable denot-
ing an arbitrary heap. Thus heap variables allow us to express some
of the invariance that one may express in higher-order separation
logic [4].



We next illustrate how swap can be used in a larger program.
For example, swapping the same locations twice in a row does not
change anything.
identity : ∀α.∀β.Πx:nat.Πy:nat.

h.{x ↪→α - ∧ y ↪→β - ∧ this(h)} r : 1 {this(h)}
= λx. λy. dia(let dia u = swap α β x y

dia v = swap β α x y in ())

This function generates a computation for swapping x and y, and
then activates it twice with the let dia construct. Here we assumed
a specification for swap that admits aliasing.

3. Type system
The type system of HTT consists of the following judgments.

∆ ` K ⇒ A [N ′] ` ∆ ctx [∆′]
∆ ` N ⇐ A [N ′] ∆; X ` Γ propctx
∆; P ` E ⇒ x:A.Q [E′] ∆; X ` P ⇐ prop [P ′]
∆; P ` E ⇐ x:A.Q [E′] ∆ ` A ⇐ type [A′]
∆; X; Γ1 =⇒Γ2 ∆ ` τ ⇐ mono [τ ′]

∆; X ` H ⇐ heap [H ′]

The judgments on the right deal with formation and canonicity of
variable contexts, assertion contexts, assertions, types, monotypes
and heaps. In these judgments, the output is always the canonical
version of the main input (∆′ is canonical for ∆, P ′ is canonical
for P , etc). When checking assertion contexts (Γ propctx), Γ is
required to be canonical, so there is no need to return the output.

The judgments on the left side of the above table are the primary
ones, and are explicitly oriented to symbolize whether the type or
the assertion are given as input or are synthesized as output. This
is a characteristic feature of bidirectional typechecking [35], which
we here employ for both terms and computations.

For example, the judgment ∆ ` K ⇒ A [N ′] takes an elim
form K and input context ∆ and outputs the type A of K and the
canonical form N ′. On the other hand, ∆ ` N ⇐ A [N ′] takes an
intro form N and input context ∆ and input type A, and outputs
the canonical form N ′ if N matches A.

The judgment ∆; P ` E ⇒ x:A. Q [E′] takes a computa-
tion E, input context ∆, input assertion P , and input type A, and
outputs the strongest postcondition Q for E with respect to the
precondition P , and the canonical form E′ of E. Symmetrically,
∆; P ` E ⇐ x:A.Q [E′] takes computation E, input context ∆,
input assertions P and Q and input type A, and outputs the canon-
ical form E′, if Q is a postcondition (not necessarily the strongest)
for E with respect to P . The canonical form E′ is computed using
only the beta and eta rules for the type constructors. Other kinds of
equational reasoning, like arithmetic or unrolling of recursive calls,
are not part of definitional equality, and hence does not factor into
the computation of canonical forms.

The judgment ∆; X; Γ1 =⇒Γ2 formalizes the sequent calculus
for the assertion logic, which is a classical multi-sorted logic with
polymorphism. The ∆ is a variable context, X is a heap context,
and Γ1, Γ2 are sets of assertions. As usual in sequent calculi, the
judgment holds if for every instantiation of the variables in ∆
and X such that the conjunction of assertions in Γ1 holds, the
disjunction of assertions in Γ2 holds as well.

The input and output contexts and types in all the above judg-
ments are always assumed canonical.
Terms. We only discuss selected rules here, and refer to the ac-
companying technical report [27] for the treatment of the primitive
types nat and bool and their corresponding operations. We fist need
several auxiliary functions which deal with beta reduction and eta
expansion. The functions applyA(M, N) and spec(M, τ ) normal-
ize the applications M N and M τ , respectively, if these applica-
tions contain a redex. The function expandA(N) eta expands the

term N with respect to A. We note that the results of eta expansion
are invariant with respect to the possible assertions that may appear
in A, so that we can assume that A is a simple type. Here M , N
and τ are assumed canonical.

applyA(K,M) = K M if K is an elim term
applyA(λx.N, M) = N ′ where N ′ = [M/x]mA (N)
applyA(N, M) fails otherwise

spec(K, τ) = K τ if K is an elim term
spec(Λα. M, τ) = [τ/α]m(M)
spec(N, τ) fails otherwise

expanda(K) = K if a is nat or bool
expandα(K) = etaα K
expand1(K) = ( )
expand∀α. A(K) = where α 6∈ FTV(K)

Λα. expandA(K α)
expandA1→A2

(K) = where M = expandA1
(x)

λx. expandA2
(K M) and x 6∈ FV(K)

expand
3A(K) = where M = expandA(x)

dia (let dia x = K in M)
expandA(N) = N if N is not elim

∆, x:A,∆1 ` x ⇒ A [x]
var

∆ ` () ⇐ 1 [()]
unit

∆, x:A ` M ⇐ B [M ′]

∆ ` λx.M ⇐ Πx:A.B [λx.M ′]
ΠIx

∆ ` K ⇒ Πx:A.B [N ′] ∆ ` M ⇐ A [M ′]

∆ ` K M ⇒ [M ′/x]aA(B) [applyA(N ′, M ′)]
ΠE

∆, α ` M ⇐ A [M ′]

∆ ` Λα. M ⇐ ∀α. A [Λα.M ′]
∀Iα

∆ ` K ⇒ ∀α. B [N ′] ∆ ` τ ⇐ mono [τ ′]

∆ ` K τ ⇒ [τ ′/α]a(B) [spec(N ′, τ ′)]
∀E

∆ ` K ⇒ A [N ′] A = B

∆ ` K ⇐ B [expandB(N ′)]
⇒⇐

∆ ` A ⇐ type [A′] ∆ ` M ⇐ A′ [M ′]

∆ ` M : A ⇒ A′ [M ′]
⇐⇒

∆ ` K ⇒ α [K]

∆ ` etaα K ⇐ α [etaα K]
eta

As described before, intro terms are checked against a supplied
type, and elim terms can synthesize their type. The latter holds be-
cause elim terms are generally of the form x T1 T2 · · ·Tn, applying
a variable x to a sequence of intro terms or types Ti. Since the type
of x is declared in the context of the judgment, the type of the
whole application can always be inferred by instantiating the type
of x with Ti.

The typing rules now make it explicit how the typing informa-
tion flows through the system. For example, ΠI checks that term
λx.M has the given function type, and if so, returns the canon-
ical form λx. M ′. In ΠE we first synthesize the canonical type
Πx:A. B and the canonical form N ′ of the function part of the
application. Then the synthesized type is used in checking the ar-
gument part of the application. The result type of the whole ap-
plication is synthesized using hereditary substitutions in order to
remove the dependency of the type B on the variable x. Finally,
we compute the canonical form of the whole application, using the
auxiliary function apply to reduce the term N ′ M ′ should this term
actually be a redex. Similar description applies to the rules for poly-
morphic quantification.



In the rule ⇐⇒, we need to synthesize the canonical type for
the ascription M :A. This type should clearly be the canonical
version of A, under the condition that M actually has this type.
Thus, we first test that A is well-formed and compute its canonical
form A′, and then proceed to check M against A′. If M and A′

match, we obtained the canonical version M ′ of M . Then M ′ and
A′ are returned as the output of the judgment.

In the rule ⇒⇐, we are checking an elim term K against
a canonical type B. But K can already synthesize its canonical
type A, so we simply need to check that A and B are actually
equal canonical types. The canonical form synthesized from K in
the premise, may be an elim form (because it is generated by a
judgment for elim forms), but we need to use it in the conclusion
as an intro form. The switch from an elim form to the equivalent
intro form is achieved by eta expansion with respect to the supplied
type B. For example, if x:nat→nat is a variable in context, then its
canonical form is λy. x y, and we could use the rule ⇒⇐ to derive
the judgment x:nat→nat ` x ⇐ nat→nat [λy. x y].

When the types A and B in the rule ⇒⇐ are equal to some
type variable α, we cannot eta expand the canonical forms, so
we simply remember that expansion must be done whenever α is
instantiated with a concrete monotype (please see the definition
of the auxiliary function expand). This is why we introduced the
constructor etaα K which is used only in canonical terms. etaα K
is an intro term, because its occurrences are always generated when
using the rule ⇒⇐ to switch from elim into intro terms.

Of course, once etaα K is introduced, we need to be able to
typecheck it, and we use the rule eta for that. Notice how this rule
insists that K is canonical by requiring in the premise that K equals
its own canonical form.

Computations. The judgment ∆; P ` E ⇒ x:A. Q [E′] translates
the program E into a corresponding binary relation on heaps.

Intuitively, the precondition P is a relation that the translation
starts with, and the postcondition Q is the relation that captures the
semantics of E. In addition, the precondition P has to be strong
enough to guarantee that the execution of E will never get stuck.
The assertions P and Q use the heap variables init and mem to
stand for the input and the output heaps of the computations.

In order to define the small footprint semantics of the Hoare
types, we first need two new connectives. The relational composi-
tion P ◦Q = ∃h:heap. [h/mem]P ∧[h/init]Q, expresses temporal
sequencing of heaps. The informal reading of P ◦Q is that Q holds
of the current heap, which is itself obtained from another past heap
of which P holds.

The difference operator on assertions is defined as R1 ( R2 =
∀h:heap. [init/mem](R1 ∗ this(h)) ⊃ R2 ∗ this(h) where Ri are
assumed to have a free variable mem, but not init. The informal
reading of R1 ( R2 is that the heap mem is obtained from
the initial heap init by replacing a fragment satisfying R1 with a
new fragment which satisfies R2. The rest of the heaps init and
mem agrees. It is not specified, however, which particular fragment
of init is replaced. If there are several fragments satisfying R1,
then each of them could have been replaced, but the replacement
is always such that the result satisfies R2. The operator ( is
used in the typing judgments to describe a difference between two
successive heaps of the computation. Notice how the definition of
( relies on naming the heap h by means of universal quantification
in order to state its invariance. We could not define an operator with
this semantics using the spatial connectives ∗ and —∗ alone.

Now consider a suspended computation dia E with the Hoare
type Ψ.X.{R1}x:A{R2}. Intuitively, the computation and the type
should correspond if the following three requirements are satisfied:
(1) Assuming that the initial heap can be split into two disjoint parts
h1 and h2 such that R1 holds of h1, then E does not get stuck if
executed in this initial heap. Moreover, E never touches h2 (not

even for a lookup); in other words, h2 is not in the footprint of E.
(2) Upon termination of E, the fragment h1 is replaced with a new
fragment which satisfies R2, while h2 remains unchanged. (3) The
split into h1 and h2 is not decided upon before E executes, and
need not be unique. We only know that if a split is possible, then
the execution of E defines one such split, but which split is chosen
may depend on the run-time conditions. Whichever values h1 and
h2 end up taking, however, we know that (2) holds.

The above requirements define what it means for the specifica-
tion in the form of Hoare type Ψ.X.{R1}x:A{R2} to possess the
small footprint property. We argue next that the requirements are
satisfied by E if we can establish that ∆; P ` E ⇐ x:A. Q, where
P = this(init) ∧ ∃Ψ.X.(R1 ∗ >) and Q = ∀Ψ.X.R1 ( R2.

The assertion P is related to the requirements (1) and (3).
Indeed, P states that the initial heap can be split into h1 and h2

so that h1 satisfies R1 and h2 satisfies >, as required. In order
to ensure progress, the typing judgment will allow E to touch
only locations whose existence can be proved. Because there is
no information available about h2 and its locations (knowing >
amounts to knowing nothing), E will be restricted to working with
h1 only. The split into h1 and h2 is arbitrary, satisfying an aspect
of (3).

The assertion Q is related to the requirements (2) and (3). After
unraveling the definition of the ( operator, Q essentially states
that any split into h1 and h2 that E may have induced on init results
in a final heap where h1 is replaced with a fragment satisfying
R2, while h2 remains unchanged. The invariance of h2 is precisely
what (2) requires, and the parametricity of R2 with respect to the
split is the remaining aspect of (3).

Before we can state the inference rules of the computation judg-
ments, we need an auxiliary function reduceA(M, x. E) which re-
duces the term let dia x = M in E, if it contains a redex. Here A,
M and E are assumed canonical.

reduceA(K,x.E) = if K is an elim term
let dia x = K in E

reduceA(dia F, x. E) = E′ where E′ = 〈F/x〉A(E)
reduceA(N, x.E) fails otherwise

We can now present the typing rules for computations. We start
with the general monadic fragment, and then proceed with the rules
for the individual commands.

∆;P ` E ⇒ x:A. R [E′] ∆, x:A; init,mem;R =⇒Q

∆;P ` E ⇐ x:A.Q [E′]
consq

∆ ` M ⇐ A [M ′]

∆;P ` M ⇒ x:A.P ∧ IdA(expandA(x), M ′) [M ′]
comp

∆; this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E ⇐ x:A.∀Ψ.X.R1 ( R2 [E′]

∆ ` dia E ⇐ Ψ.X.{R1}x:A{R2} [dia E′]
{ }I

∆ ` K ⇒ Ψ.X.{R1}x:A{R2} [N ′]
∆; init,mem;P =⇒∃Ψ.X.(R1 ∗ >)

∆, x:A;P ◦ (∀Ψ.X.R1 ( R2) ` E ⇒ y:B. Q [E′]

∆;P ` let dia x = K in E
⇒ y:B. (∃x:A.Q) [reduceA(N ′, x.E′)]

{ }E

The rule consq allows the weakening of the strongest postcondi-
tion R into an arbitrary postcondition Q, assuming that R implies
Q. The rule comp types the trivial computation that immediately
returns the result x = M and performs no changes to the heap.
The precondition is simply propagated into the postcondition, but
the postcondition must also assert the equality between M and (the
canonical form of) x. The rule { }I defines the small footprint se-
mantics of Hoare types. This is achieved with using the premise
∆; P ` E ⇐ x:A. Q, for P and Q as discussed before.



The rule { }E describes how a suspended computation K ⇒
{R1}x:A{R2} can be sequentially composed with another com-
putation E. The composition is meaningful if the following are sat-
isfied. First, the the assertion logic must establish that the precondi-
tion P ensures that the current heap contains a fragment satisfying
the precondition R1, as required by K. In other words, we need
to show that P =⇒∃Ψ.X.(R1 ∗ >). Second, the computation E
needs to check against the postcondition obtained after executing
K. The latter is taken to be P ◦ ∀Ψ.X.R1 ( R2, expressing that
the execution of K changed the heap P by replacing a fragment sat-
isfying R1 with a new fragment satisfying R2. The normal form of
the whole computation is obtained by invoking the auxiliary func-
tion reduce. We emphasize that the type B in the conclusion of the
{ }E rule is an input of the typing judgments, and is by assumption
well-formed in the context ∆. In particular, x does not appear in B,
so no special considerations are needed passing from the premise of
the rule to the conclusion. No such assumptions are made about the
postcondition Q, which is an output of the judgment, so we need
to existentially abstract x in the postcondition of the conclusions,
to avoid dangling variables. A similar remark applies to the rules
for the specific effectful constructs for allocation, lookup, strong
update and deallocation that we present next.

∆ ` τ ⇐ mono [τ ′] ∆ ` M ⇐ τ ′ [M ′]

∆, x:nat;P ∗ (x 7→τ ′ M ′) ` E ⇒ y:B. Q [E′]

∆;P ` x = allocτ (M); E

⇒ y:B. (∃x:nat. Q) [x = allocτ ′ (M ′); E′]

∆ ` M ⇐ nat [M ′] ∆ ` τ ⇐ mono [τ ′]

∆; init,mem; P =⇒M ′ ↪→τ ′ −
∆, x:τ ′; P ∧ (M ′ ↪→τ ′ expandτ ′ (x)) ` E ⇒ y:B. Q [E′]

∆;P ` x = [M ]τ ;E ⇒ y:B. (∃x:τ ′. Q) [x = [M ′]τ ′ ;E′]

∆ ` M ⇐ nat [M ′] ∆ ` τ ⇐ mono [τ ′]

∆ ` N ⇐ τ ′ [N ′] ∆; init, mem; P =⇒M ′ ↪→ −

∆;P ◦ ((M ′ 7→ −) ( (M ′ 7→τ ′ N ′)) ` E ⇒ y:B. Q [E′]

∆;P ` [M ]τ = N ;E ⇒ y:B. Q [[M ′]τ ′ = N ′; E′]

∆ ` M ⇐ nat [M ′] ∆; init, mem; P =⇒M ′ ↪→ −

∆;P ◦ ((M ′ 7→ −) ( emp) ` E ⇒ y:B. Q [E′]

∆; P ` dealloc(M); E ⇒ y:B.Q [dealloc(M ′); E′]

In the case of allocation, E is checked against the assertion
P ∗ (x 7→τ ′ M ′), which describes the state after the allocation,
and is the strongest postcondition for allocation with respect to P .
The assertion simply states that the newly allocated memory whose
address is stored in x is disjoint from any already allocated memory
described in P .

In the case of lookup, the strongest postcondition states that
the heap has not changed (i.e., P still holds) but we have the
additional knowledge that the variable x stores the looked up value.
The variable x is expanded because we only consider assertions
in canonical form. In order to ensure progress, we must prove the
sequent P =⇒M ′ ↪→τ ′ − showing that the location M ′ actually
exists in the current heap, and points to a value of an appropriate
type.

It is important to notice that proving the sequent P =⇒M ′ ↪→τ ′

− may be postponed, as it does not influence the other premises.
The sequent can be seen as part of the verification condition which
is generated during typechecking. This property will be true of all
the sequents involved in the computation judgments.

The strongest postcondition for update states that the heap has
changed by replacing some assignment M ′ 7→ − with an as-
signment M ′ 7→τ ′ N ′. A prerequisite is to prove the sequent

P =⇒M ′ ↪→ −, thus showing that M ′ was allocated with an ar-
bitrary type (hence the update is strong).

The strongest postcondition for deallocation states that the heap
has changed by replacing the assignment M ′ 7→ − with empty.
The side condition is the sequent P =⇒M ′ ↪→ − showing that
M ′ was allocated.

The typing rule for x = ifA(M, E1, E2) first checks the two
branches E1 and E2 against the preconditions stating the two
possible outcomes of the boolean expression M . The respective
postconditions P1 and P2 are generated, and their disjunction is
taken as a precondition for the subsequent computation E.

∆ ` A ⇐ type [A′] ∆ ` M ⇐ bool [M ′]

∆;P ∧ Idbool(M
′, true) ` E1 ⇒ x:A′. P1 [E′

1]

∆;P ∧ Idbool(M
′, false) ` E2 ⇒ x:A′. P2 [E′

2]

∆, x:A′;P1 ∨ P2 ` E ⇒ y:B. Q [E′]

∆;P ` x = ifA(M, E1, E2); E

⇒ y:B. (∃x:A′. Q) [x = ifA′ (M ′, E′
1, E′

2); E
′]

Finally, we present the rule for recursion. The recursion con-
struct requires the body of a recursive function f. x. E, and the term
M which is supplied as the initial argument to the recursive func-
tion. The body of the function may depend on the function itself
(variable f ) and one argument (variable x). As an annotation, we
also need to present the type of f , which is a dependent function
type Πx:A. Ψ.X.{R1}y:B{R2}, expressing that f is a function
whose range is a computation with precondition R1 and postcondi-
tion R2.

∆ ` T ⇐ type [Πx:A.Ψ.X.{R1}y:B{R2}] ∆ ` M ⇐ A [M ′]

∆; init, mem; P =⇒[M ′/x]pA(∃Ψ.X.(R1 ∗ >))

∆, f :Πx:A.Ψ.X.{R1}y:B{R2}, x:A;

this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E ⇐ y:B. (∀Ψ.X.R1 ( R2) [E′]

∆, y:[M ′/x]pA(B);

P ◦ [M ′/x]pA(∀Ψ.X.R1 ( R2) ` F ⇒ z:C.Q [F ′]

∆;P ` y = fixT (M, f.x.E);F

⇒ z:C. (∃y:[M ′/x]pA(B).Q)

[y = fixΠx:A.Ψ.X.{R1}y:B{R2}(M ′, f.x.E′); F ′]

Before M can be applied to the recursive function, and the
obtained computation executed, we need to check that the main
precondition P implies ∃Ψ.X.(R1 ∗ >), so that the heap contains
a fragment that satisfies R1. After the recursive call we are in a
heap that is changed according to the proposition ∀Ψ.X.R1 ( R2,
so the computation F following the recursive call is checked with
a precondition P ◦ (∀Ψ.X.R1 ( R2). Of course, because the
recursive calls are started using M for the argument x, we need to
substitute the canonical M ′ for x everywhere.
Sequents. The sequent calculus is a standard formulation of a first-
order classical multi-sorted logic with equality and universal and
existential polymorphic quantification over monotypes. The sorts
include bools, nats (in Peano axiomatization), functions and type
functions with extensionality, effectful computations and heaps.
The axiomatization of bools, nats, functions and type functions is
standard, and we currently do not consider any specific reasoning
principles about computations, except propositional equality. Here,
we only present the axioms related to heaps, and refer to [27] for
the rest of the rules.

∆;X; Γ1, seleqτ (empty,M, N) =⇒Γ2

∆; X; Γ1 =⇒ seleqτ (updτ (H, M,N), M,N), Γ2

∆;X; Γ1, seleqτ (updσ(H, M1,N1),M2,N2) =⇒
Idnat(M1, M2), seleqτ (H, M2,N2), Γ2

∆;X; Γ1, seleqτ (H, M,N1), seleqτ (H, M, N2) =⇒

Idτ (N1, N2), Γ2



The first rule states that an empty heap does not contain any as-
signments. The second and the third rule implement the McCarthy
axioms for functional arrays [23], relating the seleq and upd func-
tions. The fourth axiom asserts a version of heap functionality: a
heap may assign at most one value to a location, for each given
type.

We would prefer a slightly stronger fourth axiom here, which
would state that a heap assigns at most one type and value to
a location, instead of at most one value for each type. As an
illustration, in our previous example we used the assertion P =
x 7→α m ∧ y 7→β n to specify a heap which contains exactly one
location thus forcing x and y to be aliases. While x = y could be
derived from P , we cannot derive that α = β and m = n with our
weak fourth axiom.

Obviously, stating the full functionality of heaps requires new
assertions for equality of types and for equality of terms at different
types [22], which we leave for future work.

Example. As a second example, consider the function sumfunc that
takes an argument n and computes the sum 1+· · ·+n. The function
first allocates a which will store the partial sums, then increments
the contents of a with successive nats in a loop, until n is reached.
Then a is deallocated before its contents is returned as the final
result.

We present the code for sumfunc below, and annotate it with
assertions (enclosed in braces and labeled) that are generated dur-
ing typechecking at the various control points. In the code, we
assumed given the ordering ≤, and introduced the following ab-
breviations: (1) if M then E else F is short for if(M, E, F ); (2)
sum(r, n) = Idnat(2×r, n×n+1) denoting that r = 1+ · · ·+n;
(4) I = i ≤ n ∧ ∃t:nat. a 7→nat t ∧ sum(t, i) will be the loop
invariant during the summation; (5) Q = a 7→nat − ∧ sum(x, n)
asserts what holds upon the exit from the loop.

sumfunc : Πn:nat. {emp} r : nat {emp ∧ sum(r, n)} =
λn. dia(a = allocnat(0);

P0:{this(init) * (a 7→nat 0)}
x = fix(0, f. i.

P1:{this(init) ∧ (I * >)}
s = [a]nat;
P2:{P1 ∧ a ↪→nat s}
t = if eq(i, n) then

P3:{P2 ∧ Idnat(i, n)}
s

else
P4:{P2 ∧ ¬ Idnat(i, n)}
[a]nat = s+i+1;
P5:{P4 ◦ (a 7→nat - ( a 7→nat s+i+1)}
let dia x = f (i+1)
in

P6:{P5 ◦ ([i+1/i]I ( Q)}
x

end;
P7:{(P3 ∧ Idnat(t, s)) ∨

(∃x:nat. P6 ∧ Idnat(t, x))}
t);

P8:{P0 ◦ ([0/i]I ( Q)}
dealloc(a);
P9:{P8 ◦ (a 7→nat - ( emp)}
x);

The specification for sumfunc states that the function starts and
ends with an empty heap. The most interesting part of the code is
the recursive loop. It introduces the fixpoint variable f , whose type
we take to be f :Πi:nat. {I}x:nat{Q}, giving the loop invariant
in the precondition. The variable i is the counter which drives the
loop. The initial value for i is 1, as specified in the first argument
of the fixpoint construct, and the loop terminates when i reaches n.

The verification condition consists of the following sequents:
(1) P1 =⇒ a ↪→nat −, so that a can be looked up, (2) P4 =⇒a ↪→
− so that a can be updated, (3) P5 =⇒[i + 1/i]I ∗ >, so that
the computation obtained from f(i + 1) can be executed, (4)
P7 ∧ Idnat(x, t)=⇒ I ( Q, so that the fixpoint satisfies the
prescribed postcondition, (5) P8 =⇒a ↪→ − so that a can be
deallocated, and (6) P9∧ Idnat(r, x)=⇒ emp ( emp∧sum(r, n),
so that sumfunc has the required postcondition. It is not too hard to
see that all these sequents are valid.

4. Properties
In this section, we present the most characteristic properties of
HTT. The formal development is too extensive to be included here,
and the interested reader is referred to the accompanying technical
report [27] for the complete statements of all the theorems and all
the proofs.

Theorem 2 (Relative decidability of type checking)
Given an oracle for deciding the validity of assertion logic sequents,
all the typing judgments of the HTT are decidable.

The proof of Theorem 2 exploits the fact that the typing judg-
ments of HTT, including the computation judgments, are syntax
directed, so that typechecking the premises always involves type-
checking smaller expressions. Premises may also involve deciding
equality of types, or computing hereditary substitutions or deciding
sequents of the assertion logic. As the first two kinds of premises
are decidable, according to Theorem 1, the conclusion follows.

It should be possible to remove the assumption about the oracle
by extending the HTT terms with certificates for the sequents, in the
style of Proof-Carrying Code [29]. With this extension, a compu-
tation judgment of HTT will contain all the information needed to
establish its own derivation, as the derivation is completely guided
by the syntax of the computation. In the terminology of Martin-
Löf [21], the judgments become analytic, or self-evident. Alterna-
tively, we can say that an HTT computation can be seen as a proof
of its own specification, and thus the effectful fragment of HTT
establishes the Curry-Howard correspondence [15] between com-
putations and specification proofs.

The next lemma restates in the context of HTT the usual proper-
ties of Hoare Logic, like weakening of the consequent and strength-
ening of the precedent. Also included is the frame rule from Sepa-
ration Logic which embodies the small footprint property by stat-
ing that the computation cannot change any heap fragment disjoint
from the footprint.

Lemma 3 (Properties of computations)
Suppose that ∆; P ` E ⇐ x:A. Q [E′]. Then:
1. Weakening Consequent. If ∆, x:A; init, mem; Q=⇒R, then

∆; P ` E ⇐ x:A. R [E′].
2. Strengthening Precedent. If ∆; init, mem; R =⇒P , then ∆; R `

E ⇐ x:A. Q [E′].
3. Frame. If ∆ ` dia F ⇐ Ψ.X.{R1}x:A{R2} [F ′], and

∆, Ψ; X, mem ` R ⇐ prop [R], then ∆ ` dia F ⇐
Ψ.X.{R1 ∗ R}x:A{R2 ∗ R} [F ′].

4. Preservation of History. If ∆; init, mem ` R ⇐ prop [R], then
∆; R ◦ P ` E ⇐ x:A. (R ◦ Q) [E′].

We discuss here the last property from Lemma 3, which we call
Preservation of History. It essentially states that a computation does
not depend on how the heap in which it executes has been obtained,
i.e., which sequence of computations lead to its creation. Thus, each
precondition P and postcondition Q can always be arbitrarily pre-
composed with a new assertion R. This is one of the most important



properties of HTT and is indispensable in the meta-theoretic proofs,
because it captures the fact that HTT reasons about programs by
computing strongest postconditions via relational composition.

5. Operational semantics
In this section we discuss the operational semantics for HTT and
the soundness of the type system with respect to the operational
semantics. In particular, we argue that if ∆; P ` E ⇐ x:A. Q
is derivable in the type system, then it is indeed the case that
evaluating E in a heap in which P holds produces a heap in which
Q holds (if E terminates).

The operational semantics is only defined for well-typed terms.
Since our types correspond to specifications, our approach is dif-
ferent from the traditional approach of Hoare Logic but it is similar
to the approach in [6], which also only gives semantics to well-
specified programs.
Syntax. We now present the syntactic ingredients for defining a
call-by-value, left-to-right operational semantics.

Values v, l ::= ( ) | λx.M | Λα. M | dia E |
true | false | z | s v

Value heaps χ ::= · | χ, l 7→τ v
Continuations κ ::= · | x:A.E;κ
Control expressions ρ ::= κ . E
Abstract machines µ ::= χ, κ . E

The definition of values is standard from mostly functional
programming languages. We use l to range over nats when they
are used as pointers.

Value heaps are assignments from nats to values, where each
assignment is indexed by a type. Value heaps are a run-time concept
– and are used in the evaluation judgments to describe the state in
which programs execute. This is in contrast to heaps from Section 2
which are used for reasoning in the assertion logic. That the two
notions correspond to each other is expressed by our definition of
heap soundness that will be given later in this section. We will need
to convert a value heap into a heap canonical form, so we introduce
the following conversion function.

[[·]] = empty
[[χ, l 7→τ v]] = updτ ([[χ]], l,M), where · ` v ⇐ τ [M ]

A continuation is a sequence of computations of the form
x:A.E, where E may depend on the bound variable x:A. The
continuation is executed by passing a value to the variable x in the
first computation E. If that computation terminates, its return value
is passed to the second computation, and so on.

A control expression κ . E pairs up a computation E and a
continuation κ, so that E provides the initial value with which the
execution of κ can start. Thus, a control expression is in a sense
a self-contained computation. Control expressions are introduced
because they make the call-by-value semantics of the computation
let dia x = dia E in F explicit. Evaluation of this computation
is carried out by creating the control expression x. F . E; or in
other words, first push x. F onto the continuation, and proceed to
evaluate E.

An abstract machine µ is a pair of a value heap χ and a control
expression κ . E. The control expression is evaluated against the
heap, to eventually produce a result and possibly change the heap.

Our theorems require a typing judgment for abstract machines,
in order to specify the type of the return value and the properties
of the heap in which the abstract machine terminates (if it does).
Given µ = χ, κ . E, we write ` µ ⇐ x:A.Q if we can prove
that Q is a postcondition for κ.E with respect to the assertion [[χ]]
generated from χ.
Evaluation. There are three evaluation judgments in HTT; one for
elimination terms K ↪→k K′, one for introduction terms M ↪→m

M ′ and one for abstract machines χ, κ . E ↪→e χ′, κ′ . E′.

Each judgment relates an expression with its one-step reduct. The
inference rules of the evaluation judgments are straightforward, so
we omit them here. We refer to the technical report [27] for the
complete formalization.
Soundness. Perhaps somewhat surprisingly for a program logic
like HTT, we formulate soundness via Preservation and Progress
theorems as often used for simpler type systems. This is a conse-
quence of our decision to formulate HTT as a type theory, rather
than as an ordinary Hoare Logic. Of course, our Preservation and
Progress theorems are significantly stronger (and also harder to
prove) than corresponding theorems for simpler type systems since
our types are much more expressive.
Theorem 4 (Preservation)
1. if K0 ↪→k K1 and · ` K0 ⇒ A [N ′], then · ` K1 ⇒ A [N ′].
2. if M0 ↪→m M1 and · ` M0 ⇐ A [M ′], then · ` M1 ⇐ A [M ′].
3. if µ0 ↪→e µ1 and ` µ0 ⇐ x:A.Q, then ` µ1 ⇐ x:A.Q.

The preservation theorem states that the evaluation step on a
well-specified term/abstract machine does not change the specifi-
cation of the result. In the case of abstract machines, after taking
the step, the evaluation is still on its way to produce a value of type
A, and terminate in a heap satisfying Q. In the case of pure terms,
there is an additional claim that evaluation preserves the canonical
form—and thus the equational properties—-of the evaluated term.
In other words, normalization is adequate for the operational se-
mantics.

Before we can state the progress theorem, we need to define a
property of the assertion logic which we call heap soundness.

Definition 5 (Heap soundness)
The assertion logic of HTT is heap sound iff for every value heap χ,

1. if ·; mem; this([[χ]]) =⇒ l ↪→τ −, then l 7→τ v ∈ χ, for some
value v, and

2. if ·; mem; this([[χ]]) =⇒ l ↪→ −, then l 7→τ v ∈ χ for some
monotype τ and a value v.

The clauses of the definition of heap soundness correspond to
the side conditions that need to be derived in the typing rules
for the primitive commands of lookup, update and deallocation.
Heap soundness essentially shows that the assertion logic correctly
reasons about value heaps, so that facts established in the assertion
logic will be true during evaluation. If the assertion logic proves
that l ↪→τ −, then the evaluation will be able to associate a value
v with this location, and carry out the lookup. If the assertion logic
proves that l ↪→ −, then the evaluation will be able to associate a
monotype τ and a value v:τ with this location, and carry out the
update or deallocation.

Now we can state the Progress theorem, under the assumption of
heap soundness; in the following section we prove that the assertion
logic of HTT is indeed heap sound.

Theorem 6 (Progress)
Suppose that the assertion logic of HTT is heap sound. Then the
following holds.
1. If · ` K0 ⇒ A [N ′], then either K0 = v : A or K0 ↪→k K1,

for some K1.
2. If · ` M0 ⇐ A [M ′], then either M0 = v or M0 ↪→m M1, for

some M1.
3. If ` χ0, κ0 . E0 ⇐ x:A. Q, then either E0 = v and κ0 = ·,

or χ0, κ0 . E0 ↪→e χ1, κ1 . E1, for some χ1, κ1, E1.

Example. From the Progress and Preservation theorem it is now
clear that sumfunc 10 produces a computation that, if it terminates
when executed in an empty heap, returns the value 55 and an empty
heap.



6. Heap soundness
In this section we sketch a proof that the assertion logic of HTT is
heap sound. We do so by means of a simple denotational semantics
of HTT. It is based on the observation that the operational semantics
does not depend on HTT types and, likewise, the atomic predicates
of the assertion logic do not depend on HTT types, but only on
the underlying simple types (which we call shapes) obtained after
erasing assertions from HTT types. Hence we may devise a simple
semantics of the language in which types are interpreted by a
domain of values, and in which assertions are interpreted as subsets
of the domain of values. For simplicity, we here use a denotational
semantics; one could also have made a model directly from the
operational semantics and modeled the type of values as ground
contextual equivalence classes of terms, but that requires showing
operational extensionality properties of functions, which is non-
trivial in the presence of general references.

Let pCpo be the category of ω-complete partially ordered sets
(partially ordered sets such that every ω-chain has a least upper
bound) and partial continuous functions. Note that the objects do
not necessarily have a least element. For a partial continuous func-
tion f , write f(a) ↓ for “f(a) is defined” and write f(a) ↑ for
“f(a) is undefined.” For cpo’s X and Y , we write X ⇀ Y for the
set of partial continuous functions from X to Y and X → Y for
the set of (total) continuous functions from X to Y .

Let MonoTypes denote the set of mono types of HTT. Let N
denote the discrete cpo of natural numbers, let B denote the discrete
cpo of booleans with elements true and false, and let 1 denote the
one-element cpo with element ∗. Finally, let Loc be a copy of N .
Recall that pCpo is bilimit compact and complete. Hence there is
a canonical solution to the following recursive domain equations:

V ∼= 1 + N + B + (V → V ) + (H ⇀ (V × H ))
+ (ΠA∈MonoTypesV )

H = ΣL∈Pfin(Loc)(L → V ),

where the ordering of ΣL∈Pfin(Loc)(L → V ) only relates records
(heaps) with equal domain; two records with equal domain are
ordered pointwise.

• We let MonoTypeSubst = TyVar → MonoTypes denote
the set of monotype substitutions, where TyVar denotes the set
of type variables. We use θ to range over monotype substitu-
tions.

• Types ∆ ` A ⇐ type [A] are interpreted by V .
• Contexts ` ∆ ctx of length n are interpreted by [[∆]] = V n.
• Contexts ∆; X of the form ∆; h1, . . . , hm are interpreted by

[[∆]]×Hm. We often use ρ to range over elements of [[∆]]. and
use µ to range over elements of Hn.

• Intro terms in context ∆ ` M ⇐ A [M ] are interpreted by
elements of MonoTypeSubst → [[∆]] → V .

• Elim terms in context ∆ ` K ⇒ A [K] are interpreted by
elements of MonoTypeSubst → [[∆]] → V .

• Computations in context ∆; P ` E ⇒ x:A. Q [E] are inter-
preted by elements of MonoTypeSubst → [[∆]] → (H ⇀
(V ×H )).

• Computations in context ∆; P ` E ⇐ x:A. Q [E] are inter-
preted by elements of MonoTypeSubst → [[∆]] → (H ⇀
(V × H)).

• Heaps in context ∆; X ` H ⇐ heap [H] are interpreted by
MonoTypeSubst → [[∆; X]] → H .

• Propositions in context ∆; X ` P ⇐ prop [P ] are interpreted
by MonoTypeSubst → P [[∆; X]]. Here we implicitly apply

the forgetful function from pCpo to Set and then use the
powerset functor P of Set.

Given the above, the actual definition of the semantics, is fairly
standard. For example, [[∆ ` λx. M ⇐ Πx:A. B [λx. M ]]]θ is

λρ. (λv. [[∆, x:A ` M ⇐ B [M ]]]θ(ρ, v)),

and [[∆; X ` P ∧ Q ⇐ prop [P ∧ Q]]]θ is
[[∆; X ` P ⇐ prop [P ]]]θ ∩ [[∆; X ` Q ⇐ heap [Q]]]θ .

A sequent ∆; h1, . . . , hk; P1, . . . , Pn =⇒Q1, . . . , Qm of the
assertion logic is valid if, for all ρ ∈ [[∆]] and all µ ∈ Hk,

[[∆; X ` P1 ∧ · · · ∧ Pn]](ρ, µ)
⊆ [[∆; X ` Q1 ∨ · · · ∨ Qm]](ρ, µ).

Theorem 7 (Soundness of Assertion Logic)
All the axioms and rules of the assertion logic are sound with
respect to the semantic notion of validity.

Proof: All the standard rules for classical logic are trivially sound
since we interpret the logic as in sets. Thus it just remains to check
that the basic axioms for equality are sound. But those are all easy
to verify; the only interesting case is extensionality of functions
represented by λ-terms. That holds because λ-terms are indeed in-
terpreted by elements in V corresponding to honest functions. �

Theorem 8 (Heap Soundness)
The assertion logic of HTT is heap sound.

Proof: Let χ be a value heap. Here we only sketch the argument
for item 1 of heap soundness.

By assumption ·; mem; HId(mem, [[χ]])=⇒ seleqτ (mem, l,−)
is derivable, so by logic also ·; ·; ·=⇒ seleqA([[χ]], l,−) is deriv-
able. By soundness of the assertion logic (Theorem 7) and the
definition of the semantics of the assertion logic, we have that
[[·; ·; ·=⇒ seleqA([[χ]], l,−)]](∗, ∗) is true. By definition of the in-
terpretation of seleqA this means that ∃v ∈ V. [[[[χ]]]](∗, ∗)(l) = v.
By the definition of [[χ]] and the semantics of heaps, we have that
l 7→A v0 ∈ χ, for some value v0, as required (and [[v0]] ∗ is the v
that exists). �

Remark 9
Note that the denotational model above does not model predicates
as admissible2 subsets, but rather as all subsets. One might have
expected admissibility to show up since HTT contains a rule for
fixed points (see Section 3) but because the denotational model is
so crude (it only models the shape of HTT types, not HTT types
themselves) and since it is only used to show heap soundness, while
operational methods are used to show soundness of the typing rule
for fixed points, we do not need to restrict attention to admissible
predicates in the denotational model. We are not aware of similar
combinations of models and proof methods for models of higher-
order store in the literature.

7. Related work
There has been a significant interest recently in systems for rea-
soning about effectful higher-order functions. Honda et al. [14, 3]
present several Hoare Logics for total correctness, where specifica-
tions in the form of Hoare triples are taken as propositions. Krish-
naswami [18] proposes a version of Separation Logic for a higher-
order typed language. Similarly to HTT, Krishnaswami bases his

2 A subset of a pointed cpo is admissible if it is pointed and closed under
sups of chains.



logic on a monadic presentation of the underlying programming
language. Both proposals do not support polymorphism, strong up-
dates, deallocation or pointer arithmetic. Both are Hoare-like Log-
ics, rather than type theories, which means that logic specifications
cannot be used in the program syntax to describe the context in
which any particular program fragment can appear. On the other
hand, Honda et al. have established a notion of contextual com-
pleteness for their framework, which we do not have. Both Honda
et al. and Krishnaswami allow their specifications to talk about the
abstract type of references. In HTT, like in Separation Logic, we
use natural numbers instead, as it was not clear how to axiomatize
quantification and induction principles over this abstract type in the
context of HTT. It is an interesting future work to devise a type sys-
tem that can use local state in the definition of abstract types.

Shao et al. [37] and Applied Type Systems (ATS) of Xi et
al. [42, 44] present dependently typed systems for effectful pro-
grams, based on singleton types, but they do not allow effectful
terms in the specifications. Both systems encode a notion of pre-
and postconditions. In ATS, assertions are drawn from linear logic,
and the proofs for pre- and postconditions are embedded within
the code. It is interesting that the properties of linear logic ac-
tually require the embedding of proofs and code, unlike in HTT
where this is optional. For most effectful commands, a precondition
must be transformed into a suitable form (usually a linear product)
before the postcondition can be computed at all. The proofs are
necessary in order to guide this transformation of preconditions.
In other words, they cannot separate type-checking into a decid-
able verification-condition generation phase, and a sequent validity
phase. On the other hand, ATS possesses a very powerful mecha-
nism for definition of generalized algebraic datatypes [43], which
we have not considered in HTT yet.

Mandelbaum et al. [20] develop a theory of type refinements
for reasoning about effectful higher-order functions, whose foun-
dations are very similar to ours. They use a monadic separation be-
tween pure and impure fragments, and their type refinements cor-
respond to pre- and postconditions, just like in HTT. There are sig-
nificant differences as well. For example, the assertion logic of [20]
is a very simple fragment of propositional linear logic in order to
facilitate decidable typechecking. The simplicity of this fragment
avoids the issues related to explicit proofs that we discussed above
for [44], but it also makes it unclear if this approach could support
full-fledged state with aliasing, which seems to require quantifica-
tion in the world refinements. A related problem which the authors
discuss in their future work is the lack of features in linear logic to
express sharing. They suggest that second-order quantification over
worlds will remedy the situation, and indeed, our current develop-
ment of polymorphism for HTT could be seen as supporting this
statement.

Abadi and Leino [1] describe a logic for object-oriented pro-
grams where specifications, as in HTT, are treated as types. One
of the problems that authors describe concerns the scoping of vari-
ables; certain specifications cannot be proved because the inference
rule for let val x = E in F does not allow sufficient interaction be-
tween the specifications of E and F . We have designed HTT to
avoid such problems.

Birkedal et al. [6] describe a dependent type system for well-
specified programs in idealized Algol extended with heaps. The
type system includes a wide collection of higher-order frame rules,
which are shown sound by a denotational model. A serious limita-
tion of the type system compared to HTT is that the heap in loc. cit.
can only contain simple integer values.

8. Future work
In this section we describe some future work that we plan to carry
out, involving higher-order assertion logic and local state.

Higher-order assertion logic. The polymorphic multi-sorted
first-order assertion logic presented in the current paper is still in-
sufficient for realistic languages and applications. For any practical
application, HTT needs internal means of defining new predicates,
including inductive ones, and new types of data. At a minimum,
one needs assertions that describe lists, trees, dags, etc. that can
be used to describe the shape of mutable data structures within the
heap. All of these are definable in higher-order logic [8, 32, 39].
For purposes of HTT, the higher-order logic will also require poly-
morphic quantification over monotypes.

Furthermore, higher-order assertion logic should be the appro-
priate framework for studying Cook completeness of HTT [9], as
with higher-order assertions it should be possible to exactly express
the strongest postconditions for any kind of un-annotated looping
or recursion construct of HTT.

Local state. HTT specifications, as presented in this paper can
only describe state that is reachable from the variables that are
in scope, or from the return result of a computation. Local state,
which, by definition, is not reachable in this way, but is implicit, and
may be shared by functions or data structures, cannot be described.
To enrich HTT types so that local state can be described, we require
at least two components.

First, a computation should have more than one result so that
it can return the addresses of locally allocated data. Thus, we
will require a new type of Hoare triples, with a syntax as in
Ψ.X.{P}∆, x:A{Q}, where ∆ is a context of variables that ab-
stracts over the local data of the computation. The variables from ∆
can be used in the return type A and in the postcondition Q. This
extension may employ some results from the Contextual modal
type theory of [28].

Of course, if the local addresses are made explicit as the return
result of the computation, they are not local anymore. The second
component required for a type system of local state must provide
a mechanism for existential abstraction over the above context ∆.
A related question is how to associate an abstract datatype (e.g.
red-black trees) with chunks of local state.
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A. Type system of HTT
Judgments.

∆ ` K ⇒ A [N ′] ` ∆ ctx [∆′]
∆ ` M ⇐ A [M ′] ∆;X ` Γ propctx
∆;P ` E ⇒ x:A.Q [E′] ∆;X ` P ⇐ prop [P ′]
∆;P ` E ⇐ x:A.Q [E′] ∆ ` A ⇐ type [A′]
∆;X; Γ1 =⇒Γ2 ∆ ` τ ⇐ mono [τ ′]

∆;X ` H ⇐ heap [H′]

Variable and assertion context formation.

` · ctx [·]

` ∆ ctx [∆′] ∆′ ` A ⇐ type [A′]

` (∆, x:A) ctx [∆′, x:A′]

` ∆ ctx [∆′]

` (∆, α) ctx [∆′, α]

∆;X ` · propctx

∆; X ` Γ propctx ∆;X ` P ⇐ prop [P ]

∆;X ` (Γ, P ) propctx

We write ∆ ` Ψ ⇐ ctx [Ψ′] as short for ` ∆, Ψ ctx [∆,Ψ′].

Type formation.

∆, α, ∆′ ` α ⇐ type [α] ∆ ` bool ⇐ type [bool]

∆ ` nat ⇐ type [nat] ∆ ` 1 ⇐ type [1]

∆ ` A ⇐ type [A′] ∆, x:A′ ` B ⇐ type [B′]

∆ ` Πx:A. B ⇐ type [Πx:A′. B′]

∆ ` Ψ ⇐ ctx [Ψ′]

∆, Ψ′;X, mem ` P ⇐ prop [P ′]

∆ ` A ⇐ type [A′]

∆, Ψ′, x:A′;X, mem ` Q ⇐ prop [Q′]

∆ ` Ψ.X.{P}x:A{Q} ⇐ type [Ψ′.{P ′}x:A′{Q′}]

∆, α ` A ⇐ type [A′]

∆ ` ∀α. A ⇐ type [∀α.A′]

The judgment for monotypes is completely analogous, with the obvious
omission of the rule for ∀α. A.

Assertion formation.

∆ ` A ⇐ type [A′] ∆ ` M ⇐ A′ [M ′] ∆ ` N ⇐ A′ [N ′]

∆;X ` IdA(M, N) ⇐ prop [IdA′(M ′,N ′)]

∆ ` τ ⇐ mono [τ ′] ∆ ` H ⇐ heap [H′]

∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ τ ′ [N ′]

∆; X ` seleqτ (H, M,N) ⇐ prop [seleqτ ′ (H′,M ′, N ′)]

∆;X ` > ⇐ prop [>] ∆;X ` ⊥ ⇐ prop [⊥]

∆;X ` P ⇐ prop [P ′] ∆;X ` Q ⇐ prop [Q′]

∆;X ` P ∧ Q ⇐ prop [P ′ ∧ Q′]

∆;X ` P ⇐ prop [P ′] ∆;X ` Q ⇐ prop [Q′]

∆;X ` P ∨ Q ⇐ prop [P ′ ∨ Q′]

∆;X ` P ⇐ prop [P ′] ∆;X ` Q ⇐ prop [Q′]

∆; X ` P ⊃ Q ⇐ prop [P ′ ⊃ Q′]

∆;X ` P ⇐ prop [P ′]

∆;X ` ¬P ⇐ prop [¬P ′]

∆ ` A ⇐ type [A′] ∆, x:A′;X ` P ⇐ prop [P ′]

∆;X ` ∀x:A. P ⇐ prop [∀x:A′. P ′]

∆ ` A ⇐ type [A′] ∆, x:A′;X ` P ⇐ prop [P ′]

∆;X ` ∃x:A. P ⇐ prop [∃x:A′. P ′]

∆;X, h ` P ⇐ prop [P ′]

∆;X ` ∀h:heap. P ⇐ prop [∀h:heap. P ′]

∆;X, h ` P ⇐ prop [P ′]

∆;X ` ∃h:heap. P ⇐ prop [∃h:heap. P ′]

∆, α;X ` P ⇐ prop [P ′]

∆;X ` ∀α.P ⇐ prop [∀α.P ′]

∆, α; X ` P ⇐ prop [P ′]

∆;X ` ∃α. P ⇐ prop [∃α. P ′]

Heap formation.

h ∈ X

∆;X ` h ⇐ heap [h] ∆;X ` empty ⇐ heap [empty]

∆ ` τ ⇐ mono [τ ′] ∆;X ` H ⇐ heap [H′]

∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ τ ′ [N ′]

∆;X ` updτ (H, M,N) ⇐ heap [updτ ′ (H′,M ′, N ′)]

Sequents. Structural group of rules for initial sequents, cut, weakening
and contraction. Variables p, q range over primitive assertions (Id and
seleq).

∆;X; Γ1, p=⇒ p,Γ2

∆;X; Γ1 =⇒P,Γ2 ∆;X; Γ1, P =⇒Γ2

∆;X; Γ1 =⇒Γ2

∆; X; Γ1 =⇒Γ2

∆;X; Γ1, P =⇒Γ2

∆;X; Γ1 =⇒Γ2

∆;X; Γ1 =⇒P,Γ2

∆; X; Γ1, P, P =⇒Γ2

∆;X; Γ1, P =⇒Γ2

∆;X; Γ1 =⇒P,P,Γ2

∆;X; Γ1 =⇒P,Γ2

Propositional connectives.

∆;X; Γ1,⊥=⇒Γ2 ∆;X; Γ1 =⇒>,Γ2

∆;X; Γ1, P,Q =⇒Γ2

∆;X; Γ1, P ∧ Q=⇒Γ2

∆;X; Γ1 =⇒P,Γ2 ∆; X; Γ1 =⇒Q,Γ2

∆;X; Γ1 =⇒P ∧ Q,Γ2

∆;X; Γ1, P =⇒Γ2 ∆;X; Γ1, Q=⇒Γ2

∆;X; Γ1, P ∨ Q =⇒Γ2

∆;X; Γ1 =⇒P,Q,Γ2

∆; X; Γ1 =⇒P ∨ Q,Γ2

∆;X; Γ1 =⇒P,Γ2 ∆;X; Γ1,Q=⇒Γ2

∆;X; Γ1, P ⊃ Q =⇒Γ2

∆;X; Γ1, P =⇒Q,Γ2

∆;X; Γ1 =⇒P ⊃ Q,Γ2

∆;X; Γ1 =⇒P,Γ2

∆; X; Γ1,¬P =⇒Γ2

∆;X; Γ1, P =⇒Γ2

∆;X; Γ1 =⇒¬P,Γ2

Quantification.

∆ ` M ⇐ A [M ]

∆;X; Γ1,∀x:A.P, [M/x]pA(P ) =⇒Γ2

∆; X; Γ1,∀x:A.P =⇒Γ2

∆, x:A;Ψ; Γ1 =⇒P,Γ2

∆;X; Γ1 =⇒∀x:A.P,Γ2

∆, x:A;Ψ; Γ1, P =⇒Γ2

∆;Ψ;Γ1,∃x:A.P =⇒Γ2

∆ ` M ⇐ A [M ]

∆;Ψ;Γ1 =⇒[M/x]pA(P ),∃x:A.P,Γ2

∆;Ψ;Γ1 =⇒∃x:A.P,Γ2

∆ ` τ ⇐ mono [τ ]
∆; X; Γ1, [τ/α](P ), ∀α. P =⇒Γ2

∆;X; Γ1,∀α. P =⇒Γ2

∆, α; X; Γ1 =⇒P,Γ2

∆;X; Γ1 =⇒∀α. P,Γ2

∆, α; X; Γ1, P =⇒Γ2

∆;X; Γ1,∃α. P =⇒Γ2

∆ ` τ ⇐ mono [τ ]
∆;X; Γ1 =⇒[τ/α](P ), ∃α.P, Γ2

∆;X; Γ1 =⇒∃α. P,Γ2



∆;X ` H ⇐ heap [H]
∆;X; Γ1,∀h:heap. P, [H/h]P =⇒Γ2

∆;X; Γ1,∀h:heap. P =⇒Γ2

∆;X, h; Γ1 =⇒P,Γ2

∆;X; Γ1 =⇒∀h:heap. P,Γ2

∆;X, h; Γ1 =⇒P,Γ2

∆; X; Γ1,∃h:heap. P =⇒Γ2

∆;X ` H ⇐ heap [H]
∆;X; Γ1 =⇒[H/h]P,∃h:heap. P,Γ2

∆;X; Γ1 =⇒∃h:heap. P,Γ2

Propositional equality.

∆;X; Γ1 =⇒ IdA(M,M), Γ2

∆;X; Γ1, IdA(M,N) =⇒[M/x]p
A

(q), [N/x]p
A

(q), Γ2

∆; X; Γ1, IdA(M, N) =⇒[M/x]pA(q), Γ2

Function extensionality.
∆, x:A;X; Γ1 =⇒ IdB(M,N), Γ2

∆;X; Γ1 =⇒ IdΠx:A. B(λx.M, λx.N), Γ2

∆, α; X; Γ1 =⇒ IdB(M, N), Γ2

∆; X; Γ1 =⇒ Id∀α. B(Λα. M,Λα.N), Γ2

Heaps.

∆;X; Γ1, seleqτ (empty, M,N) =⇒Γ2

∆;X; Γ1 =⇒ seleqτ (updτ (H, M,N), M,N), Γ2

∆; X; Γ1, seleqτ (updσ(H, M1,N1), M2,N2) =⇒
Idnat(M1, M2), seleqτ (H, M2, N2), Γ2

∆;X; Γ1, seleqτ (H, M,N1), seleqτ (H,M, N2) =⇒

Idτ (N1,N2),Γ2

Peano arithmetic and booleans. There is no need to state the properties of
+, × and eq, as those are handled by canonical forms.

∆;X; Γ1, Idnat(s M, z) =⇒Γ2

∆;X; Γ1, Idnat(s M, s N) =⇒ Idnat(M, N), Γ2

∆ ` M ⇐ nat [M ] ∆;X; Γ1, P =⇒[s x/x]pnat(P ),Γ2

∆;X; Γ1, [z/x]pnat(P ) =⇒[M/x]pnat(P ), Γ2

∆;X; Γ1, Idbool(true, false) =⇒Γ2

∆ ` M ⇐ bool [M ]

∆;X; Γ1, [true/x]pbool(P ), [false/x]pbool(P ) =⇒[M/x]pbool(P ),Γ2

Terms.

plus(M, N) =

8

>

>

>

<

>

>

>

:

N if M = z
M if N = z
s (plus(M ′,N)) if M = s M ′

s (plus(M, N ′)) if N = s N ′

M +N otherwise

times(M, N) =

8

>

<

>

:

z if M = z or N = z
plus(M ′, times(M ′, N)) if M = s M ′

plus(times(M, N ′), N ′) if N = s N ′

M × N otherwise

equals(M, N) =

8

>

>

>

<

>

>

>

:

true if M = N = z
false if M = z and N = s N ′

or M = s M ′ and N = z
equals(M ′,N ′) if M = s M ′ and N ′ = s N ′

eq(M, N) otherwise

∆ ` true ⇐ bool [true] ∆ ` false ⇐ bool [false]

∆ ` z ⇐ nat [z]

∆ ` M ⇐ nat [M ′]

∆ ` s M ⇐ nat [s M ′]

∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ nat [N ′]

∆ ` M + N ⇐ nat [plus(M ′,N ′)]

∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ nat [N ′]

∆ ` M × N ⇐ nat [times(M ′,N ′)]

∆ ` M ⇐ nat [M ′] ∆ ` N ⇐ nat [N ′]

∆ ` eq(M,N) ⇐ bool [equals(M ′,N ′)]

∆, x:A,∆1 ` x ⇒ A [x]
var

∆ ` () ⇐ 1 [()]
unit

∆, x:A ` M ⇐ B [M ′]

∆ ` λx.M ⇐ Πx:A. B [λx.M ′]
ΠI

∆ ` K ⇒ Πx:A.B [N ′] ∆ ` M ⇐ A [M ′]

∆ ` K M ⇒ [M ′/x]aA(B) [applyA(N ′, M ′)]
ΠE

∆, α ` M ⇐ A [M ′]

∆ ` Λα. M ⇐ ∀α. A [Λα.M ′]
∀I

∆ ` K ⇒ ∀α. B [N ′] ∆ ` τ ⇐ mono [τ ′]

∆ ` K τ ⇒ [τ ′/α]a(B) [spec(N ′, τ ′)]
∀E

∆ ` K ⇒ A [N ′] A = B

∆ ` K ⇐ B [expandB(N ′)]
⇒⇐

∆ ` A ⇐ type [A′] ∆ ` M ⇐ A′ [M ′]

∆ ` M : A ⇒ A′ [M ′]
⇐⇒

∆ ` K ⇒ α [K]

∆ ` etaα K ⇐ α [etaα K]
eta

Computations.

∆;P ` E ⇒ x:A. R [E′] ∆, x:A; init,mem;R =⇒Q

∆;P ` E ⇐ x:A.Q [E′]
consq

∆ ` M ⇐ A [M ′]

∆;P ` M ⇒ x:A.P ∧ IdA(expandA(x), M ′) [M ′]
comp

∆; this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E ⇐ x:A.∀Ψ.X.R1 ( R2 [E′]

∆ ` dia E ⇐ Ψ.X.{R1}x:A{R2} [dia E′]
{ }I

∆ ` K ⇒ Ψ.X.{R1}x:A{R2} [N ′]
∆; init,mem;P =⇒∃Ψ.X.(R1 ∗ >)

∆, x:A;P ◦ (∀Ψ.X.R1 ( R2) ` E ⇒ y:B. Q [E′]

∆;P ` let dia x = K in E
⇒ y:B. (∃x:A.Q) [reduceA(N ′, x.E′)]

{ }E

∆ ` τ ⇐ mono [τ ′] ∆ ` M ⇐ τ ′ [M ′]

∆, x:nat;P ∗ (x 7→τ ′ M ′) ` E ⇒ y:B.Q [E′]

∆; P ` x = allocτ (M); E

⇒ y:B. (∃x:nat. Q) [x = allocτ ′(M ′); E′]



∆ ` M ⇐ nat [M ′] ∆ ` τ ⇐ mono [τ ′]

∆; init,mem;P =⇒M ′ ↪→τ ′ −
∆, x:τ ′; P ∧ (M ′ ↪→τ ′ expandτ ′ (x)) ` E ⇒ y:B. Q [E′]

∆;P ` x = [M ]τ ;E ⇒ y:B. (∃x:τ ′.Q) [x = [M ′]τ ′ ;E′]

∆ ` M ⇐ nat [M ′] ∆ ` τ ⇐ mono [τ ′]

∆ ` N ⇐ τ ′ [N ′] ∆; init,mem; P =⇒M ′ ↪→ −

∆;P ◦ ((M ′ 7→ −) ( (M ′ 7→τ ′ N ′)) ` E ⇒ y:B. Q [E′]

∆;P ` [M ]τ = N ;E ⇒ y:B. Q [[M ′]τ ′ = N ′; E′]

∆ ` M ⇐ nat [M ′] ∆; init,mem; P =⇒M ′ ↪→ −

∆;P ◦ ((M ′ 7→ −) ( emp) ` E ⇒ y:B. Q [E′]

∆;P ` dealloc(M); E ⇒ y:B. Q [dealloc(M ′); E′]

∆ ` A ⇐ type [A′] ∆ ` M ⇐ bool [M ′]

∆;P ∧ Idbool(M
′, true) ` E1 ⇒ x:A′. P1 [E′

1]

∆; P ∧ Idbool(M
′, false) ` E2 ⇒ x:A′. P2 [E′

2]

∆, x:A′; P1 ∨ P2 ` E ⇒ y:B. Q [E′]

∆; P ` x = ifA(M, E1, E2);E

⇒ y:B. (∃x:A′.Q) [x = ifA′(M ′, E′
1, E′

2); E
′]

∆ ` T ⇐ type [Πx:A.Ψ.X.{R1}y:B{R2}] ∆ ` M ⇐ A [M ′]

∆; init,mem; P =⇒[M ′/x]p
A

(∃Ψ.X.(R1 ∗ >))

∆, f :Πx:A. Ψ.X.{R1}y:B{R2}, x:A;

this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E ⇐ y:B. (∀Ψ.X.R1 ( R2) [E′]

∆, y:[M ′/x]pA(B);

P ◦ [M ′/x]pA(∀Ψ.X.R1 ( R2) ` F ⇒ z:C. Q [F ′]

∆;P ` y = fixT (M,f.x.E);F

⇒ z:C. (∃y:[M ′/x]pA(B).Q)

[y = fixΠx:A.Ψ.X.{R1}y:B{R2}(M ′, f.x.E′); F ′]

B. Operational semantics
Elim terms.

K ↪→k K′

K N ↪→k K′ N

N ↪→m N ′

(v : A) N ↪→k (v : A) N ′

K ↪→k K′

K τ ↪→k K′ τ

(λx. M : Πx:A1. A2) v ↪→k [v : A1/x]M : [v : A1/x]A2

(Λα. M : ∀α.A) τ ↪→k [τ/α]M : [τ/α]A

M ↪→m M ′

M : A ↪→k M ′ : A

K ↪→k K′ K′ 6= v : A

K ↪→m K′

K ↪→k v : A

K ↪→m v

Intro terms.
M ↪→m M ′

s M ↪→m s M ′

M ↪→m M ′

M + N ↪→m M ′ + N

N ↪→m N ′

v + N ↪→m v + N ′ v1 + v2 ↪→ plus(v1, v2)

M ↪→m M ′

M × N ↪→m M ′ × N

N ↪→m N ′

v × N ↪→m v × N ′ v1 × v2 ↪→ times(v1, v2)

M ↪→m M ′

eq(M, N) ↪→m eq(M ′, N)

N ↪→m N ′

eq(v, N) ↪→m eq(v, N ′)

eq(v1 , v2) ↪→m equals(v1, v2)

Abstract machines.
M ↪→m M ′

χ, κ . M ↪→e χ, κ . M ′ χ, x:A.E;κ . v ↪→e χ, κ . [v : A/x]E

K ↪→k K′

χ, κ . let dia x = K in E ↪→e χ, κ . let dia x = K ′ in E

χ,κ . let dia x = (dia F ) : Ψ.X.{P}x:A{Q} in E ↪→e χ, (x:A. E;κ) . F

M ↪→m M ′

χ, κ . x = allocτ (M); E ↪→e χ, κ . x = allocτ (M ′); E

· ` τ ⇐ mono [τ ′] l 6∈ dom(χ)

χ, κ . x = allocτ (v); E ↪→e (χ, l 7→τ ′ v), κ . [l:nat/x]E

M ↪→m M ′

χ, κ . x = [M ]τ ; E ↪→e χ, κ . x = [M ′]τ ;E

· ` τ ⇐ mono [τ ′] l 7→τ ′ v ∈ χ

χ, κ . x = [l]τ ;E ↪→e χ, κ . [v : τ/x]E

M ↪→m M ′

χ, κ . [M ]τ = N ; E ↪→e χ, κ . [M ′]τ = N ; E

N ↪→m N ′

χ, κ . [v]τ = N ; E ↪→e χ, κ . [v]τ = N ′; E

· ` τ ⇐ mono [τ ′]

(χ1, l 7→σ v′, χ2), κ . [l]τ = v; E ↪→e (χ1, l 7→τ ′ v, χ2), κ . E

M ↪→m M ′

χ, κ . dealloc(M); E ↪→e χ, κ . dealloc(M ′); E

(χ1, l 7→σ v, χ2), κ . dealloc(l); E ↪→e (χ1, χ2), κ . E

M ↪→m M ′

χ, κ . x = ifA(M, E1, E2); E ↪→e χ, κ . x = ifA(M ′, E1, E2); E

χ,κ . x = ifA(true, E1, E2); E ↪→e χ, x:A.E;κ . E1

χ, κ . x = ifA(false, E1, E2); E ↪→e χ, x:A.E;κ . E2

M ↪→m M ′

χ, κ . y = fixA(M,f.x.E);F ↪→e χ, κ . y = fixA(M ′, f.x.E);F

N = λz. dia (y = fixΠx:A.Ψ.X.{R1}y:B{R2}(z, f.x.E);y)

χ, κ . y = fixΠx:A.Ψ.X.{R1}y:B{R2}(v, f.x.E);F ↪→e

χ, (y:[v : A/x]B. F ;κ) . [v : A/x, N : Πx:A.Ψ.X.{R1}y:B{R2}/f ]E


