
Meta-programming with Names and
Necessity

Aleksandar Nanevski

Carnegie Mellon University

ICFP, Pittsburgh, 05 October 2002

Meta-programming with Names and Necessity – p.1

Meta-programming

� Manipulation of (source) programs of an object language

Meta program
Input

o b j e c t
program

Input
o b j e c t

program

Output
o b j e c t

program

� Examples: compilers, partial evaluators, symbolic
computation systems, meta-logical frameworks � � �

Meta-programming with Names and Necessity – p.2

Typed meta-programming

� Typed meta- and object-language

� Well-typed meta-programs can construct only well-typed
source object-language programs

� Source object-language programs “higher-order”
syntax trees

� Object-language types

�

Meta-language types

� Here, we name the inclusion as a modal type constructor

��� object-language types � meta-language types

� Example:

� �

type of (source) object-language
programs of type

�

Meta-programming with Names and Necessity – p.3

Representation of source programs

� Must handle programs with binding structure

� built-in notion of equivalence modulo �-renaming
variables

� Enable type-safe evaluation of closed object-language
programs.

� Admit programs with free variables (as already noticed by
MetaML community).

� Provide a way to destruct source object-language programs
and recurse over their structure! (and this is why we need
extra expressiveness over MetaML).

Meta-programming with Names and Necessity – p.4

Outline

� Introduction

�

� Background on S4-necessity

� Combining necessity with names

� Theorems

� Future work and conclusions

Meta-programming with Names and Necessity – p.5

� � �

-calculus

� Proof-term calculus for necessity fragment of intuitionistic
modal S4 (Pfenning and Davies ’00)

� Types

�� � � � � ��� � ��� � � �

�

� �

values of this type encode closed source (i.e.
syntactic) expressions of type

�

� Typing judgment �	�
 �� � �

� Two kinds of variables:

� context

for ordinary variables (binding compiled code)

� context
�

for expression variables (binding source
expressions)

Meta-programming with Names and Necessity – p.6

� � �

-calculus (cont’d)

� Terms

� � � � � � � � � �� �
�

� � � � � � � ��� �� �� � 	 ��� �
 �� � �� � �

�

��� � behaves like �� � 	 � in Lisp

� Local reduction

� � 	 ��� �
 � ��� �� � �� � � �� � �
 �� �

Meta-programming with Names and Necessity – p.7

Example 1

� �
 � ��� �

produces source expression

� � � �
	 	 	 � �

- fun �
 � ��� � ��� � � � ���

=
if � � �

then

�

box

� �

else
let box
 = �
 � ��� � � �

box � =

� � � � in box
�
 � � � end;

- val

�

= �
 � �

;
val

�

= box

� � � � � � � � � � �

(* syntax *)

�

�

can be pattern-matched against and/or evaluated:
- let box
 =

�
in
;

val

�

=
� �

Meta-programming with Names and Necessity – p.8

Necessity limitations

� How to manipulate expressions with binding structure?

� Code analysis restricted

� subterms of a closed term are not necessarily closed

� Allowing only closed expressions output expressions
will contain unnecessary redexes

� Need a type of open syntactic expressions or code schemas

Meta-programming with Names and Necessity – p.9

Outline

� Introduction

�

� Background on S4-necessity

�

� Combining necessity with names

� Theorems

� Future work and conclusions

Meta-programming with Names and Necessity – p.10

Code schemas

� Syntactic expressions with “indeterminates” (also called
“atoms”, “symbols” or “names”)

� Treatment of indeterminates (names) inspired by Nominal
Logic and FreshML (Pitts and Gabbay ’01)

� Names occurring in a boxed syntactic expression are listed
in its type

� � � � ��� � �

closed syntactic expressions of type

�

with indeterminates
��

� Example: assuming

��
�

�� ��

are names, then

��� ��� � �
�

� � �

Meta-programming with Names and Necessity – p.11

Support of a term

� Support of a term set of names which should be
defined before the term can be evaluated

� Example: assuming

�
�

�� ���

are names, then

term type support

� � � � � ��� � �
�

� �

��� � � � � � � � � � � ��� � �
�

� � � �

� � �
�

��� � � � � ��� � � � ��� � � � � � � �

� Support of a term can be arbitrarily extended

Meta-programming with Names and Necessity – p.12

Typing code schemas

� Types

�� � � � � �� � �� � � � � � �� � �

� Typing judgment

� � �	�
 � � � � � �� �

�

��

is the support of� , and
�� � �

� Context

for ordinary variables

� Context

�

for expression variables with their support

� Context

�

for names

Meta-programming with Names and Necessity – p.13

Typing code schemas (cont’d)

�

�

-Introduction rule

�	� 	 � � � �

�	�
 � ��� �� � � �

�

�

-Elimination rule

�	�
 � � � � � � � �
�
� � � �
 �� � � �

�	�
 �� � 	 ��� �
 �� � �� � � � �

Meta-programming with Names and Necessity – p.14

Typing code schemas (cont’d)

�

�

-Introduction rule

� � �� 	 �� � � � �� �

� � �	�
 � ��� �� � � � � � �� � �

�

�

-Elimination rule

� � �	�
 �� � � � � � � �� � � � � � � � � � �
�
� � � �� � � �
 �� � � � � � � �

� � �	�
 �� � 	 ��� �
 �� � �� � � � � � � � �

Meta-programming with Names and Necessity – p.14

Typing code schemas (cont’d)

�

�

-Introduction rule

� � �� 	 �� � � � �� � � � � �� � � � �

� � �	�
 � ��� �� � � � � � �� � � � � � �

�

�

-Elimination rule

� � �	�
 �� � � � � � � �� � � � � � � � � � �
�
� � � �� � � �
 �� � � � � � � �

� � �	�
 �� � 	 ��� �
 �� � �� � � � � � � � �

Meta-programming with Names and Necessity – p.14

Typing code schemas (cont’d)

� Terms� � � � 	 	 	 � � �
� � �

� Name rule

� � � �� � � � �

� �
�

�� � � � ��
 � � � � � ��
�

� � �

Meta-programming with Names and Necessity – p.15

Explicit name substitution

� Terms� � � �
� � �

� � � � � � � �� � �
� � �

� Example
- let box
 = box

� � � � � � � � � � �

in
box

� � � � � � �
 �
end

- val

�

= box

� � � � � ��� � � � � � � � � ��� � � � �

� Notice: the term constructor

� � � � � � �� � does not bind

�

Meta-programming with Names and Necessity – p.16

Example 2

� Given � , generate the function

� �
�

�� 	 	 	 � �� �

� �� �

�
- fun� �� ��� � ��� � � � � �� � � � �

=
if � � �

then box

�

else
let box
 =� �� ��� � � �

in box (

��
) end

- val � � �	� =� �� �

;
val � � �	� = box (

� � ��� �
)

- let box
 = � � �	� in box

� � �
�

� � � � � �
 � end;
val

�

= box

� � �
�

�� �� � �

Meta-programming with Names and Necessity – p.17

Name creation

� Dynamic introduction of names into computation (version of

gensym)

� Terms� � � �
� � �

� � � � �� � �� � �
� � �

� Type system ensures the value of� does not depend on

�

� Typing rule

� �
�

�� � � � �	�
 � � � � � � � � � ��� � � � � �

� � �	�
 � � � � �� � �� � � � � � � �

Meta-programming with Names and Necessity – p.18

Name abstraction

� Used to express that a term depends on one name, no matter
which (inspired by FreshML and Nominal Logic of Pitts and
Gabbay)

� Terms� � � � 	 	 	 � �
�

� �
� � � Types

�� � � 	 	 	 �
N��� ���

��

�

�
�

� pairs up

�

and the value of� into a closure

� Example: polynomial � with one indeterminate

- new

��� 	�
 �

in

let val p = box
 � � � � �

in��� �
end

end

val it =
� � box

 � � � � � � N�� � � �
� 	�
 � �� � �

Meta-programming with Names and Necessity – p.19

Name concretion

� Provides a fresh name in place of the abstracted one

� Terms� � � � 	 	 	 � � � � �
� � �

� Elimination form for abstraction

� Example
- val p =

��� box

 � � � �� � � N�� � � �
� 	�
 � � ��
�

� � �

- val q =

� � box

 � � � �� � � N�� � � �
� 	�
 � � ��
�

� � �

- new � 	�
 �

in� �

= � �
end;

val it = true

� Expressions � � �

and � � �

are not be well-typed, as

�

is
not fresh for � and �.

Meta-programming with Names and Necessity – p.20

Example 3

� Given source for

�� ��� � ���

, generate source for

� �

� Use pattern-matching to check if

�

is a lambda

- fun � � �� �� � �� � 	�
 � � 	�
 � � �
=

case

�

of
box

� 	� �
 � 	 � � � �
 � N�� � � �
� 	�
 � � � � � � �

new

�� 	�
 �
in

let box � =
 � �

in box

� 	� � � ��� 	 � � � � � ��

box (

)

�

box
� 	�
 	 � �
 	 �

- � � �� �� �
box

� 	� 	 � ;
val

	 �

= box
� �� � � � �

� Thanks to pattern-matching, no redexes in the result

Meta-programming with Names and Necessity – p.21

Outline

� Introduction

�

� Background on S4-necessity

�

� Combining necessity with names

�

� Theorems

� Future work and conclusions

Meta-programming with Names and Necessity – p.22

Substitution principles

1. Ordinary substitution principle
if

� � �	�
 �� � � � �� �

and

� � �	�

� �� � � � � � � �� �

, then

� � �	�
 � �� � � � �� � � � �� �

2. Modal substitution principle
if

� � �	� 	 �� � � � �� �

and
� � �
�
� � �� � �
 � � � � � �� �

, then

� � �	�
 � �� � �
 �� � � � �� �

3. Name substitution principle
if

�
�

�� �� �	�
 �� � � � � � �

and

�
�

�� �� �	�
 � � � � � � ��
�

� �

, then

�
�

�� �� �	�
 � � � �� � �� � � � � � �

Meta-programming with Names and Necessity – p.23

Progress and preservation

If

� � 	 � 	 � � � � � �

then either

1. � is a value, or

2. there exists

� � � �

, such that

�
� � � � � � �
� �

�

; furthermore,

� �

is unique, and

� � � 	 � 	 � � �� � � �

Meta-programming with Names and Necessity – p.24

Future work

� Support polymorphism can be found in the paper

� Names of general types (currently names are simply typed)

� Type polymorphism and type-polymorphic recursion

� Polymorphic patterns and intensional type analysis

� Relation to MetaML and other meta-programming
languages

� Extension to type theory with names

Meta-programming with Names and Necessity – p.25

Conclusions

� Type of closed syntactic program representations
corresponds to

�

modality of intuitionistic S4.

� Not expressive enough for intensional manipulation of
programs with binding structure

� Type of open source programs can be obtained by adding
indeterminates (names) to the language, thus creating
“polynomials” over source expressions

� Names stand for free variables of source programs making it
possible to destruct and analyze the source programs

� The distinction between compiled and source code achieved
through the

�

modality allows for typed names

� Since names are typed, explicit substitution can be made
primitive

Meta-programming with Names and Necessity – p.26

Outline

� Introduction

�

� Background on S4-necessity

�

� Combining necessity with names

�

� Theorems

�

� Future work and conclusions

Meta-programming with Names and Necessity – p.27

Related work

� Judgmental reconstruction of modal logic (Pfenning and
Davies ’00)

� Nominal logic and FreshML (Pitts and Gabbay ’01)

� Modeled in Fraenkel-Mostowsky set theory

� Uses name abstraction to represent �-equivalence classes
of terms

� Only “first-order” syntax

� Names limited to a type atm

	 can be extended to a family of types...

	 ...but still, names can be used only for bindings

� No distinction between variables and names of type atm

� Substitution must be hand-written

� Impossible to give substitution-style operational
semantics

Meta-programming with Names and Necessity – p.28

Related work (cont’d)

� Systems with type of open syntactic expressions

� Temporal

� �

calculus (Davies ’96)

	 object program = meta program at “later time”

	 free object program variables = meta variables at “later
time”

	 problems:
no evaluation of closed expressions
no attempt at code analysis

� MetaML (Calcagno, Moggi, Taha, Sheard ’01)

	 � �

+ type refinement for closedness

	 problems:
no code analysis
scope extrusion in presence of references

Meta-programming with Names and Necessity – p.29

Intensional code analysis

� Destructing syntactic expressions (with binding) by
pattern-matching

� Higher-order patterns

�� � � � � � � 	 	 	 � �
� � � � � �

�

� � � �� � �� � �� � � �� � �
� � �

� Pattern

� � � � 	 	 	 � �
�

matches a syntactic expression with
free variables in the set

� � � � � � � � � �
�

, and stores it into the
pattern variable

�

Meta-programming with Names and Necessity – p.30

Intensional code analysis (cont’d)

� Pattern typing judgment

� �
 � �� � � � � �
 �

� Lambda abstraction rule

� � �

� �� �� � � �� �� � � � �
 �

� �
 � � �� ��
�

�� �� � �� � � � �
 �

� Pattern-variable rule

� �� � � �
 � � � �� � � � �

� �
 � � � �� � � � � � � � �� N�� � ��� 	 	 	 N��� � � �
� � � � � �
�

��� � �

Meta-programming with Names and Necessity – p.31

Relationship with S4

� Syntactic expressions can be composed

�� � �	� �
� �

�

��
�

� � 	 ��� �
 � � �� � � 	 ��� �� � � �� ��� � �
 � �

� � � � � � � � � � � � �

� Syntactic expressions are syntactic

� � � � � � �
�

� � 	 ��� �
 � � �� ��� � ��� �
 � � � � � � � �

� Syntactic expressions can be compiled and evaluated

� � � � � � � �
�

� � 	 ��� �
 � � ��
 � � � � � �

Meta-programming with Names and Necessity – p.32

Typing abstraction and concretion

� Ntype constructor is a binder

� Name abstraction rule

� �
�

�� � � � �	�
 � � � � � � � �

� �
�

�� � � � ��
 � �
�

� � �
N�� � �

� � � � � � � � � � � �

� Name concretion rule

� �
�

�� � � � �	�
 � � � �
N�� � �

� � � � � �

� �
�

�� � � � ��
 � � � � � � � � � � � � � � � � � �

Meta-programming with Names and Necessity – p.33

Example 2

� How to generate syntactic expressions with binding
structure?

� Application� �� ��� �

produces source for
� �� ���

�

� �

- fun� �� ��� � ��� � � � � �� � ��� �
=

if � � �

then

�

box

� �
�

� �
else

let box
 =� �� ��� � � �
in

box

� �
�

��
 � � �

end

-� �� �

;

val

�

= box
� �

�

�� � ��
�

� � � �
�

�

� � � � �

� But we want� �� � � � box

� � �� ���
�

�� �� � �

!
Meta-programming with Names and Necessity – p.34

Example 4

� Given code for

�� ��� � ��

, generate code for
� �

� Attempt with no code analysis

- fun � �
 �� � � �� � � ��� � ��� � �
=

let box

�

=

�

in
box

� �
�

� � � � � � � � �

end

- � �
 �� � �

box
� �

�

� � ;
val

�

= box
� ��

�

� � �
�

� � � � � � �
�

� � � �

� Unnecessary redexes again!

Meta-programming with Names and Necessity – p.35

Possible applications

� Distinguishing between extensional and intensional nature
of programs

� algebraic simplifications in symbolic computation

� functions can exploit knowledge of intensional structure
of arguments (examples: integration, differentiation)

� Higher-order Abstract Syntax

� Programmer-specified (source level) optimizations in
run-time code generation

� mechanism for choosing between highly-optimized or
quickly produced target programs

� domain-specific optimizations

Meta-programming with Names and Necessity – p.36

� � �

-calculus (cont’d)

� Hypothesis rule

�� � � � �

��
 � �� �

� Local reduction

� � 	 ��� �
 � ��� �� � �� � � �� � �
 �� �

� Local expansion

� � � 	 ��� �
 �� �� ��� �

Meta-programming with Names and Necessity – p.37

Explicit name substitution (cont’d)

� Substituted name must be in context

�

� Typing rule

� �
�

�� � � � �	�
 � � � � � � �� � � �
�

�� � � � �	�
 � � � � � � �
�

�� �

� �
�

�� � � � �	�
 � � � � � � � �� � � � � �� �

Meta-programming with Names and Necessity – p.38

Typing code schemas (cont’d)

� Terms� � � � 	 	 	 � � �
� � �

� Name rule

� � � �� � � � �

� �
�

�� � � � ��
 � � � � � ��
�

� � �

� Hypotheses rules

�	�

� �� � � �� � �
�
� ��
 �
� �

Meta-programming with Names and Necessity – p.39

Typing code schemas (cont’d)

� Terms� � � � 	 	 	 � � �
� � �

� Name rule

� � � �� � � � �

� �
�

�� � � � ��
 � � � � � ��
�

� � �

� Hypotheses rules

�� � �� � � � �

� � �	� �

� �� � � � �� � � �� �

�� � � � � �� � � � �

� � � �
�
� � � �� � � �
 �
� � � � � �

Meta-programming with Names and Necessity – p.39

	Meta-programming
	Typed meta-programming
	Representation of source programs
	Outline
	$�m {lambda ^Bbox }$-calculus
	$�m {lambda ^Bbox }$-calculus (cont'd)
	Example 1
	Necessity limitations
	Outline
	Code schemas
	Support of a term
	Typing code schemas
	Typing code schemas (cont'd)
	Typing code schemas (cont'd)
	Explicit name substitution
	Example 2
	Name creation
	Name abstraction
	Name concretion
	Example 3
	Outline
	Substitution principles
	Progress and preservation
	Future work
	Conclusions
	Outline
	Related work
	Related work (cont'd)
	Intensional code analysis
	Intensional code analysis (cont'd)
	Relationship with S4
	Typing abstraction and concretion
	Example 2
	Example 4
	Possible applications
	$�m {lambda ^Bbox }$-calculus (cont'd)
	Explicit name substitution (cont'd)
	Typing code schemas (cont'd)

