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Abstract
First order logic with transitive closure, and separation logic enable
elegant interactive verification of heap-manipulating programs.
However, undecidabilty results and high asymptotic complexity of
checking validity preclude complete automatic verification of such
programs, even when loop invariants and procedure contracts are
specified as formulas in these logics. This paper tackles the prob-
lem of procedure-modular verification of reachability properties
of heap-manipulating programs using efficient decision procedures
that are complete: that is, a SAT solver must generate a counterex-
ample whenever a program does not satisfy its specification. By
(a) requiring each procedure modifies a fixed set of heap partitions
and creates a bounded amount of heap sharing, and (b) restrict-
ing program contracts and loop invariants to use only deterministic
paths in the heap, we show that heap reachability updates can be
described in a simple manner. The restrictions force program spec-
ifications and verification conditions to lie within a fragment of
first-order logic with transitive closure that is reducible to effec-
tively propositional logic, and hence facilitate sound, complete and
efficient verification. We implemented a tool atop Z3 and report
on preliminary experiments that establish the correctness of several
programs that manipulate linked data structures.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Dynamic storage management

Keywords linked list; SMT; verification

1. Introduction
This paper shows how to harness existing SAT solvers for proving
that a potentially recursive procedure satisfies its specification and
for automatically producing counterexamples when it does not. We
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concentrate on proving safety properties of imperative programs
manipulating linked data structures which is challenging since we
need to reason about unbounded memory and destructive pointer
updates. The tricky part is to identify a logic which is expressive
enough to enable the modular verification of interesting procedures
and properties and weak enough to enable sound and complete
verification using SAT solvers.

Recently it was shown [11] how to employ effectively propo-
sitional logic (or BSR logic1) for verifying programs manipulating
linked lists. It decides the validity of formulas of the form ∀∗∃∗q
using SAT solvers where q is a quantifier free relational formula
(or equivalently decides the satisfiability of ∃∗∀∗q formulas). It has
been successfully used in many other contexts [18].

In this paper we show that effectively propositional logic does
not suffice to naturally express the effect on the global heap when
the local heap of a procedure is accessible via shared nodes from
outside. For example, Fig. 1 shows a pre- and post-heap before
a list pointed-to by h is reversed. The problem is how to express
the change in reachability between nodes such as zi and list nodes
1, 2, . . . , 5: note that, e.g., nodes 3, 4, 5 are unreachable from z1 in
the post-heap.

This paper shows that in many cases, including the above exam-
ple, reachability can be checked precisely using SAT solvers. Our
solution is based on the following principles:

• We follow the standard techniques (e.g., see [2, 14, 25, 29])
by requiring that the programmer defines the set of potentially
modified elements.
• The programmer only specifies postconditions on local heaps

and ignores the effect of paths from the global heap.
• We provide a general and exact adaptation rule for adapting

postconditions to the global heap. This adaptation rule is ex-
pressible in a generalized version of BSR called AEAR. AEAR

allows an extra entry function symbol which maps each node
u in the global heap into the first node accessible from u in the
local heap. In Fig. 1, z1, z2 and z3 are mapped to 2, 3 and 4,
respectively. The key facts are that AEAR suffices to precisely
define the global reachability relationship after each procedure
call and yet any AEAR formula can be simulated by a BSR

1 Due to Bernays, Schönfinkel and Ramsey.
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Figure 1. Reversing a list pointed to by a head h with many shared nodes accessible from outside the local heap (surrounded by a rounded
rectangle).

formula. Thus the automatic methods of [11] still apply to this
significantly more general setting.
• We restrict the verified procedures in order to guarantee that the

generated verification condition of every procedure remains in
AEAR. The main restrictions are: type correctness, determinis-
tic paths in the heap, limited number of changed list segments
in the local heap (each of which may be unbounded) and lim-
ited amount of newly created heap sharing by each procedure
call. These restrictions are enforced by the generated verifica-
tion condition in AEAR. This formula is automatically checked
by the SAT solver.

1.1 Main Results
The results in this paper can be summarized as follows:

• We define a new logic, AEAR, which extends BSR with a
limited idempotent function and yet is equi-satisfiable with
BSR.
• We provide a precise adaptation rule in AEAR, which expresses

the locality property of the change, and in conjunction with the
postcondition on the local heap, precisely updates the reacha-
bility relation of the global heap.
• We generate a modular verification formula in AEAR for each

procedure, asserting that the procedure satisfies its pre- and
post-conditions and the above restrictions. This verification
condition is sound and complete, i.e., it is valid if and only
if the procedure adheres to the restrictions and satisfies its re-
quirements. We implemented this tool on top of Z3.
• We show that many programs can be modularly verified using

our methods. They satisfy our restrictions and their BSR invari-
ants can be naturally expressed.

1.2 A Running Example
To make the discussion more clear, we start with an example pro-
gram. We use the union-find data structure2, which maintains a for-
est using a parent pointer at each node (see Fig. 2) [24].

The method find requires that the argument x is not null. The
formula tailf (x , rx ) asserts that the auxiliary variable rx is equal
to the root of x . The procedure changes the pointers of some nodes
in the closed interval [x , rx ]f to point directly to rx . Intervals are
formally defined later (Definition 5). Intuitively, the closed interval
[a, b]f denotes the set of nodes pointed to by a , a.f , a.f .f and so
on up until b inclusive.

The return value of find (denoted by retval) is rx . The post-
condition uses the symbol f that denotes the value of f before the
method was invoked. Since find compresses paths from ancestors
of x to single edges to rx , this root may be shared via new parent
pointers. Fig. 3 depicts a typical run of find.

2 We have simplified union by not keeping track of the sizes of sets in order
to attach the smaller set to the larger.

@ requires x 6= null ∧ tailf (x , rx )
@ mod [x , rx ]f

@ ensures retval = rx∧
∀α, β ∈ mod : α〈f ∗〉β ↔ α = β ∨ β = rx

Node find(Node x) {
Node i = x.f;
if (i != null) {

i = find(i);
x.f = i;

}
else {

i = x;
}
return i;

}

@ requires x 6= null ∧ y 6= null ∧ tailf (x , rx ) ∧ tailf (y , ry)
@ mod [x , rx ]f ∪ [y , ry ]f
@ ensures

∀α, β ∈ mod :
(x 〈f ∗〉α→ (α〈f ∗〉β ↔

β = α ∨ β = rx ∨ β = ry))
∧(y〈f ∗〉α→ (α〈f ∗〉β ↔ β = α ∨ β = ry))

void union(Node x, Node y){
Node t = find(x); Node s = find(y);
if (t != s) t.f = s;

}

Figure 2. An annotated implementation of Union-Find in Java. f
is the backbone field denoting the parent of a tree node.
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Figure 3. An example scenario of running find ( = return value).

The method union requires that both its arguments are not null.
It potentially modifies the ancestors of x and y , i.e., [x , rx ]f ∪
[y , ry ]f . Fig. 4 depicts a typical run of union. Notice that we
support an unbounded number of cutpoints [21] (see Section 8).

1.3 Working Assumptions
Type correct The procedure manipulates references to dynami-

cally created objects in a type-safe way. For example, we do
not support pointer arithmetic.

Deterministic Reachability The specification may use arbitrary
uninterpreted relations. It may also use the reachability formula
α〈f ∗〉β meaning that β is reachable from α via zero or more
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Figure 4. An example scenario of running union.

steps along the functional backbone field f . It may not use f in
any other way. Until Section 6, we require f to be acyclic and
we restrict our attention to only one backbone field.

Precondition There is a requires clause defining the precondition
which is written in alternation-free relational first-order logic
(AFR) and may use the relation f ? [11].

Mod-set There is a modifies clause defining the mod-set (modf ),
which is the set of potentially changed memory locations (We
include both source and target of every edge that is added or
deleted). The modified set may have an unbounded number of
vertices, but we require it to be the union of a bounded number
of f -intervals, that is chains of vertices through f -pointers.

Postcondition There is an ensures clause which exactly defines
the new reachability relation f ? restricted to modf . The ensures
clause, written in AFR, may use two vocabularies (employing
both f and f to refer to the reachability relations before and
after.

Bounded new sharing All the new shared nodes — nodes pointed
to by more than one node — must be pointed to by local vari-
ables at the end of the procedure’s execution. This requires that
only a bounded number of new shared nodes can be introduced
by each procedure call. Note that many heap-manipulating pro-
grams exhibit limited sharing as noted in the experimental mea-
surements of Mitchell [16]. A similar restriction is also used in
shape analysis techniques for device driver programs [27].

Loop-free We assume that all code is loop free, with loops re-
placed by recursive calls.

1.4 Outline of the rest of this paper
Section 2 provides a rule for adapting local changes to states con-
taining a global heap. The idea is that the programmer only spec-
ifies changes in a small, local area of the heap. Section 3 intro-
duces a new logic called AEAR. Section 4 formalizes the require-
ments for specifying the meaning of commands and procedures.
The technique for generating verification conditions is presented in
Section 5. Extensions to the frameworks are discussed in Section 6.
Our preliminary verification experience appears in Section 7. Sec-
tion 8 discusses related work and Section 9 concludes. Details of
the logical proof are contained in [10, Appendix A].

2. Adaptation of Local Effect to the Global Heap
Our goal is to reason modularly about a procedure that modifies a
subset of the heap. We wish to automatically update the reachabil-
ity relation in the entire heap based on the changes to the modified
subset. We remark that in this paper we are concerned with reacha-
bility between any two nodes in the heap, as opposed to only those
pointed to by program variables. When we discuss sharing we mean
sharing via pointer fields in the heap as opposed to aliasing from
stack variables, which does not concern us in this paper.

2.1 Non-Local Effects
Reachability is inherently non-local: a single edge mutation can af-
fect the reachability of an unbounded number of points that are an
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Figure 5. A case where changes made by find have a non-local
effect: y〈f ∗〉c, but ¬y〈f ∗〉c.

unbounded distance from the point of change. Fig. 5 contains a typ-
ical run of find. Two kinds of “frames” are depicted: (i) modf =
[x , rx )f , specified by the programmer, denotes the nodes whose
edges can be directly changed by find— this is the standard no-
tion of a frame condition; (ii) modf ∗ denotes nodes for which f ∗,
the path relation, has changed. We do not and, in general we can-
not, specify modf ∗ in a modular way because it usually depends
on variables outside the scope of this function such as y in Fig. 5.
In the example shown, there is a path from y to c before the call
which does not exist after the call. Furthermore, modf ∗ can be an
arbitrarily large set: in particular, it may not be expressible as the
union of a bounded set of intervals: for example, when adding a
subtree as a child of some node in another tree, modf spans only
one edge, whereas modf ∗ is the entire subtree added — which may
contain an unbounded number of branches.

The postcondition of find is sound (every execution of find
satisfies it), but incomplete: it does not provide a way to determine
information concerning paths outside mod, such as from y to c in
Fig. 5. Therefore, this rule is often not enough in order to verify the
correctness of programs that invoke find in larger contexts.

Notice the difficulty of updating the global heap, especially the
part modf ∗ \modf . In particular, using only the local specification
of find, one would not be able to prove that ¬y〈f ∗〉c. Indeed, the
problem is updating the reachability of elements that are outside
mod; in more complex situations, these elements may be far from
the changed interval, and their number may be unbounded.

One possibility to avoid the problem of incompleteness is to
specify a postcondition which is specific to the context in which
the invocation occurs. However, such a solution requires reasoning
per call site and is thus not modular. We wish to develop a rule
that will fit in all contexts. Reasoning about all contexts is naturally
done by quantification.

2.2 An FO(TC) Adaptation Rule
A standard way to modularize specifications is to specify the local
effect of a procedure and then to use a general adaptation rule (or
frame rule) to derive the global effect. In our case, we know that
locations outside mod are not modified. Therefore, for example,
after a call to find, a new path from node σ to node τ is either
an old path from σ to τ , or it consists of an old path to a node
α ∈ mod, a new path from α to a node β ∈ mod and an old path
from β to τ . We express this below, first letting q denote an old
edge that is not inside mod:

∀α, β : α〈q〉β ↔ α〈f 〉β ∧ (α /∈ mod ∨ β /∈ mod)
∀σ, τ : σ〈f ∗〉τ ↔ σ〈q∗〉τ ∨ ∃α, β ∈ mod :

σ〈q∗〉α ∧ α〈f ∗〉β ∧ β〈q∗〉τ
(1)

eq (1) is a completely general adaptation rule: it defines f ∗ on
the global heap assuming we know f ∗ on the local heap and we
also have access to the old path relation q∗. The problem with this
rule is that it uses a logic that is too expressive and thus hard for
automated reasoning: FO(TC) is not decidable (in fact, not even
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del 〈2, 3〉 del 〈2, 3〉

Figure 6. Memory states with non-unique pointers where global
reasoning about reachability is hard. In the memory state (a), there
is one edge from α into the modified-set {1, 2, 3, 4}, and in mem-
ory state (b), there are two edges from α into the same modified-set,
{1, 2, 3, 4}. The two memory states have the same reachability re-
lation and therefore are indistinguishable in terms of reachability.
The memory states (c) and (d) are obtained from the memory states
(a) and (b), respectively, by deleting the edge 〈2, 3〉. The reacha-
bility in (c) is not the same as in (d), which shows it is impossible
to update reachability in general w.r.t. edge deletion, without using
the edge relation.

. . .

mod

enmod

enmod

enmod : V → mod

Figure 7. The function enmod maps every node σ to the first
node in mod reachable from σ. Notice that for any α ∈ mod,
enmod(α) = α by definition.

recursively enumerable). The first problem is that the q∗ relation is
not usually first order expressible and generally requires transitive
closure. For example, Fig. 6 shows that in general the adaptation
rule is not necessarily definable using only the reachability relation,
when there are multiple outgoing edges per node. We avoid this
problem by only reasoning about functional fields, f .

The second problem with eq (1) is that it contains quantifier
alternation. α matches an arbitrary node in mod which may be of
arbitrary size. Therefore, it is not completely obvious how to avoid
existential quantifications.

2.3 An Adaptation Rule in a Restricted Logic
We now present an equivalent adaptation rule in a restricted logic,
without transitive closure or extra quantifier-alternations. This is
possible due to our assumptions from Section 1.3 and it greatly
simplifies reasoning about modified paths in the entire heap. We
require a new function symbol, enmod. We call enmod(σ) the entry
point of σ in mod, i.e., the first node on the (unique) path from σ
that enters mod, and null if no such node exists (see Figure 7).

Note that since transitive closure is only applied to functions,
entry points such as α in eq (1) are uniquely determined by σ, the
origin of the path. A key property of enmod is that on mod itself,
enmod is the identity, and therefore for any σ ∈ V it holds that
enmod(enmod(σ)) = enmod(σ)) — that is, the function enmod is
idempotent. It is important to note that enmod does not change as
a result of local modifications in mod. Hence, we do not need to

σ

α t1

t2

mod

τ

. . .

Figure 8. This diagram depicts how an arbitrary path from σ /∈
mod to τ /∈ mod is constructed from three segments: [σ, α]f ,
[α, ti ]f , and [ti , τ ]f (here i = 2). Arrows in the diagram denote
paths; thick arrows entering and exiting the box denote paths that
were not modified since they are outside of mod. Here, α =
enmod(σ) is an entry-point and t1, t2 are exit-points.

worry about enmod in the pre-state as opposed to the post-state.
Formally, enmod is characterized by the following formula:

∀σ : (enmod(σ) = null ∧ ∀α ∈ mod : ¬σ〈f ∗〉α) ∨
(σ〈f ∗〉enmod(σ) ∧ enmod(σ) ∈ mod ∧
∀α ∈ mod : σ〈f ∗〉α→ enmod(σ)〈f ∗〉α)

(2)

Using enmod the new adaptation rule adapt[mod] is obtained
by considering, for every source and target, the following three
cases:

Out-In: The source is out of mod; the target is in;
In-Out: The source is in mod; the target is out;

Out-Out: The source and target are both out of mod.
The full adaptation rule is obtained by taking the conjunction of

the formulas for each case (eq (3), eq (4), eq (5)), that are described
below, and the formula defining enmod (eq (2)).

Out-In Paths Using enmod we can easily handle paths that enter
mod. Such paths originate at some σ /∈ mod and terminate at some
τ ∈ mod. Any such path therefore has to go through enmod(σ) as
depicted in Fig. 8. Thus, the following simple formula can be used:

∀σ /∈ mod, τ ∈ mod : σ〈f ∗〉τ ↔ enmod(σ)〈f ∗〉τ (3)

Observe that for any β ∈ mod, the atomic formula used above,
enmod(σ)〈f ∗〉β, corresponds to the FO(TC) sub-formula ∃α ∈
mod : σ〈q∗〉α ∧ α〈f ∗〉β from eq (1).

In-Out Paths We now shift attention to paths that exit mod. Exit
points, that is, last points on some path that belong to mod, are
more subtle since both ends of the path are needed to determine
them. The end of the path is not enough since it can be shared,
and the origin of the path is not enough since it can exit the set
multiple times, because a path may exit mod and enter it again
later. Therefore, we cannot define a function in a similar manner to
enmod. The fact that transitive closure is only applied to functions
is useful here: every interval [α, β] has at most one exit β. We
therefore utilize the fact that mod is expressed as a bounded union
of intervals — which bounds the potential exit points to a bounded
set of terms. We will denote the exit points of mod by ti .

For example, in the procedure swap shown in Fig. 9, mod =
[x , f 3x ] and there is one exit point t1 = f 3x (f 3x is a constant set by
the precondition to have the value of f (f (f (x ))) using the inversion
formula eq (6) to be introduced formally in Section 3.1).

Any path that originates in mod and terminates outside mod
must leave through a last exit point ti (see Fig. 10). Notice that
the exit points also do not change as a result of modifying edges
between nodes in mod. Let p be a path from σ to τ and let ti be
the last exit point along p. Note that the part of the path from ti to



@ requires Ef (x , f 1x ) ∧ Ef (f 1x , f
2
x ) ∧ Ef (f 3x , f

2
x )∧

x 6= null ∧ f 1x 6= null ∧ f 2x 6= null

@ mod [x , f 3x ]
@ ensures . . .

void swap(Node x) {
Node t = x.f;
x.f = t.f;
t.f = x.f.f;
x.f.f = t;

}

x

t

f 3x

modn

Figure 9. A simple function that swaps two adjacent elements
following x in a singly-linked list. Dotted lines denote the new state
after the swap. The notation e.g. Ef (x , f 1x ) denotes the single edge
from x to f 1x following the f field.

σ t1 τ1 t2 τ2

mod

Figure 10. A subtle situation occurs when the path from σ passes
through multiple exit-points. In such a case, the relevant exit-point
for σ〈f ∗〉τ1 is t1, whereas for σ〈f ∗〉τ2 and τ1〈f ∗〉τ2 it would be
t2.

void swap_two(Node a, Node b) {
swap(a); swap(b);

}

Figure 11. An example of a procedure where the mod-set is not
(essentially) convex.

τ consists only of unchanged edges — since they are all outside of
mod. We can therefore safely use f ∗, rather than q∗, to characterize
it. The part of the path from σ to ti can be characterized by f ∗,
because σ and ti are both in mod. Therefore the entire path can
be expressed as σ〈f ∗〉ti ∧ ti〈f ∗〉τ . Thus, we obtain the following
formula:

∀σ ∈ mod, τ /∈ mod : σ〈f ∗〉τ ↔∨
ti

(σ〈f ∗〉ti ∧ ti〈f ∗〉τ ∧
∧

tj 6=ti
tj /∈ [ti , τ ]f ) (4)

Note that eq (4) corresponds the sub-formula ∃β : α〈f ∗〉β ∧
β〈q∗〉τ in eq (1).

Out-Out Paths For paths between σ and τ , both outside mod,
there are two possible situations:

• The path goes through mod (as in Fig. 8). In this case, we can
reuse the in-out case, by taking enmod(σ) instead of σ.
• The path is entirely outside of mod (see Fig. 12).

The corresponding formula in this case is:

∀σ /∈ mod, τ /∈ mod : σ〈f ∗〉τ ↔∨
ti

(enmod(σ)〈f ∗〉ti ∧ ti〈f ∗〉τ ∧
∧

tj 6=ti
tj /∈ [ti , τ ]f )

∨ enmod(σ) = enmod(τ) ∧ σ〈f ∗〉τ
(5)

σ1 τ1 α

σ2 τ2

mod

Figure 12. Paths that go entirely untouched. enmod(σ1) = α,
whereas enmod(σ2) = null.

Notice that the second disjunct covers the case where there is a
path from τ to mod (enmod(σ) = enmod(τ) 6= null) and the case
where there is none (enmod(σ) = enmod(τ) = null).

In conclusion, our adaptation rule, adapt[mod], is the conjunc-
tion of the three formulas in eq (3), eq (4), eq (5), and the for-
mula defining enmod (eq (2)). We need some more formalism, in-
troduced in the next section, before we show that adapt[mod] meets
our needs.

3. Adaptable Heap Reachability Logic
In this section we introduce an extension of AER from [11], called
adaptable heap reachability logic, and denoted by AEAR. This
extension still has the attractive property of AER, as it is effectively
reducible to the function-free ∀∗∃∗-fragment of first-order logic,
and thus its validity can be checked by a SAT-solver.

3.1 Preliminaries
This section reviews the AFR (alternation free) and AER (∀∃) log-
ics from [11]. They are decidable for validity since their negation
corresponds to the BSR fragment [18]. These logics include the re-
lation f ∗ (the reflexive transitive closure of f ) but forbid the explicit
use of function symbols including f . Until Section 6 we will use at
most one designated backbone function (f ) per formula.

Definition 1. A vocabulary V = 〈C, {f },R〉 is a triple of
constant symbols, function symbol, relation symbols.
A term, t , is a variable or constant symbol.
An atomic formula is one of the following: (i) t1 = t2;

(ii) r(t1, t2, . . . , ta) where r is a relation symbol of arity a;
(iii) t1〈f ∗〉t2.
A quantifier-free formula (QFR) is a boolean combination

of atomic formulas. A universal formula begins with zero or
more universal quantifiers followed by a quantifier-free formula.
An alternation-free formula (AFR) is a boolean combination
of universal formulas. AER consists of formulas with quantifier-
prefix ∀?∃?.

In particular, QFR ⊂ AFR ⊂ AER. The preconditions and
the postconditions in Fig. 2 are all AFR formulas.

Decidability and Inversion Every AER formula can be trans-
lated to a first-order ∀∗∃∗ formula via the following steps [11].
(i) Add a new uninterpreted relation Rf which is intended to rep-
resent 〈f ∗〉, the reflexive transitive closure of reachability via f ,
(ii) Add the consistency rule ΓlinOrd shown in Table 1, which re-
quires that Rf is a total order, i.e., reflexive, transitive, acyclic, and
linear, and (iii) Replace all occurrences of t1〈f ∗〉t2 by Rf (t1, t2).

Proposition 1 (Simulation of AER). [12, Proposition 3, Appendix
A.1] Consider AER formula ϕ over vocabulary V = 〈C, {f },R〉.
Let ϕ′ def

= ϕ[Rf (t1, t2)/t1〈f ∗〉t2]. Then ϕ′ is a first-order formula
over vocabulary V ′ = 〈C, ∅,R∪ {Rf }〉 and ΓlinOrd → ϕ′ is valid
if and only if the original formula ϕ is valid.



∀α : Rf (α, α) ∧ reflexivity
∀α, β, γ : Rf (α, β) ∧ Rf (β, γ)→ Rf (α, γ) ∧ transitivity
∀α, β : Rf (α, β) ∧ Rf (β, α)→ α = β ∧ acyclicity
∀α, β, γ : Rf (α, β) ∧ Rf (α, γ)→ (Rf (β, γ) ∨ Rf (γ, β)) linearity

Table 1. A universal formula ΓlinOrd requiring that all points reachable from a given point are linearly ordered.

When the graph of f is acyclic, the relation Ef characterizing
the function f can be recovered from its reflexive transitive closure,
f ∗, at the cost of an extra universal quantifier:

Ef (α, β)
def
= α〈f +〉β ∧ ∀γ : α〈f +〉γ → β〈f ∗〉γ (6)

Here α〈f +〉β def
= α〈f ∗〉β ∧ α 6= β.

3.2 Adaptable Heap Reachability Logic
The new logic AEAR is obtained by augmenting AER with unary
function symbols, denoted by g , h1, . . . , hn where:

• g must be interpreted as an idempotent function.
• The images h1, . . . , hn are all bounded by some pre-determined

parameter N , that is: each hi takes at most N distinct values.
• Function symbols may not be nested, i.e., all terms involving

function symbols have the form f (z ), where z is a variable.

We later show that AEAR suffices for expressing the verifica-
tion conditions of the programs discussed above. In the typical use
case, the function g assigns the entry point in the mod-set for ev-
ery node (called enmodf above), and the functions h1, . . . , hn are
used for expressing the entry points in inner mod-sets. The main
attractive feature of this logic is given in the following theorem.

Theorem 1. Any AEAR-formula ϕ can be translated to an equi-
valid (first-order) function-free ∀∗∃∗-formula.

The proof of Theorem 1, given in [10, Appendix A], begins by
translating ϕ to a ∀∗∃∗-formula ϕ′ as described in Proposition 1,
without modifying the function symbols g , h1, . . . , hn . The func-
tion symbols are then replaced by new relation and constant sym-
bols. We add new universal formulas to express the above semantic
restrictions on the functions.

4. Modular Specifications of Procedure
Behaviours

4.1 Notations
Definition 2. Let V = 〈C, {f },R〉 be a vocabulary including the
constant symbol null. A state, M , is a logical structure with domain
|M |, including null, and null

M = null = f M (null), where sM is
the interpretation of the symbol s in the structure M . A state
is appropriate for an annotated procedure proc if its vocabulary
includes every symbol occurring in its annotations, and constants
corresponding to all of the program variables occurring in proc.

The diagrams in this paper denote states. For example Fig. 1
shows a transition between two states.

Below we define the notion of two-vocabulary structures, which
are useful to describe relations between pre- and post-states.

Definition 3 (Two-vocabulary Structure). For states M and M
over the same vocabulary V = 〈C, {f },R〉 and with the same
domain (|M | = |M |), we denote by M /M the structure over the
two-vocabulary V ′ = 〈C ∪ C \ {null}, {f , f },R∪R〉 obtained by
combining M ,M in the following way: f is interpreted as f M and
f is interpreted as f M , and similarly for all the other symbols.

Definition 4 (Backbone Differences). For states M and M over
the same vocabulary V = 〈C, {f },R〉 and with the same domain
(|M | = |M |), the set M ⊕M consists of the “differences between
M and M w.r.t. f , excluding null”, i.e. all elements u of |M | such
that f M (u) 6= f M (u), as well as their non-null images in f M and
f M .

For example, in Fig. 3, let M be the left structure and M the
right structure. Then M⊕M = {x , r ,�}, where � is the unlabeled
node with an edge from x in the left diagram.

4.2 Modification Set
We must specify the mod-set, mod, containing all the endpoints of
edges that are modified. Therefore when adding or deleting an edge
〈s, t〉, both ends — the source, s , and the target, t — are included
in mod. Often in programming language semantics, only the source
is considered modified. However, thinking of the heap as a graph, it
is useful to consider both ends of a modified edge as modified. For
example, in the running example program find (Fig. 2), since new
references to rx may be introduced as a result of path compression,
the root rx is also considered as part of mod.

Our mod-sets are built from two kinds of intervals:

Definition 5 (Intervals). The closed interval [a, b]f is

[a, b]f
def
= {γ | a〈f ∗〉γ ∧ γ〈f ∗〉b}

and the half-open interval [a, null)f is:

[a, null)f
def
= {γ | a〈f ∗〉γ ∧ γ〈f +〉null}

(notice that γ〈f ∗〉null is always true in acyclic heaps).

Definition 6 (mod-set). The mod-set, mod, of a procedure is a
union I1∪ I2∪ . . .∪ Ik , where each Ii may be [si , ti ]f or [si , null)f ,
si , ti are parameters of the procedure or constant symbols occur-
ring in the pre-condition.

In our examples, the mod-sets of find and union are written
above each procedure, preceded by the symbol “@ mod’ (Fig. 2).
Note that it follows from Definition 6 that α ∈ mod, is expressible
as a quantifier-free formula.

Definition 7. Given an appropriate state M for proc with modset
mod, modM is the set of all elements in |M | that are in one of the
intervals defining mod (see Definition 5).

4.3 Pre- and Post-Conditions
The programmer specifies AFR pre- and post-conditions. Two-
vocabulary formulas may be used in the post-conditions where f
denotes the value of f before the call.

4.4 Specifying Atomic Commands
Table 2 provides specification of atomic commands. They describe
the memory changed by atomic statements and the changes on the
local heap.

Accessing a pointer field The statement ret = y.f reads the
content of the f -field of y, into ret. It requires that y is not null
and that an auxiliary variable s points to the f -field of y (which
may be null). It does not modify the heap at all. It sets ret to s.



Command Pre Mod Post
retval = y.f y 6= null ∧ Ef (y , s) ∅ retval = s
y.f = null y 6= null ∧ Ef (y , s) [y , s]f ¬y〈f ∗〉s ∧ ¬s〈f ∗〉y
assume y.f==null;
y.f = x y 6= null ∧ Ef (y , null) ∧ ¬x 〈f ∗〉y [y , y ]f ∪ [x , x ]f y〈f ∗〉x ∧ ¬x 〈f ∗〉y

Table 2. The specifications of atomic commands. s is a local constant denoting the f -field of y . Ef is the inversion formula defined in eq (6).

It is interesting to note that the postcondition is quantfier free and
much simpler than the one provided in [11]. The reason is that we
do not need to specify the effect on the whole heap.

Edge Removals The statement y.f = null sets the content of
the f -field of y, to null. It requires that y is not null and that
an auxiliary variable s points to the f -field of y (which may be
null). It modifies the node pointed-to by y and potentially the
node pointed-to by s. Notice that the modset includes the elements
pointed to by y and s , the two end-points of the edge. It removes
paths between y and s. The postcondition asserts that there are no
paths from y to s . Also, since s is potentially modified, it asserts
that there are no paths from s to y .

Edge Additions The statement y.f = x is specified assuming
without loss of generality, that the statement y.f = null was
applied before it. Thus, it only handles edge additions. It therefore
requires that y is not null and its f -field is null. It modifies the
node pointed-to by y and potentially the node pointed-to by x. It
creates a new path from y to x and asserts the absence of new paths
from x back to y. Again the absence of back paths (denoted by
¬x 〈f ∗〉y) is needed for completeness. The reason is that both the
node pointed-to by x and y are potentially modified. Since x is
potentially modified, without this assertion, a post-state in which
x.f == y will be allowed by the postcondition.

4.4.1 Soundness and Completeness
We now formalize the notion of soundness and completeness of
modular specifications and assert that the specifications of atomic
commands are sound and complete.

Definition 8 (Soundness and Completeness of Procedure Specifi-
cation). Consider a procedure proc with precondition P , modset
mod, post-condition Q . We say that 〈P ,mod,Q〉 is sound with re-
spect to proc if for every appropriate pre-state M such that M |=
P , and appropriate post-state M which is a potential outcome of
the body of proc when executed on M : (i) M ⊕M ⊆ modM , (ii)
M /M |= Q . Such a triple 〈P ,mod,Q〉 is complete with respect
to proc if for every appropriate states M ,M such that (i) M |= P ,
(ii) M /M |= Q , and (iii) M ⊕M ⊆ modM , then there exists an
execution of the body of proc on M whose outcome is M .

The following proposition establishes the correctness of atomic
statements.

Proposition 2 (Soundness and Completeness of Atomic Com-
mands). The specifications of atomic commands given in Table 2
are sound and complete.

The following lemma establishes the correctness of find and
union, which is interesting since they update an unbounded
amount of memory.

Lemma 1 (Soundness and Completeness of Union-Find). The
specification of find and union in Fig. 2 is sound and complete.

We can now state the following proposition:

Proposition 3 (Soundness and Completeness of adapt[]). Let
mod be a mod-set of some procedure proc. Let M and M be two

wp[[skip]](Q)
def
= Q

wp[[x := y ]],Q)
def
= Q [y/x ]

wp[[S1 ; S2]](Q)
def
= wp[[S1]]

(
wp[[S2]](Q)

)
wp[[if B then S1 else S2]](Q)

def
= [[B ]] ∧ wp[[S1]](Q) ∨
¬[[B ]] ∧ wp[[S2]](Q)

Table 3. Standard rules for computing weakest liberal precondi-
tions for loop free code without pointer accesses. [[B ]] is the AFR

formula for program conditions and Q is the postcondition ex-
pressed as an AFR formula.

appropriate states for proc. Then, M ⊕M ⊆ modM iff M /M
augmented with some interpretation for the function symbol enmod

is a model of adapt[mod].

5. Generating Verification Condition for
Procedure With Sub-calls in AEAR

We follow the standard procedures, e.g. [26], which generates a ver-
ification condition for a procedure annotated with specification us-
ing weakest (liberal) preconditions. Roughly speaking, for a Hoare
triple {P}prog{Q}, we generate the usual verification condition
vc[prog ] = P → wp[[prog ]](Q).

For the basic commands (assignment, composition, and condi-
tional) we employ the standard definitions, given in Table 3.

5.1 Modular Verification Conditions
The modular verification condition would also contain a conjunct
for checking that mod affected by the invoked procedure is a
subset of the “outer” mod. This way the specified restriction can
be checked in AEAR and the SMT solver can therefore be used to
enforce it automatically.

5.2 Weakest-precondition of Call Statements
As discussed in Section 2, the specification as it appears in the “en-
sures” clause of a procedure’s contract is a local one, and in order
to make reasoning complete we need to adapt it in order to handle
arbitrary contexts. This is done by conjoining Qproc occurring in
the “ensures” clause from the specification of proc with the uni-
versal adaptation rule adapt[mod], where mod is replaced with the
mod-set as specified in the “modifies” clause of proc.

Table 4 presents a formula for the weakest-precondition of a
statement containing the single procedure call, where the invoked
procedure has the specifications as in Fig. 13, where “proc” has
the formal parameters x = x1, . . . , xk , and it is used with a =
a1, . . . , ak (used in the formula) as the actual arguments for a
specific procedure call; we assume w.l.g. that each ai is a local
variable of the calling procedure.

In general it is not obvious how to enforce that the set of
locations modified by inner calls is a subset of the set of locations
declared by the outer procedure. Moreover, this can be tricky to
check since it depends on aliasing and paths between nodes pointed



@ requires Pproc

@ mod modproc

@ ensures Qproc

return-type proc(x ) { ... }

Figure 13. Specification of proc with placeholders.

wp[[r := proc(a)]](Q)
def
=

Pproc [a/x ] ∧
∀α : α ∈ modproc [a/x ]→ α ∈ modprog ∧
∀ζ : Qproc [a/x , f

a
/f , f /f , ζ/retval]∧

adapt
[
modproc [f /f ]

]
[a/x , f

a
/f , f /f ]→

Q [f
a
/f , ζ/r ]

Table 4. Computing the weakest (liberal) precondition for a state-
ment containing a procedure call. r is a local variable that is as-
signed the return value; a are the actual arguments passed. f

a
is a

fresh function symbol.

to by different variables. Fortunately, the sub-formula ∀α : α ∈
modproc [a/x ] → α ∈ modprog captures this property, ensuring
that the outer procedure does not exceed its own mod specification,
taking advantage of the interval-union structure of the mod. Since
all the modifications (even atomic ones) are done by means of
procedure calls, this ensures that no edges incident to nodes outside
mod are changed.

Proposition 4. The rule for wp[[]] of call statements is sound and
complete, that is, when proc is a procedure with specification as in
Fig. 13, called in the context of prog whose mod-set is mod:

M |= wp[[r := proc(a)]](Q)
m

M |= Pproc [a/x ] ∧mod
M
proc ⊆ modM∧

∀M :
(
M /M |= Qproc [a/x ] ∧M ⊕M ⊆ mod

M
proc

)
⇒ M [r 7→ retvalM ] |= Q

(7)

5.3 Reducing Function Symbols
Notice that when we apply the adaptation rule for AEAR, as dis-
cussed above, it introduces a new function symbol enmod depend-
ing on the concrete mod-set of the called procedure. This introduces
a complication: the mod-sets of separate procedure calls may differ
from the one of the top procedure, hence multiple applications of
Table 4 naturally require a separate function symbol enmod for ev-
ery such invocation. Consider for example the situation of union
making two invocations to find. In Fig. 14 one can see that the
mod of union is [x , rx ]f ∪ [y , ry ]f , while the mod of the first call
t := find(x) is [x , rx ]f , which may be a proper subset of the
former. The mod of the second invocation is [y , ry ]f , which may
overlap with [x , rx ]f .

To meet the requirement of AEAR concerning the function
symbols, we observe that: (a) the amount of sharing any particular
function call creates, as well as the entire call, is bounded, and we
can pre-determine a bound for it; (b) the modification set of any
sub-call must be a subset of the top call, as otherwise it violates
the obligation not to change any edge outside mod. These two
properties allow us to express the functions enmod of the sub-
calls using enmod of the top procedure and extra intermediate
functions with bounded image. Thus, we replace all of the function
symbols enS introduced by adapt[S ] for different S ’s, with a
single (global, idempotent) function symbol together with a set of
bounded function symbols.
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xy

[x , rx ]f

[x , rx ]f ∪ [y, ry ]f

en[x,rx ]

5

4

3

2

1

5

4

xy

t
[x , rx ]f

[x , rx ]f ∪ [y, ry ]f

en[x,rx ]

t := find x

Figure 14. An example invocation of find inside union.

1 2 3 4

(inner)mod = B

mod = A

δ enA

enB|A

Figure 15. The inner enmod is constructed from the outer one by
composing with an auxiliary function enB|A.

Consider a statement r := proc(a) in a procedure prog . Let
A denote the mod-set of prog , and B — the mod-set of proc. We
show how enB can be expressed using enA and one more function,
where the latter has a bounded range. We define enB|A : A \ B →
B a new function that is the restriction of enB to the domain A\B .
enB|A is defined as follows:

enB (σ)
def
=

{
enA(σ) enA(σ) ∈ B

enB|A(enA(σ)) otherwise
(8)

Using equality the nesting of function symbols can be reduced
(without affecting the quantifier alternation).

Consult Fig. 15; notice that enB|A(σ) is always either:

• The beginning si of one of the intervals [si , ti ]f of B (such as
1 in the figure);

• A node that is shared by backbone pointers from two nodes in
A (such as 3 );
• The value null.

A bound on the number of si ’s is given in the modular specifica-
tion of proc. A bound on the number of shared nodes is given in the
next subsection. This bound is effective for all the procedure calls
in prog ; hence enB|A can be used in the restricted logic AEAR.

5.4 Bounding the Amount of Sharing
We show that under the restrictions of the specification given in
Section 2 and Section 4, the number of shared nodes inside mod
— that is, nodes in mod that are pointed to by more than one f -
pointer of other nodes in mod — has a fixed bound throughout the
procedure’s execution.

Consider a typical loop-free program prog containing calls of
the form vi := proci (a i ). Assume that the mod-set of prog is a



union of k intervals. We show how to compute a bound on the
number of shared nodes inside the mod-set. Since there are k
start points, at most

(
k
2

)
elements can be shared when prog starts

executing. Each sub-procedure invoked from prog may introduce,
by our restriction, at most as many shared nodes as there are local
variables in the sub-procedure. Therefore, by computing the sum
over all invocation statements in prog , plus

(
k
2

)
, we get a fixed

bound on the number of shared nodes inside the mod-set.

Nshared = k +

(
k

2

)
+
∑
proci

|Pvarproci |

Pvarproci signifies the set of local variables in the procedure
proci . Notice that if the same procedure is invoked twice, it has to
be included twice in the sum as well.

5.5 Verification Condition for the Entire Procedure
Since every procedure on its own is loop-free, the verification
condition is straightforward:

vc[prog ] = Pprog → wp[[prog ]]
(
Qprog ∧ “shared ⊆ Pvar”

)
where “shared ⊆ Pvar” is a shorthand for the (AER) formula:

∀α, β, γ ∈mod : Ef (α, γ) ∧ Ef (β, γ)→
α = β ∨

∨
v∈Pvar γ = v

(9)

See eq (6) for the definition of Ef . It expresses the obligation
mentioned in Section 1.3 that all the shared nodes in mod should be
pointed to by local variables, effectively limiting newly introduced
sharing to a bounded number of memory locations.

Now vc[prog ] is expressed in AEAR, and it is valid if-and-only-
if the program meets its specification. Its validity can be checked
using effectively-propositional logic according to Section 3.

6. Extensions
6.1 Explicit Memory Management
This section sketches how to handle explicit allocation and recla-
mation of memory and exemplifies it on simple procedures shown
in Fig. 16 and Fig. 17. The procedures push and pushMany extend
a list at the beginning by an unbounded of fresh elements allocated
using new. The procedure deleteAll takes as argument a list that
has no foreign pointers into it, and explicitly frees all elements. We
verify that the procedures do not introduce dangling pointers.

Table 5 updates the specification of atomic commands (provided
in Table 2) to handle explicit memory management operations. For
simplicity, we follow Ansii C semantics but do not handle arrays
and pointer arithmetic. The allocation statement assigns a freed
location denoted by s to retval and sets its value to be non-freed.
All accesses to memory locations pointed-to by y in statements
retval = y.f, y.f = x, and x = y are required to access non-
freed memory. Finally, free(y) sets the free predicate to true for
the node pointed-to by y . As a result, all the nodes reachable from
y cannot be accessed.

The adaptation rule needs to be augmented in order to accom-
modate the change. Since nodes that are about to be allocated do not
have names, the mod shall refer only to allocated nodes; free nodes
can always be changed and they need not be specified in the mod.
Of course, the procedure’s post-condition should describe the new
structure of the allocated area in terms of reachability, if modular
reasoning is desired.

The change would be as follows: whenever there is a reference
to some σ 6∈ mod (in eq (3), eq (4), and eq (5)), we would now
consider only σ 6∈ (mod ∪ free). This way the adaptation rule
makes no claims regarding the free nodes. Everything else remains
just the same.

@ requires ¬free(h)
@ mod [h, h]f

@ ensures
∀α : free(α)↔ free(α) ∧ α 6= retval
retval〈f ∗〉h ∧ ¬h〈f ∗〉retval

Node push(Node h) {
Node e = new Node();
e.f = h;
return e;

}

@ requires ¬free(h)
@ mod [h, h]f

@ ensures
∀α : free(α)→ free(α)
∀α : free(α) ∧ ¬free(α)→

h〈f ∗〉α ∧ α〈f +〉h
Node pushMany(Node h) {

if (?) {
h = push(h);
h = pushMany(h);

}
return h;

}

Figure 16. The procedure push allocates a new element and in-
serts it to the beginning of the list. The procedure pushMany calls
pushon the same list an arbitrary number of times.

@ requires
∀α, β : h〈f ∗〉α ∧ β〈f ∗〉α→ h〈f ∗〉β /* dominance */
∀α : ¬α〈f +〉h

@ mod [h, null)f

@ ensures ∀α, β ∈ mod : ¬α〈f +〉β
∀α : free(α)↔ free(α) ∨ h〈f ∗〉α

Node deleteAll(Node h) {
if (h != null) {

j = h.f;
h.f = null;
free(h);
deleteAll(j);

}
}

Figure 17. The procedure deleteAll explicitly reclaims the ele-
ments of a list dominated by its head, where no other pointers to
this list exist.

6.2 Cyclic Linked-Lists
For data structures with a single pointer, the acyclicity restriction
may be lifted by using an alternative formulation that keeps and
maintains more auxiliary information [7, 13]. This can be easily
done in AFR, see [11].

6.3 Doubly-linked lists
To verify a program that manipulates a doubly-linked list, we need
to support two fields b and f . AFR supports this as long as the
only atomic formulas used in assertions are α〈f ∗〉β and α〈b∗〉β
(and not, for example, α〈(b|f )∗〉β). In particular, we can specify
the doubly-linked list property:

∀α, β : h〈f ∗〉α ∧ h〈f ∗〉β → (α〈f ∗〉β ↔ β〈b∗〉α).



Command Pre Mod Post
retval = new() free(s) ∅ retval = s ∧ ¬free(s)
access y ¬free(y) ∅
free(y) y 6= null ∧ ¬free(y) ∅ free(y)

Table 5. The specifications of atomic commands for resource allocations in a C like language.

Unfortunately modularity presents another challenge: how the
modset should be specified, and how to formulate the adaptation
rule. Since there are two pointer fields (forward and backward),
the adaptation rule (eq (1)) has to be instantiated twice. However
that would require mod to be defined as a union of intervals also
according to b in addition to its being defined as such using f ;
otherwise our logical arguments from Section 2.3 no longer hold.

When the input is a valid doubly-linked list this can always
be done, since [α, β]f = [β, α]b . In cases such where the input
is somewhat altered or corrupt (for example [23]), the logic will
have to be modified to incorporate the volatile exit points of back-
pointers potentially pointing to arbitrary nodes. This extension is
out of the current scope.

7. Experimental Results
7.1 Implementation Details
A VC generator described in Section 5 is implemented in Python,
and PLY (Python Lex-Yacc) is employed at the front-end to parse
modular recursive procedure specifications as defined in Section 4.
The tool checks that the pre and the post-conditions are specified
in AFR and that the modset is defined. SMT-LIB v2 [3] standard
notation is used to format the VC and to invoke Z3. The validity
of the VC can be checked by providing its negation to Z3. If Z3
exhibits a satisfying assignment then that serves as counterexample
for the correctness of the assertions. If no satisfying assignment
exists, then the generated VC is valid, and therefore the program
satisfies the assertions.

The output model/counterexample (S-Expression), if one is
generated, is then also parsed and f ∗ is evaluated on all pairs of
nodes. This structure represents the state of the program either at
the input or at the beginning of a loop iteration: running the pro-
gram from this point will violate one or more invariants. To provide
feedback to the user, f is recovered by computing eq (6)), and then
the pygraphviz tool is used to visualize and present to the user
a directed graph, whose vertices are nodes in the heap, and whose
edges are the f pointer fields.

7.2 Verification Examples
We have written modular specifications for the example procedures
shown in Table 7. We are encouraged by the fact that it was not dif-
ficult to express assertions in AFR for these procedures. The an-
notated examples and the VC generation tool are publicly available
with the submission. We only picked examples with interesting cut-
points to show the benefits of our approach in contrast to [11].

To give some account of the programs’ sizes, we observe the
program summary specification given as pre- and postcondition,
count the number of atomic formulas in each of them, and note
the depth of quantifier nesting; all our samples had only universal
quantifiers in the specification. We did the same for the generated
VC; naturally, the the VC is much larger than the specification even
for small programs. Still, the time required by Z3 to prove that the
VC is valid is short.

Thanks to the fact that FOL-based tools, and in particular SAT
solvers, permit multiple relation symbols we were able to express

UF: find, UF: union — Implementation of a Union-Find dy-
namic data structure.

SLL: filter — Takes a linked list and deletes all ele-
ments not satisfying some predicate C .

SLL: quicksort — Sorts a linked-list in-place using the
Quicksort algorithm.

SLL: insert-sort — Creates a new, sorted linked-list from a
given list by repeatedly running insert
on the elements of the input list.

Table 6. Description of some pointer manipulating programs veri-
fied by our tool.

Benchmark
Formula size Solving

P,Q mod VC time
# ∀ # # ∀ (Z3)

SLL: filter 7 2 1 217 6 0.48s
SLL: quicksort 25 2 1 745 9 1.06s
SLL: insert-sort 21 2 1 284 11 0.37s
UF: find 13 2 1 203 6 0.40s
UF: union 20 2 2 188 6 1.39s

Table 7. Implementation Benchmarks; P,Q — program’s specifi-
cation given as pre- and post-condition, mod— mod-set, VC —
verification condition, # — number of atomic formulas/intervals,
∀— quantifier nesting The tests were conducted on a 1.7GHz In-
tel Core i5 machine with 4GB of RAM, running OS X 10.7.5. The
version of Z3 used was 4.2, complied for 64-bit Intel architecture
(using gcc 4.2, LLVM). The solving time reported is wall clock
time of the execution of Z3.

ordering properties in sorted lists, and thus in the sorting routines
implementing Quicksort and insertion-sort.

Checked properties. For Table 6, apart from find and union, we
also checked full functional correctness of the other examples (fil-
ter, quicksort, insertion sort). For filter, we checked that elements
remain in the same order and that only the elements satisfying
the filtering predicate were removed. For the sorting routines, we
checked that the resulting list contains the same elements and is
indeed sorted (via an order relation).

7.3 Buggy Examples
We also applied the tool to erroneous programs and programs with
incorrect assertions. The results, including run-time statistics and
formula sizes, are reported in Table 8. The table lists four kinds
of deliberately-introduced bugs that were provided as input to the
tool. Formula sizes are measured in the same way as in Table 7.

In addition, for every detected bug, our tool generates a con-
crete counterexample depicting a state of the heap violating some
assertion. We measured the size of the model generated, by observ-
ing the size of the generated domain — which reflects the number
of nodes in the heap. As expected, Z3 was able to produce con-
crete counterexample of reasonable size, producing output which is
readable for the programmer and useful for debugging. In fact, our
tool converts Z3 models into directed graph diagrams which facili-



Formula size Solving C.e.
Benchmark P,Q VC time size
(+ Nature of defect) # ∀ # ∀ (Z3) (|L|)
UF: find 27 3 201 6 1.60s 2
Incorrect handling of cor-
ner case
UF: union 19 2 186 6 0.70s 8
Incorrect specification
SLL: filter 36 4 317 6 0.49s 14
Uncontrolled sharing
SLL: insert-sort 21 2 283 9 0.88s 8
Unmet call precondition

Table 8. Information about benchmarks that demonstrate detection
of several kinds of bugs in pointer programs. In addition to the pre-
vious measurements, the last column lists the size of the generated
counterexample in terms of the number of vertices — linked-list or
tree nodes.

tate debugging our assertions. Since the counterexamples are slight
variations of the correct programs, size and running time statistics
are similar.

8. Related Work
8.1 Modular Verification
The area of modular procedure specification is heavily studied.
Many of these works require that the user declare potential changes
similar to the modset (e.g., see [2, 14, 25, 29]). The frame rule of
separation logic [9] naturally supports modular reasoning where the
separating conjunction combines the local postcondition with the
assertion at the call site. Unlike separation, reachability is a higher
abstraction which relies on type correctness and naturally abstracts
operations such as garbage collection. Nevertheless, in Section 6.1
we show that it can also deal with explicit memory reclamations.

We believe that our work in this paper pioneers the usage of
an effectively propositional logic which is a weak logic to perform
modular reasoning in a sound and complete way. Our adaptation
rule is more complex than the frame rule as it automatically updates
reachability. The idea of using the idempotent entry point function
to enable local reasoning about list-manipulating programs (includ-
ing an EPR reduction) has been explored independently by Piskac
et al. [19], where it was used to automate the frame rule in sep-
aration logic. In this paper we identify a general EPR fragment of
assertions for which this idea of the idempotent entry point function
is sound and complete.

8.1.1 Cutpoints
Rinetzky et al. [21] introduce cutpoint objects which are objects
that can reach the area of the heap accessible by the procedure
without passing through objects directly pointed-to by parameters.
Cutpoints complicate program reasoning. They are used in model
checking [1] and static analysis [6, 22]. Examples such as the ones
in [23] which include (unbounded) cutpoints from the stack are
handled by our method without any changes. These extra cutpoints
cannot change the reachabilty and thus have no effect. Interestingly,
we can also handle certain programs which manipulate unbounded
cutpoints. Instead, we do limit the amount of new sharing in paths
which are necessary for the verification. For example, the find
procedure shown in Fig. 2 includes unbounded sharing which can
be created by the client program. A typical client such as a spanning
tree construction algorithm will indeed create unbounded sharing.
In the future, we plan to verify such clients by abstracting away the
pointers inside the union-find tree.

8.2 Decision Procedures
Many decision procedures for reasoning about linked lists have
been proposed [4, 15, 17, 28]. All these logics are based on monadic
second-order logic on trees which has a non-elementary time (and
space) asymptotic complexity. We follow [11] in using a weak
logic which permits sound and complete reasoning using off the
shelf SAT solvers which are efficient in practice and can be imple-
mented in polynomial space. Indeed our preliminary experimental
results reported Section 7 show that Z3 is fast enough and may
be even useful for automatically generating abstract interpreters as
suggested by [20].

Interestingly, the adaptation rule drastically simplifies the Weakest-
Precondition rules given in [11]. Notice the specifications in Table 2
do not use quantifiers at all, whereas in [11] the formulas contain
quantifiers with alternations. Indeed the appropriate quantifiers are
added in a generic manner by the adaptation rule and weakest-
precondition.

8.3 Incremental Reachability Update
Formulas for updating transitive closure w.r.t., graph mutations
have been developed by various authors (e.g., [5, 7, 8, 13]). These
works assume that a single edge is added and deleted. This sub-
mission generalizes these results to procedures which perform un-
bounded mutations. Indeed our adaptation rule generalizes [7, 11,
13]) which provides reachability update formula w.r.t. the removal
of a single edge.

9. Conclusion
A crucial method for simplifying the reasoning about linked data
structures is partitioning them into basic blocks, where each basic
block has only one entry point and one exit point. This paper
slightly generalizes by reasoning about blocks with a potentially
unbounded number of entry points, as demonstrated by find and
union. Notice that this unboundedness supports modularity: even
in the case where in every particular call context there is a bounded
number of paths (e.g. when there is a bounded number of roots
in the heap), the bound is not known in advance, therefore the
programmer has to prepare for an unbounded number of cases.

It is important to note that the adaptation rule adds expressive
power to verifying programs: it is in general impossible for the
programmer to define, in AFR, a modular specification for all the
procedures. Generation of a verification condition requires coordi-
nation between the separate call sites as mentioned above, in par-
ticular taking note of potential sharing. This coordination requires
per-call-site instantiation, which, thanks to having the adaptation
rule in the framework, is done automatically.

Finally we remark that there is a trade-off between mod and the
post-condition: defining a simpler, but larger mod may cause the
post-condition to become more complicated, sometimes not even
AFR-expressible. Also notice that if mod = V (the entire heap),
modular reasoning becomes trivial since it can be done by relational
composition, but this puts the burden of writing the most complete
post-conditions on the programmer, which sometimes is not even
possible in a limited logic.

Therefore, we believe that this paper takes a step towards modu-
lar reasoning about reachability in programs that manipulate linked
lists. Lifting such reasoning to more complex data structures such
as trees and graphs remains future work.
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