
33

Visibility Reasoning for Concurrent Snapshot Algorithms

JOAKIM ÖHMAN, IMDEA Software Institute, Spain and Universidad Politécnica de Madrid, Spain

ALEKSANDAR NANEVSKI, IMDEA Software Institute, Spain

Visibility relations have been proposed by Henzinger et al. as an abstraction for proving linearizability
of concurrent algorithms that obtains modular and reusable proofs. This is in contrast to the customary
approach based on exhibiting the algorithm’s linearization points. In this paper we apply visibility relations to
develop modular proofs for three elegant concurrent snapshot algorithms of Jayanti. The proofs are divided
by signatures into components of increasing level of abstraction; the components at higher abstraction
levels are shared, i.e., they apply to all three algorithms simultaneously. Importantly, the interface properties
mathematically capture Jayanti’s original intuitions that have previously been given only informally.

CCS Concepts: · Theory of computation→ Concurrent algorithms; Program verification; Program
specifications; · Software and its engineering→ Formal software verification.

Additional Key Words and Phrases: concurrent snapshots, visibility relations, linearizability

ACM Reference Format:

Joakim Öhman and Aleksandar Nanevski. 2022. Visibility Reasoning for Concurrent Snapshot Algorithms.
Proc. ACM Program. Lang. 6, POPL, Article 33 (January 2022), 30 pages. https://doi.org/10.1145/3498694

1 INTRODUCTION

Linearizability [Herlihy and Wing 1990] is a standard correctness condition for concurrent data
structures. It requires that the operations in any execution over the data structure may be ordered
sequentially, without incurring changes to the observed results. In other words, the methods of a
linearizable concurrent structure exhibit the same external behavior as the sequential equivalent.
Programmers can use the concurrent variant to efficiently utilize modern systems’ multi-core setup,
and rely on the sequential variant for understanding and formal reasoning.

Many methods exist for proving linearizability of a data structure. The standard idea shared by
most of them involves finding, for each method of the structure, a point in time in the concurrent
execution when the method can be considered as logically occurring. In other words, a method may
execute over a period of time, admitting interference from other concurrent threads; nevertheless,
for all reasoning intents and purposes, the execution is indistinguishable from one where the method
executes atomically at a single point in time, without any interference. This point in time is referred
to as the linearization point. Where the linearization point lies for a given method may depend
on the run-time behavior and interleaving of other methods executing concurrently, sometimes
even including behavior that occurs after the original method has already terminated (the latter are
often termed far future linearization points). Although significant progress has been made recently
in the verification of concurrent structures and algorithms, and in particular by the introduction of
so-called prophecy variables [Abadi and Lamport 1991; Jacobs et al. 2018; Jung et al. 2020; Lynch and

Authors’ addresses: Joakim Öhman, joakim.ohman@imdea.org, IMDEA Software Institute, Madrid, Spain and Universidad

Politécnica de Madrid, Pozuelo de Alarcón, Spain; Aleksandar Nanevski, aleks.nanevski@imdea.org, IMDEA Software

Institute, Madrid, Spain.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART33

https://doi.org/10.1145/3498694

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-9284-3886
HTTPS://ORCID.ORG/0000-0002-4851-1075
https://doi.org/10.1145/3498694
https://orcid.org/0000-0002-9284-3886
https://orcid.org/0000-0002-4851-1075
https://doi.org/10.1145/3498694

33:2 Joakim Öhman and Aleksandar Nanevski

Vaandrager 1995] to model the dependence of linearization points on run-time behavior (including
in the far future), establishing linearizability by explicitly exhibiting the linearization points of an
algorithm remains a highly complex task in general.
A different approach, which avoids explicit reasoning about linearization points, has been

proposed byHenzinger et al. [2013]. In this approach, one first specifies a set of properties and proves
that the properties hold of every execution history over the data structure. One then constructs
a proof of linearizability using only the specified properties as axioms, thereby abstracting from
the underlying executions. In other words, the low-level reasoning about the concrete placement
of linearization points is replaced by higher-level reasoning out of data structure axioms, in turn
facilitating proof decomposition, modularity, abstraction, and reuse.
The properties used in the axiomatization are defined under relations tying an event in the

execution to other events that depend on it, i.e., that observe it. For example, the event of reading of
a pointer will be related to the write event that was responsible for mutating the pointer. Once the
pointer is mutated by another write, the subsequent reads will observe (i.e., be related to) the new
write, or possibly another later write. Similar ideas of reasoning about event observations have
been used in the axiomatizations of weak memory models [Raad et al. 2019] and in distributed
systems [Viotti and Vukolić 2016] where they have been captured by means of so-called visibility

relations. Reasoning by visibility has also been applied in different ways to prove linearizability
of concrete data structures, such as queues [Henzinger et al. 2013] and stacks [Dodds et al. 2015],
including reasoning automation [Bouajjani et al. 2017], and reasoning about relaxed notions of
linearizability [Emmi and Enea 2019; Krishna et al. 2020].
In this paper, we demonstrate the further applicability of reasoning by visibility, by applying it

in a novel way to even more nuanced algorithms and proofs. In particular, we show how visibility
can be used to express and axiomatize the important internal properties shared by several snapshot
algorithms. Similarly to the approach of Henzinger et al. [2013] to queues, the axiomatization
enables a modularization of the linearizability proof: a significant portion of the proof is carried
out once, and then reused for each snapshot algorithm.

More specifically, we verify the three snapshot algorithms by Jayanti [2005]. A snapshot algorithm
scans a memory array and returns the values read, so that the obtained values reflect the state of the
array at one point in time. In a sequential setting this is trivial to achieve since the array remains
unchanged during the scan. However, Jayanti’s algorithms are concurrent, allowing interfering
threads to modify the array while a scan is in progress. Jayanti’s algorithms are of increasing
efficiency and generality. The simplest is the single-writer/single-scanner algorithm, which assumes
that no two scanners run concurrently, and that no two writers concurrently modify the same
array element. Jayanti’s second algorithm generalizes to a multi-writer/single-scanner setting, and
the third is the most general and ultimately desirable multi-writer/multi-scanner version. Jayanti
describes the linearization points only for the single-writer/single-scanner algorithm, but already
this description is quite challenging to transform into a fully formal correctness proof [Delbianco
et al. 2017] because the algorithm exhibits far future linearization points.

Of interest to us in the current paper is that each of the three algorithms builds on the previous one
by relaxing some part of the previous algorithm’s implementation, while preserving the essential
invariants that Jayanti calls forwarding principles. Jayanti credits the forwarding principles as the
key idea behind his design, because the principles are shared by the three algorithms, and abstractly
govern how a concurrent write into the array should be łforwarded” to a scanner that is in progress,
but has already read past the written element.
In this paper, we show how the forwarding principles can be axiomatized mathematically in

terms of visibility, which we present in Section 2 (Jayanti states the principles in English, much
less formally). In Section 3, we develop the linearizability proof out of the axioms alone, so that it

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:3

applies to all three algorithms simultaneously. We then establish that the axioms hold for each of
the three algorithms: in Section 3 for the first algorithm and Section 4 for the second and third. In
Section 5 we apply our method to verify another snapshot algorithm, that of Afek et al. [1993].
By employing visibility, we sidestep the difficulties inherent in reasoning about linearization

points in general, and far future linearization points in particular. Our development substantiates
that visibility is a natural abstraction to use in specifications and proofs, as it enables formally
capturing the intuitionÐthat of forwarding principlesÐthat motivated the design of Jayanti’s
algorithms in the first place. In summary, our contributions are as follows.

• This is the first formal proof of all of Jayanti’s three snapshot algorithms. Moreover, it
efficiently reuses proofs between algorithms. Delbianco et al. [2017] employed a variation of
the linearization point approach to prove only Jayanti’s first algorithm, with no direct way
of extending the proof to the other two algorithms, which are significantly more involved.
That proof was mechanized in Coq. Based on loc. cit., Jacobs [2018] developed a mechanized
proof of Jayanti’s first algorithm in VeriFast, using prophecy variables.
• We have axiomatized the forwarding principles, which were Jayanti’s motivating insight,
and key properties of his snapshot algorithms, but have so far been out of reach of formal
mathematics. The axiomatization is non-trivial, and required generalizing from Jayanti’s
English description in order to apply to all three algorithms. It also enabled us to prove,
for the first time, that forwarding principles formally imply linearizability. While visibility
relations have been used before to axiomatize concurrent structures, this shows that they
can also usefully capture important internal properties.

2 OVERVIEW

2.1 Jayanti’s First Snapshot Algorithm

The 𝑛-snapshot data-structure is an array of length 𝑛, which consists of two kinds of operations:
scan which reads the memory and returns a list of length 𝑛 reflecting the state of the memory at
a point in time; and write(𝑖, 𝑣) which writes the value 𝑣 into memory cell 𝑖 . We use 𝑠 to range
over instances of scan,𝑤𝑖 to range over instances ofwrite(𝑖, 𝑣) for some 𝑣 , and 𝑒 to range over all
operations in general. In line with standard terminology of linearizability, we call these operations
abstract events or abs events and color them magenta.

A snapshot (or any other) algorithm is linearizable if for every concurrent execution, there exists
some way of sequentially ordering the overlapping (abs) events so that the value returned by each
of the events remains unchanged compared to the concurrent execution, and moreover, matches
the intended semantics of the data structure. Intuitively, linearizability implies that we can re-run
the computation sequentially to obtain the same results as in the original concurrent run; however,
the internal state of the algorithm during and after the runs need not match.

Implementing an efficient and correct concurrent snapshot algorithm is more challenging than it
may seem. To highlight this point, consider a naïve implementation, where writers simply write
to a shared array A and scanners simply iterate over the array A to obtain a snapshot. To allow
this implementation to operate efficiently, we allow writes and scans to run concurrently. For this
simple implementation, consider a snapshot array of length 2, where we have a scan 𝑠 running
concurrently with writes𝑤0 writing 2 and𝑤1 writing 3. Let 0 be the initial value of each array cell,
and consider the following execution:

• Scan 𝑠 starts and reads 0 from A[0], after which the scheduler interrupts 𝑠 .
• Write𝑤0 starts, writing 2 to A[0], and after𝑤0 finishes, write𝑤1 writes 3 to A[1].
• Scan 𝑠 resumes, reading 3 from A[1]. It then returns the snapshot (0, 3).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:4 Joakim Öhman and Aleksandar Nanevski

resource A : array[𝑛] of val
resource B : array[𝑛] of val ∪ {⊥}
resource X : B := false

1: write(𝑖 : N, 𝑣 : val) ≜ ⊲ 𝑤𝑖

2: A[𝑖] := 𝑣 ⊲ 𝑤𝑖a

3: 𝑥 ← X ⊲ 𝑤𝑖x

4: if 𝑥 then B[𝑖] := 𝑣 ⊲ 𝑤𝑖b

5: scan: array[𝑛] of val ≜ ⊲ 𝑠

6: X := true ⊲ 𝑠on
7: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
8: B[𝑖] := ⊥ ⊲ 𝑠r𝑖

9: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
10: 𝑎 ← A[𝑖] ⊲ 𝑠a𝑖
11: 𝑉 [𝑖] := 𝑎

12: X := false ⊲ 𝑠off
13: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
14: 𝑏 ← B[𝑖] ⊲ 𝑠b𝑖
15: if 𝑏 ≠ ⊥ then 𝑉 [𝑖] := 𝑏

16: return 𝑉

Algorithm 1. Jayanti’s single-writer, single-scanner snapshot algorithm over a memory of length 𝑛. Mnemon-
ics on the right identify the corresponding commands.

The snapshot (0, 3) should indicate that there exists a point in time when the array consisted of that
pair, however that is not the case. The array started as (0, 0), followed by (2, 0) after write𝑤0, and
(2, 3) after write𝑤1, but none of these states are reflected in the result. In a sense, the scan 𝑠 missed
the write 𝑤0, yet it caught the write 𝑤1, which occurred after 𝑤0. Jayanti’s snapshot algorithms
ensure that writes are not missed by the scanner, as we explain next.
Algorithm 1 is the first and simplest of Jayanti’s snapshot algorithms. The idea is for a scan to

make two passes over the memory, first over the main array A, and then over the auxiliary array
B. A writer updates the array B if it detects a concurrent scan via the boolean flag X, to forward

its value. That is, in case the scanner missed the writer’s value when scanning A, it will have a
chance to catch the value when scanning B. We thus refer to B as the forwarding array. Algorithm 1
is a single-writer/single-scanner algorithm, meaning that for it to behave correctly, two scans
must not run concurrently and two writers must not concurrently mutate the same array cell. In
an implementation, this can be enforced by explicit locking, which we elide from Algorithm 1
following Jayanti’s original presentation.
Describing the algorithm in more detail, scan works by first setting X to true by event 𝑠on,

signaling that a scan is running the first pass. This is followed by clearing the forwarding array
B by setting all its cells to ⊥ via the 𝑠r𝑖 events, for each 𝑖 . The clearing ensures that the current
scan cannot consider the forwards left over from the previous scans. Next, the scanner creates
a naïve snapshot by copying the main array A by the events 𝑠a𝑖 for each 𝑖 into the local array 𝑉 .
However, as we argued before, this is insufficient for a correct snapshot. This is where the second
pass comes in, which starts after X is set to false by event 𝑠off . In the second pass, the procedure
repairs the naïve snapshot by stepping through the forwarding array B by the events 𝑠b𝑖 for each
𝑖 . If a non-⊥ (i.e., forwarded) value is found, it overwrites the original value in 𝑉 , thus repairing
the snapshot and preventing missing writes. Finally, the scanner returns 𝑉 , which contains the
complete snapshot.
For write(𝑖, 𝑣), it starts by writing its value to A by event 𝑤𝑖a, followed by a check for a

concurrently running scanner performing the naïve pass of the scan by event 𝑤𝑖x. If such a
scan is detected, the writer forwards its value to B by event𝑤𝑖b.
Events marked in blue are called representation or rep events, and are used internally in the

implementation of abs (i.e., magenta) events. The distinction between abs and rep events is standard
in the theory of linearizability [Herlihy and Wing 1990]. We will use the naming convention
whereby abs events and rep events with the same priming belong together, e.g. we assume 𝑠a𝑖
belongs to 𝑠 and𝑤 ′𝑖a belongs to𝑤

′
𝑖 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:5

𝑠

𝑠on 𝑠r0 𝑠r1 𝑠a0 𝑠a1 𝑠off 𝑠b0 𝑠b1

𝑤0

𝑤0a 𝑤0x 𝑤0b

𝑤 ′0

𝑤 ′0a
𝑤1

𝑤1a

Fig. 1. Diagram illustrating an execution scenario for Algorithm 1 with an array length of two.

Now, consider the scenario illustrated in Fig. 1, where we have Algorithm 1 being executed over
an array of length two, with each value initially set to 0, with write events𝑤0,𝑤

′
0 and𝑤1 writing

2, 3 and 4 respectively, and a scan 𝑠 . When 𝑠 reads A[0] with 𝑠a0 for its first pass, it reads 0, while
when it reads A[1] with 𝑠a1 it reads 4 written by𝑤1 with𝑤1a. Between the two passes of 𝑠 ,𝑤0a is
missed, however since X is set to true by 𝑠on,𝑤0 will forward the value 2 with𝑤0b. At the second
pass, 𝑠 reads B[0] with 𝑠b0, reading 2 written by 𝑤0b, and when it reads B[1] with 𝑠b1, it reads ⊥
written by 𝑠r1, meaning 𝑠 will use the original value 4 for its final snapshot, thus returning (2,4).

In contrast to (0, 3) before, linearizability admits (2, 4) as a correct snapshot even though A never
contained (2, 4) during the execution. Indeed, A only contained (0, 0), (2, 0), (3, 0) and (3, 4). This
is actually fine, because we can reorder the concurrent events with the order𝑤0 → 𝑤1 → 𝑠 → 𝑤 ′0,
which, when executed sequentially, result in 𝑠 having snapshot (2, 4). In the physical execution, the
event𝑤0 returned before𝑤 ′0 and𝑤1 started. The reordering respects this by listing𝑤0 before𝑤

′
0

and𝑤1. In other words, the reordering affects only events that physically overlapped, as required
by linearizability.

Jayanti sketches the correctness proof of Algorithm 1 by describing its linearization points. The
linearization point for a scan 𝑠 is always when the scan performs 𝑠off . However, the linearization
point of a write𝑤𝑖 varies. If there is no scan concurrent to𝑤𝑖 , or there is a concurrent scan, but it
reads the value of𝑤𝑖 either from A or from B, then the writer’s linearization point is at𝑤𝑖a. If there
is a concurrent scan 𝑠 that misses𝑤𝑖 , which can occur if the scanner misses𝑤𝑖 in its A pass, and
𝑤𝑖 either does not write into B[𝑖] due to X being set to false before the writer could forward, or
𝑤𝑖 writing into B[𝑖] too late, then𝑤𝑖 must be logically considered as occurring after 𝑠 . Thus, the
linearization point of𝑤𝑖 is immediately after 𝑠off , making the linearization point of write external,
as its position is given in terms of another procedure, in this case scan. The observation that a scan
missed a write𝑤𝑖 , which occurs when the scan reads B[𝑖] with 𝑠b𝑖 , can be made after the writer
has already terminated, making write exhibit a far future linearization point.

We proceed to show how to organize the linearizability proof of Algorithm 1, and the other two
Jayanti algorithms, by axiomatizing forwarding via visibility, without using linearization points.

2.2 Basic Abstractions of Visibility Reasoning

2.2.1 Events and Their Structure. An event is an object consisting of fields start, end, op, in, and
out, describing the following aspects of the execution of some operation of the data structure:
start is the event’s beginning time, end is the ending time, op is the operation name (e.g., scan or
write), in is the operation’s input, and out is the output. We refer to the elements of an event 𝑒 by
projection, e.g. 𝑒.start and 𝑒.op. The fields 𝑒.start and 𝑒.end are natural numbers, and 𝑒.end may be
∞ (infinity) to represent that 𝑒 has not terminated yet, i.e., 𝑒 is terminated iff 𝑒.end ≠ ∞, which
we denote with T (𝑒). For every 𝑒 , 𝑒.end > 𝑒.start. The types of 𝑒.in and 𝑒.out depend on 𝑒.op, and
𝑒.out is undefined iff 𝑒.end = ∞.

Additionally, each event 𝑒 contains the optional field parent, corresponding to the event that
invoked 𝑒 , if any. For example, if 𝑒 is a rep event, then 𝑒.parent is the abs event that contains 𝑒 .
Note that 𝑒.parent and 𝑒 need not have the same op, in and out fields; e.g., a write rep event can be
invoked both by abs writer and abs scanner.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:6 Joakim Öhman and Aleksandar Nanevski

start 𝑒1 end start 𝑒2 end

start 𝑒 ′1
end start 𝑒 ′2

end

Fig. 2. Visual representation of events highlighting the interval and subevent Properties (RB.1) and (RB.2).

Finally, we require that each abs event is single-threaded, and thus cannot fork children threads.
We denote the set of all events of a given execution history by Events. If 𝐸 ⊂ Events, then

op(𝐸) = {𝑒 ∈ 𝐸 | 𝑒.op = 𝑜𝑝} selects the events with operation op, and we overload T over sets with
T (𝐸) = {𝑒 ∈ 𝐸 | T (𝑒)} to select the terminated events.
As linearization order can only affect physically overlapping events, proving linearizability

requires reasoning about non-overlapping events, which is captured by the returns-before relation

𝑒 ⊏ 𝑒 ′ ≜ 𝑒.end < 𝑒 ′.start

denoting that 𝑒 terminated before 𝑒 ′ started. Two events are overlapping if they are unrelated by ⊏.
As customary, we write ⊑ for the reflexive closure of ⊏. The relation ⊏ is irreflexive (i.e. acyclic)
partial order, and moreover, an interval order [Felsner 1992], as it satisfies the following property

𝑒1 ⊏ 𝑒2 ∧ 𝑒
′
1 ⊏ 𝑒 ′2 =⇒ 𝑒1 ⊏ 𝑒 ′2 ∨ 𝑒

′
1 ⊏ 𝑒2 (RB.1)

Fig. 2 illustrates why Property (RB.1) must hold. The figure shows events 𝑒1, 𝑒2, 𝑒
′
1, 𝑒
′
2 such that

𝑒1 ⊏ 𝑒2, and 𝑒
′
1 ⊏ 𝑒 ′2, and Property (RB.1) holds because also 𝑒1 ⊏ 𝑒 ′2. We can try to invalidate the

latter by shifting 𝑒 ′1 and 𝑒
′
2 to the left so that 𝑒 ′2.start < 𝑒1.end while maintaining 𝑒 ′1.end < 𝑒 ′2 .start.

But then we’re forced to have 𝑒 ′1.end < 𝑒2.start, i.e. 𝑒
′
1 ⊏ 𝑒2 which re-establishes Property (RB.1).

We also say that 𝑒 is a subevent of 𝑒 ′ (alternatively, 𝑒 ′ contains 𝑒) if

𝑒 ⊆ 𝑒 ′ ≜ 𝑒 ′.start ≤ 𝑒.start ∧ 𝑒.end ≤ 𝑒 ′.end

For any rep event 𝑒 , we require that 𝑒.parent must be an abs event such that 𝑒 ⊆ 𝑒.parent. Addi-
tionally, the following property holds for subevents and returns-before.

𝑒1 ⊆ 𝑒 ′1 ∧ 𝑒2 ⊆ 𝑒 ′2 ∧ 𝑒
′
1 ⊏ 𝑒 ′2 =⇒ 𝑒1 ⊏ 𝑒2 (RB.2)

That is, if 𝑒 ′1 returned before 𝑒 ′2 then all subevents of 𝑒 ′1 must return before any subevent of 𝑒 ′2. For
example, in Fig. 2, 𝑒1 ⊆ 𝑒 ′1 and 𝑒

′
2 ⊆ 𝑒2, and 𝑒1 ⊏ 𝑒 ′2. If we shift 𝑒

′
1 to the left so that 𝑒 ′1 ⊏ 𝑒2, then we

just increase the distance between 𝑒1 and 𝑒
′
2, maintaining 𝑒1 ⊏ 𝑒 ′2.

2.2.2 Visibility Relations. If the event 𝑒 ′ depends on the result of 𝑒 , we say that 𝑒 is visible to 𝑒 ′, or
alternatively that 𝑒 is observed by 𝑒 ′. We denote the relationship as

𝑒 ≺ 𝑒 ′

Depending on the data structure being verified, we will often require several different observation
relations to differentiate how the observation came about. For example, in the case of Jayanti, we
will use rf−→ for a łreads-from observation” (a reader observes a writer by reading what was written),
and fwd−−−→ for a łforwarding observation” (a scanner observes a writer by having the written value
forwarded). The former relation is tied to the physical act of reading a pointer, and will be the same
in all three algorithms. The latter relation differs for different algorithms and is typically provided
by the human verifier, similarly to how loop invariants must often be provided.

We will typically obtain the visibility relation ≺ by unioning all the different observation subre-
lations. We then require the following property of ≺

𝑒 ≺+ 𝑒 ′ =⇒ 𝑒 ′ ̸⊑ 𝑒 (V.1)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:7

where ≺+ is the transitive closure of ≺. Read contrapositively, the property says that if 𝑒 ′ terminated
before 𝑒 started, then 𝑒 ′ cannot end a non-empty sequence of observations starting from 𝑒 . In
particular, as a special case, 𝑒 ′ cannot observe 𝑒 or be equal to 𝑒 , meaning ≺ has to be irreflexive.
We write ≼ and rf

==⇒ for the reflexive closure of ≺ and rf−→ respectively.

2.2.3 Happens-Before Relation. Given two events 𝑒 and 𝑒 ′, if 𝑒 ⊏ 𝑒 ′ or 𝑒 ≺ 𝑒 ′, then clearly, in the
ultimate linearization order we want to construct, 𝑒 must appear before 𝑒 ′. To capture this intuition,
we define the happens-before relation as the transitive closure

◁ ≜ (⊏ ∪ ≺)+

We also name the single-step happens-before relation ◁1 = (⊏ ∪ ≺), so that ◁ = ◁1P = P◁1 = ◁
+
1 ,

where P is the reflexive-transitive closure ◁∗1. The ⊏, ≺ and ◁ relations are all standard in the
literature [Viotti and Vukolić 2016]. An important property is that ◁ is an irreflexive (i.e., acyclic)
partial order, which is ensured by ≺ satisfying Property (V.1).

Lemma 2.1. If visibility relation ≺ satisfies Property (V.1) then ◁ is irreflexive.

Proof. We assume that ◁ is not irreflexive (i.e., there exists 𝑒 such that 𝑒 ◁ 𝑒), and derive
contradiction. The relation 𝑒 ◁ 𝑒 is a cyclic chain of ◁1, each of which is either ⊏ or ≺. We
are justified in considering chains with only one or zero occurrences of ⊏, as chains with more
occurrences of ⊏ can be shortened, thus we can recursively shorten a chain until it consists of one
or zero ⊏. Indeed, if the chain has more than one ⊏, it has the form

𝑒 ◁1 · · · ◁1 𝑒1 ⊏ 𝑒2 ≺ · · · ≺ 𝑒3 ⊏ 𝑒4 ◁1 · · · ◁1 𝑒 ,

where 𝑒2 and 𝑒3 are related by a chain of zero or more ≺’s (i.e., 𝑒2 = 𝑒3 or 𝑒2 ≺
+ 𝑒3). But then, we can

remove one ⊏ as follows. If 𝑒2 = 𝑒3, by transitivity of ⊏, we can shorten the chain to 𝑒 P 𝑒1 ⊏ 𝑒4 P 𝑒 .
If 𝑒2 ≺

+ 𝑒3, by Property (RB.1), it must be either 𝑒1 ⊏ 𝑒4 or 𝑒3 ⊏ 𝑒2. If 𝑒1 ⊏ 𝑒4, we again shorten to
𝑒 P 𝑒1 ⊏ 𝑒4 P 𝑒 . Otherwise, 𝑒3 ⊏ 𝑒2 and 𝑒2 ≺

+ 𝑒3 contradict Property (V.1).
On the other hand, if there is exactly one ⊏ in the chain, i.e., 𝑒 ≺∗ 𝑒1 ⊏ 𝑒2 ≺

∗ 𝑒 , then 𝑒2 ≺
∗ 𝑒 ≺∗ 𝑒1,

i.e., 𝑒2 ≺
∗ 𝑒1 which, along with 𝑒1 ⊏ 𝑒2, contradicts Property (V.1). Finally, if there is no ⊏ in the

chain, i.e., 𝑒 ≺+ 𝑒 , then Property (V.1) directly implies the contradiction 𝑒 ̸⊑ 𝑒 . □

We will usually color the relations with the same colors as the events they are relating (e.g.,
𝑒 ≺ 𝑒 ′ for abs events 𝑒 and 𝑒 ′ and 𝑒𝑟 ◁ 𝑒 ′𝑟 for rep events 𝑒𝑟 and 𝑒

′
𝑟).

2.2.4 Memory Model. With the above relations we can now state as axioms the properties that we
expect of the underlying memory model. We start with a simple axiomatization of memory that is
sufficient for Algorithm 1. We will extend this axiomatization in Section 4 to account for the LL
(load-link) and SC (store-conditional) memory operations, required by Algorithms 2 and 3.

The memory model only considers operations over individual memory cells, aka. atomic reg-
isters [Herlihy and Shavit 2008]. Their axiomatization in terms of visibility relations is given in
Fig. 3, in the form of a signature we assume the memory to satisfy. We use blue in this figure, since
we will only use events of atomic registers as rep events. The sets𝑊 and 𝑅 are defined by the
history as the sets of writes and reads respectively. The quantifier Σ signifies that the relations
≺ and rf−→ are abstract components of the specification; the clients do not know anything about
these components outside of the listed axioms. Given an instance 𝑋 of the signature, the clients
can refer to the relations and to the let definitions by projection as 𝑋 .≺, 𝑋 . rf−→, 𝑋 .𝑊 and 𝑋 .𝑅. We
will present similar signatures for snapshot data-structures and Jayanti-style forwarding.

Looking at Fig. 3, an atomic register is mathematically represented by two sets of events:𝑊 ,
corresponding to all the writes into the register’s memory cell, and 𝑅, corresponding to all the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:8 Joakim Öhman and Aleksandar Nanevski

signature AReg ≜ Atomic Register

Let 𝑊 Set of all writes of the register of the history

𝑅 Set of all reads of the register of the history
∑

≺ ⊆ (𝑊 ∪ 𝑅)2 Visibility relation
rf−→ ⊆ ≺ ∩𝑊 × 𝑅 Reads-from visibility

Let ◁ ≜ (⊏ ∪ ≺)+ Happens-before order

∀𝑒, 𝑒 ′. 𝑒 ≺+ 𝑒 ′ =⇒ 𝑒 ′ ̸⊑ 𝑒 (V.1)

∀𝑟 ∈ T (𝑅). ∃𝑤 ∈𝑊 . 𝑤 rf−→ 𝑟 ∧𝑤.in = 𝑟 .out (M.1)

∀𝑤 ∈𝑊, 𝑟 ∈ 𝑅. 𝑤 rf−→ 𝑟 =⇒ �𝑤 ′. 𝑤 ◁ 𝑤 ′ ◁ 𝑟 (M.2)

∀𝑤,𝑤 ′ ∈𝑊, 𝑟 ∈ 𝑅. 𝑤 rf−→ 𝑟 ∧𝑤 ′ rf−→ 𝑟 =⇒ 𝑤 = 𝑤 ′ (M.3)

∀𝑤,𝑤 ′ ∈𝑊 . 𝑤 ≠ 𝑤 ′ =⇒ 𝑤 ◁ 𝑤 ′ ∨𝑤 ′ ◁ 𝑤 (M.4)

Fig. 3. Signature representation of the properties of an atomic register.

reads. These are related by 𝑤 rf−→ 𝑟 , stating that read 𝑟 reads from (i.e., observes) write 𝑤 . These
events may also be related by some other relation part of the total set of observations ≺, which
includes rf−→; Property (V.1) must hold of ≺ to ensure that ◁ is irreflexive (thus, a partial order) as
per Lemma 2.1. Property (M.1) states that for any terminated read 𝑟 there exists an observed write
𝑤 with its input being the same as the output of 𝑟 . Property (M.2) states that the read 𝑟 can observe
only the latest write𝑤 into the given memory cell. Property (M.3) states that a read may observe at
most one write. Property (M.4) states that the writes into the given cell are totally ordered. These
are standard properties of sequentially consistent memory [Herlihy and Shavit 2008].

We want to reason about ◁ order arbitrarily between rep events, even if they belong to distinct
register objects. As an analogue to the locality property of linearizability, which says that the union
of multiple linearizable objects is itself linearizable, we establish that the union of objects satisfying
Property (V.1) itself satisfies Property (V.1). By Lemma 2.1, this implies that ◁ order between any rep
event is a partial order. More formally, let 𝑅1 . . . 𝑅𝑚 be all objects satisfying AReg and representing
our memory. We define the top-level ≺ (and top-level ◁) relation over rep events as the union of
visibility of all register objects:

≺ ≜ (𝑅1 .≺) ∪ · · · ∪ (𝑅𝑚 .≺)

◁ ≜ (⊏ ∪ ≺)+

Since each register satisfies Property (V.1) and each individual ≺ only relates events from the same
register, it follows that the combined ≺ also satisfies Property (V.1). By Lemma 2.1, the top-level ◁
is then a partial order. The combination similarly satisfies Properties (M.1) to (M.4). We will use
these top-level definition when relating rep events of distinct objects.

2.2.5 Linearizability. We now define linearizability formally in terms of visibility relations.

Definition 2.2. History 𝐸 is linearizable with respect to data structureD if there exists a visibility
relation ≺ and a total order < on the set of events 𝐸𝑐 = {𝑒 | ∃𝑒 ′ ∈ T (𝐸). 𝑒 ≺∗ 𝑒 ′}, such that: (1)
◁ = (⊏ ∪ ≺)+ ⊆ < on 𝐸𝑐 , and (2) executing the events in 𝐸𝑐 in the order of < is a legal sequential
behavior of D. The order < is the linearization order (or linearization, for short) of 𝐸. Algorithm (or
structure) A is linearizable wrt. D if every history of A is linearizable wrt. D.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:9

Algorithm 1
Forwarding sig.

(Fig. 7)
Snapshot sig.

(Fig. 5)
Linearizability

(Def. 2.2)

Algorithm 2

Algorithm 3

MWForwarding sig.
(Fig. 11)

Step (1)

Lemma 3.3

Step (2)

Lemma 3.2

Step (3)

Lemma 2.3

Step (1a)
Lemma 4.6

Step (1a)

Lemma 4.7

Step
(2a)

Lemma
4.5

Fig. 4. Overview of the structure of the linearizability proof for each of Jayanti’s snapshot algorithms.

Definition 2.2 differs somewhat from the original one [Herlihy and Wing 1990] in that we use
the visibility relation ≺ to complete T (𝐸) into 𝐸𝑐 with events that have been observed, but have
not yet terminated. The original definition existentially abstracts over the set of completing events;
formally, it does not organize them into a visibility relation, but in practice these events are always
added because they have been observed by some terminated event, and are necessary to ensure
legal sequential behavior. The requirement ◁ ⊆ < means that < must respect ⊏ (in addition to ≺),
and in particular that < can reorder only overlapping events. In this paper, D is the snapshot data
structure that has the following sequential behavior over its state (the array A):

• 𝑤𝑖 ∈ write𝑖 writes𝑤𝑖 .in to A[𝑖] and returns nothing, i.e.,𝑤𝑖 .out = ().
• 𝑠 ∈ scan does not modify A and returns a copy of A, i.e., 𝑠 .out = A.

2.3 Hierarchical Structure of the Proof

Ultimately, our goal is to prove that each of Jayanti’s three snapshot algorithms is linearizable. To
accomplish this in a way that maximizes proof reuse, we divide our proofs into multiple segments,
which we illustrate in Fig. 4. The proof of Jayanti’s first algorithm is split into the following steps:

(1) Jayanti’s single-writer/single-scanner algorithm (Algorithm 1) consists of the rep events
described in Fig. 6 and satisfies the forwarding snapshot signature that we give in Fig. 7.

(2) Any algorithm consisting of the rep events described in Fig. 6 and satisfying the forwarding
snapshot signature from Fig. 7, also satisfies the general snapshot signature in Fig. 5.

(3) Any algorithms satisfying the general snapshot signature in Fig. 5 is linearizable.

For Jayanti’s remaining algorithms, we incorporate the following two additional steps.

(1a) Jayanti’s two multi-writer algorithms (Algorithms 2 and 3) consist of the rep events described
in Fig. 10 and satisfy the multi-writer forwarding snapshot signature in Fig. 11.

(2a) Any algorithm consisting of the rep events described in Fig. 10 and satisfying the multi-writer
forwarding snapshot signature in Fig. 11, also satisfies the forwarding snapshot signature in
Fig. 7. The linearizability then follows by steps (2) and (3) above, which are thus reused and
shared by all three algorithms.

We proceed to describe the intuition behind the steps (1) to (3), together with the forwarding and
snapshot signatures. The detailed proofs of (1) to (3) are in Section 3. The description and proofs of
(1a) and (2a) are in Section 4.

2.4 Snapshot Signature

Going backwards, we start with the general snapshot signature (Fig. 5). It describes the axioms for
reasoning about the snapshot data structure as a whole, and will interface the linearizablity proofs
by the following lemma, which we will prove in Section 3.

Lemma 2.3. Histories satisfying the Snapshot signature (Fig. 5) are linearizable.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:10 Joakim Öhman and Aleksandar Nanevski

signature Snapshot ≜ Snapshot data-structure

Let 𝑊𝑖 Set of all writes of cell 𝑖 of the snapshot in history

𝑆 Set of all scans of the snapshot in history
∑

W𝑖 ⊆𝑊𝑖 Set of effectful writes of index 𝑖

≺ ⊆ (
⋃

𝑖W𝑖 ∪ 𝑆)
2 Visibility relation

rf−→ ⊆ ≺ ∩
⋃

𝑖W𝑖 × 𝑆 Reads-from visibility

Let ◁ ≜ (⊏ ∪ ≺)+ Happens-before order

∀𝑒, 𝑒 ′. 𝑒 ≺+ 𝑒 ′ =⇒ 𝑒 ′ ̸⊑ 𝑒 (V.1)

∀𝑖, 𝑠 ∈ T (𝑆). ∃𝑤𝑖 . 𝑤𝑖
rf−→ 𝑠 ∧𝑤𝑖 .in = 𝑠.out[𝑖] (S.1)

∀𝑤𝑖 , 𝑠 . 𝑤𝑖
rf−→ 𝑠 =⇒ �𝑤 ′𝑖 . 𝑤𝑖 ◁ 𝑤

′
𝑖 ◁ 𝑠 (S.2)

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝑠 . 𝑤𝑖

rf−→ 𝑠 ∧𝑤 ′𝑖
rf−→ 𝑠 =⇒ 𝑤𝑖 = 𝑤 ′𝑖 (S.3)

∀𝑤𝑖 ,𝑤
′
𝑖 ∈ W𝑖 . 𝑤𝑖 ≠ 𝑤 ′𝑖 =⇒ 𝑤𝑖 ◁ 𝑤

′
𝑖 ∨𝑤

′
𝑖 ◁ 𝑤𝑖 (S.4)

T (𝑊𝑖) ⊆ W𝑖 (S.5)

∀𝑤𝑖 ,𝑤
′
𝑖 ,𝑤 𝑗 ,𝑤

′
𝑗 , 𝑠, 𝑠

′. 𝑤𝑖 ,𝑤 𝑗
rf−→ 𝑠 ∧𝑤 ′𝑖 ,𝑤

′
𝑗

rf−→ 𝑠 ′ ∧𝑤𝑖 ◁ 𝑤
′
𝑖 =⇒ 𝑤 ′𝑗 ̸◁ 𝑤 𝑗 (S.6)

Fig. 5. Signature representation of the properties of a snapshot data-structure.

The Snapshot signature is almost identical to that for atomic registers (Fig. 3); the main distinction
is that we have multiple sets of writes into multiple pointers, scans (observing multiple writes)
instead of reads, the sets of effectful writesW𝑖 , and the extra Properties (S.5) and (S.6).
Not all writes are immediately observable once they have started, therefore we introduce the

set of effectful writesW𝑖 for each 𝑖 . These are the writes that are available for scans to observe
(by definition of rf−→) and which we can order by Property (S.4). Property (S.5) encodes that each
terminated write must have been effectful.
Property (S.6) imposes a form of monotonicity on the ordering of the writes observed by scans

over multiple memory cells. More specifically, if we have two writes 𝑤𝑖 , 𝑤 𝑗 observed by scan 𝑠 ,
and two writes𝑤 ′𝑖 ,𝑤

′
𝑗 observed by scan 𝑠 ′, then the writes into 𝑖 and 𝑗 cannot be ordered in the

opposite way. The property ensures that the scans can be totally ordered in an eventual linearization
order. Indeed, if𝑤𝑖 ◁ 𝑤

′
𝑖 and𝑤

′
𝑗 ◁ 𝑤 𝑗 , and we ordered 𝑠 before 𝑠 ′, then we reach a contradiction by

Property (S.2), because the event 𝑤 𝑗 occurs between 𝑤 ′𝑗 and the scan 𝑠 ′ that observes it. Similar
argument applies if we try to order the scans the other way around.

2.5 Forwarding Signature

The Snapshot signature in Fig. 5 captures the key properties of snapshot algorithms, and we shall
prove linearizability solely out of the axioms of this signature. However, Jayanti’s algorithms have
more in common than merely being snapshot algorithms, as they share the same design principle
of forwarding. We can thus further modularize the proofs by axiomatizing forwarding itself.

To see what the axiomatization should accomplish, wemust first discuss the high-level differences
between Jayanti’s algorithms that the axiomatization must abstract over. We present Algorithms 2
and 3 in detail in Section 4, but for now it suffices to know that in order to support the multi-writer
functionality of Algorithms 2 and 3, we need to allow for different kinds of forwarding that go
beyond simply writing into the auxiliary array B that Algorithm 1 does.
Additionally, to support multi-scanner functionality of Algorithm 3, we need to allow for an

abstract notion of virtual scan. While in a multi-scanner setting several physical scans may run

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:11

resource A : array[𝑛] of AReg Main memory array

event signature write𝑖 ≜ Write into cell 𝑖

𝑎 : A[𝑖] .𝑊 Rep event of writer writing value into A[𝑖]

event signature vscan ≜ Virtual scan

B : array[𝑛] of AReg Forwarding array of this virtual scan

𝑟𝑖 : B[𝑖] .𝑊 Rep event of scanner resetting B[𝑖] by writing ⊥

𝑎𝑖 : A[𝑖] .𝑅 Rep event of scanner reading from A[𝑖]

𝑏𝑖 : B[𝑖] .𝑅 Rep event of scanner reading from B[𝑖]

Fig. 6. Resources and event signatures for abs writes and virtual scans corresponding to Forwarding signature.

concurrently, the key idea of Jayanti for Algorithm 3 is that these scans collaborate to create a
virtual scan (and a corresponding snapshot), of which at most one may exist at any given moment.
Thus, even though Algorithm 3 is physically a multi-scanner, in Section 4.3 we will still be able to
conceptually see it as a single-scanner one.

While rep and abs events originate from execution histories, the virtual scans are artificial events
that the human verifier creates themselves for purposes of verification. In analogy with the concept
of łghost state” that is frequently used in verification of concurrent programs, we can say that
virtual scans are łghost” events. We will further require a mapping that sends each abs scan to a
virtual scan to which the abs scan contributed. Thus, in a multi-scanner algorithm, a number of abs
scans may be mapped to the same virtual scan. The mapping may be partial because some abs scan
may not have yet reached a point for which the virtual scan representing it has been determined.
For single-scanner algorithms, this map is a (total) bijection that identifies virtual and abs scans. In
particular, the intuition about abs scans from Algorithm 1 will suffice to understand virtual scans
in our axiomatization of forwarding principles. In the rest of the text, we use the color green to
visually mark the virtual scans.

2.5.1 Event Signatures. For the Forwarding signature, it is not enough to just consider properties
over the abs events, as for the Snapshot signature, but we also need to consider their rep events.
For this reason, we introduce a special kind of signature, called event signature, to encode which
rep events an abs or virtual event consists of. In particular, for an abs event 𝑒 , we write 𝑒 ∈ sig, if
𝑒’s rep events are enumerated by the fields of the signature sig. If 𝑒 ∈ sig, where sig contains the
field 𝑎, we write ea for the projection 𝑒.𝑎. Similarly, if 𝑒 is a virtual event. We shall further assume
the following properties of structures satisfying event signatures:

(ES.1) Let 𝑒 be an event in a signature with field 𝑎. If 𝑒 is an abs event, then ea.parent = 𝑒 , and thus
also ea ⊆ 𝑒 , by our assumption on event structure in Section 2.2.1. If 𝑒 is a virtual event, we
do not insist on ea.parent = 𝑒 . Virtual event 𝑒 is a custom collection of rep events, whose
parents remain the abs events that invoked them, not the collection that is 𝑒 . Nevertheless,
we still require ea ⊆ 𝑒 .

(ES.2) Any event in an event signature instance is unique to the instance, i.e., if 𝑒, 𝑒 ′ ∈ sig, and sig

contains the field 𝑎, and ea = e′a, then 𝑒 = 𝑒 ′.
(ES.3) Instances of event signatures may have some (or all) of their subevents undefined, unless the

instance is a terminated event, in which case all its subevents must be defined. For example,
if 𝑒 is non-terminated, ea may be undefined. This corresponds to ongoing abs events having
only a subset of its rep events executed so far.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:12 Joakim Öhman and Aleksandar Nanevski

signature Forwarding ≜ Snapshot data-structure with forwarding

Let 𝑊𝑖 Set of all writes of cell 𝑖 of the snapshot in history with each𝑤𝑖 ∈ write𝑖

𝑆 Set of all scans of the snapshot in history
∑

Σ Set of virtual scans with each 𝜎 ∈ vscan

[−]• : 𝑆 ⇀ Σ Partial mapping of abs scans into virtual scans
fwd−−−→ ⊆

⋃
𝑖𝑊𝑖 × Σ Forwarding visibility

Let 𝑤𝑖
rf−→ 𝜎 ≜ (𝑤𝑖a rf−→ 𝜎a𝑖 ∧ 𝜎r𝑖 rf−→ 𝜎b𝑖) ∨𝑤𝑖

fwd−−−→ 𝜎 Reads-from visibility

𝑤𝑖
wr−−→ 𝑤 ′𝑖 ≜ 𝑤𝑖a ◁ 𝑤

′
𝑖a Writing visibility

≺ ≜ rf−→∪ wr−−→ Visibility relation

◁ ≜ (⊏ ∪ ≺)+ Happens-before order

∀𝑠 ∈ dom([−]•). 𝑠• ⊆ 𝑠 (F.1)

∀𝑖, 𝑠 ∈ T (𝑆) . ∃𝑤𝑖 . 𝑤𝑖
rf−→ 𝑠• ∧𝑤𝑖 .in = 𝑠 .out[𝑖] (F.2)

∀𝑒𝑟 ∈ A[𝑖] .𝑊 . ∃𝑤𝑖 . 𝑤𝑖a = 𝑒𝑟 (F.3a)

∀𝜎, 𝑒𝑟 ∈ 𝜎.B[𝑖] .𝑊 . 𝑒𝑟 .in = ⊥ ⇐⇒ ∃𝜎 ′. 𝜎 ′r𝑖 = 𝑒𝑟 (F.3b)

∀𝜎, 𝜎 ′ ∈ Σ. 𝜎 ≠ 𝜎 ′ =⇒ 𝜎 ⊏ 𝜎 ′ ∨ 𝜎 ′ ⊏ 𝜎 (F.4a)

∀𝜎 ∈ Σ. 𝜎r𝑖 ⊏ 𝜎a𝑖 ⊏ 𝜎b𝑖 (F.4b)

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖
fwd−−−→ 𝜎 =⇒ 𝑤𝑖 = 𝑤 ′𝑖 (F.5a)

∀𝜎. T (𝜎b𝑖) ∧ ¬(𝜎r𝑖 rf−→ 𝜎b𝑖) =⇒ ∃𝑤𝑖 . 𝑤𝑖
fwd−−−→ 𝜎 (F.5b)

∀𝑤𝑖 , 𝜎 . 𝑤𝑖
fwd−−−→ 𝜎 =⇒ 𝑤𝑖a ◁ 𝜎b𝑖 ∧ ¬(𝜎r𝑖 rf−→ 𝜎b𝑖) (F.5c)

∀𝑤𝑖 , 𝜎 . 𝜎r𝑖 rf−→ 𝜎b𝑖 ∧𝑤𝑖 ⊏P
rf−→ 𝜎 =⇒ 𝑤𝑖a ◁ 𝜎a𝑖 (F.6)

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖a ◁ 𝜎r𝑖 =⇒ 𝑤𝑖 ̸◁ 𝑤
′
𝑖 (F.7a)

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖 ⊏P
rf−→ 𝜎 =⇒ 𝑤𝑖 ̸◁ 𝑤

′
𝑖 (F.7b)

Fig. 7. Signature representation of the properties of a snapshot data-structure that uses forwarding.

We now present Fig. 6 which consists of the resources and event signatures necessary for the
Forwarding signature. First, we have the array A which corresponds to the main memory that a
forwarding snapshot algorithm operates over. Algorithm 1 clearly has such an array. Next, we have
that every abs write𝑤𝑖 has a unique rep event𝑤𝑖a signifying the physical act of writing into A. This
is clearly true of Algorithm 1, as we have seen. For a virtual scan 𝜎 , the figure postulates an array
B, as well as three rep events 𝜎r𝑖 , 𝜎a𝑖 , and 𝜎b𝑖 , corresponding to resetting B[𝑖], reading from A[𝑖],
and reading from B[𝑖], respectively. In Algorithm 1, we have already described these events under
the names 𝑠r𝑖 , 𝑠a𝑖 , and 𝑠b𝑖 , and similar events will exist for Algorithms 2 and 3 as well. The notation
implies that the array B and the subevents are local fields of 𝜎 . We will make use of the locality of B
in the multi-scanner case, where different virtual scans have different forwarding arrays. In the
case of single-scanner algorithms, the virtual and abs scans coincide, and the forwarding array of
each virtual scan is instantiated with the global forwarding array.

2.5.2 Forwarding Signature Formally. Our axiomatization of forwarding principles is given in Fig. 7.
The signature, which we refer to as Forwarding, declares as inputs the sets of write events𝑊𝑖 (for
each 𝑖), and the set of scan events 𝑆 . It then postulates the existence of a set of virtual scans Σ,
with a mapping [−]• from abs to virtual scans, and a relation fwd−−−→ for visibility by forwarding
that captures abstractly when a virtual scan observes a writer by forwarding. As before, these are

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:13

abstract concepts, known to satisfy only the properties listed in the scope of Σ. We will shortly
provide the intuition for the axioms in Fig. 7, but first, let us enumerate how the axiomatization
abstracts from Algorithm 1, so that the same signature applies to all three algorithms.

• The axiomatization does not assume that we have rep write events for forwarding (𝑤𝑖b).
Instead, it makes forwarding abstract by tying it to the relation fwd−−−→, allowing for multiple
different forwarding methods.
• The axiomatization links virtual scans to abs scans by the function [−]•, to support multiple
scanners. Physical scans can overlap in time, as long as the virtual scans do not.
• The axiomatization does not assume any rep events operating with memory cell X, or for
that matter, that such a cell even exists. Since X is solely used to communicate to writers if
and when to forward, we instead encode the conditions for forwarding in the axioms. This is
necessary because the three algorithms decide differently on whether to forward or not.

2.5.3 Intuition Behind the Forwarding Signature. Out of the forwarding visibility relation fwd−−−→, we
define two additional visibility relations over abstract and virtual events: rf−→ and wr−−→ as shown in
Fig. 7. These relations define what we will use as an abstract notion of a virtual scan observing a
writer directly or by forwarding (rf−→), and a writer observing a prior write (wr−−→), respectively. In
each algorithm, the fwd−−−→ relation will be defined differently, but the definitions of rf−→ and wr−−→ are
constant in terms of fwd−−−→. We next explain each of them.

𝑤𝑖
rf−→ 𝜎 ≜ (𝑤𝑖a rf−→ 𝜎a𝑖 ∧ 𝜎r𝑖 rf−→ 𝜎b𝑖) ∨𝑤𝑖

fwd−−−→ 𝜎

Read visibility (rf−→) captures that a virtual scan 𝜎 either reads the value of𝑤𝑖 by forwarding (disjunct
𝑤𝑖

fwd−−−→ 𝜎) or directly. The direct read requires that the scanner finds the value in A[𝑖] (conjunct
𝑤𝑟𝑎𝑖 rf−→ 𝜎a𝑖) and that the scanner finds ⊥ for the forwarded value in B[𝑖] (conjunct 𝜎r𝑖 rf−→ 𝜎b𝑖).

𝑤𝑖
wr−−→ 𝑤 ′𝑖 ≜ 𝑤𝑖a ◁ 𝑤

′
𝑖a

Write visibility (wr−−→) orders the abs writers of a common memory cell, and is defined by the ordering
of underlying rep writers 𝑤𝑖a. Ordering abs writers this way works because the rep write is the
unique point where the abs writer communicates its value to the data structure. This holds for all
three algorithms including the multi-writer variants.
We next explain the forwarding properties. These are divided into three groups, as shown in

Fig. 7. The first group consists of the structural properties related to writers and scanners.

∀𝑠 ∈ dom([−]•). 𝑠• ⊆ 𝑠 (F.1 revisited)

∀𝑖, 𝑠 ∈ T (𝑆). ∃𝑤𝑖 . 𝑤𝑖
rf−→ 𝑠• ∧𝑤𝑖 .in = 𝑠 .out[𝑖] (F.2 revisited)

Property (F.1) states that each virtual scan must be inside the interval of the abs scan it represents.
Property (F.2) states that a terminated abs scan 𝑠 must have a virtual scan representative that,
for each index 𝑖 , observed some write 𝑤𝑖 such that the value written by 𝑤𝑖 is the one the scan 𝑠

returned for 𝑖 . Property (F.2) is similar to Property (S.1), and essentially says that the observing scan
correctly reads the array. On the other hand, Property (F.1) is similar to a property of linearization
points, whereby a linearization point must reside within the interval of the considered event. Here
instead, we have a whole virtual scan 𝑠• representing when 𝑠 logically occurred.

∀𝑒𝑟 ∈ A[𝑖] .𝑊 . ∃𝑤𝑖 . 𝑤𝑖a = 𝑒𝑟 (F.3a revisited)

Property (F.3a) ensures that the only rep event that can write into A[𝑖] is𝑤𝑖a of some abs write𝑤𝑖 .
This means that only abs writes into cell 𝑖 can have a rep event for writing into A[𝑖]; scans and
writes into a cell different from 𝑖 cannot, since if they did, they would have to be equal to some𝑤𝑖

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:14 Joakim Öhman and Aleksandar Nanevski

as per Property (ES.2) of event signatures. Also, an abs write can write into A[𝑖] at most once, since
any other write must equal𝑤𝑖a.

∀𝜎, 𝑒𝑟 ∈ 𝜎.B[𝑖] .𝑊 . 𝑒𝑟 .in = ⊥ ⇐⇒ ∃𝜎 ′. 𝜎 ′r𝑖 = 𝑒𝑟 (F.3b revisited)

The easiest way to explain Property (F.3b) is to consider its instantiation for Algorithm 1, where
virtual scanners are abs scanners, which, moreover, all share the same array B.

∀𝑒𝑟 ∈ B[𝑖] .𝑊 . 𝑒𝑟 .in = ⊥ ⇐⇒ ∃𝜎 ′. 𝜎 ′r𝑖 = 𝑒𝑟 (F.3b’)

The simplified Property (F.3b’) says that the only rep event that can write ⊥ into B[𝑖] is 𝜎 ′r𝑖 of some
abs scan 𝜎 ′. Thus, no event except scanners can write ⊥ into B[𝑖], and the writing can be done at
most once. Additionally, the rep event 𝜎r𝑖 can only write ⊥ into B[𝑖]. Property (F.3b) generalizes
Property (F.3b’) by allowing for virtual scanners, each of which has their own B array.

∀𝜎, 𝜎 ′ ∈ Σ. 𝜎 ≠ 𝜎 ′ =⇒ 𝜎 ⊏ 𝜎 ′ ∨ 𝜎 ′ ⊏ 𝜎 (F.4a revisited)

Property (F.4a) captures that virtual scans never overlap, and are thus totally ordered. This property
holds for single-scanner algorithms by assumption, but must be proved in the multi-scanner case.

∀𝜎 ∈ Σ. 𝜎r𝑖 ⊏ 𝜎a𝑖 ⊏ 𝜎b𝑖 (F.4b revisited)

Property (F.4b) simply reflects that the rep events of initializing the scan for element 𝑖 , reading A[𝑖],
and then closing the scanning for element 𝑖 by reading B[𝑖], are invoked sequentially in the code of
scan. This is readily visible in Algorithm 1 and remains true in Algorithms 2 and 3.
The second group are the structural properties of the forwarding visibility.

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖
fwd−−−→ 𝜎 =⇒ 𝑤𝑖 = 𝑤 ′𝑖 (F.5a revisited)

∀𝜎. T (𝜎b𝑖) ∧ ¬(𝜎r𝑖 rf−→ 𝜎b𝑖) =⇒ ∃𝑤𝑖 . 𝑤𝑖
fwd−−−→ 𝜎 (F.5b revisited)

∀𝑤𝑖 , 𝜎 . 𝑤𝑖
fwd−−−→ 𝜎 =⇒ 𝑤𝑖a ◁ 𝜎b𝑖 ∧ ¬(𝜎r𝑖 rf−→ 𝜎b𝑖) (F.5c revisited)

Property (F.5a) captures that a scan can observe at most one forwarded write for a given index 𝑖 .
Property (F.5b) says that a forwarding of some write of cell 𝑖 will reach the virtual scan 𝜎 if 𝜎b𝑖
did not observe the writing of ⊥ in B[𝑖] by 𝜎r𝑖 . Contrapositively, 𝜎r𝑖 rf−→ 𝜎b𝑖 holds if no write of
cell 𝑖 was forwarded to 𝜎 . Property (F.5c) states the dual implication direction of Property (F.5b)
and that a forwarded write 𝑤𝑖 must have written into A[𝑖] by 𝑤𝑖a before the scanner 𝜎 read the
forwarded value by 𝜎b𝑖 . This property captures that writers must first write their value directly
before attempting to forward.
The third group are the properties that capture the forwarding principles of Jayanti. We have

originally discovered these properties by extracting the common patterns from our proofs of the
snapshot signature for the three algorithms, and only afterwards discovered that they actually
correspond quite closely to Jayanti’s forwarding principles. To describe how our axioms capture
the forwarding principles, we state the principles below in English, verbatim as Jayanti does, but
using our notation. We also use virtual scans instead of abstract scans to make the connection to
multi-scanner algorithm direct; Jayanti only stated the principles in terms of Algorithm 1. As we
shall see, our axiomatization modifies the principles slightly to encompass Algorithms 2 and 3. We
also highlight and number subsentences so that we can relate them to our axioms in discussion.

(1) Suppose that (i)a scan operation 𝜎 misses a write operation𝑤𝑖 writing 𝑣 because 𝜎 reads A[𝑖]

before𝑤𝑖 writes in A[𝑖]. If (ii)𝑤𝑖 completes before 𝜎 performs 𝑠off , then
(iii)𝑤𝑖 will have surely

informed 𝜎 of 𝑣 by writing 𝑣 in B[𝑖].

(2) Suppose that (iv)a scan operation 𝜎 reads at 𝜎b𝑖 a non-⊥ value in B[𝑖] by some write operation

𝑤𝑖 . Then (a) (v)𝑤𝑖 is concurrent with 𝜎 , and (b) If
(vi)𝑤 ′𝑖 is any write operation that is executed

after𝑤𝑖 , then
(vii)𝑤 ′𝑖 completes only after 𝜎 performs 𝑠off .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:15

We start with Property (F.6), which relates to Principle (1) as follows.

∀𝑤𝑖 , 𝜎 . 𝜎r𝑖 rf−→ 𝜎b𝑖 ∧𝑤𝑖 ⊏P
rf−→ 𝜎 =⇒ 𝑤𝑖a ◁ 𝜎a𝑖 (F.6 revisited)

Here, 𝜎r𝑖 rf−→ 𝜎b𝑖 corresponds to the negation of Statement (iii),𝑤𝑖 ⊏P
rf−→ 𝜎 corresponds to State-

ment (ii), and𝑤𝑖a ◁ 𝜎a𝑖 corresponds to the negation of Statement (i), altogether combining into an
equivalent, by contraposition, of Principle (1). We now explain each correspondence individually.

• 𝜎r𝑖 rf−→ 𝜎b𝑖 states that nothing was forwarded to 𝜎 , because the event 𝜎b𝑖 of reading B[𝑖]
observes the event 𝜎r𝑖 of clearing B[𝑖]. This is a slightly stronger statement than the negation
of Statement (iii), namely, that the write𝑤𝑖 was not forwarded to 𝜎 . The difference between
these statements will be covered by Property (F.7b), which will handle the scenario where
another write, not𝑤𝑖 , is forwarded to 𝜎 .
• 𝑤𝑖 ⊏P

rf−→ 𝜎 , where ⊏P rf−→ is the relational composition of ⊏ andP and rf−→, roughly translates
to ł𝑤𝑖 terminates before some other writer (possibly writing to a different memory cell)
that in turn was observed by 𝜎”. We know such other writer exists, since the domain of rf−→,
the last relation in the composition, consists only of writers. While this looks nothing like
Statement (ii), both statements imply that 𝑤𝑖 must have been forwarded if the writing to
A[𝑖] was missed. We prove this with different proofs for each algorithm, which we give in
the appendices,1 with Lemma C.2 for Algorithm 1 and Lemma D.2 for Algorithms 2 and 3.
We use the statement𝑤𝑖 ⊏P

rf−→ 𝜎 , instead of potentially another statement involving 𝑠off (as
Jayanti’s original statement does), because it makes the forwarding signature export fewer
rep events, thus making it a bit more parsimonious.
• 𝑤𝑖a ◁ 𝜎a𝑖 states that𝑤𝑖a wrote to A[𝑖] before 𝜎a𝑖 read from it, which directly corresponds to
the negation of Statement (i).

For Principle (2a), we need to further deviate from Jayanti’s original formulation, since the
latter is too specific to Algorithm 1, and does not scale as-is to the multi-writer algorithms. The
point of this principle is to ensure that a writer may only forward values that are, intuitively,
łcurrent”. The principle itself ensures this property, but only in the single-writer case of Algorithm 1.
Indeed, in Algorithm 1, a writer only forwards its own value (and other writes to the same pointer
are prohibited by assumption); therefore, if a write is concurrent to the scan, then it can only
forward a value that is current. But in a multi-writer case, as we shall see in Section 4, we want
to allow a writer to forward values of other writers. In particular, a writer that writes and then
stalls indefinitely could still be forwarded by another write to some concurrent scan. But we still
need to ensure that the forwarded write is not arbitrarily old. We do so by insisting that a write
𝑤𝑖 forwarded to 𝜎 cannot occur before a write𝑤 ′𝑖 which wrote to A[𝑖] with𝑤𝑖a before 𝜎 started,
i.e., executed 𝜎r𝑖 . In other words, we require that the forwarded write𝑤𝑖 does not łhappen before”
any write𝑤 ′𝑖 that started before the start of the scan. A write𝑤 ′𝑖 has a newer value, so its existence
should prevent𝑤𝑖 from being forwarded. We formalize this as Property (F.7a).

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖a ◁ 𝜎r𝑖 =⇒ 𝑤𝑖 ̸◁ 𝑤
′
𝑖 (F.7a revisited)

This captures that writers must forward to scan 𝜎 either the latest write that wrote to A[𝑖] before
𝜎r𝑖 , or some write that occurred after 𝜎r𝑖 , thus ensuring that the forwarded write is current.

Lastly, Property (F.7b) relates to the contrapositive of Principle (2b).

∀𝑤𝑖 ,𝑤
′
𝑖 , 𝜎 . 𝑤𝑖

fwd−−−→ 𝜎 ∧𝑤 ′𝑖 ⊏P
rf−→ 𝜎 =⇒ 𝑤𝑖 ̸◁ 𝑤

′
𝑖 (F.7b revisited)

Again,𝑤𝑖
fwd−−−→ 𝜎 directly corresponds to Statement (iv). Formal statement𝑤 ′𝑖 ⊏P

rf−→ 𝜎 corresponds
to the negation of Statement (vii), for the same reason as in Property (F.6), since (ii) is the negation
of (vii). Finally,𝑤𝑖 ̸◁ 𝑤

′
𝑖 directly corresponds to the negation of (vi), with the exception that we use

1All appendices are in the supplementary materials section of the ACM Digital Library.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:16 Joakim Öhman and Aleksandar Nanevski

◁ instead of Jayanti’s łexecuted after” to relate the writes𝑤𝑖 and𝑤
′
𝑖 . The two correspond in the

single-writer case, but our statement extends to the multi-writer case as well.
Algorithm 1 satisfies this set of properties of the Forwarding signature, and they are sufficient

to prove that an algorithm is a snapshot algorithm according to the Snapshot signature, which is
in turn sufficient to prove linearizability. In Section 3 we sketch why these claims holds, and in
Section 4 we sketch how Algorithms 2 and 3 satisfy the Forwarding signature. The complete proofs
are in the appendices in the supplementary materials section of the ACM Digital Library.

3 PROOF SKETCHES FOR ALGORITHM 1

We now sketch the proofs of our signatures implying linearizability, to illustrate the gist of reasoning
by visibility. We begin by showing how histories that satisfy the Snapshot signature are linearizable.
This proof is based on a similar proof by Chakraborty et al. [2015] for queues.

Lemma 2.3. Histories satisfying Snapshot signature (Fig. 5) are linearizable.

Proof sketch. Following Definition 2.2 of linearizability, we start by choosing a visibility rela-
tion ≺ that constructs the set 𝐸𝑐 = {𝑒 | ∃𝑒

′ ∈ T (𝐸) . 𝑒 ≺∗ 𝑒 ′}, and then extend it to a linearization <.
Let ≺ be the visibility relation obtained by restricting the visibility relation postulated by Snapshot
to T (𝑆) ∪

⋃
𝑖W𝑖 . Events outside of the restriction are non-terminated scans or writes that have

not executed their effect yet; they do not modify the abstract state, and are hence not necessary
for linearization. Additionally, by Property (S.5) we know that every terminated write is effectful.
Thus going forward, we consider 𝐸𝑐 = T (𝑆) ∪

⋃
𝑖W𝑖 .

We next extend the happens-before order ◁ on the selected set of events as follows. The idea is
to keep extending this order with more relations between the events of the selected set until we
reach a total order, which will be the desired linearization order. We first induce a helper order

◁𝑤 ≜ (◁ ∪ wrDiff−−−−−→)
+

which ranges over writes (into different cells), where𝑤𝑖
wrDiff−−−−−→ 𝑤 ′𝑗 holds if 𝑖 ≠ 𝑗 and there exists a

write𝑤 𝑗 and a scan 𝑠 such that𝑤𝑖 ,𝑤 𝑗
rf−→ 𝑠 and𝑤 𝑗 ◁ 𝑤

′
𝑗 . Or, in English, we order𝑤𝑖 before𝑤

′
𝑗 , if

𝑤𝑖 is observed by some scan along with𝑤 𝑗 , and𝑤 𝑗 is ordered before𝑤 ′𝑗 . The ◁𝑤 order is a partial

order by Properties (S.1) to (S.4) and (S.6) (see Lemma A.2 from Appendix A for the complete proof).
Next, we select an arbitrary total order <𝑤 over writes that extends ◁𝑤 . Since the set of selected

events is finite, such a total order always exists by Zorn’s Lemma. We use the order <𝑤 to determine
which event we will consider as being last in the eventually constructed linearization order. We say
that a write is latest-in-time if it is the greatest in <𝑤 , while a scan is latest-in-time if it is maximal
in ◁ and all the writes that it observes are the greatest in <𝑤 for their respective memory cell. As
long as the set of events is non-empty, there will exist a latest-in-time event under this definition by
Properties (S.1) to (S.4) (see Lemma A.4 from Appendix A for the complete proof). By inductively
selecting the latest-in-time event, we construct a total order of events that is consistent with ◁ and
snapshot semantics, and is thus a linearization order. More concretely, we add the latest-in-time
event to the end of the linearization order, forming a chain with previously added events, and
repeat this step with the set of events excluding the last selected. □

Next, we show that histories satisfying the Forwarding signature also satisfy the Snapshot
signature. Because some Forwarding properties use rep events, to be able to efficiently use them, we
first need a lemma that turns a ◁ relation between virtual or abs events into a ◁ relation between
rep events. The lemma will also be useful in showing that Algorithm 1 (and Algorithms 2 and 3 in
Section 4) satisfy the Forwarding signature, once Properties (F.4b) and (F.5c) have been proven.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:17

Lemma 3.1 (Happens-before of subevents). Assume Properties (F.4b) and (F.5c). For events

𝑒, 𝑒 ′ ∈
⋃

𝑖𝑊𝑖 ∪ Σ of the Forwarding signature (Fig. 7) where 𝑒 ′ is populated with at least one rep event

from its event structure (Fig. 6), if 𝑒 ◁ 𝑒 ′ holds (where ◁ follows the definition from Fig. 7) then there

exists 𝑒𝑟 and 𝑒
′
𝑟 where 𝑒𝑟 ◁ 𝑒 ′𝑟 holds, with 𝑒𝑟 and 𝑒

′
𝑟 belonging to 𝑒 and 𝑒

′ respectively.

Proof. We can view 𝑒 ◁ 𝑒 ′ as a chain of ◁1 relations connecting 𝑒 and 𝑒
′; that is, 𝑒 ◁1 · · · ◁1 𝑒

′,
where by definition ◁1 = (⊏∪≺) = (⊏∪ wr−−→∪ rf−→). It is easy to see that each abs event in this chain
is populated with a rep event. Indeed, if an abs event’s relation ◁1 to its successor is realized by ⊏,
then the event is terminated and all of its rep events are executed (and by our axioms, each abs
event must have at least one rep event). Alternatively, if the abs event’s relation ◁1 to its successor
is realized by ≺, then the event must be populated as per the definitions of reads-from and writing
visibility in Fig. 7, and in the fwd−−−→ case by Property (F.5c). This leaves out 𝑒 ′, which has no successor,
but 𝑒 ′ is populated by assumption.

Now the proof is by induction on the length of the above chain. The base case is when 𝑒 ◁1 𝑒
′. If

𝑒 ⊏ 𝑒 ′, the proof is by Property (RB.2) giving us 𝑒𝑟 ⊏ 𝑒 ′𝑟 for arbitrary 𝑒𝑟 and 𝑒
′
𝑟 belonging to 𝑒 and

𝑒 ′ respectively. If 𝑒 wr−−→ 𝑒 ′, the proof is by the definition of wr−−→ in Fig. 7, giving us𝑤𝑖a ◁ 𝑤
′
𝑖a with

𝑒 = 𝑤𝑖 and 𝑒
′
= 𝑤 ′𝑖 . For the last case, 𝑒

rf−→ 𝑒 ′, we have 𝑒 = 𝑤𝑖 and 𝜎
′
= 𝑒 ′ with either 𝑤𝑖a rf−→ 𝜎 ′a𝑖

or 𝑤𝑖
fwd−−−→ 𝜎 ′. The former case directly exhibits rep events that satisfy our goal. The latter does

so as well, since by Property (F.5c), it must be 𝑤𝑖a ◁ 𝜎 ′b𝑖 . The inductive step is similar, with the
addition that we need transitivity of ◁ and Property (F.4b) to join events. □

Lemma 3.2. Histories satisfying Forwarding signature (Fig. 7) also satisfy Snapshot signature.

Proof sketch. We start by determining the instantiations ofW𝑖 , rf−→, and ≺ for the Snapshot
signature. Since the effect of𝑤𝑖 is observable only after the execution of𝑤𝑖a, we let𝑤𝑖 ∈ W𝑖 iff𝑤𝑖a

is defined. For the other notions, we first define a helper visibility over scans sc−→, which we use to
define ≺. The highlighted relations rf−−−→ and wr−−−→ originate from the Forwarding signature.

𝑤𝑖
rf−→ 𝑠 ≜ 𝑤𝑖

rf−−−→ 𝑠• 𝑠 sc−→ 𝑠 ′ ≜ 𝑠• ⊏ 𝑠 ′• ≺ ≜ rf−→∪ wr−−−→∪ sc−→

Property (V.1) holds since if 𝑒 ≺+ 𝑒 ′ and 𝑒 ′ ⊑ 𝑒 , then we can construct a ◁-cycle of rep events
with Lemma 3.1, contradicting irreflexivity of ◁ (Lemma 2.1). Property (S.1) holds directly by
Property (F.2). Property (S.3) holds because by the definition of𝑤𝑖

rf−−−→ 𝜎 in Forwarding signature,
it is either 𝑤𝑖a rf−→ 𝜎a𝑖 for which Property (M.3) ensures uniqueness, or 𝑤𝑖

fwd−−−→ 𝜎 where Prop-
erty (F.5a) ensures uniqueness. Property (S.4) of total ordering on effectful writes follows because
in Forwarding signature,𝑤𝑖

wr−−−→ 𝑤 ′𝑖 is defined as𝑤𝑖a ◁ 𝑤
′
𝑖a, and the rep writes are totally ordered

by Property (M.4). Property (S.5) that all terminated writes are effectful holds because for every
terminated write𝑤𝑖 we must have𝑤𝑖a defined.
We next prove Property (S.2). We sketch the proof by assuming there is a write 𝑤 ′𝑖 such that

𝑤𝑖 ◁ 𝑤
′
𝑖 ◁ 𝑠 where 𝑤𝑖

rf−→ 𝑠 , and then deriving a contradiction. Unfolding the definition of rf−→ in
𝑤𝑖

rf−→ 𝑠 , we get𝑤𝑖
rf−−−→ 𝜎 where 𝜎 = 𝑠•. Also, from𝑤 ′𝑖 ◁ 𝑠 , using Property (F.1), it turns out that

𝑤 ′𝑖 ◁ 𝜎 , and moreover, the latter splits into two possible cases:𝑤 ′𝑖 ⊏P
rf−→ 𝜎 and𝑤 ′𝑖a ◁ 𝜎r𝑖 . The full

proof of how the cases follow from the premise and that they exhaust the possibilities is given in
Appendix B. Note that the proposition 𝑤 ′𝑖 ⊏P

rf−→ 𝜎 is the key part of Properties (F.6) and (F.7b),
while 𝑤 ′𝑖a ◁ 𝜎r𝑖 is the key part of Property (F.7a); in fact, this exhaustion of cases of 𝑤 ′𝑖 ◁ 𝜎 is
what let us rediscover and mathematically formulate the forwarding principles. The proof now
proceeds by analyzing𝑤𝑖

rf−−−→ 𝜎 . From the definition of reads-from visibility in Fig. 7, we also get
two cases: (𝑤𝑖a rf−→ 𝜎a𝑖 ∧ 𝜎r𝑖 rf−→ 𝜎b𝑖) and𝑤𝑖

fwd−−−→ 𝜎 , for a total of four cases when combined with
the above. In each case, contradiction follows easily, relying in different cases on a different subset
of Properties (F.6), (F.7a), (F.7b) and (M.2).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:18 Joakim Öhman and Aleksandar Nanevski

Finally, we prove Property (S.6); that is,𝑤𝑖 ,𝑤 𝑗
rf−→ 𝑠 and𝑤 ′𝑖 ,𝑤

′
𝑗

rf−→ 𝑠 ′ with𝑤𝑖 ◁ 𝑤
′
𝑖 and𝑤

′
𝑗 ◁ 𝑤 𝑗

lead to contradiction. As before, we first transform the assumptions𝑤𝑖 ,𝑤 𝑗
rf−→ 𝑠 and𝑤 ′𝑖 ,𝑤

′
𝑗

rf−→ 𝑠 ′

into 𝑤𝑖 ,𝑤 𝑗
rf−→ 𝜎 and 𝑤 ′𝑖 ,𝑤

′
𝑗

rf−→ 𝜎 ′, where 𝜎 = 𝑠• and 𝜎 ′ = 𝑠 ′•. Next, by property Property (F.4a),

the virtual scans are totally ordered by ⊏, thus either 𝜎 ⊏ 𝜎 ′ or 𝜎 ′ ⊏ 𝜎 (the case when 𝜎 = 𝜎 ′

contradicts reads-from uniqueness Property (S.3)). In the first case (the second is symmetric), we
have𝑤 ′𝑗 ◁ 𝑤 𝑗

rf−→ 𝜎 ⊏ 𝜎 ′, and thus also𝑤 ′𝑗 ◁ 𝑤 𝑗 ◁ 𝜎 ′. In other words, we have a scan 𝜎 ′ observing

a write 𝑤 ′𝑗 with another intervening write 𝑤 𝑗 showing up in between. But this contradicts the

argument we carried out for Property (S.2) above. □

Lemma 3.3. Every execution of Algorithm 1 satisfies the Forwarding signature (Fig. 7).

Proof sketch. We instantiate the set of virtual scans to be the same as the set of abs scans
(since Algorithm 1 is single-scanner), and define [−]• by 𝑠• = 𝑠 . Property (F.1), requiring 𝑠• ∈ 𝑠 ,
follows immediately because every event 𝑒 satisfies 𝑒 ⊆ 𝑒 . Since Algorithm 1 is a single-scanner
algorithm, the total order of virtual scans Property (F.4a) naturally follows.

We instantiate forwarding visibility𝑤𝑖
fwd−−−→ 𝑠 ≜ 𝑤𝑖b rf−→ 𝑠b𝑖 , to directly capture how forwarding

is defined for Algorithm 1. Properties (F.2), (F.3a), (F.3b) and (F.4b) hold by the structure of the algo-
rithm, while Properties (F.5a) to (F.5c) follows from the fwd−−−→ instantiation (proved in Appendix C).
For the remaining Properties (F.6) to (F.7b), we need two helper lemmas:

• Lemma C.1: 𝑠on rf−→ 𝑤𝑖x iff we have 𝑠on ◁ 𝑤𝑖x and 𝑠off ̸◁ 𝑤𝑖x.
• Lemma C.2: If𝑤 ′𝑖 ⊏P

rf−→ 𝑠 then 𝑠off ̸◁ 𝑤
′
𝑖x and if𝑤 ′𝑖b was executed, then𝑤

′
𝑖b ◁ 𝑠b𝑖 .

(The above lemmas are also proved in Appendix C.) We focus here on proving Property (F.6) which
involves showing if𝑤 ′𝑖 ⊏P

rf−→ 𝑠 and 𝑠r𝑖 rf−→ 𝑠b𝑖 then𝑤
′
𝑖a ◁ 𝑠a𝑖 . By Lemma C.2, we have 𝑠off ̸◁ 𝑤

′
𝑖b and

𝑤 ′𝑖b ◁ 𝑠b𝑖 if𝑤
′
𝑖bwas executed. Consider if we have 𝑠on ◁ 𝑤

′
𝑖x, then by Lemma C.1 we have 𝑠on rf−→ 𝑤 ′𝑖x

which in turn implies that𝑤 ′𝑖b must have executed, however that contradicts Property (M.2) by𝑤 ′𝑖b
occurring in between 𝑠r𝑖 rf−→ 𝑠b𝑖 , thus we must have 𝑠on ̸◁ 𝑤

′
𝑖x. By Property (RB.1) over𝑤 ′𝑖a ⊏ 𝑤 ′𝑖x

and 𝑠on ⊏ 𝑠a𝑖 , since 𝑠on ̸◁ 𝑤
′
𝑖x contradicts 𝑠on ⊏ 𝑤 ′𝑖x, we must have𝑤 ′𝑖a ⊏ 𝑠a𝑖 , which is our goal. □

4 MULTI-WRITER ALGORITHMS

To allow for correct non-blocking algorithms with multiple concurrent writers, as well as for
multiple concurrent scanners in the case of Algorithm 3, Jayanti uses LL (load-link), SC (store-
conditional) and VL (validate) operations [Jensen et al. 1987] in addition to simple memory mutation
and dereference. We thus need to extend the register signature to account for the new operations.
Additionally, Algorithms 2 and 3, both beingmulti-writer algorithms share more structure thanwhat
we capture in the Forwarding signature of Fig. 7.We thus introduce a newMWForwarding signature
to capture the commonality of the multi-writer algorithms. We then show that histories satisfying
MWForwarding also satisfy Forwarding and that Algorithms 2 and 3 satisfy MWForwarding.

4.1 LL/SC Registers

For a memory cell X, LL(X), or load-link, reads from, and returns the value of X. It also records
the time of the read, for use in future SC and VL operations of the same thread. SC(X, 𝑣), or store-
conditional, writes 𝑣 into X and returns true if no other write into X occurred since the most recent
LL(X) from the same thread. Otherwise, SC returns false, keeping X unchanged. Finally, VL(X),
or validate, returns truth values identically to SC, but does not mutate X.
To capture the properties of memory with the LL, SC and VL operations, we introduce a new

signature in Fig. 8, which we call LL/SC registers, or LLReg for short. It extends AReg from Fig. 3.
We will treat each execution of LL, SC and VL as a read-like event, i.e., they will observe some
write by rf−→. Additionally, we denote the LL visibility ll−→ to link LL events with their corresponding

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:19

signature LLReg ≜ LL/SC Register

Let 𝑊,𝑅, LL, SC,VL Set of all writes, reads, LL, SC, and VL operations

S ⊆ SC ∪ VL Set of all successful SC and VL operations

𝑊𝑐 =𝑊 ∪ (SC ∩ S) Set of all write-like events of the register

𝑅𝑐 = 𝑅 ∪ LL ∪ SC ∪ VL Set of all read-like events of the register
∑

≺ ⊆ (𝑊 ∪ 𝑅𝑐)
2 Visibility relation

rf−→ ⊆ ≺ ∩𝑊𝑐 × 𝑅𝑐 Reads-from visibility
ll−→ ⊆ ≺ ∩ LL × (SC ∪ VL) LL visibility

Let ◁ ≜ (⊏ ∪ ≺)+ Happens-before order

∀𝑒, 𝑒 ′. 𝑒 ≺+ 𝑒 ′ =⇒ 𝑒 ′ ̸⊑ 𝑒 (V.1)

∀𝑟 ∈ T (𝑅𝑐). ∃𝑤 ∈𝑊𝑐 . 𝑤 rf−→ 𝑟 (M+.1a)

∀𝑤 ∈𝑊𝑐 , 𝑟 ∈ T (𝑅 ∪ LL). 𝑤 rf−→ 𝑟 =⇒ 𝑤.in = 𝑟 .out (M+.1b)

∀𝑐 ∈ T (SC ∪ VL). 𝑐 .out = booleanOf (𝑐 ∈ S) (M+.1c)

∀𝑤 ∈𝑊𝑐 , 𝑟 ∈ 𝑅𝑐 . 𝑤 rf−→ 𝑟 =⇒ �𝑤 ′ ∈𝑊𝑐 . 𝑤 ◁ 𝑤
′ ◁ 𝑟 (M+.2)

∀𝑤,𝑤 ′, 𝑟 . 𝑤 rf−→ 𝑟 ∧𝑤 ′ rf−→ 𝑟 =⇒ 𝑤 = 𝑤 ′ (M+.3)

∀𝑤,𝑤 ′ ∈𝑊𝑐 . 𝑤 ≠ 𝑤 ′ =⇒ 𝑤 ◁ 𝑤 ′ ∨𝑤 ′ ◁ 𝑤 (M+.4)

∀𝑐 ∈ SC ∪ VL. ∃𝑙 ∈ T (LL). 𝑙 ll−→ 𝑐 (M+.5)

∀𝑙, 𝑐 . 𝑙 ll−→ 𝑐 =⇒ 𝑙 .parent = 𝑐.parent ∧ �𝑙 ′ ∈ LL. 𝑙 ◁ 𝑙 ′ ◁ 𝑐 (M+.6)

∀𝑤,𝑤 ′, 𝑙, 𝑐 . 𝑙 ll−→ 𝑐 ∧𝑤 rf−→ 𝑙 ∧𝑤 ′ rf−→ 𝑐 =⇒ (𝑤 = 𝑤 ′ ⇐⇒ 𝑐 ∈ S) (M+.7)

Fig. 8. Signature for atomic register with LL/SC/VL operations.

SC/VL events. To capture the concept of SC/VL operations being successful, we introduce the set
of successful events S. If an SC event is in S, it was successful and must have written to memory,
therefore we treat it as a write-like event. These sets are formally defined in the top part of Fig. 8.
Further, referring to Fig. 8, the Properties (M+.1a) to (M+.4) are almost identical to (M.1) to

(M.4) from AReg from Fig. 3. The main difference is that we substitute quantification over writes
and reads with quantification over write-like events (𝑊𝑐 =𝑊 ∪ (SC ∩ S)) and read-like events
(𝑅𝑐 = 𝑅 ∪ LL ∪ SC ∪ VL), respectively. We also split Property (M.1) into three: (M+.1a) says that
each terminated read-like event has some observed write-like event; (M+.1b) says that the output of
reads and LL is the same as the input of the observed write-like event, and (M+.1c) says that the
output of SC and VL depends on its success. Additionally, Property (M+.5) states that each SC and
VL event has a terminated LL event it is related to in ll−→. Property (M+.6) says that each ll−→ pair has
the same abs parent, capturing that the two events of the pair were executed in the same thread
(as per our assumption in Section 2.2.1 that each event is single-threaded), and that no other LL
event occurs in between the pair. Finally, Property (M+.7) captures that successful events observe
the same write-like event as their ll−→-related LL event, meaning no other modifications occurred
between the LL event and the successful event.
There are several important properties of LL/SC/VL that the algorithms relies upon for syn-

chronization. We codify them in the following three lemmas and illustrate in Fig. 9. For each of the
lemmas, the events 𝑙 , 𝑐 ,𝑤 , and variants, operate over the same memory cell X : LLReg.

Lemma 4.1. Let 𝑙 ll−→ 𝑐 and 𝑙 ′ ll−→ 𝑐 ′ with 𝑐, 𝑐 ′ ∈ T (SC ∩ S). If 𝑐 ◁ 𝑐 ′ then 𝑐 ◁ 𝑙 ′.

Proof. By Property (M+.5), we know that 𝑙 and 𝑙 ′ are terminated, and by Property (M+.1a), we
have that each of 𝑙 , 𝑙 ′, 𝑐 and 𝑐 ′ observes some write-like event. By Property (M+.7) with 𝑐, 𝑐 ′ ∈ S,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:20 Joakim Öhman and Aleksandar Nanevski

LL SC

S

LL SC

S

(a) Lemma 4.1: Successful LL/SC
pairs do not overlap.

LL SC

∃𝑤

(b) Lemma 4.2: There will always
exist some write-like event in be-
tween an LL/SC pair.

LL SC LL SC

∃ LL SC
S

(c) Lemma 4.3: If SC is the only
kind of write, then there exists a
writing LL/SC pair in the interval
of two consecutive LL/SC pairs.

Fig. 9. Illustration of key properties of LL/SC.

then 𝑙 and 𝑐 observe the same write-like event, and dually for 𝑙 ′ and 𝑐 ′, i.e., there exists𝑤 and𝑤 ′

such that𝑤 rf−→ 𝑙 and𝑤 rf−→ 𝑐 and𝑤 ′ rf−→ 𝑙 ′ and𝑤 ′ rf−→ 𝑐 ′. By Property (M.4), we either have𝑤 ′ ◁ 𝑐
or 𝑐 P 𝑤 ′. In the former case, we have𝑤 ′ ◁ 𝑐 ◁ 𝑐 ′, which contradicts Property (M.2) by there being
a 𝑐 in between𝑤 ′ rf−→ 𝑐 ′. Thus, we must have the latter case, giving us 𝑐 P 𝑤 ′, letting us construct
𝑐 P 𝑤 ′ rf−→ 𝑙 ′ which implies our goal 𝑐 ◁ 𝑙 ′. □

Lemma 4.2. Let 𝑙 ll−→ 𝑐 with either 𝑐 ∈ T (SC) or 𝑐 ∈ T (VL \ S). Then there exists some 𝑤 ∈𝑊𝑐

such that𝑤 ̸◁ 𝑙 and𝑤 P 𝑐 .

Proof. If 𝑐 ∈ T (SC ∩ S), then 𝑐 must have successfully written; thus 𝑐 = 𝑤 trivially satisfies
𝑤 P 𝑐 and𝑤 ̸◁ 𝑙 . The latter holds, because otherwise we get 𝑐 ◁ 𝑙 and 𝑙 P 𝑐 and thus 𝑐 ◁ 𝑐 which
contradicts irreflexivity of ◁. Next, consider 𝑐 ∉ S, where 𝑐 ∈ T (SC ∪ VL).
By Property (M+.5), 𝑙 is terminated, and by Property (M+.1a), for 𝑙 and 𝑐 there exist write-like

events 𝑤,𝑤 ′ ∈ 𝑊𝑐 observed by 𝑙 and 𝑐 , respectively. By Property (M+.7), these write-like events
must be distinct, because otherwise 𝑐 would have been successful. In other words, 𝑤 rf−→ 𝑙 and
𝑤 ′ rf−→ 𝑐 where𝑤 ≠ 𝑤 ′. Taking𝑤 ′ to be the required write of the lemma, we trivially have𝑤 ′ P 𝑐 .
To show that also𝑤 ′ ̸◁ 𝑙 , we assume𝑤 ′ ◁ 𝑙 and derive a contradiction. By Property (M.4), we either
have𝑤 ◁ 𝑤 ′ or𝑤 ′ ◁ 𝑤 . In the first case, we contradict Property (M+.2) for𝑤 rf−→ 𝑙 by𝑤 ◁ 𝑤 ′ ◁ 𝑙 .
In the second case, we contradict Property (M+.2) for𝑤 ′ rf−→ 𝑐 by𝑤 ′ ◁ 𝑤 rf−→ 𝑙 ll−→ 𝑐 . □

Lemma 4.3. Let 𝑙 ll−→ 𝑐 ⊏ 𝑙 ′ ll−→ 𝑐 ′ where 𝑐, 𝑐 ′ ∈ T (SC). If within the time frame of the events 𝑙 , 𝑙 ′, 𝑐 ,

and 𝑐 ′ there are no mutations to register X except by SC, then there exist some 𝑙 ′′ and 𝑐 ′′ (over X) with

𝑙 ′′ ll−→ 𝑐 ′′ such that 𝑙 ′′ ̸◁ 𝑙 and 𝑐 ′′ P 𝑐 ′ and 𝑐 ′′ ∈ SC ∩ S.

Proof. From the assumption, by Lemma 4.2, there exists some 𝑐0 and 𝑐
′
0 such that 𝑐0 ̸◁ 𝑙 and

𝑐0 P 𝑐 and 𝑐 ′0 ̸◁ 𝑙
′ and 𝑐 ′0 P 𝑐 ′. Since there are no other writes, we can only have 𝑐0, 𝑐

′
0 ∈ SC ∩ S,

by Property (M+.5) there has to be some 𝑙 ′0 such that 𝑙 ′0
ll−→ 𝑐 ′0. Let 𝑙

′
0 and 𝑐

′
0 be the existentials, we

trivially have 𝑐 ′0 P 𝑐 ′ and 𝑐 ′0 ∈ SC ∩ S. For 𝑙
′
0 ̸◁ 𝑙 , assume we have 𝑙 ′0 ◁ 𝑙 , we derive a contradiction.

We must have 𝑐0 ◁ 𝑐
′
0, since we otherwise we contradict 𝑐

′
0 ̸◁ 𝑙

′ by 𝑐 ′0 ◁ 𝑐0 P 𝑐 ⊏ 𝑙 ′, meaning we
also must have 𝑐0 ◁ 𝑙

′
0 for 𝑐

′
0 to be successful, however this contradicts 𝑐0 ̸◁ 𝑙 by 𝑐0 ◁ 𝑙

′
0 ◁ 𝑙 . □

Lemma 4.1 says that if we have two successful LL/SC pairs, then the intervals of the two pairs do
not overlap. To see the intuition behind the other two lemmas, consider the special case when the
order ◁ is total (e.g., it is a linearization order), so that ̸◁ is equivalent to Q. In that case, Lemma 4.2
says that an LL/SC interval, or an LL/VL interval with a failing VL, must contain some succesful
write-like event. Similarly, Lemma 4.3 says there exists a successful LL/SC interval contained
within the interval defined by two sequential LL/SC intervals, even if the latter two intervals
themselves correspond to failing SC’s. The last property will be used by multi-writer algorithms as
follows. Referring to Algorithm 2, a write procedure will try to execute forwarding by invoking two
sequential intervals of LL/SC pairs into the cell B[𝑖]. Even if both SC’s fail, Lemma 4.3 guarantees

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:21

resource A : array[𝑛] of val
resource B : array[𝑛] of val ∪ {⊥}
resource X : B := false

1: write(𝑖 : N, 𝑣 : val) ≜ ⊲ 𝑤𝑖

2: A[𝑖] := 𝑣 ⊲ 𝑤𝑖a

3: 𝑥 ← LL(X) ⊲ 𝑤𝑖x

4: if 𝑥 then

5: forward(𝑖) ⊲ 𝑤𝑖 f1
6: forward(𝑖) ⊲ 𝑤𝑖 f2

7: forward(𝑖 : N) ≜ ⊲ 𝑓

8: LL(B[𝑖]) ⊲ 𝑓b

9: 𝑣 ← A[𝑖] ⊲ 𝑓a

10: 𝑥 ′ ← VL(X) ⊲ 𝑓x

11: if 𝑥 ′ then SC(B[𝑖], 𝑣) ⊲ 𝑓b

12: scan: array[𝑛] of val ≜ ⊲ 𝑠

13: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
14: B[𝑖] := ⊥ ⊲ 𝑠r𝑖

15: X := true ⊲ 𝑠on
16: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
17: 𝑎 ← A[𝑖] ⊲ 𝑠a𝑖
18: 𝑉 [𝑖] := 𝑎

19: X := false ⊲ 𝑠off
20: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
21: 𝑏 ← B[𝑖] ⊲ 𝑠b𝑖
22: if 𝑏 ≠ ⊥ then 𝑉 [𝑖] := 𝑏

23: return 𝑉

Algorithm 2. Jayanti’s multi-writer, single-scanner snapshot algorithm.

resource A : array[𝑛] of AReg

resource X : LLReg

event signature vscan+ ≜

B : array[𝑛] of LLReg

𝑟𝑖 : B[𝑖] .𝑊

𝑎𝑖 : A[𝑖] .𝑅

𝑏𝑖 : B[𝑖] .𝑅

on : X.𝑊𝑐

on : X.𝑊𝑐 or X.𝑅𝑐
off : X.𝑊𝑐

off : X.𝑊𝑐 or X.𝑅𝑐

event signature write𝑖+ ≜

𝑎 : A[𝑖] .𝑊

𝑥 : X.LL

𝑓1, 𝑓2 ∈ forward𝑖

event signature forward𝑖 ≜

Bcell : LLReg

𝑏 : Bcell .LL

𝑎 : A[𝑖] .𝑅

𝑥 : X.VL

𝑏 : Bcell .SC

Fig. 10. Resources and event signatures for abs writes, virtual scans and virtual forwarding corresponding to
MWForwarding. The rep events correspond to the rep events with the same suffix in Algorithm 2, with the
exception of on and off which are new and correspond to a potential observer of on and off respectively.

that another concurrent write will have invoked a successful LL/SC interval, thus forwarding the
same value on behalf of the original write.

4.2 Multi-Writer Forwarding Signature

4.2.1 Description of Algorithm 2. We first discuss Algorithm 2, which will motivate the definition of
MWForwarding signature. The common aspect with Algorithm 1 is that the writer communicates
its value to the data structure by writing into A[𝑖]. Whereas Algorithm 1may try to communicate the
same value again by forwarding to B[𝑖], in Algorithm 2, the forwarding procedure reads whichever
value is currently present in A[𝑖] and attempts to forward it to B[𝑖] by means of LL and SC. Because
multiple writes may be racing on A[𝑖], the forwarding procedure may read and forward a different
value from A[𝑖] than the one the writer initially wrote. The forwarding procedure may even fail
to forward anything. Nevertheless, Lemma 4.3 provides a guarantee that there will exist some

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:22 Joakim Öhman and Aleksandar Nanevski

signature MWForwarding ≜ Multi-Writer snapshot with forwarding

Let 𝑊𝑖 Set of all writes of cell 𝑖 of the snapshot in history with each𝑤𝑖 ∈ write𝑖+

𝑆 Set of all scans of the snapshot in history

𝐹𝑖 Set of all forwarding events in history with each 𝑓 ∈ forward𝑖
∑

Σ Set of virtual scans with each 𝜎 ∈ vscan+

[−]• : 𝑆 ⇀ Σ Partial mapping of abs scans into virtual scans

[−]𝑤 : 𝐹𝑖 →𝑊𝑖 Write which executed the forwarding event

[−]𝜎 : 𝐹𝑖 → Σ Virtual scan observed by forwarding event

Let 𝑤𝑖
fwd−−−→ 𝜎 ≜ ∃𝑓 ∈ 𝐹𝑖 . 𝑤𝑖a rf−→ 𝑓a ∧ 𝑓b rf−→ 𝜎b𝑖 Forwarding visibility

𝑤𝑖
rf−→ 𝜎 ≜ (𝑤𝑖a rf−→ 𝜎a𝑖 ∧ 𝜎r𝑖 rf−→ 𝜎b𝑖) ∨𝑤𝑖

fwd−−−→ 𝜎 Reading visibility

𝑤𝑖
wr−−→ 𝑤 ′𝑖 ≜ 𝑤𝑖a ◁ 𝑤

′
𝑖a Writing visibility

≺ ≜ rf−→∪ wr−−→ Visibility relation

◁ ≜ (⊏ ∪ ≺)+ Happens-before order

∀𝑠 ∈ dom([−]•). 𝑠• ⊆ 𝑠 (F.1)

∀𝑖, 𝑠 ∈ T (𝑆) . ∃𝑤𝑖 . 𝑤𝑖
rf−→ 𝑠• ∧𝑤𝑖 .in = 𝑠 .out[𝑖] (F.2)

∀𝑒𝑟 ∈ A[𝑖] .𝑊 . ∃𝑤𝑖 . 𝑤𝑖a = 𝑒𝑟 (F.3a)

∀𝜎, 𝑒𝑟 ∈ 𝜎.B[𝑖] .𝑊𝑐 . 𝑒𝑟 .in = ⊥ ⇐⇒ ∃𝜎 ′. 𝜎 ′r𝑖 = 𝑒𝑟 (F.3b)

∀𝜎, 𝑒𝑟 ∈ 𝜎.B[𝑖] .𝑊𝑐 . 𝑒𝑟 .in ≠ ⊥ ⇐⇒ ∃𝑓 . 𝑓b = 𝑒𝑟 (F+.3c)

∀𝜎, 𝑒𝑟 ∈ X.𝑅𝑐 . 𝜎on rf−→ 𝑒𝑟 ⇐⇒ 𝜎on ◁ 𝑒𝑟 ∧ 𝜎off ̸◁ 𝑒𝑟 (F+.3d)

∀𝜎, 𝜎 ′ ∈ Σ. 𝜎 ≠ 𝜎 ′ =⇒ 𝜎 ⊏ 𝜎 ′ ∨ 𝜎 ′ ⊏ 𝜎 (F.4a)

∀𝜎 ∈ Σ. 𝜎r𝑖 ⊏ 𝜎on rf
==⇒ 𝜎on ⊏ 𝜎a𝑖 ⊏ 𝜎off rf

==⇒ 𝜎off ⊏ 𝜎b𝑖 (F+.4b)

∀𝑤𝑖 ∈𝑊𝑖 . 𝑤𝑖a ⊏ 𝑤𝑖x ⊏ 𝑤𝑖 f1 ⊏ 𝑤𝑖 f2 (F+.4c)

∀𝑓 ∈ 𝐹𝑖 . 𝑓b ⊏ 𝑓a ⊏ 𝑓x ⊏ 𝑓b ∧ 𝑓b ll−→ 𝑓b (F+.4d)

∀𝑓 ,𝑤𝑖 , 𝜎 . 𝑤𝑖 = [𝑓]𝑤 ∧ 𝜎 = [𝑓]𝜎 =⇒ 𝜎on rf−→ 𝑤𝑖x ⊏ 𝑓 ∧ 𝑓 .Bcell = 𝜎.B[𝑖] (F+.5a)

∀𝑓 ∈ 𝐹𝑖 . def (𝑓b) =⇒ ∃𝜎. 𝜎 = [𝑓]𝜎 ∧ 𝜎on rf−→ 𝑓x (F+.5b)

Fig. 11. Signatures for multi-writer snapshot data-structure with LL/SC forwarding (Algorithms 2 and 3).

successful forwarding among the concurrent processes, forwarding a value that is current (i.e.,
written by another overlapping write). This is the key property facilitating linearizability.

Other than that, the scan procedure is mostly the same in Algorithm 2 compared to Algorithm 1;
themain difference is that the order between 𝑠on and each 𝑠r𝑖 is swapped, which is done in preparation
for Algorithm 3. In Algorithm 1 this swap would result in a bug, causing interference between
forwarding and initialization of B; the writes may fail to forward their value because the forwarding
flag is turned on too late, or scans may erase forwarded values by the initializations. But this is safe
to do in Algorithm 2 because the use of LL, SC and VL over X and B ensures that no forwarding
(intended for a scan 𝑠 ′ prior to 𝑠) can succeed in-between 𝑠r𝑖 and 𝑠on of 𝑠 . This is substantiated by
the following lemma.

Lemma 4.4. Let 𝑠 ′ be a scan prior to 𝑠 , i.e., 𝑠 ′ ⊏ 𝑠 . If 𝑓x succeeds observing the same 𝑠 ′on that the

𝑤𝑖x preceding 𝑓x observed, i.e., 𝑠 ′on rf−→ 𝑓x and 𝑠 ′on rf−→ 𝑤𝑖x, and 𝑠r𝑖 ◁ 𝑓b, then 𝑓b must fail to write.

Proof. We assume that 𝑓b is successful, and derive contradiction. By Property (M+.1b), there
exists some write-like event 𝑤 such that 𝑤 rf−→ 𝑓b, and by 𝑓b being successful, Property (M+.7)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:23

implies that 𝑓b observes the same write-like event as 𝑓b, i.e.𝑤 rf−→ 𝑓b. By Property (M+.4), we either
have 𝑠r𝑖 ◁ 𝑤 or𝑤 P 𝑠r𝑖 , in the latter case we have𝑤 ◁ 𝑠r𝑖 ◁ 𝑓b, contradicting Property (M+.2) by
𝑠r𝑖 being in between𝑤 rf−→ 𝑓b, thus we can only have 𝑠r𝑖 P 𝑤 . Since Algorithm 2 is single-scanner,
it follows that 𝑠 only starts after 𝑠 ′ has finished, thus we can derive the following:

𝑠 ′on ⊏ 𝑠 ′off ⊏ 𝑠r𝑖 P 𝑤 ◁ 𝑓b ◁ 𝑓x

which implies that we have 𝑠 ′off in between 𝑠 ′on rf−→ 𝑓x, contradicting Property (M+.2). □

4.2.2 The MWForwarding Signature. The rep-event signatures for multi-writer algorithms in
Fig. 10 correspond closely to the rep events of Algorithm 2. Fig. 10 extends Fig. 6, adding the LL/SC
register X and extending the event signatures. write𝑖+ extends write𝑖 by events 𝑤𝑖x, 𝑤𝑖 f1, and
𝑤𝑖 f2 from Algorithm 2, along with an event signature forward𝑖 corresponding to the procedure
forward from Algorithm 2. vscan+ extends vscan by updating B to be an array of LL/SC registers,
and adding four additional rep events: 𝜎on and 𝜎off corresponding to 𝑠on and 𝑠off from Algorithm 2,
and 𝜎on and 𝜎off which are providing support for multi-scanner Algorithm 3. As we shall see in

Section 4.3, in Algorithm 3, 𝜎on might not return before 𝜎a𝑖 , and similarly for 𝜎off and 𝜎b𝑖 . Thus, we
need events that observe 𝜎on and 𝜎off returning before 𝜎a𝑖 and 𝜎b𝑖 respectively. For Algorithm 2,
we simply take 𝜎on = 𝜎on and 𝜎off = 𝜎off .

SignatureMWForwarding in Fig. 11 captures the common structure of Algorithms 2 and 3. Some
aspects are preserved from Algorithm 1; for instance Properties (F.1), (F.2), (F.3a), (F.3b) and (F.4a)
are the same as in Forwarding signature of Fig. 7. One difference is that we now have sets of
forwarding events 𝐹𝑖 that are instances of the forwarding procedure. The new signature introduces
operations over such forwardings: [−]𝑤 maps a forwarding to the write that invoked it, and [−]𝜎
maps a forwarding to the virtual scan it is forwarding to. Forwarding visibility fwd−−−→ is also updated:
it now says that a forwarding reads a value of a write from𝑤𝑖a and relays this value by 𝑓𝑖b.

Among the new properties, (F+.3c) encodes that only 𝑓b performs forwarding writes into 𝜎.B[𝑖].
Property (F+.3d) ensures that nothing wrote to X other than 𝜎off directly after 𝜎on. Properties (F

+.4b)
to (F+.4d) corresponds to the rep event order of scans, writes and forwarding respectively. Lastly,
Property (F+.5a) ensures that every forwarding has a virtual scan to forward to, while Property (F+.5b)
states that 𝑓b can only be performed if 𝑓x observed 𝜎on.

Lemma 4.5. Histories satisfying MWForwarding signature also satisfy Forwarding signature.

Proof sketch. We instantiate Σ and [−]• of Forwarding to be the same as the corresponding
instantiations of MWForwarding. Properties (F.1), (F.2), (F.3a), (F.3b) and (F.4a) are shared between
the signatures, therefore they trivially hold.
We next focus on proving Property (F.7b), leaving the remaining properties for Appendix D.

Proving Property (F.7b) requires showing that 𝑤𝑖
fwd−−−→ 𝜎 and 𝑤 ′𝑖 ⊏P

rf−→ 𝜎 and 𝑤𝑖 ◁ 𝑤
′
𝑖 derive a

contradiction. To show this, we need a helper lemma, proved in Appendix D (Lemma D.2): If
𝑤𝑖 ⊏P

rf−→ 𝜎 then surely𝑤𝑖 will be able to forward to 𝜎 in time, i.e., we have 𝜎off ̸◁ 𝑤𝑖x and 𝜎off ̸◁ 𝑓x

and 𝑓b ◁ 𝜎b𝑖 for every 𝑓 executed by 𝑤𝑖 . From 𝑤𝑖
fwd−−−→ 𝜎 , by the definition of fwd−−−→, we have

𝑤𝑖a rf−→ 𝑓a and 𝑓b rf−→ 𝜎b𝑖 for some 𝑓 . By Lemma 3.1,𝑤𝑖 ◁ 𝑤
′
𝑖 implies𝑤𝑖a ◁ 𝑤

′
𝑖a. We can also infer

(full proof in Appendix D) that 𝜎on ◁ 𝑤
′
𝑖x.

By Lemma D.2, we have 𝜎off ̸◁ 𝑤𝑖x, thus by Property (F+.3d) we derive 𝜎on rf−→ 𝑤𝑖x, implying
𝑤 ′𝑖 f1 and 𝑤

′
𝑖 f2 will be executed, let 𝑓

′
= 𝑤 ′𝑖 f1 and 𝑓 ′′ = 𝑤 ′𝑖 f2 . By Lemma D.2, we have 𝜎off ̸◁ 𝑓 ′x

and 𝜎off ̸◁ 𝑓 ′′x and 𝑓 ′′b ◁ 𝜎b𝑖 , similarly to above with Property (F+.3d) we derive 𝜎on rf−→ 𝑓 ′x and
𝜎on rf−→ 𝑓 ′′x, meaning 𝑓 ′b and 𝑓 ′′b will be executed, meaning we have two consecutive LL/SC pairs
of 𝑓 ′ and 𝑓 ′′. Since we have 𝜎on ◁ 𝑤

′
𝑖x and 𝑓 ′′b ◁ 𝜎b𝑖 , it is not possible for any 𝜎

′r𝑖 to occur in the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:24 Joakim Öhman and Aleksandar Nanevski

intervals of the LL/SC pairs, therefore we can apply Lemma 4.3, thus there exists some 𝑓 ′′′ such
that 𝑓 ′′′b ̸◁ 𝑓 ′b and 𝑓 ′′′b P 𝑓 ′′b.
By Property (M+.4), we either have 𝑓b ◁ 𝑓 ′′′b or 𝑓 ′′′b P 𝑓b. In the first case, we have

𝑓b ◁ 𝑓 ′′′b P 𝑓 ′′b ◁ 𝜎b𝑖

which contradicts Property (M+.2) by 𝑓 ′′′b occurring in between 𝑓b rf−→ 𝜎b𝑖 . In the second case, if
we have 𝑓 ′′′b ◁ 𝑓b then by Lemma 4.1, and 𝑓b and 𝑓 ′′′b being successful, we have 𝑓 ′′′b ◁ 𝑓b, and
this also follows in the case of 𝑓 ′′′b = 𝑓b. By Property (RB.1) over 𝑤 ′𝑖a ⊏ 𝑓 ′b and 𝑓 ′′′b ⊏ 𝑓 ′′′b we
have𝑤 ′𝑖a ⊏ 𝑓 ′′′b since we cannot have 𝑓 ′′′b ⊏ 𝑓 ′b by 𝑓 ′′′b ̸◁ 𝑓 ′b. Thus, we have

𝑤𝑖a ◁ 𝑤
′
𝑖a ⊏ 𝑓 ′′′b ◁ 𝑓b ⊏ 𝑓a

which contradicts Property (M.2) by𝑤 ′𝑖a occurring in between𝑤𝑖a rf−→ 𝑓a. □

Lemma 4.6. Every execution of Algorithm 2 satisfies the MWForwarding signature (Fig. 11).

Proof. Since this algorithm is single scanner, we can simply define the set of virtual scans to
be the same as the set of abs scans and map each abs scan to itself, i.e., Σ = 𝑆 and 𝑠• = 𝑠 . Each rep
event directly corresponds to their equivalent variant in Algorithm 2, except for 𝜎on and 𝜎off , which

are set as 𝜎on = 𝜎on = 𝑠on and 𝜎off = 𝜎off = 𝑠off . Property (F.1) holds by each event being a subevent

of itself (𝑒 ⊆ 𝑒) and Property (F.4a) holds since the algorithm is single-scanner. Properties (F.2) to
(F+.3c) and (F+.4b) to (F+.5b) holds directly by the structure of the algorithm and Property (F+.3d)
can be proven by Lemma C.1 from Appendix C, the same lemma that established this property for
Algorithm 1, since the relative structure of 𝑠on and 𝑠off is the same. □

4.3 Multi-Writer, Multi-Scanner

Algorithm 3 is the final of the Jayanti’s snapshot algorithms, allowing unconstrained write and
scan operations. It differs from Algorithm 2 in the implementation of scan, while write is mostly
unchanged. While Algorithm 3 allows for multiple concurrently running physical scanners, under
the hood, at most one virtual scanner can be logically viewed as running at any point in time. The
physical scans maintain their own local snapshot and forwarding arrays, but the shared resource
X, via the fields X.pA and X.pB, keeps track which local snapshot array and local forwarding array,
respectively, should be considered as the current data of the virtual scan. The physical scanners race
to modify these fields in order to promote their own local arrays as the arrays of the virtual scan.
However, X can be modified only by SC; thus, by Lemma 4.1, mutations to X occur sequentially,
and by Lemma 4.2, at least one mutation exists. The sequential nature of these mutations justifies
viewing them as belonging to a single, albeit virtual, scan. Once the virtual scan terminates, a
snapshot is copied into SS (vss), which scanners read (𝑠ss) and return. We follow Jayanti in assuming
that SS, even though physically a compound object, can still be considered an LL/SC register; this
is not a loss of generality, as multi-word LL/SC registers exist [Jayanti and Petrovic 2005].

The pushVS procedure (short for łpush virtual scan”) propels the virtual scanner to its completion,
producing a snapshot in SS. The procedure is divided into three phases, tracked by the field X.phase,
corresponding to the three phases of the previous algorithms: the first phase sets each memory cell
in B to ⊥ with vr𝑖 ; the second phase reads the main memory A with va𝑖 ; and the third phase reads
the forwarding memory B with vb𝑖 . However, unlike before when B was a global array, here we
have one B𝑝 for each scan process 𝑝 . A scanner that successfully writes with von in the first phase
will have its B𝑝 used for forwarding in the current virtual scan. For the second phase, the algorithm
uses A𝑝 to store the results of reading A, and similarly the process 𝑝 which successfully writes with
voff will have its A𝑝 used for the next phase. The third phase uses A𝑝 and B𝑞 from the processes
stored in X to construct the snapshot, which is then stored in SS with vss .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:25

resource A : array[𝑛] of val
resource A𝑝 : array[𝑛] of val
resource B𝑝 : array[𝑛] of val ∪ {⊥}

resource X : <
phase : {1, 2, 3} := 1

pA pB : PID

sync : B := false >
resource SS : <

img : array[𝑛] of val

sync : B := false >
1: write(𝑖 : N, 𝑣 : val) ≜ ⊲ 𝑤𝑖

2: A[𝑖] := 𝑣 ⊲ 𝑤𝑖a

3: 𝑥 ← LL(X) ⊲ 𝑤𝑖x

4: if 𝑥 .phase = 2 then

5: forward(𝑖, 𝑥 .pB) ⊲ 𝑤𝑖 f1
6: forward(𝑖, 𝑥 .pB) ⊲ 𝑤𝑖 f2

7: forward(𝑖 : N, 𝑝 : PID) ≜ ⊲ 𝑓

8: LL(B𝑝 [𝑖]) ⊲ 𝑓b

9: 𝑣 ← A[𝑖] ⊲ 𝑓a

10: 𝑥 ′ ← VL(X) ⊲ 𝑓x

11: if 𝑥 ′ then SC(B𝑝 [𝑖], 𝑣) ⊲ 𝑓b

12: scan: array[𝑛] of val ≜ ⊲ 𝑠

13: 𝑝 ← getPID
14: pushVS(𝑝) ⊲ sv1
15: pushVS(𝑝) ⊲ sv2
16: ss← SS ⊲ 𝑠ss
17: return ss.img

18: pushVS(𝑝 : PID) ≜ ⊲ v

19: 𝑥 ← LL(X) ⊲ vx

20: if 𝑥 .phase = 1 then

21: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
22: B𝑝 [𝑖] := ⊥ ⊲ vr𝑖

23: SC(X, ⟨2, 𝑥 .pA, 𝑝, 𝑥 .sync⟩) ⊲ von
24: 𝑥 ← LL(X) ⊲ vx

25: if 𝑥 .phase = 2 then

26: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
27: 𝑎 ← A[𝑖] ⊲ va𝑖
28: A𝑝 [𝑖] := 𝑎 ⊲ va𝑖

29: SC(X, ⟨3, 𝑝, 𝑥 .pB, 𝑥 .sync⟩) ⊲ voff
30: 𝑥 ← LL(X) ⊲ vx

31: if 𝑥 .phase = 3 then

32: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
33: 𝑏 ← B𝑥.pB [𝑖] ⊲ vb𝑖
34: if 𝑏 ≠ ⊥ then

35: 𝑉 [𝑖] := 𝑏

36: else

37: 𝑎 ← A𝑥.pA [𝑖] ⊲ va𝑖
38: 𝑉 [𝑖] := 𝑎

39: ss← LL(SS) ⊲ vss
40: 𝑥 ′ ← VL(X) ⊲ vx

41: if ss.sync = 𝑥 .sync ∧ 𝑥 ′ then
42: SC(SS, ⟨𝑉 ,¬ss.sync⟩) ⊲ vss

43: SC(X, ⟨1, 𝑥 .pA, 𝑥 .pB,¬𝑥 .sync⟩) ⊲ vend

Algorithm 3. Jayanti’s multi-writer, multi-scanner snapshot algorithm.

Each phase starts with an LL(X) (three lines labeled vx) and ends with an SC(X). This ensures
that if multiple physical scanners run a phase simultaneously, only a single SC operation succeeds
writing to X, committing the results of the phase. Thus, considered across all physical scanners,
successful phases cannot overlap, by Lemma 4.1. Also, phases must run consecutively, because a
phase in some scanner can only start if the previous phase, maybe executed by some other scanner,
has been terminated, incrementing X.phase to enable the next phase (von, voff , and vend). Because
the phases cannot overlap, must be executed in order, and correspond to the scanner phases in the
previous algorithms, a trace of a virtual scan in Algorithm 3 has essentially the same structure as a
trace of a physical scan in the Algorithms 1 and 2.
To ensure that SS is only mutated once per virtual scan, we have two toggle bits X.sync and

SS.sync as part of X and SS respectively. These function such that every time vend successfully
writes, X.sync is negated. SS can only be written to by vss , which can only be executed if X.sync and

SS.sync are equal2 and X did not change during the phase. Once vss successfully writes, SS.sync
will be negated, meaning no more writes into SS can occur in this phase since X.sync and SS.sync

are now distinct. We also know that there has to be exactly one successful write with vss before
vend , since vss only fails if some other vss succeeded, or some other vend ended the phase.

2Jayanti’s original presentation is dual, as the sync bits need to be distinct for writing to SS, but this is equivalent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:26 Joakim Öhman and Aleksandar Nanevski

It is also vital for linearizability that the virtual scan is in the time interval of the abs scan
returning it. To ensure the virtual scan ends before the abs scanner ends, the latest virtual scan is
finished before pushVS terminates. Dually, to ensure that the virtual scan was not started before
the abs scanner starts, pushVS is executed twice; once to finish the currently running virtual scan,
and once to generate a virtual scan that can be used by the abs scanner. Executing pushVS twice is
similar to the idea of executing forward twice in Algorithm 2.

Lemma 4.7. Every execution of Algorithm 3 satisfies the MWForwarding signature (Fig. 11).

Proof sketch. We instantiate the write and forward rep events for the event structures of
Fig. 10 with rep events of the same name. The structure of write and forward ensures that
Properties (F.3a), (F+.3c) and (F+.4c) to (F+.5b) are satisfied.
We instantiate virtual scans as a logical object corresponding to the rep events executed by

pushVS constructing a complete virtual scan. The interval of a virtual scan 𝜎 is instantiated as the
smallest interval containing all its rep events. More formally, if we have v, v ′ and v ′′ such that
von rf−→ vx ′ and v ′

off
rf−→ vx ′′ and v ′′ss wrote to SS, then there exists a virtual scan 𝜎 . Its rep events are

instantiated using the rep events of v, v ′ and v ′′ as follows and instantiate 𝑠• = 𝜎 iff v ′′ss
rf−→ 𝑠ss .

𝜎r𝑖 ≜ vr𝑖 𝜎on ≜ von 𝜎on ≜ vx ′ 𝜎a𝑖 ≜ va′𝑖 𝜎off ≜ v ′off 𝜎off ≜ vx ′′ 𝜎b𝑖 ≜ vb′′𝑖

We also let 𝜎init ≜ vx and 𝜎ss ≜ v ′′ss and 𝜎end ≜ v ′′′
end

where v ′′′
end

was successful and v ′
off

rf−→ v ′′′
end

,

however these do not need to be in the interval of 𝜎 . Properties (F.2), (F.3b), (F+.3d) and (F+.4b)
follows from this structure, which we show in Appendix E.
The most involved part is proving Properties (F.1) and (F.4a), corresponding to 𝑠• ⊆ 𝑠 and

(𝜎 ⊏ 𝜎 ′ ∨ 𝜎 ′ ⊏ 𝜎) respectively, which require us to establish the following helper lemmas, pre-
sented in Appendix E: By Lemma E.2, we have exactly one 𝜎ss per 𝜎 , satisfying 𝜎ss ◁ 𝜎end , and
by Lemma E.5, for any terminated v and v ′ of pushVS with v ⊏ v ′, there exists 𝜎 and 𝜎 ′ such
that 𝜎end ◁ 𝜎 ′end and vx ̸◁ 𝜎end . With Lemma E.2, we can that show for every 𝑖 we either have
𝜎b𝑖 ⊏ 𝜎ss ◁ 𝜎end ◁ 𝜎 ′init ⊏ 𝜎 ′r𝑖 or 𝜎

′b𝑖 ⊏ 𝜎 ′ss ◁ 𝜎 ′end ◁ 𝜎init ⊏ 𝜎r𝑖 , implying Property (F.4a). With
Lemma E.5, we can show for 𝑠 that there exists some 𝜎 ′ and 𝜎 ′′ with 𝜎 ′end ◁ 𝜎 ′′end and vx ̸◁ 𝜎 ′end
where vx ⊆ sv1. This implies that if we have 𝜎 = 𝑠•, then 𝜎 ′end ◁ 𝜎init , since some new virtual
scan must have started after 𝜎 ′end , and by the instantiation of [−]• we have 𝜎ss rf−→ 𝑠ss , thus for all
𝑖 we have 𝜎 ′end ◁ 𝜎init ⊏ 𝜎r𝑖 ⊏ 𝜎b𝑖 ⊏ 𝜎ss rf−→ 𝑠ss , implying 𝜎 ⊆ 𝑠 and Property (F.1), the last step is
further explained in Appendix E. □

5 APPLYING TO OTHER SNAPSHOT ALGORITHMS

To show the generality of our approach, we next apply it to the snapshot algorithm of Afek et al.
[1993], presented as Algorithm 4. It is a single-writer, multi-scanner algorithm. At its core, scan of
Algorithm 4 collects snapshots by reading the memory array A twice. We denote the first read of
index 𝑖 by 𝑠𝑘a𝑖 , and the second by 𝑠𝑘b𝑖 . The algorithm looks for changes in the array. If a change is
detected, the reading is restarted in the next iteration. The index 𝑘 on the reading events identifies
the iteration in which the event occurs. If no change to the array is detected between the first and
second read events, then what was read is a valid snapshot, reflecting what was in the array at the
moment the last index was first read in the current iteration. To ensure that changes to the array
are properly recognized, each memory cell holds a version number (A[𝑖] .ver) of the latest write,
which is a number that is incremented each time a new value is written to the cell.

If scan detects that some index 𝑖 has changed twice during scanning, it can immediately termi-
nate, returning the view of the latest write into 𝑖 (A[𝑖] .view). The view itself is a snapshot each
write collects by calling scan before writing its value. Keeping views ensures that the snapshot
methods are wait-free. scan tracks how many times index 𝑖 has changed by updating the local

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:27

resource A : array[𝑛] of

<
data : val

ver : N

view : array[𝑛] of val>
1: write(𝑖 : N, 𝑣 : val) ≜ ⊲ 𝑤𝑖

2: 𝑠 := scan() ⊲ 𝑤𝑖s

3: A[𝑖] := ⟨𝑣, A[𝑖] .ver + 1, 𝑠⟩ ⊲ 𝑤𝑖a

4: scan: array[𝑛] of val ≜ ⊲ 𝑠

5: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
6: moved [𝑖] := false

7: while true do 𝑘-th iteration of loop
8: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
9: 𝑎[𝑖] := A[𝑖] ⊲ 𝑠𝑘a𝑖

10: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
11: 𝑏 [𝑖] := A[𝑖] ⊲ 𝑠𝑘b𝑖

12: changed := false

13: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
14: if 𝑎[𝑖] .ver ≠ 𝑏 [𝑖] .ver then
15: if moved [𝑖] then
16: return 𝑏 [𝑖] .view
17: else

18: changed := true

19: moved [𝑖] := true

20: if ¬changed then

21: return (𝑏 [0] .data, . . . , 𝑏 [𝑛 − 1] .data)

22: end while

Algorithm 4. Single-writer, multi-scanner snapshot algorithm of Afek et al. [1993].

variablemoved [𝑖] each time it detects a change. Eachwrite commits its value simultaneously with
incrementing the version number and updating the view.

We next use visibility relations to show that Algorithm 4 satisfies the Snapshot signature, and is
thus linearizable by Lemma 2.3.

Lemma 5.1. Every execution of Algorithm 4 satisfies the Snapshot signature (Fig. 5).

Proof sketch. To prove that Algorithm 4 satisfies the Snapshot signature, we employ virtual
scans as a simplification mechanism that allows us to elide write views from consideration when
establishing Snapshot. A virtual scan will denote a scan that detected no change in the array, i.e.,
it returned at line 21. To each abs scan, we can associate a virtual scan as follows. If the abs scan
terminated because it detected no change, than it immediately is a virtual scan. If the abs scan
terminated by returning a view from a write, i.e., returned at line 16, then that view itself is an
abs scan which can, recursively, be associated with a virtual scan. Importantly, given abs scan 𝑠 ,
the associated virtual scan 𝑠• satisfies 𝑠• ⊆ 𝑠 , from which we shall derive the Snapshot axioms.
Formally, a virtual scan 𝜎 consists of rep events 𝜎a𝑖 and 𝜎b𝑖 for each 𝑖 , where both 𝜎a𝑖 and 𝜎b𝑖

observe the same write (i.e., no change detected), and every 𝜎a𝑖 occurs before any 𝜎b𝑗 :

∀𝜎, 𝑖 . ∃𝑤𝑖 . 𝑤𝑖a rf−→ 𝜎a𝑖 ∧𝑤𝑖a rf−→ 𝜎b𝑖 (A.1)

∀𝜎, 𝑖, 𝑗 . 𝜎a𝑖 ⊏ 𝜎b𝑗 (A.2)

If scan 𝑠 returned at line 21, we simply define the virtual scan 𝑠• as the set of rep events 𝑠𝑘a𝑖 and
𝑠𝑘b𝑖 , where 𝑘 is the last reading iteration of 𝑠 . If scan 𝑠 returned at line 16, then 𝑠 returns the view of
some𝑤𝑖 , and we define 𝑠• = (𝑤𝑖s)

•. This is a well-founded recursive definition, because the ending
time of the scan 𝑤𝑖s on the right is smaller than the ending time of 𝑠 on the left, and the ending
times are bounded from below by 0. To see that the ending time of𝑤𝑖s is below that of 𝑠 , suppose
otherwise. Then it must be 𝑠 ⊏ 𝑤𝑖a, because from the code of write we have that 𝑤𝑖s ⊏ 𝑤𝑖a. In
particular, 𝑠𝑘b𝑖 ⊏ 𝑤𝑖a for every 𝑘 . But, because𝑤𝑖a is observed by some rep read in 𝑠 , we also have
𝑤𝑖a rf−→ 𝑠𝑘b𝑖 for some 𝑘 . Thus, we have an event 𝑠𝑘b𝑖 that terminated before the event 𝑤𝑖a that it
observes, which contradicts Property (V.1).
Next, we show that 𝑠• ⊆ 𝑠 . If 𝑠 terminated with no changes detected, this is trivial, since 𝑠•

consists of the selected rep events of 𝑠 . Otherwise, 𝑠• = (𝑤𝑖s)
•, for some write view𝑤𝑖s. By recursion

on the definition of [−]• it must be 𝑠• = 𝑤𝑖s
• ⊆ 𝑤𝑖s, so it suffices to show 𝑤𝑖s ⊆ 𝑠 . This holds

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

33:28 Joakim Öhman and Aleksandar Nanevski

because, to reach the return at line 16, two changes of A[𝑖] must have occurred, thus there are two
different writes to A[𝑖] before 𝑤𝑖 that where observed by some rep event in 𝑠 , implying 𝑠 starts
before𝑤𝑖 and thus also before𝑤𝑖s. Additionally, since some 𝑠𝑘b𝑖 must have read𝑤𝑖a, i.e.,𝑤𝑖a rf−→ 𝑠𝑘b𝑖 ,
it must be that𝑤𝑖s ends before 𝑠 , as otherwise 𝑠𝑘b𝑖 ⊏ 𝑤𝑖a contradicts Property (V.1).
We next proceed to establish the Snapshot signature. First, we instantiateW𝑖 to be the set of

all writes𝑤𝑖 ∈𝑊𝑖 where𝑤𝑖a is defined; these are the writes that executed their effect. Second, we
instantiate the visibility relations ≺ and rf−→ as follows, using the helper relation rf−−−→.

𝑤𝑖
rf−−−→ 𝜎 ≜ 𝑤𝑖a rf−→ 𝜎a𝑖 𝑤𝑖

rf−→ 𝑠 ≜ 𝑤𝑖
rf−−−→ 𝑠• ≺ ≜ rf−→

In English, the scan 𝑠 reads from, and also observes,𝑤𝑖 iff there is an appropriate rep event in the
virtual scan 𝑠• that reads from 𝑤𝑖a at the level of rep events. We now argue that the definitions
of the visibility relations satisfy the Snapshot properties. Property (V.1) holds since if 𝑒 ≺+ 𝑒 ′ and
𝑒 ′ ⊑ 𝑒 then 𝑒 ≺+ 𝑒 ′ can only hold if 𝑒 rf−→ 𝑒 ′, i.e., 𝑤𝑖a rf−→ 𝜎a𝑖 . But then, by Property (RB.2), from
𝑒 ′ ⊑ 𝑒 we derive 𝜎a𝑖 ⊏ 𝑤𝑖a, which contradicts Property (V.1) for registers. Property (S.1) holds by
the structure of the algorithm. Property (S.3) holds since if𝑤𝑖

rf−→ 𝑠 and𝑤 ′𝑖
rf−→ 𝑠 , then𝑤𝑖a and𝑤

′
𝑖a

are observed by the same read. Thus, by Property (M.3),𝑤𝑖a = 𝑤 ′𝑖a, and since each write executes
𝑤𝑖a only once by Property (ES.2), it must be𝑤𝑖 = 𝑤 ′𝑖 . Property (S.4) holds because the algorithm
is assumed to be single-writer. Property (S.5) holds since each terminated write must have 𝑤𝑖a

defined, which is how we define the setW𝑖 .
Next, Property (S.2) says that given𝑤𝑖

rf−→ 𝑠 , there exists no𝑤 ′𝑖 such that𝑤𝑖 ◁ 𝑤
′
𝑖 ◁ 𝑠 . To prove

it, we assume that 𝑤 ′𝑖 exists, and derive a contradiction. By assumption, we have 𝑤𝑖
rf−−−→ 𝜎 for

𝜎 = 𝑠•. From 𝜎 = 𝑠• ⊆ 𝑠 , and𝑤𝑖 ◁ 𝑤
′
𝑖 ◁ 𝑠 , we can derive𝑤𝑖 ◁ 𝑤

′
𝑖 ◁ 𝜎 , and then by Property (A.2),

also 𝑤𝑖a ◁ 𝑤
′
𝑖a ◁ 𝜎b𝑖 . We elide the proof of the last derivation; it is similar to Lemma 3.1 and is

in Appendix F. By the definition of rf−−−→ and Property (A.1),𝑤𝑖
rf−−−→ 𝜎 implies𝑤𝑖a rf−→ 𝜎a𝑖 , 𝜎b𝑖 . But

then𝑤 ′𝑖a occurrs between𝑤𝑖a and 𝜎b𝑖 , contradicting Property (M.2) and𝑤𝑖a rf−→ 𝜎b𝑖 .
Lastly, we prove Property (S.6): 𝑤𝑖 ,𝑤 𝑗

rf−→ 𝑠 and 𝑤 ′𝑖 ,𝑤
′
𝑗

rf−→ 𝑠 ′ with 𝑤𝑖 ◁ 𝑤
′
𝑖 and 𝑤 ′𝑗 ◁ 𝑤 𝑗 lead

to contradiction. We unfold the assumptions 𝑤𝑖 ,𝑤 𝑗
rf−→ 𝑠 and 𝑤 ′𝑖 ,𝑤

′
𝑗

rf−→ 𝑠 ′ into 𝑤𝑖 ,𝑤 𝑗
rf−−−→ 𝜎 and

𝑤 ′𝑖 ,𝑤
′
𝑗

rf−−−→ 𝜎 ′, where 𝜎 = 𝑠• and 𝜎 ′ = 𝑠 ′•. By definition of rf−−−→ and Property (A.1), from𝑤 𝑗
rf−−−→ 𝜎

we have 𝑤 𝑗a rf−→ 𝜎a𝑗 , 𝜎b𝑗 , and similarly for 𝑤 ′𝑗
rf−−−→ 𝜎 ′. By Property (A.2) we have 𝜎a𝑗 ⊏ 𝜎b𝑖 and

𝜎 ′a𝑖 ⊏ 𝜎 ′b𝑗 , and by Property (RB.1), it is either 𝜎a𝑗 ⊏ 𝜎 ′b𝑗 or 𝜎
′a𝑖 ⊏ 𝜎b𝑖 . In the first case (the second

is symmetric) we can construct𝑤 ′𝑗a ◁ 𝑤 𝑗a rf−→ 𝜎a𝑗 ⊏ 𝜎 ′b𝑗 , meaning that we have𝑤 ′𝑗a ◁ 𝑤 𝑗a ◁ 𝜎 ′b𝑗
contradicting Property (M.2) for𝑤 ′𝑗a

rf−→ 𝜎 ′b𝑗 by𝑤 𝑗a occurring between𝑤 ′𝑗a and 𝜎
′b𝑗 . □

We conclude this section by observing that the inverse of Lemma 2.3 also holds; that is, Snapshot
signature is actually satisfiable by every linearizable snapshot algorithm. This follows by instanti-
ating ≺ with the linearization order, defining rf−→ to relate each read with the latest write before
that read in the linearization, and defining W𝑖 as the set of all writes in the linearization. The
axioms of the signature then simply state straightforward properties of the linearization order
and of sequential execution in that order. That said, we have established Snapshot signature for
Algorithm 4 without assuming linearizability, so that we can derive linearizability by Lemma 2.3.

6 RELATED WORK

The idea to use visibility relations for proving linearizability has first been proposed by Henzinger
et al. [2013] and applied to concurrent queue algorithms. The explicit motivation of this approach
was to modularize the linearizability proofs. The work on time-stamped stack algorithm of Dodds
et al. [2015] builds on this by introducing a hybrid approach, combining the visibility method
together with the linearization points method. Visibility has also been applied on algorithms
over weak memory, where it is typically called communication order [Raad et al. 2019]. Another

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

Visibility Reasoning for Concurrent Snapshot Algorithms 33:29

related approach of visibility by Emmi and Enea [2019]; Krishna et al. [2020] formulates weakened
specifications for linearizability, where all operations do not have to linearly occur one after another
in a simulation, but occur in partial order, allowing for certain operations to miss another.
Concerning Jayanti’s algorithms specifically, Jayanti [2005] sketched linearizability of the first

algorithm by describing its linearization points. He also argued informally, based on forwarding
principles, that the changes between the algorithms preserve linearizability. Delbianco et al. [2017]
gave a proof formalized in Coq of the first algorithm, by constructing a linearization order along the
execution of the algorithm. The proof is specific to the implementation, making it is unclear how to
lift it to the other two algorithms. Based on that development, Jacobs [2018] developed a mechanized
proof, also of the first algorithm, in VeriFast using prophecy variables. Petrank and Timnat [2013]
and Timnat [2015] present an algorithm based on the forwarding idea of Jayanti, which implements
a set interface with insert, remove and contains operations, along with an iterator which is a
generalized form of scanner. The set operations can be forwarded to the scanner, generalizing
Jayanti’s forwarding which applies only to write operations. In the future, we will consider how to
generalize our proof to apply to this algorithm as well. This would involve axiomatizing the set
data-structure, but also what it means abstractly to be a forwarding structure, so that both Jayanti’s
snapshot and the set structure of Petrank and Timnat are instances.
Afek et al. [1993] proved their algorithm linearizable by using the linearization point method.

While the use of the linearization point method is fairly straightforward for this algorithm, we
showed that we can reuse our snapshot axiomatization for its proof.

7 CONCLUSION AND FUTURE WORK

We presented proofs of linearizability of Jayanti’s three snapshot algorithms developed in a modular
fashion, using the method of visibility relations. More concretely, the linearizability proofs are
decomposed into proof modules, with many of the modules being shared between the three
algorithms; they are developed once and reused three times to reduce proof complexity.
Importantly, the module interfaces are signatures consisting of relations and axioms on them

that encode the key idea of łforwarding principles” underpinning Jayanti’s design. We thus show
that a formalism based on visibility relations is powerful enough to mathematically capture these
principles; previously, Jayanti has only presented them informally in English.

In the future, we plan to apply the visibility methods to other algorithms, and potentially also use
the developed modules and signatures as guides in designing new and more efficient algorithms,
much like Jayanti’s three algorithms start with the single-writer/single-scanner variant and build
to the ultimately desired multi-writer/multi-scanner variant. We shall also study how the visibility
method applies to non-linearizable algorithms, and how to mechanize our proof in a proof assistant.

ACKNOWLEDGMENTS

We thank the anonymous reviewers from the POPL’22 PC for their feedback. This research was
partially supported by the Spanish MICINN project BOSCO (PGC2018-102210-B-I00) and the
European Research Council project Mathador (ERC2016-COG-724464).

REFERENCES

Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2 (1991),

253ś284. https://doi.org/10.1016/0304-3975(91)90224-P

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic snapshots of shared

memory. J. ACM 40, 4 (Sept. 1993), 873ś890. https://doi.org/10.1145/153724.153741

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. 2017. Proving linearizability using forward

simulations. In Computer-Aided Verification (CAV) (LNCS, Vol. 10427). 542ś563. https://doi.org/10.1007/978-3-319-63390-

9_28

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/153724.153741
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-63390-9_28

33:30 Joakim Öhman and Aleksandar Nanevski

Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2015. Aspect-oriented linearizability proofs.

Logical Methods in Computer Science Volume 11, Issue 1 (2015). https://doi.org/10.2168/LMCS-11(1:20)2015

Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2017. Concurrent Data Structures

Linked in Time. In European Conference on Object-Oriented Programming, ECOOP (LIPIcs, Vol. 74). 8:1ś8:30. https:

//doi.org/10.4230/LIPIcs.ECOOP.2017.8

Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A scalable, correct time-stamped stack. In Symposium on

Principles of Programming Languages (POPL). 233ś246. https://doi.org/10.1145/2676726.2676963

Michael Emmi and Constantin Enea. 2019. Weak-consistency specification via visibility relaxation. Proc. ACM Program.

Lang. 3, POPL (2019), 60:1ś60:28. https://doi.org/10.1145/3290373

Stefan Felsner. 1992. Interval orders: combinatorial structure and algorithms. Ph.D. Dissertation. Technical University of

Berlin. http://page.math.tu-berlin.de/~felsner/Paper/diss.pdf

Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013. Aspect-oriented linearizability proofs. In International

Conference on Concurrency Theory (CONCUR). 242ś256. https://doi.org/10.1007/978-3-642-40184-8_18

Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming. M. Kaufmann. https://doi.org/10.1108/

03684920810907904

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972

Bart Jacobs. 2018. Jayanti’s algorithm using prophecies in VeriFast. https://github.com/verifast/verifast/blob/master/

examples/jayanti

Bart Jacobs, Willem Penninckx, and Amin Timany. 2018. Abstract I/O specification. Technical report CW714. Department Of

Computer Science KU Leuven. https://lirias.kuleuven.be/2088062

Prasad Jayanti. 2005. An optimal multi-writer snapshot algorithm. In Symposium on Theory of Computing (STOC ’05).

723ś732. https://doi.org/10.1145/1060590.1060697

Prasad Jayanti and Srdjan Petrovic. 2005. Efficient wait-free implementation of multiword LL/SC variables. In International

Conference on Distributed Computing Systems (ICDCS). 59ś68. https://doi.org/10.1109/ICDCS.2005.29

Eric H Jensen, Gary W Hagensen, and Jeffrey M Broughton. 1987. A new approach to exclusive data access in shared memory

multiprocessors. Technical report UCRL-97663. Lawrence Livermore National Laboratory. https://llnl.primo.exlibrisgroup.

com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1ś45:32.

https://doi.org/10.1145/3371113

Siddharth Krishna, Michael Emmi, Constantin Enea, and Dejan Jovanovic. 2020. Verifying visibility-based weak consistency.

In European Symposium on Programming (ESOP) (LNCS, Vol. 12075). 280ś307. https://doi.org/10.1007/978-3-030-44914-

8_11

Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward Simulations: I. Untimed Systems. Inf. Comput. 121, 2

(1995), 214ś233. https://doi.org/10.1006/inco.1995.1134

Erez Petrank and Shahar Timnat. 2013. Lock-free data-structure iterators. In International Symposium on Distributed

Computing (DISC). 224ś238. https://doi.org/10.1007/978-3-642-41527-2_16

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On library correctness under weak memory

consistency: specifying and verifying concurrent libraries under declarative consistency models. Proc. ACM Program.

Lang. 3, POPL, Article 68 (2019). https://doi.org/10.1145/3290381

Shahar Timnat. 2015. Practical parallel data structures. Ph.D. Dissertation. Computer Science Department, Technion.

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2015/PHD/PHD-2015-06

Paolo Viotti and Marko Vukolić. 2016. Consistency in non-transactional distributed storage systems. ACM Comput. Surv. 49,

1, Article 19 (2016). https://doi.org/10.1145/2926965

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 33. Publication date: January 2022.

https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1145/3290373
http://page.math.tu-berlin.de/~felsner/Paper/diss.pdf
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1108/03684920810907904
https://doi.org/10.1108/03684920810907904
https://doi.org/10.1145/78969.78972
https://github.com/verifast/verifast/blob/master/examples/jayanti
https://github.com/verifast/verifast/blob/master/examples/jayanti
https://lirias.kuleuven.be/2088062
https://doi.org/10.1145/1060590.1060697
https://doi.org/10.1109/ICDCS.2005.29
https://llnl.primo.exlibrisgroup.com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316
https://llnl.primo.exlibrisgroup.com/permalink/01LLNL_INST/1g1o79t/alma991001081569706316
https://doi.org/10.1145/3371113
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1007/978-3-642-41527-2_16
https://doi.org/10.1145/3290381
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2015/PHD/PHD-2015-06
https://doi.org/10.1145/2926965

	Abstract
	1 Introduction
	2 Overview
	2.1 Jayanti's First Snapshot Algorithm
	2.2 Basic Abstractions of Visibility Reasoning
	2.3 Hierarchical Structure of the Proof
	2.4 Snapshot Signature
	2.5 Forwarding Signature

	3 Proof Sketches for Algorithm 1
	4 Multi-Writer Algorithms
	4.1 LL/SC Registers
	4.2 Multi-Writer Forwarding Signature
	4.3 Multi-Writer, Multi-Scanner

	5 Applying to Other Snapshot Algorithms
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

