
CALAPPA: A Toolchain for Mining Android Applications

Vitalii Avdiienko♣, Konstantin Kuznetsov♣, Paolo Calciati♠, Juan Carlos Caiza
Román♠, Alessandra Gorla♠, Andreas Zeller♣

♣
Saarland University

Germany
lastname@cs.uni-saarland.de

♠
IMDEA Software Institute

Spain
firstname.lastname@imdea.org

ABSTRACT
Software engineering researchers and practitioners working on the
Android ecosystem frequently have to do the same tasks over and
over: retrieve data from the Google Play store to analyze it, de-
compile the Dalvik bytecode to understand the behavior of the app,
and analyze applications metadata and user reviews. In this paper
we present CALAPPA, a highly reusable and customizable tool-
chain that allows researchers to easily run common analysis tasks
on large Android application datasets. CALAPPA includes compo-
nents to retrieve the data from different Android stores, and comes
with a predefined, but extensible, set of modules that can analyze
apps metadata and code.

CCS Concepts
•Software and its engineering→ Automated static analysis; Soft-
ware libraries and repositories; •Information systems → Docu-
ment topic models; •Computing methodologies→ Anomaly de-
tection;

Keywords
Android app mining; Android Analysis; App market analysis

1. INTRODUCTION
The Android ecosystem, which is accessible by means of the

many app stores such as the Google Play, boosted the creativity and
the research possibilities of many software engineering researchers
and practitioners. Whether a new software engineering technique
needs software artifacts to be evaluated [5, 7, 4], or rather there
is the need of large amounts of data to run statistically significant
software engineering studies [9, 10], the Android ecosystem is a
precious source of data and information.

However, despite the numerous attempts to allow researchers
to replicate previous research studies thanks to publicly available
datasets [1], and despite the numerous research techniques and cor-
responding open source tools that are available [11], there is a lack
of common frameworks to minimize researchers’ efforts in terms of

development to run their studies. In essence, the problem is that re-
searchers have to re-implement the same tasks over and over: They
have to write scripts to crawl Google Play (or similar stores) to
download data, retrieve the metadata information of a specific app
to have further information on it (e.g. which category the app be-
longs to, who developed it, its natural language description on the
store etc.), analyze the manifest to extract the list of permissions
that an app requires, and so on, just to mention few of the common
tasks they have to do for many studies.

In this paper we present CALAPPA, a set of ready-to-use mod-
ules that allow to quickly run common analysis tasks on the An-
droid ecosystem. Examples of such tasks are crawling an An-
droid store, extract app descriptions, and run simple analyses on
the Dalvik bytecode. CALAPPA’s modules can be combined in a
pipeline as users want, and the whole tool-chain can easily be ex-
tended with new modules.

This tool-chain model comes handy for researchers for several
reasons: it allows them to reuse code and thus speed up develop-
ment time; it allows researchers to easily share the results of their
studies such that other researchers can reproduce them; it is highly
customizable and can be easily extended to run different analyses.

CALAPPA includes modules to retrieve data from different
sources (e.g. the Google Play store), modules to parse and manip-
ulate apps metadata such as the natural language description, and
modules to analyze the app code (e.g. to extract the sensitive infor-
mation flows). Thus, for instance, running a new study as the one
presented in [7, 8] would require to simply use the CALAPPA mod-
ule to download several thousands apps from Google Play, process
descriptions thanks to modules that remove stop-words, do stem-
ming, and apply topic modeling on them. Finally it would require
to extract the sensitive API calls for each app, and use these as fea-
tures for anomaly detection. If one would want to replace sensitive
API calls with information flows as features for the anomaly de-
tection (i.e, similar to what [4] presents), researchers would simply
need to use the CALAPPA module to extract the sensitive informa-
tion flows instead.

The remainder of the paper is structured as follows: Section 2
provides an overview of CALAPPA as a tool-chain and presents
the key underlying technologies that we used to implement it. Sec-
tion 3 presents the components to download the data from Google
Play and similar app stores. Section 4 describes the components to
run several analyses on the metadata information (e.g. extract and
process description). Section 5 introduces the key modules to an-
alyze and extract information from the apk code (e.g. information
flows, sensitive API calls). Section 6 describes some of the compo-
nents that CALAPPA includes for post-processing the data (e.g. to
run anomaly detection and export data).



2. TASKS AND TARGETS IN A PIPELINE
Analyzing a large dataset of Android apps may require several

days. The risk with such long-running batch processes is that some
tasks may fail at some point (e.g. because of a transitive problem
or because of a bug in the code to analyze a particular app), and
invalidate days of work. Ideally users want to save the intermediate
results, want to see the execution progress, and want to resume the
execution from intermediate results.

In order to provide these —and other— features, we built
CALAPPA on top of Luigi, a Python framework to implement and
run long-batch pipelines. Beside the previously mentioned fea-
tures, Luigi allows to easily parallelize operations, in order to use
the available computation power at its best. Luigi is based on top
of two main concepts: Tasks and Targets. Targets, in essence, cor-
respond to files on the disk, or some kind of similar checkpoints.
Tasks specify what work should be done, on what inputs, and what
Target should be produced. Each Task should implement three
methods:

// returns the dependencies
def requires(self):
// returns the target this tasks produces
def output(self):
// includes the implementation of the task
def run(self):

We implement a separate Task for each of the main functionalities
of CALAPPA. We then use Google protobuf to produce Targets.
This is a very efficient library to define and serialize structured data,
and it makes it easy to allow the communication among different
modules in the CALAPPA tool-chain.

CALAPPA is thus simply a collection of Luigi tasks that com-
municate thanks to protobuf streams. CALAPPA allows to cre-
ate different pipelines that involve different modules that typically
cover the following phases: retrieving data from one of the avail-
able sources (Section 3), metadata analysis (Section 4), application
code analysis (Section5), and further analyses on the extracted data
(Section 6).

3. DATA RETRIEVAL
CALAPPA includes different modules to retrieve Android re-

lated data, and they can be used depending on what information
users desire. In essence, CALAPPA allows to retrieve an arbitrary
amount of Android data that include:

• App metadata (including natural language description, list of
requested permissions, developer information and app cate-
gory)
• The list of user reviews.
• Latest app binary code.
• App source code.
• Specific app binary release.

A user can decide to download an arbitrary number of the most
recent Android binaries thanks to the Google Play crawler (Sec-
tion 3.1), a specific (or a range of) binary release from the apk mir-
ror repository (Section 3.2), or a large number of open source apps
from the F-Droid repository (Section 3.3). We now describe each
module in further details.

3.1 Google Play Crawler
The Google Play crawler is the most valuable module to retrieve

Android related data, since it crawls Google Play, which is the most

popular Android store. This module has been built on top of the
unofficial Google Play python API 1.

This module allows users to select apps based on specific criteria
including:

• Category filtering. We allow users to select a specific Google
Play category or to keep all of them into account.
• Package name filtering. The crawler can consider only apps

whose package name matches a specific string.
• Rate filtering. The crawler allows to download apps with a

star rating above a specific value.

Given the previously mentioned set of filtering criteria, the user
needs to specify how many apps to download and which informa-
tion to retrieve. Regarding what to download, a user can choose any
of the following data (by default all of them would be downloaded):

• The apk binary
• The app metadata, which include information on the devel-

oper, the category of the app, the natural language descrip-
tion, the average rating given by users, and the list of permis-
sions.
• The most recent 500 reviews done by users.

The Google Play crawler uses configurable proxies, and thus can
retrieve the data from different locations and stores (US, Germany,
Spain, etc.). This feature is important if a user wants, for instance,
to retrieve app descriptions mainly in a specific language.

3.2 APK Mirror Crawler
The Google Play store has a major limitation for researchers: It

allows to retrieve only the most recent release of the application
binary. Thus, when researchers need multiple releases of the same
application, they either have to let the Google Play crawler run con-
tinuously for several weeks, in order to retrieve new releases of the
same app as soon as developers release them, or may resort to the
APK Mirror crawler module that CALAPPA offers. This module
crawls www.apkmirror.com, a website storing several releases of
the same Android apps uploaded directly by users. For each apk
file, this website stores the MD5 checksum and the upload date.

This module allows to easily retrieve multiple versions of the
same app. Given an app name, the module allows to specify mul-
tiple filters to obtain either a list of download URLs of all apks
matching the app name, or to download the apk files directly.

The crawling process first searches for apks matching the pro-
vided name, and then parses the search result pages, which con-
tain links to the corresponding apk download page, and it adds
them to a working list. In the second step the crawler visits each
download page in the working list and extracts the download URL
together with relevant information displayed on the page, includ-
ing the MD5 checksum of the apk file. Download pages contain a
download URL and various information about the apk, such as size
and upload date: the crawler compares this data with the search
parameters specified by the user.

In addition to the apk package name, which is mandatory, users
can specify the following parameters when searching for APKs:

• APK MD5 checksum
• APK architecture
• APK version
• Minimum required Android API
• Release date interval
• Exclude/include alpha and beta versions

1http://github.com/egirault/googleplay-api

www.apkmirror.com
http://github.com/egirault/googleplay-api


If the apk info matches the search parameters, the crawler down-
loads the apk and saves the download URL for future usage pur-
poses. The primary purpose of this module is to download several
binary releases of the same app at the same time without waiting
for weeks or even months for them to appear on Google Play. An
alternative, but not less interesting, possible usage of this module is
to share datasets by simply sharing APK download URLs instead
of APK packages directly.

3.3 F-Droid Crawler
App source code may be required for some research studies.

While source code is not available for most apps published on the
Google Play and alternative stores, there exists F-Droid, a large
repository for free and open-source Android apps. CALAPPA thus
offers a module to retrieve data from this repository too.

It allows users to specify the number of apps to be downloaded,
using category and package name as filtering criteria. Apps avail-
able on this repository come with links to a repository and to an
issue tracker, and thus allow many studies that require this type of
information.

4. METADATA PROCESSING
A large set of CALAPPA modules provide functionalities to

parse metadata information on the set of Android apps under anal-
ysis. The most relevant functionalities allow to easily extract infor-
mation from the Android manifest and to filter and analyze natural
language descriptions. We now describe some of the most relevant
features and corresponding modules.

4.1 Android Manifest Parsing
CALAPPA offers a module to parse and extract relevant infor-

mation from the manifest file of each apk. Out of the manifest
file, this module extracts information on the developer, and on the
dependencies the app requires (e.g. the target Android version, if
available). Regarding the app itself, it extracts the following infor-
mation:

• app fullname
• package name
• app version
• app category, as declared by the developer
• app raw description, as provided by the developer
• list of permissions, as requested by the developer

Some of these elements, such as the natural language description
or the list of permissions, can be further analyzed by other modules
that we describe in the following sections.

4.2 Natural Language Description Analysis
CALAPPA implements several features to clean, filter and ana-

lyze the app natural language descriptions that have been extracted
from the Android manifest file by means of the module we de-
scribed in Section 4.1. We implemented simple tasks as separate
modules in order to facilitate reuse. Users can simply use mul-
tiple natural language processing modules by concatenating them
in the CALAPPA pipeline. Each module related to app descrip-
tions requires the following parameters: the path to the corpus of
apps metadata, extracted by the metadata analysis module, and this
has to mandatorily include the app name and the app description.
Moreover, each module needs to be aware of the working language
to use the appropriate dictionaries. English is the default language
for all these modules, given the predominance of the language.

CALAPPA implements modules for the most common tasks, in-
cluding:

• Stop words removal: It removes common words such as
conjunctions and articles from each app description. The
module uses the default stop words dictionary provided with
the nltk Python package, but can take an alternative dictio-
nary (with custom/domain specific terms) as an optional pa-
rameter.

• Stemming: It keeps the root of each word in each description
to limit the whole corpus of terms. Thus, for instance, words
such as “player”, “playing” and “plays” would all be trans-
formed to the common root “play”. This step is useful as a
pre-analysis of topic modeling, for instance. This module is
also based on the nltk package.

• HTML tags removal: Most descriptions contain HTML
tags to improve readability for users. Such tags, though,
should most of the times be removed before any textual anal-
ysis. This module simply removes such tags from the de-
scription thanks to the HTML parser module.

• Term frequency in corpus: There are many scenarios for
which term frequencies may be of interest. For instance,
users may want to identify the most common terms in all
app descriptions (after stop words removal) in order to re-
move them. For instance, in the Android corpus terms such
as “Android” and “app” would appear in pretty much each
descriptions. Removing them would would thus reduce the
description size and would not loose specific description se-
mantics. Users may also want to identify terms with the low-
est frequencies, as these may also not be relevant. For in-
stance, they may reveal the presence of typos.

• Different language text removal: Descriptions contain lan-
guage in different languages. Most often, they are largely in
English, and they contain shorter descriptions in other lan-
guages to catch the attention of regional audience. Many
techniques assume to work with a single language (e.g. En-
glish), and would thus need to remove non-English text be-
fore processing. This module uses Google’s Compact Lan-
guage Detector to first break descriptions into paragraphs,
and for each paragraph it identifies its likely language, and
will finally remove anything that does not belong to the lan-
guage of interest. In future we plan to include features to
automatically translate these paragraphs rather than remov-
ing them.

5. PROGRAM ANALYSIS
Arguably the most interesting artifact related to an Android ap-

plication is its code. Many techniques analyze the code in the apk
file for multiple reasons, including to optimize it (e.g. to make
it energy efficient), to test it, or to understand its behavior (e.g.
to identify malicious behavior). CALAPPA currently offers three
modules to analyze the Dalvik bytecode of each Android app under
analysis:

• Sensitive API calls: CALAPPA transforms the Dalvik byte-
code into the SMALI intermediate representation thanks to
apktool 2, and then parses it to extract the frequency of sen-
sitive API calls that occur in each app. We consider sen-
sitive API calls those that require at least one permission.
CALAPPA uses [3] to have an accurate mapping between
APIs and permissions.

2http://ibotpeaches.github.io/Apktool

http://ibotpeaches.github.io/Apktool


• Essential permissions: Studies report that many applica-
tions are over-privileged, meaning that some of the permis-
sions that an app asks for are not used [6]. CALAPPA offers
a module to extract the actual list of required permissions of
an app (i.e. permissions that are used at least once by a sen-
sitive method call).

• Information flows: CALAPPA offers a module that stati-
cally analyzes the Dalvik code and extracts the sensitive in-
formation flows (e.g. the device IMEI is sent to an unknown
server). In order to compute information flows, CALAPPA
resorts to using a customized version of FlowDroid [2]. More
details on how our implementation differs from the original
FlowDroid can be found in [4].

6. POST-PROCESSING ANALYSES
Thanks to the modules described in Section 4 and 5, it is possi-

ble to easily extract information from the app metadata and from
the program code. Many analyses can be done on these data.
CALAPPA provides modules that implement analyses that have
been used in previous research works, and are likely to be reused in
the future for related works:

• Clustering: CALAPPA has a module to automatically group
samples in clusters. Samples can be anything (e.g. applica-
tions, reviews, API calls) and can have an arbitrary number of
features. This module uses K-means, a well known cluster-
ing algorithm and can automatically identify the best number
of clusters.

• Topic modeling: CALAPPA provides a module to identify
“topics”, i.e. sets of terms that frequently occur together, out
of a corpus of documents. While most of the works on An-
droid used this technique on descriptions [7, 8], this module
can work on any other feature as well. CALAPPA uses the
Mallet library to provide this functionality 3.

• Anomaly detection: Users may want to identify anomalous
samples within clusters. This is useful, for instance, to iden-
tify malware or grayware if features that describe the behav-
ior of an application are used as features. CALAPPA uses the
ORCA package 4 to identify anomalies, and requires users to
specify a threshold parameter above which anomalies are re-
ported as such.

• Virus Total: Users who are analyzing application behav-
ior looking for malware may need to compare their analysis
against a ground truth. For this purpose, CALAPPA provides
a module that reports whether an Android app is malicious or
not, based on what information VirusTotal 5 provides about
it. CALAPPA uses the public VirusTotal API to provide this
feature.

7. CONCLUSION
In this paper we presented CALAPPA, a tool-chain to easily re-

trieve Android datasets and analyze them. CALAPPA comprises
several ready-to-use modules that already implement the most com-
mon tasks on Android data. Running long batch processes with
CALAPPA is easy, since users can easily deal with failures and can
pause and resume executions in a cost efficient way. CALAPPA
3http://mallet.cs.umass.edu/
4http://www.stephenbay.net/orca
5http://www.virustotal.com

also allows to parallelize analyses to achieve results in less time.
CALAPPA can be easily configured and extended with new mod-
ules.

To learn more about CALAPPA and our work check:

https://www.st.cs.uni-saarland.de/appmining/

8. ACKNOWLEDGMENTS
This work was supported by the European Research Council,

project “SPECMATE”, the European Union FP7-PEOPLE-COFUND
project AMAROUT II (grant n. 291803), by the Spanish Ministry
of Economy project DEDETIS, by the Madrid Regional Government
project N-Greens Software (grant n. S2013/ICE-2731), and by the
EIT Digital project SMAPPER.

9. REFERENCES
[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon.

Androzoo: Collecting millions of android apps for the
research community. In Proceedings of MSR, pages
468–471, 2016.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of PLDI, 2014.

[3] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
Analyzing the android permission specification. In
Proceedings of CCS, pages 217–228, 2012.

[4] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden. Mining apps for abnormal
usage of sensitive data. In Proceedings of ICSE, pages
426–436, 2015.

[5] S. R. Choudhary, A. Gorla, and A. Orso. Automated test
input generation for android: Are we there yet? (E). In
Proceedings of ASE, pages 429–440, 2015.

[6] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of CCS,
pages 627–638, 2011.

[7] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app
behavior against app descriptions. In Proceedings of ICSE,
pages 1025–1035, 2014.

[8] K. Kuznetsov, A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Mining android apps for anomalies. In The Art and Science
of Analyzing Software Data, pages 257–281. Morgan
Kaufmann, 4 2015.

[9] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A
survey of app store analysis for software engineering.
Technical report, University College London, 2016.

[10] A. von Rhein, T. Berger, N. S. Johansson, M. M. Hardø, and
S. Apel. Lifting inter-app data-flow analysis to large app sets.
Technical Report MIP-1504, Department of Informatics and
Mathematics, University of Passau, September 2015.
Technical Report MIP-1504, Department of Informatics and
Mathematics, University of Passau.

[11] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and
general inter-component data flow analysis framework for
security vetting of android apps. In Proceedings of CCS,
pages 1329–1341, 2014.

http://mallet.cs.umass.edu/
http://www.stephenbay.net/orca
http://www.virustotal.com
https://www.st.cs.uni-saarland.de/appmining/

	Introduction
	Tasks and Targets in a Pipeline
	Data Retrieval
	Google Play Crawler
	APK Mirror Crawler
	F-Droid Crawler

	Metadata Processing
	Android Manifest Parsing
	Natural Language Description Analysis

	Program analysis
	Post-processing Analyses
	Conclusion
	Acknowledgments
	References

