
Detecting Behavior Anomalies
in Graphical User Interfaces

Vitalii Avdiienko♣, Konstantin Kuznetsov♣, Isabelle Rommelfanger♣, Andreas Rau♣ Alessandra Gorla♠, Andreas Zeller♣
♣Saarland University ♠IMDEA Software Institute

Saarbrücken, Germany Madrid, Spain

Abstract—When interacting with user interfaces, do users
always get what they expect? For each user interface element
in thousands of Android apps, we extracted the Android APIs
they invoke as well as the text shown on their screen. This
association allows us to detect outliers: User interface elements
whose text, context or icon suggests one action, but which actually
are tied to other actions. In our evaluation of tens of thousands
of UI elements, our BACKSTAGE prototype discovered misleading
random UI elements with an accuracy of 73%.

One of the central principles in user interface design is
the principle of least astonishment—that is, a user interface
element should behave in a manner consistent with how its
users expect it to behave. Such user expectations typically stem
from similar programs which users are familiar with: If a UI
element says “Print”, “Save”, “OK”, “Close”, or “Cancel”, our
experience with other programs using these labels gives us an
idea of what to expect; and if the result does not match our
expectation, we see this as a problem.

The possibly most dangerous mismatches, however, are
those we do not even notice. Figure 1 shows the signup screen
of TRIPWOLF, a popular travel guide app from the Google Play
Store. Signing up to the service is done by entering an e-mail
address and clicking on “Join TRIPWOLF”. The interesting thing
about this Sign-up button is that it not only sends the e-mail
address, but also the precise user location to the TRIPWOLF
servers, using the LocationManager API—this button shows a
mismatch between user expectation and actual behavior.

In this paper, we check the advertised functionality of UI
elements against their implemented functionality: “This Signup
button should not send a location, but it does”. The idea is to
mine app stores – containing hundreds of thousands of apps
with graphical user interfaces – and model users’ expectations
with respect to a particular UI element. The expected behavior
results from similar UI elements in other apps.

The approach identifies arbitrary mismatches between what
a UI element shows and what it actually does. Simple UI
programming mistakes are also detected: If a programmer
included a button named “Signup” that always stays on the
same screen, or sends a text message, or prints a file, this
error could also be caught. Even translation issues stemming
from automatic app conversion mistakes can be recognized.

In contrast to other work leveraging app collections to de-
tect general mismatches between advertised and implemented
behavior [2], [5], [6], BACKSTAGE detects particular anomalies
at the UI level rather than the app level. Moreover, it is not
restricted towards stealthy behavior or privacy issues unlike

startActivity
LocationManager

JOIN TRIPWOLF

EditText
Uri

Handler
Bundle
startActivity

TelephonyManager
Handler
Bundle
startActivity
SharedPreferences

EditText

Fig. 1. For each UI element, BACKSTAGE determines the APIs it triggers,
and checks for anomalies: The TRIPWOLF Signup button sends the current
location to TRIPWOLF servers.

existing work checking for mismatches at the GUI level [3].
Instead, it provides a general means to detect mismatches
between advertised and implemented behavior at the GUI
level.

Our approach consists of five steps, summarized in Figure 2:
App Collection We start with a collection of thousands of

ANDROID apps, all taken from the Google Play Store by
using the ANDROZOO [1] dataset.

Mining UI Elements. We statically analyze the code and
resources of each app to identify its set of UI elements,
including those that would be set or changed dynamically.

Context and APIs. For each UI element, we extract its as-
sociated text—both labels shown on the element itself,
context from the surrounding screen, as well as the APIs that
would be triggered by the element. In our example, “Join
TRIPWOLF” uses LocationManager.getLastKnownLocation()
to retrieve the precise current location, and startActivity to
switch to the next input screen.

Cluster Analysis. From associated text of all UI elements,
we cluster their verbs and nouns into 250 concepts—
clusters of words with a minimal semantical distance using
a WORD2VEC model [4]. For each UI element, we determine
the distance between its text and the concepts. A button
named “Share”, would be semantically close to the concepts
“friend” (to share) and “finances” (a share).
For each button, we also extract the typically used APIs. The
“normal” behavior of a Sign-up function is to access the
network via android.net or org.apache.http. Several sign-



"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Fig. 2. Process Pipeline - For each app in a collection (Step 1), the app code and UI descriptions are statically analyzed to extract UI elements (Step 2).
For each UI element, the textual description and context on the screen are extracted, as well as the APIs that it triggers (Step 3). Across all apps, UI elements
with semantically related descriptions are clustered (Step 4) and an outliers analysis is performed (Step 5)—the Sign-up button from Figure 1 that sends out
the current location is an anomaly.

TABLE I
ACCURACY FOR DETECTING DISCREPANCIES BETWEEN advertised AND
implemented FUNCTIONALITY BY ANALYZING SYNTHETIC UI ERRORS

(MUTATIONS).

Precision Recall Accuracy Specificity

Random MutantsA 75% 67% 73% 79%
High Distance MutantsB 76% 71% 75% 79%
Crossover LabelC 69% 48% 65% 80%

up functions also access android.telephony to access the
country code of either the current network or the inserted
SIM card. The android.location package also is frequently
used—but only to access the current local time.

Outlier Detection. For each concept, we use outlier detection
to identify those UI elements that invoke uncommon APIs,
indicating differing (and possibly unexpected) behavior. Ac-
cessing the current precise location is rarely used in the
Signup cluster—and thus, the TRIPWOLF Signup button is
flagged as an anomaly.

RESULTS AND FUTURE WORK

Since our analysis uses most widely used apps, with a
high level of maturity, visible UI errors typically are already
detected, reported, and fixed. We resort to a well-established
scheme used to evaluate testing techniques. By injecting
synthetic UI errors (mutations), we measure how effective
the presented technique can detect general UI mismatches.
Specifically, we take existing buttons and change their labels
such that they would no longer match the APIs used; and then
evaluate whether these mutations are detected as anomalies.

Table I shows the results. Having random text replacements
as a baseline (A), the algorithm detects 67% of UI errors.
Obviously, the semantic distance between the given and the
correct label is crucial. If the distance is high, as indicated
by our “high distance” mutations (B), they are identified.
But if the distance is low, i.e. the items are semantically
close, an API mismatch would not be detected. The labels
“Stop”, “Abort”, or “Cancel”, for instance, are semantically
almost equivalent and the presented technique will have a hard
time differentiating them, just as humans will. But even small
programming issues, e.g. the programmer confuses two button

labels (C), can be automatically detected in every second case.
All these results should be interpreted from the standpoint that
to the best of our knowledge, there is no other approach which
would detect such mismatches.

This work is the first to generally check the advertised
functionality of UI elements against their implemented func-
tionality. To this end, thousands of existing UI elements are
analyzed for text and context shown to the user, and clustered
by common concepts. In each cluster, outliers are detected—
that is, UI elements that use different APIs than the others. This
approach is general and effective.

Despite these advances, we see the work not as an end—but
rather as a beginning of a new field “UI mining”, where we
would mine thousands of UIs to learn common vs. uncommon
features in behavior, appearance, and process. Our future work
will focus on the following topics:
Dynamic behavior. Despite the ease of static analysis, we are

considering using additional dynamic analysis and explo-
ration to assess dynamic features. Most notably, we want
to validate reported anomalies by creating test cases that
demonstrate the actual API access.

Automatic repair. Detecting that an UI element label does
not match its behavior allows for automatic suggestions of
better labels. One idea we are investigating is to identify
labels of UI elements that use similar APIs and suggest them
as automatic repairs: “This button should be named ‘Send’.”

Alternate domains and UI features. Besides ANDROID apps,
there are several other domains with programs whose UIs
could be mined, such as desktop applications. Besides
looking for anomalies between text and behavior, one might
also examine anomalies in visual presentation (“The ‘Send’
button should be highlighted”), layout, process, or visual
images—opening the door to general automatic anomaly
detection and recommendations for UI design.

To facilitate assessment, reproduction, and extension, our
prototype BACKSTAGE is publicly available—from source code
to build instructions to evaluation scripts. For details, check
out the project site at

http://www.st.cs.uni-saarland.de/appmining/backstage/

http://www.st.cs.uni-saarland.de/appmining/backstage/


REFERENCES

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting
millions of Android apps for the research community. In Proceedings of
the 13th International Conference on Mining Software Repositories, MSR
’16, pages 468–471, New York, NY, USA, 2016. ACM.

[2] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior
against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1025–1035, New
York, NY, USA, 2014. ACM.

[3] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid: detecting
stealthy behaviors in Android applications by user interface and program
behavior contradiction. In Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE 2014, pages 1036–1046, New York,
NY, USA, 2014. ACM.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[5] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: Towards
automating risk assessment of mobile applications. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages 527–542,
Berkeley, CA, USA, 2013. USENIX Association.

[6] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. Autocog:
Measuring the description-to-permission fidelity in android applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1354–1365, New York, NY,
USA, 2014. ACM.


