
Translating Code Comments to Procedure Specifications

Arianna Blasi
USI Università della Svizzera italiana

Switzerland

Alberto Goffi
USI Università della Svizzera italiana

Switzerland

Konstantin Kuznetsov
Saarland University / CISPA

Germany

Alessandra Gorla
IMDEA Software Institute

Spain

Michael D. Ernst
University of Washington

USA

Mauro Pezzè
USI Università della Svizzera italiana

Switzerland

Sergio Delgado Castellanos
IMDEA Software Institute

Spain

ABSTRACT

Procedure specifications are useful in many software development

tasks. As one example, in automatic test case generation they can

guide testing, act as test oracles able to reveal bugs, and identify

illegal inputs. Whereas formal specifications are seldom available

in practice, it is standard practice for developers to document their

code with semi-structured comments. These comments express the

procedure specification with a mix of predefined tags and natural

language. This paper presents Jdoctor, an approach that combines

pattern, lexical, and semantic matching to translate Javadoc com-

ments into executable procedure specifications written as Java ex-

pressions. In an empirical evaluation, Jdoctor achieved precision of

92% and recall of 83% in translating Javadoc into procedure specifi-

cations. We also supplied the Jdoctor-derived specifications to an

automated test case generation tool, Randoop. The specifications

enabled Randoop to generate test cases that produce fewer false

alarms and reveal more defects.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; Documentation;

KEYWORDS

Specification inference, natural language processing, software test-

ing, automatic test case generation, test oracle generation

ACM Reference Format:

Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla,Michael

D. Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating

Code Comments to Procedure Specifications. In Proceedings of 27th ACM SIG-

SOFT International Symposium on Software Testing and Analysis (ISSTA’18).

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3213846.3213872

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213872

1 INTRODUCTION

A program specification expresses intended program behavior, and

thereby it enables or automates many software engineering tasks. In

software testing, it acts as an oracle to determine which inputs are

legal and which outputs are correct [4, 17, 31, 37]. In debugging, it

identifies faulty statements [29, 54]. In code synthesis, it is the goal

that the synthesizer works toward [28, 47]. In refactoring, it ensures

that transformations are consistent [23]. In formal verification, it

discriminates correct and faulty implementations [53]. In runtime

monitoring, it identifies anomalous behaviors [15]. Automating

(parts of) these tasks requires a machine-readable format that tools

can manipulate. A formal specification serves this purpose well.

However, formal specifications are rarely available, because writing

them is not a common software development practice.

By contrast, informal specifications are readily available as semi-

structured and unstructured documents written in natural language.

It is standard practice for programmers to specify preconditions,

postconditions, and exceptional behaviors in procedure documen-

tation. The Javadoc markup language and tool appeared in Java’s

first release in 1995, and Doxygen, a similar but cross-language tool,

appeared 2 years later. Java IDEs automatically insert templates for

Javadoc comments. Most importantly, programmers have become

accustomed to writing these comments. As a result, significant

amount of code contains an informal Javadoc specification. How-

ever, software engineering tools make limited use of these informal

specifications.

This paper presents Jdoctor, a technique to automatically con-

struct executable procedure specifications from artifacts that pro-

grammers already create, namely Javadoc code comments, without

requiring programmers to change their development practice or

to do extra work. An executable specification is one that can be

executed, for example because it is written in a programming lan-

guage rather than in some other logic; it also needs to be expressed

procedurally, rather than (say) declaratively requiring the existence

of some value without indicating how to compute it. The procedure

specifications generated by Jdoctor can be used in multiple software

engineering tasks, for instance to automate the generation of test

cases, as shown in this paper.

242

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

1.1 Application: Test Case Generation

Automated test case generation can reduce both development costs

and the societal cost of software failures [5, 27, 44]. To generate

a test case automatically, a test generator must produce an input

that causes the program under test to perform some actions, and

an oracle that determines whether the program behaves correctly.

Creating accurate test oracles remains an open problem. This

leads test generators to suffer both false alarms (tests failing when

the program under test is correct) and missed alarms (tests passing

when the program under test is buggy), as we now explain. As an

example, suppose that a method call in an automatically-generated

test throws an exception. This thrown exception does not necessar-

ily mean that the tested method is buggy. There are the following

possibilities:

(1) The thrown exception actually reveals an implementation defect.

An example is triggering an assertion in the subject program

or otherwise failing to complete the requested operation.

(2) The thrown exception is expected, desired behavior. An example

is an IllegalOperationException when calling a mutator on an

immutable object.

(3) The thrown exception is permitted, but not required, behavior.

For example, a binary search routine has undefined behavior if

its argument array is not sorted. It is allowed to throw any ex-

ception or to return a result that is not consistent with whether

the searched-for element is in the array.

In the absence of a specification, test generation tools can use heuris-

tics to guess whether a given behavior is correct or incorrect. One

heuristic is to consider as correct a method execution that termi-

nates with a NullPointerException if one of the method’s arguments

was null, regardless of the specific requirements that may or may

not consider this as an acceptable behavior [40]. Another heuristic

is to use regression oracles, which deem as correct the behavior

exposed with a previous version of the software under test, and

as wrong any other behavior, even if the other behavior is also

acceptable to the software designer [19].

These guesses lead to false positives or false alarms, in which

the tool reports that a method has failed when in fact it behaved

as specified or it was called with illegal inputs. The guesses also

lead to false negatives or missed alarms, in which the tool fails to

report a test that exposes an incorrect behavior. This can happen

when the call should throw an exception but fails to, or when the

call throws an exception but the tool heuristically disregards it in

order to avoid false alarms.

We propose that test generators should rely on programmer-

written informal specifications by exploiting the executable pro-

cedural specifications automatically generated with Jdoctor. The

executable procedural specification can act as an oracle making

automatically generated test cases more effective, and can avoid

the generation of invalid test cases that derive from error-prone

heuristics, as described in Section 6.

1.2 Contributions

The main contribution of the research work documented in this

paper is Jdoctor, an approach to convert informal Javadoc code

comments into executable procedure specifications. This approach

is a novel combination of natural language parsing and pattern,

lexical, and semantic matching techniques. A second contribution

is an open-source implementation of the approach, which enables

the replication of the experiments referred to in this paper and

the execution of additional ones. A third contribution is multiple

experimental evaluations of the approach that confirm its accuracy

and usefulness reducing the number of false alarms reported by

automatically generated tests.

We experimentally evaluated the accuracy of Jdoctor in trans-

lating Javadoc comments into procedure specifications. Jdoctor

significantly outperforms other state-of-the-art approaches. Then,

we showed that Jdoctor is not just accurate, but also useful in the

domain of test generation. When integrated with a test generation

tool (Randoop), Jdoctor’s specifications reduce false positive alarms.

2 CODE COMMENT ANALYSIS

Our work draws inspiration and reuses ideas from code comment

analysis. The closest work related to our technique of analyzing

code comments is @tComment [50], ALICS [41], and Toradocu [24].

@tComment uses pattern-matching to determine three kinds of pre-

condition properties related to nullness of parameters. It achieves

high precision and recall for comments that match the patterns,

but those patterns are quite narrow and do not generalize. ALICS

generates procedure pre- and postconditions from code comments,

using part-of-speech tagging and then pattern-matching against a

small set of hard-coded nouns and jargon. Again, generalizability

is not obvious at all, and would require manual extension for each

new domain. Toradocu is our own initial work which resulted in

Jdoctor. It uses natural language parsing, and matches identified

nouns and verbs with arbitrary program expressions and operations

using approximate lexicographic matching. Toradocu only works

for exceptional conditions, which account for a fraction of Javadoc

comments. Both @tComment and Toradocu had their extracted

properties applied to the problem of test generation; ALICS has not

been applied to any development task.

Jdoctor aims to combine and properly extend the best of these

techniques. Pattern-matching cannot capture the expressivity and

variety of natural language in Javadoc tags, not even if evaluated on

just the programs in our case studies. Jdoctor complements pattern

matching with natural language parsing, as do ALICS and Toradocu.

However, unlike previous work, Jdoctor is not restricted to a small

grammar of specific comments or specifications, but can express

specifications in terms of abstractions defined in the program being

analyzed. Unlike all previous work, Jdoctor adds a novel notion of

semantic similarities. This handles comments that use terms that

differ, despite being semantically related, from identifiers in code.

In a nutshell, Jdoctor produces specifications for all sorts of

procedure behavior: preconditions (unlike Toradocu), normal post-

conditions (unlike @tComment and Toradocu), and exceptional

postconditions (unlike @tComment), and is more general than

previous work. Unlike @tComment, Jdoctor does not require the

program to conform to specific behavior for illegal inputs (for null-

related behaviors, in the case of @tComment). Unlike @tComment

and ALICS, Jdoctor is not restricted to a small grammar of specific

comments or specifications, but can express specifications in terms

of abstractions defined in the program being analyzed. Jdoctor incor-

porates textual pattern-matching and natural language processing

243

Translating Code Comments to Procedure Specifications ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

(unlike @tComment), and introduces new techniques that are more

sophisticated and effective than ALICS and Toradocu. Unlike ALICS,

Jdoctor specifications are executable and involve data structures,

like arrays and collections, and mathematical expressions.

3 MOTIVATING JAVADOC EXAMPLES

It is standard practice for Java developers to annotate code with in-

formal specifications in the form of Javadoc comments. The Javadoc

tool automatically generates API documentation in HTML format

from such comments. Javadoc comments consist of free-form text,

some of which is preceded by łtagsž: the @param tag for precondi-

tions and the @return and @throws tags for regular postconditions

and exceptional behaviors respectively.1 We now present some ex-

amples of Javadoc comments taken from popular open-source Java

code, together with the output that Jdoctor produces, to highlight

the challenges of this work and the limitations of previous work.

3.1 Preconditions

@param tags characterize method parameters and state the precondi-

tions that callers must respect. Consider the following comment,

taken from the BloomFilter class of Google Guava. Jdoctor trans-

forms this comment into the executable specification that is shown

in the box below the Javadoc comment. The clauses are conjoined

with the Java conditional operator łandž (&&) to form the complete

procedure specification.

1 /∗∗

2 ∗ @param funnel the funnel of T's that the constructed {@code

3 ∗ BloomFilter<T>} will use

4 ∗ @param expectedInsertions the number of expected insertions to the

5 ∗ constructed {@code BloomFilter<T>}; must be positive

6 ∗ @param fpp the desired false positive probability (must be positive

7 ∗ and less than 1.0)

8 ∗/

9 public static <T> BloomFilter<T> create(

10 Funnel<? super T> funnel,

11 int expectedInsertions,

12 double fpp) { . . . }

expectedInsertions > 0

fpp > 0 && fpp < 1.0

Jdoctor correctly handles comments using math expressions (sec-

ond and third @param comment) and compound conditions (third

@param comment). Jdoctor also understands that the comment re-

garding the first parameter does not specify any precondition and

thus does not produce any specification regarding parameter funnel.

3.2 Exceptional Postconditions

@throws and @exception tags represent postconditions of exceptional

executions. Let us consider the following excerpt from the class

ClosureUtils of the Apache Commons Collections library.

1 /∗∗

2 ∗ @throws NullPointerException if the closures array is null

3 ∗ @throws NullPointerException if any closure in the array is null

4 ∗/

5 public static <E> Closure<E> chainedClosure(

6 final Closure<? super E>... closures) { · · · }

1http://www.oracle.com/technetwork/articles/java/index-137868.html;
@exception is equivalent to @throws.

closures == null −→ java.lang.NullPointerException

java.util.Arrays.stream(closures).anyMatch(e -> e == null) −→

java.lang.NullPointerException

The first exceptional postcondition is straightforward, and the

state of the art can handle it. However, only Jdoctor understands

properties related to elements in containers, as in the second @throws

comment.

Jdoctor also handles more complex comments such as the fol-

lowing, which comes from the CollectionUtils class of the Apache

Commons Collections library:

1 /∗∗

2 ∗ @throws NullPointerException if either collection or the comparator is null

3 ∗/

4 public static <O> List<O> collate(

5 Iterable<? extends O> a,

6 Iterable<? extends O> b,

7 Comparator<? super O> c) { · · · }

(a == null || b == null || c == null) −→ java.lang.NullPointerException

Although this comment describes null conditions, the state of

the art cannot produce a correct assertion. Jdoctor determines that

łeither collectionž refers to parameters a and b, and łthe comparatorž

refers to parameter c.

3.3 Normal Postconditions

@return tags represent postconditions of regular executions of meth-

ods and are the most varied and therefore the most challenging

comments. Here are three examples that no other technique can

handle.

The first example is from class BagUtils in the Apache Commons

Collections library:

1 /∗∗ @return an empty Bag ∗/

2 Bag emptyBag()

true −→ result.equals(Bag.EMPTY_BAG)

Jdoctor produces a postcondition using a constant declared in

class Bag. Matching code comments to methods or other code ele-

ments in the code under test is not always this straightforward, as

exemplified by the following comment for method Graph.addEdge()

of the JGraphT library.

1 /∗∗ @return true if this graph did not already contain the specified edge ∗/

2 boolean addEdge(V sourceVertex, V targetVertex, E e)

!this.containsEdge(sourceVertex, targetVertex) −→ result == true

Jdoctor infers that łthis graphž refers to the graph instance itself,

and that method containsEdge can check the postcondition. Jdoctor

correctly passes the two vertexes as parameters of this method to

form an edge.

Matching code comments to code elements may also require

some notion of semantic similarity. Take the following example

from the same Graph class.

1 /∗∗ @throws NullPointerException if vertex is not found in the graph ∗/

2 Set edgesOf(Object vertex)

this.contains(vertex)==false −→ java.lang.NullPointerException

Jdoctor infers that łnot foundž is semantically related to the

concept of łan element being contained in a containerž, thanks

to Jdoctor’s novel semantic similarity analysis. @tComment and

244

http://www.oracle.com/technetwork/articles/java/index-137868.html

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

Toradocu lack any semantic similarity analysis, while ALICS only

supports a limited list of manually-defined synonyms.

4 JDOCTOR

Jdoctor2 translates Javadoc comments related to constructors and

methods into executable Java expressions. Its key insight is the

observation that nouns in a natural language comment tend to cor-

respond with variables or expressions in the code, and verbs/predi-

cates in a comment correspond with operations or methods. Jdoc-

tor handles Javadoc preconditions (@param), normal postconditions

(@return), and exceptional postconditions (@throws or @exception).

Jdoctor works in four steps:

(1) Text normalization (ğ4.1): Jdoctor preprocesses the text in the

Javadoc @param, @return, @throws, and @exception block tags to

prepare for the analysis of the natural language. This phase

includes several text transformations to facilitate the next steps.

(2) Proposition identification (ğ4.2): Jdoctor uses a natural language

parser to identify the propositions (subjectśpredicate pairs) of

each clause in the comment.

(3) Proposition translation (ğ4.3): Jdoctor matches each identified

proposition to a Java element, such as an expression or opera-

tion. This step is the core of Jdoctor, and relies on a combination

of pattern, lexical, and semantic similarity matching.

(4) Specification creation: Jdoctor creates Java boolean expressions

that encode the natural language Javadoc comment. It replaces

each subject and predicate in the text with Java code and tra-

verses the parse tree to create legal Java code, including method

calls, operations, and boolean connectives (from grammatical

conjunctions).

4.1 Text Normalization

Javadoc comments are rarely complete grammatical English sen-

tences. For example, they often lack punctuation, have implicit

subjects and/or verbs, and intermix mathematical notation with

English. Current NLP parsers cannot always handle the style of

Javadoc comments as written by programmers. Jdoctor makes the

text parseable by preprocessing it into a grammatical English sen-

tence before using NLP parsers. This phase properly extends previ-

ous work and allows to deal with many more Javadoc comments.

Punctuation: Jdoctor adds a terminating period when it is ab-

sent. It also removes spurious initial punctuation, which stems

from programmers (incorrectly) using commas in Javadoc com-

ments to separate parameter or exception names from their

descriptions.

Implicit subject: Comments may refer to a subject that was pre-

viously mentioned. For instance, a typical @param comment is

łWill never be null.ž Since Jdoctor parses sentences in isolation,

each sentence needs an explicit subject. For @param comments

Jdoctor adds the parameter name at the beginning of the com-

ment text. Jdoctor also heuristically resolves pronouns such as

łitž, replacing them with the last-used noun in the comment.

2Jdoctor is open-source and publicly available: https://github.com/albertogoffi/
toradocu/releases/tag/v3.0

Implicit verb: Some comments have implicit verbs, such as ł@par-

am num, a positive numberž. Jdoctor adds łisž or łarež depend-

ing on whether the first noun, which is assumed to be the

subject, is singular or plural.

Incomplete sentences: Jdoctor transforms dependent clauses

into main clauses when no main clause exists.

Vocabulary standardization: To accommodate later pattern-

matching, Jdoctor standardizes text relating to nullness, if, and

empty patterns. For example, Jdoctor standardizes łnon-nullž

and łnonnullž to łnot nullž.

Mathematical notation: Jdoctor transforms inequalities to place-

holders that can be parsed as an adjective. For instance, Jdoctor

transforms the clause if {@code e} < 0 into the expression e < 0,

and then into e is LT0.

4.2 Proposition Identification

Given an English sentence, Jdoctor identifies ⟨subject,predicate⟩

pairs, also called propositions [14], and conjunctions or disjunctions

that connect propositions (if any). Extracting ⟨subject,predicate⟩

pairs from natural language sentences is referred to as Open Infor-

mation Extraction (OIE) [1, 14, 18, 46].

Jdoctor first performs partial POS tagging [41]. It marks param-

eter names as nouns and inequality placeholders such as LT0 as

adjectives. Jdoctor completes the POS tagging process by means

of the Stanford Parser3 [34], which produces a semantic graph (an

enriched parse tree) representing the input sentence. The nodes of

the semantic graph correspond to the words of the sentence, and

the edges correspond to grammatical relations between words.4

Jdoctor identifies the words that comprise the subject and the

ones that comprise the predicate, based on the sentence structure

and the grammatical roles encoded in the graph. More precisely,

given the single node (i.e., word) marked as subject in the semantic

graph, Jdoctor identifies the complete subject phrase by visiting

the subgraph with the subject node as root node and collecting

all the words involved in a relation of type compound, adverbial

modifier, adjectival modifier, determiner, and nominal modifier.

This is substantially different from ALICS [41], which only uses

the ready-to-use POS tagging provided by the Stanford Parser, thus

missing information from all the other words. Jdoctor identifies

the predicates by collecting words with the following grammatical

relations: auxiliary, copula, conjunct, direct object, open clausal

complement, and adjectival, negation, numeric modifiers.

Jdoctor extracts one proposition from simple sentences and mul-

tiple propositions from multi-clause sentences. By processing dedi-

cated edges for grammatical conjunctions like łandž and łorž in the

semantic graph, Jdoctor correctly supports multi-clause sentences.

While traversing the graph, Jdoctor identifies propositions inter-

connected with the proper boolean conjunctions or disjunctions

that reflect the grammatical conjunctions in the input sentence.

4.3 Proposition Translation

Jdoctor translates each proposition by consecutively applying com-

plementary heuristics of pattern matching (Section 4.3.1) and lexical

3http://nlp.stanford.edu/software/lex-parser.html
4http://universaldependencies.org/u/dep/all.html

245

https://github.com/albertogoffi/toradocu/releases/tag/v3.0
https://github.com/albertogoffi/toradocu/releases/tag/v3.0
http://nlp.stanford.edu/software/lex-parser.html
http://universaldependencies.org/u/dep/all.html

Translating Code Comments to Procedure Specifications ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

Algorithm 1 Comment Translation

1: /** Translate comment text into Java expressions. Given the English text
and the list of propositions, the function matches each part. */

2: function translate(set of propositions)
3: if return-comment then
4: identify-guard-and-properties(set of propositions)
5: match-proposition(proposition-in-guard)
6: match-proposition(proposition-in-trueProperty)
7: match-proposition(proposition-in-falseProperty)
8: else
9: for all proposition ∈ text do
10: match-proposition(proposition)
11: end for
12: end if
13: end function

14: /** Given a proposition (i.e. a pair of subject and predicate), find code ele-
ments to match subject and predicate. */

15: function match-proposition(proposition)
16: subjCandidateList = get-subject-candidates(subject)
17: matchedSubject = lexical-match(subject, subjCandidateList)
18: if no match for subject then
19: return
20: end if
21: predCandsList = get-predicate-candidates(predicate)
22: matchedPredicate = pattern-matching(predicate, predCandsList)
23: if no match for predicate then
24: matchedPredicate = lexical-match(predicate, predCandsList)
25: end if
26: if no match for predicate then
27: matchedPredicate = semantic-match(predicate, predCandsList)
28: end if
29: end function

matching (Section 4.3.2) with semantic similarity analysis (Sec-

tion 4.3.3). Jdoctor uses the first of these approaches that succeeds.

This section describes the translation of a single proposition.

Jdoctor handles multiple propositions by merging the translations

of the component propositions according to the grammatical con-

junctions (łorž, łandž) in the input comment.

Algorithm 1 shows how Jdoctor processes the (normalized) text

of Javadoc comments. The text may contain multiple propositions.

The algorithm translates each proposition independently. Then,

these translations (which are Java expressions and operations) are

recombined to create the full executable specification. The recombi-

nation is done specially for @return comments. Jdoctor first identi-

fies the guard, the true property and the false property. For instance,

the return comment for ArrayStack.search() in Apache Commons

Collections is łthe 1-based depth into the stack of the object, or -1

if not foundž. Jdoctor identifies łif not foundž as the guard, łthe

1-based depth into the stack of the objectž as the true property, that

is, the property that holds when the guard is true, and ł-1ž as the

false property, that is, the property that holds when the guard is

evaluated to false.

When translating propositions into Java expressions (line 15),

Jdoctor attempts to match each subject and predicate to code el-

ements. Intuitively, nouns correspond to objects, which are rep-

resented in source code as expressions, and verbs correspond to

actions or predicates, which are represented in source code as op-

erations.

Jdoctor starts by analyzing the subject of the proposition (line 17)

and tries to match the subject to a code element, which may be

a parameter of the method, a field of the class, or the class itself.

Jdoctor retrieves the identifiers and types of all code elements in

scope as candidates and looks for the best match. For instance, when

processing the comment łif the comparator is nullž presented in

Section 3, Jdoctor matches the subject łcomparatorž to the param-

eter of the method whose type is Comparator. Jdoctor implements

this task with lexical matching, which we explain in Section 4.3.2.

If Jdoctor finds a matching expression for the subject, it proceeds

looking for a corresponding matching predicate (such as łis nullž in

the example). More in detail, Jdoctor retrieves the code identifiers

of all public methods and fields within the scope of the subject

as possible candidates. For example, after matching the subject

comparator to type Comparator, Jdoctor retrieves the whole list of

public methods and fields of class Comparator as possible candidates.

Once it has identified the possible candidates, Jdoctor incrementally

exploits a set of heuristics to infer the correct matching of the predi-

cate to the code element among the possible candidates: (i) It checks

whether the predicate matches a set of predefined translations (line

22), (ii) it looks for lexically similar matches (line 24), (iii) it searches

for matches according to semantic similarity (line 27) .

4.3.1 Pattern Matching. Jdoctor uses pattern matching to map

common phrases such as łis positivež, łis negativež, and łis nullž to

the Java expression fragments >0, <0, and ==null, respectively. In line

with previous work [41, 51, 55], Jdoctor employs a set of extensible

patterns that covers properties for primitive types, Strings, and

nullness checks. Pattern matching can efficiently translate common

patterns, but it cannot handle domain-specific concepts or jargon

specific to the code, like the concepts łvertexž and łgraphž in łif

vertex is not found in the graphž.

4.3.2 Lexical Matching. Jdoctor tries to match a subject or a

predicate to the corresponding code element based on the intuition

that words in Javadoc comments are lexically similar to code el-

ements. Jdoctor (i) tokenizes code candidates into separate terms

according to camel-case convention, (ii) computes the Levenshtein

distance between each term and each word in the subject/predi-

cate, and (iii) selects the candidate with the smallest Levenshtein

distance, as long as it does not exceed a threshold (with a very

small default threshold (i.e. two) to avoid wrong matches as much

as possible). For example, when processing the comment łif the

comparator is nullž presented in Section 3, Jdoctor matches the

subject łcomparatorž to the parameter of the method whose type

is Comparator with distance 0.5

Jdoctor uses lexical matching similarly to Toradocu [24]. This

technique outperforms simple pattern matching, like the one im-

plemented by @tComment, and straightforward natural language

processing, like the one implemented in ALICS. Its limitations are

due to the assumption that nouns in Javadoc comments should be

similar to identifiers in the code, which may not always hold in

practice.

4.3.3 Semantic Matching. To illustrate the limits of pattern and

lexical matching, consider the predicate łis not found in the graphž.

The desired translation would be !graph.containsVertex(vertex).

Pattern-matching would work only if specific patterns were avail-

able to handle this case. Lexical matching fails because the code

5Jdoctor’s algorithm is case-insensitive.

246

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

element containsVertex is not lexically close to the terms łis not

found in the graphž that occur in the comment. The Jdoctor seman-

tic matching approach builds on the observation that syntactically

different terms can have a close semantics. For example, method

containsVertex in the code and the concept łis not found in the

graphž in the comment are lexically different, although their se-

mantics is related. Jdoctor deals with matches that both pattern and

lexical matching miss thanks to semantic similarity between words.

Jdoctor uses word embedding, which has been proved to be a power-

ful approach to represent semantic word relations. It embeds words

in a high-dimensional vector space such that distances between

words are closely related to the semantic similarities, regardless of

the syntactic differences. Jdoctor uses GloVe,6 a two-layer neural

network model for this purpose.

Jdoctor removes a customized list of stopwords from the pred-

icate and applies lemmatization before computing semantic sim-

ilarity with GloVe. Lemmatization transforms terms to their root

form, for instance, "playing" and "played" become "play", to sim-

plify the semantic matching by reducing the amount of terms in the

domain. By default, Jdoctor uses a list of stopwords that includes

articles and words that belong to the Java language, such as łforž,

łdož and łnullž. The Glove model as is, however, can only capture

the semantic similarity of single terms. Thus, it would report the

terms łvertexž and łgraphž as semantically related. However, most

of the times predicates and code identifiers are composed of multiple

words. For example, in JGraphT, the comment excerpt łvertex is

foundž should match method containsVertex. To compare multi-

ple words at once, Jdoctor uses theWord Mover’s Distance (WMD)

algorithm [30].

WMDmeasures the semantic distance between two text snippets

as the cumulative distance that all words in the comment ([vertex,

is, found] in this case) have to be exactly as the words in the code

element identifier ([contain, vertex] in this case). Similarly to what

Jdoctor does for lexical matching, it selects the candidate that has

the closest semantic distance up to a given threshold.

Despite offering different matching strategies, Jdoctor resorts

only to lexical similarity for subject matching. This approach forces

Jdoctor to match subjects to code elements with a very high preci-

sion (though it may miss some matches). This conservative deci-

sion is vital for the performance of Jdoctor, since subject matching

gives the scope to later match the predicate. A widerÐ and possi-

bly wrongÐ scope would direct the search for predicate matching

towards completely wrong paths.

Jdoctor produces a single Java boolean condition as translation

of @param comments, and a pair ⟨expected exception type, Java

boolean condition⟩ as translation of @throws comments. Translations

of @return comments are not a single boolean Java condition; instead,

a single translation is composed of three Java boolean conditions

corresponding to guard, true-, and false-property.

5 EVALUATION: TRANSLATION ACCURACY

We evaluated the translation accuracy of Jdoctor by answering the

following research questions.

RQ1 What is the effectiveness (precision and recall) of Jdoctor

in translating Javadoc comments to procedure specifications?

6https://nlp.stanford.edu/projects/glove/

Table 1: Subject programs and ground-truth translations.

Column łDoc’d Classesž reports the total number of classes

with documentation, out of which we selected łAnalyzed

Classesž. łAnalyzed Methodsž reports the methods with

Javadoc tags that the authors of this paper could express in

executable form.

Classes Methods Normal Excep.
Subjects Doc’d Analyzed Analyzed Pre. Post. Postcond.

Commons Collections 4.1 196 20 179 146 26 166
Commons Math 3.6.1 519 52 198 57 23 198
GraphStream 1.3 67 7 14 3 8 1
Guava 19 116 19 66 30 12 48
JGraphT 0.9.2 47 10 23 0 6 28
Plume-lib 1.1 26 10 83 7 43 27

Total 971 118 563 243 118 468

https://commons.apache.org/collections, https://commons.apache.org/math,
http://graphstream-project.org, http://github.com/google/guava,
http://jgrapht.org, http://mernst.github.io/plume-lib

RQ2 How does Jdoctor’s effectiveness compare with state-of-

the-art approaches, namely @tComment and Toradocu?

We measure effectiveness in terms of precision and recall, the

standard metrics for an information retrieval task such as translat-

ing Javadoc comments to procedure specifications.

Precision measures correctness as the proportion of the output

that is correct, with respect to missing and wrong outputs. The

output is correct (C) when Jdoctor produces a specification that

matches the expected specification. The output is missing (M) when

Jdoctor does not produce any specification. The output is wrong

when Jdoctor either produces a specification when no specification

is expected (W1), or a specification that does not match the expected

one (W2). Precision is defined as the ratio between the number of

correct outputs and the total number of outputs:

precision =
|C |

|C | + |W 1| + |W 2|
Recall measures completeness as the proportion of desired outputs

that the tool produced, and it is defined as the ratio between the

number of correct outputs and the total number of desired outputs:

recall =
|C |

|C | + |W 2| + |M |
Our measurements conservatively consider a partially correct

translation to be wrong. For example, if the comment is ł@throws

Exception if x is negative or y is nullž, then the translation łx < 0ž

is deemed as wrong.

5.1 Experimental Setup

For the evaluation we selected 6 well-maintained open-source Java

systems (see Table 1). For each system we (i) discarded classes with

no or limited documentation, that is, with less than 5 Javadoc com-

ments, and (ii) ignored comments documenting methods inherited

from java.lang.Object, getters and setters (methods whose name

starts with łgetž or łsetž). Column łDoc’d Classesž in Table 1 reports

the number of classes that satisfy these conditions for each subject.

We then selected and manually analyzed at least 10% of the doc-

umented classes and methods: columns łAnalyzed Classesž and

łAnalyzed Methodsž, respectively. To this end, we applied proba-

bility proportional to size (PPS) sampling, with a probability of

247

https://nlp.stanford.edu/projects/glove/
https://commons.apache.org/collections
https://commons.apache.org/math
http://graphstream-project.org
http://github.com/google/guava
http://jgrapht.org
http://mernst.github.io/plume-lib

Translating Code Comments to Procedure Specifications ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

selecting each class proportional to the number of methods in the

class. For each analyzed method in each selected class, we manually

determined its ground truthÐ the correct translation of Javadoc

comments to executable method specifications. We did so by read-

ing its Javadoc comment, which is expressed in English, and writing

executable specifications that correspond to each @param, @return,

and @throws and @exception tag. Every translation was reviewed

independently by at least two of the authors of this paper.

Sometimes, the text corresponding to a Javadoc tag cannot be

expressed as an executable specification. An example is ł@throws

IOException if there is trouble reading the filež. For such comments,

we do not expect Jdoctor to produce any output. We discarded

classes that did not contain any comment that could be translated

to executable specification, i.e., do not belong to the list of ana-

lyzed classes. This left us with 118 analyzed classes and 829 Javadoc

comments for which we manually produced the ground-truth exe-

cutable specification. Our experiments compare three tools, all of

which create executable procedure specifications from programmer-

written informal English specifications.

• @tComment [50] pattern-matches against predetermined tem-

plates for three different types of nullness specifications. We

wished to use the@tComment implementation, butwere stopped

by the limited documentation (for example, its file format is un-

documented). We found it easier to reimplement @tComment

based on its published description [50]. Our implementation of

@tComment achieves similar results to those in its paper and is

publicly available for external inspection.7

• Toradocu [24] generates exceptional postconditions from @throws

comments by means of a combination of NLP and string match-

ing. We used the Toradocu implementation from GitHub.8

• Jdoctor is the tool described in this paper.

We did not consider ALICS [42] in our comparison, because we

could not make the tool work properly, even with the support of

the authors (see Section 8 for more information about this issue).

Moreover, ALICS does not produce executable specifications, and a

comparison would have been hard.

5.2 Accuracy Results (RQ1, RQ2)

Table 2 reports the accuracy of @tComment, Toradocu, and Jdoc-

tor on the subject classes of Table 1. As mentioned in Section 2,

Toradocu does not handle preconditions, and neither Toradocu nor

@tComment handle normal postconditions (values n.a. in the table).

The data in the table show that Jdoctor’s precision is comparable

with state-of-the-art approaches, and Jdoctor’s recall is substantially

higher than state-of-the-art approaches.

Preconditions. Jdoctor handles preconditions of different types,

while @tComment deals only with null-related checks that it han-

dles with a simple analysis. The slightly higher precision of @tCom-

ment than Jdoctor benefits from the specificity of its patterns, such

as łmay be nullž, łmust not be nullž, and ł@throws IllegalArgu-

mentException if . . . is nullž. However, the simple analysis of@tCom-

ment misses many translations, leading to much lower recall than

Jdoctor.

7https://github.com/albertogoffi/toradocu/blob/master/src/main/kotlin/tcomment/
tcomment.kt
8https://github.com/albertogoffi/toradocu/releases/tag/v0.1

Table 2: Accuracy (precision, recall, f-measure) of tools that

translate English to executable procedure specifications.

Normal Exceptional

Precond postcond postcond Overall

(@param) (@return) (@throws) (all Javadoc tags)

Prec Rec Prec Rec Prec Rec Prec Rec F

@tComment 0.97 0.63 n.a. 0.00 0.80 0.16 0.90 0.24 0.38

Toradocu n.a. 0.00 n.a. 0.00 0.61 0.39 0.61 0.23 0.33

Jdoctor 0.96 0.97 0.71 0.69 0.97 0.79 0.92 0.83 0.87

Normal postconditions. Jdoctor is the only approach that is ex-

pressive enough to handle @return comments. Its precision and

recall are lower for @return comments than for other tags, due to

the complexity of common return conditions. For example, the

comment ł@return the sorted arrayž states a postcondition checking

whether the array returned by the routine is sorted. This check

involves a loop over the array, and is not supported in the cur-

rent implementation of Jdoctor. Other conditions difficult to check

are, for example, the comment ł@return n+1 if no overflows occurž

from class FastMath of Commons Math, whose guard should check

whether an overflow occurred. Yet another reason for relatively low

precision and recall is that postconditions often include compar-

isons between two or more elements. Currently, Jdoctor translates

subjects and predicates as a whole, assuming that subjects and pred-

icates translate to single Java elements, and cannot handle more

complex cases, such as łif the size difference between a and c is

not equal to 1ž, łif maximal number of iterations is smaller than or

equal to the minimal number of iterationsž, and łif xval and yval

have different sizesž.

Exceptional postconditions. Jdoctor has better precision and recall

than @tComment. @tComment translates only nullness-related

comments, i.e., comments containing the word łnullž in specific

contexts. For instance, Jdoctor can translate the expression łaS-

tring is not emptyž, while @tComment does not. Jdoctor’s sentence

analysis is more effective than @tComment’s pattern-matching

in analyzing complex sentences. Jdoctor can translate sentences

composed of many dependent clauses connected with specific gram-

matical conjunctions, like if x and y are positive or z is negative,

while @tComment’s pattern matching does not. Jdoctor has better

precision and recall than Toradocu. The better results of Jdoctor are

due to a more precise algorithm to translate subjects and predicates

into Java elements and to a wider set of supported comments (see

Section 4).

An overall precision of 92% and a recall of 83% support a posi-

tive answer to RQ1: Jdoctor is effective and accurate in translating

Javadoc comments into procedure specifications. Our evaluation also

supports a positive answer to RQ2: Jdoctor achieves better accuracy

than state-of-the-art techniques @tComment and Toradocu.

5.3 Inconsistent Specifications

We manually checked the accuracy of Jdoctor reported in Sec-

tion 5.2, by inspecting the output of Jdoctor for each Javadoc com-

ment. The inspection indicates that Jdoctor can produce correct,

but inconsistent specifications. While currently many of these is-

sues can be found only manually analyzing Jdoctor’s output, we

248

https://github.com/albertogoffi/toradocu/blob/master/src/main/kotlin/tcomment/tcomment.kt
https://github.com/albertogoffi/toradocu/blob/master/src/main/kotlin/tcomment/tcomment.kt
https://github.com/albertogoffi/toradocu/releases/tag/v0.1

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

plan to extend the tool to automatically report them. We now de-

scribe some of the many inconsistencies that we encountered. We

found that many developer-written specifications were logically

inconsistentÐ that is, they could not be implemented, or used by

clients. This highlights a side benefit of converting informal Eng-

lish specifications into executable form: The inconsistencies are not

as obvious in the informal formulation, and the machine-readable

specification can be automatically checked. Below we report six

types of inconsistencies and errors that Jdoctor could highlight.

Some specifications translate into expressions that are not always

well defined, because their evaluation could throw an exception.

An example is arg.f > 0 when arg is null, which can lead to two

reasonable but different interpretations: the expression arg.f always

has a value (i.e., arg != null && arg.f > 0), or the condition is true

whenever arg.f has a value (i.e., arg != null || arg.f > 0). Both

interpretations occur in practice, although their meaning is quite

different, both for clients and for implementers.

Many specifications have conflicting preconditions and postcon-

ditions. A simple example from class CollectionUtils in Commons

Collections is

∗ @param a the first collection, must not be null

∗ @throws NullPointerException if a is null

where the @throws clause refers to cases that violate the @param

clause, leading to two legal albeit contradicting interpretations:

(i) the method’s domain is all values (the programmer is allowed to

pass null), with a promise about what happens when null is passed

in, or (ii) the domain is all non-null values, and programmers should

not pass null. Both interpretations are plausible, and there is no

way to know which the designers intended, but the difference is

far for being trivial: the former states that maintainers must not

change the implementation in the future, while the latter gives the

implementer freedom to change the implementation in the future,

and clients who depend on the exception will break.

Some of the specifications indicate multiple outcomes for a given

condition. As an example, let us consider

∗ @throws NullPointerException if arg1 is null

∗ @throws IllegalArgumentException if arg2 is negative

If arg1 is null and arg2 is 0, then the routine is required to throw

both NullPointerException and IllegalArgumentException, which is

impossible in Java. A client who does not notice the inconsistency

may experience unexpected behavior. One example of this kind of

inconsistency is in class KShortestPaths of JGraphT. Similar incon-

sistencies arise also in postconditions.

Jdoctor automatically identified some errors in the Javadoc,

which are likely due to copy-and-paste errors [6]. For example,

the documentation of method CharMatcher.matchesNoneOf in Guava

19.0 states that it łreturns true if this matcher matches every char-

acter in the sequence, including when the sequence is emptyž [bold

ours], while it should state that the method matches no character in

the sequence. Jdoctor correctly translated the typo łmatches every

characterž to a Java expression that uses method matchesAllOf, and

this assertion failed at run time, highlighting the incorrect Javadoc.

Some procedures’ Javadoc refer to incorrect formal parameter

names. Common causes are the inheritance of Javadoc from over-

ridden implementations, joint with changes the formal parameter

names. A reader of the HTML API documentation would see one

set of names in the Javadoc and a different set in the method sig-

nature. Oftentimes the correspondence is obvious, but not always,

and readers should not have to deduce it.

Jdoctor also automatically reported some typos in the Javadoc.

For instance, in class Node in the GraphStream project, the Javadoc

wrongly says that a methodmay throw an IndexOutOfBoundException,

instead of the correct IndexOutOfBoundsException. Jdoctor could re-

port the issues since it did not find class IndexOutOfBoundException

in its classpath.

6 APPLICATION: ORACLE GENERATION

As noted in Section 1, procedure specifications may have many ap-

plications. In this section, we evaluate the use of Jdoctor’s procedure

specifications for improving the generation of test cases.

6.1 Test Classification

Many test case generation tools first generate test cases and then

heuristically classify the generated test cases each as9

(1) failing (or error-revealing) test cases that reveal defects;

(2) passing (or normal, or expected) test cases that can be used as

regression test cases;

(3) illegal (or invalid) test cases that should not be executed; for

example, because they either violate somemethod preconditions

or their oracles are incorrect.

The test generation tool outputs both failing tests and passing

test cases to the user. The heuristics sometimes misclassify test

cases, leading to both false and missed alarms. For example, a test

case generator may heuristically classify as invalid a method execu-

tion terminating with a NullPointerException when the method is

invoked with null values. Test generation tools that can access some

(partial) specifications, can classify (more) test cases correctly, thus

detecting more errors and/or reducing the human effort required

to identify false alarms.

We investigate the usefulness of Jdoctor by addressing the fol-

lowing research questions.

RQ3 Do Jdoctor specifications improve the quality of automati-

cally generated tests?

RQ4 Do Jdoctor specifications increase the number of bugs

found by an automated test generator?

6.2 Extending Randoop with Jdoctor

Jdoctor outputs a JSON file containing executable Java expressions

corresponding to each method preconditions, normal postcondi-

tions, and exceptional postconditions. When a method lacks a

Javadoc comment or its Javadoc comment lacks a @param, @return, or

@throws clause, the JSON file contains no corresponding expression.

We extended Randoop [40] to take advantage of this information

during test generation, in line with the methodology exploited in

previous work [24, 50]. Our implementation, which we refer to as

Randoop+Jdoctor, is integrated in the main branch of Randoop’s

GitHub repository10.

9For simplicity of presentation, we do not consider flaky tests here. The heuristics
may also classify a test as one that the tool is unsure about; the tool does not output
the test to the user in order to avoid false alarms. For simplicity, we will treat this as if
the heuristic classified the test as illegal.
10https://github.com/randoop/randoop

249

https://github.com/randoop/randoop

Translating Code Comments to Procedure Specifications ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

Randoop can be thought of as a loop that iteratively creates

test cases. Each iteration randomly creates a candidate test by first

choosing a method to test, and then choosing arguments from a

pool of previously-created objects. Randoop executes the candidate

test, and heuristically classifies the test as error-revealing, expected

behavior, or invalid based on its behavior. If the test behaves as

expected, Randoop places its result in the pool, and continues with

its loop. When a time limit has elapsed, Randoop outputs the error-

revealing and expected-behavior tests, in separate test suites.

We modified Randoop to create Randoop+Jdoctor as follows:

• After choosing the arguments but before creating or executing

the candidate test, Randoop+Jdoctor reflectively executes the

precondition expressions. If any of them fails, then Randoop+

Jdoctor discards the test, exactly as if it had been classified as

invalid. In this way, Randoop+Jdoctor avoids the possibility of

misclassifying it as an error-revealing or passing test.

• If the test completes successfully, Randoop classifies it as passing.

Randoop+Jdoctor reclassifies it as failing if a normal postcondi-

tion (a translated @return clause) does not hold. Randoop+Jdoc-

tor handles conditional postconditions, such as ł@return true if

this graph did not already contain the specified edgež, because

Jdoctor provides information about the conditional.

• While executing the test, Randoop catches any thrown excep-

tions. If the exception matches one in an exceptional postcon-

dition (a translated @throws clause), then Randoop+Jdoctor clas-

sifies the test as passing iff the @throws condition holds. If the

exception does not match, Randoop+Jdoctor falls back to Ran-

doop’s normal behavior of heuristically classifying the test.

6.3 Methodology

Our experiments compare the original Randoop test generation

tool with Randoop+Jdoctor, which extends Randoop with Jdoctor-

generated procedure specifications.

We ran both Randoop and Randoop+Jdoctor on all the 6 pro-

grams of Table 1. The experiments of Section 5 used only a subset

of the classes in the programs, because of the human effort of

manually determining the ground truth, which is the correct trans-

lation of an English Javadoc comment into an executable procedure

specification. The experiments of this section are executed with

the entire programs and also the Javadoc for their supertypes in

Apache Commons RNG and OpenJDK 8.

6.4 Test Classification Changes

To answer RQ3, we measured when Randoop+Jdoctor classified a

candidate test differently than Randoop (giving to the two tools the

same time limit of 15 minutes). There are five possibilities:

Same Randoop and Randoop+Jdoctor classify the test in the same

way, which might be łfailingž, łpassingž, or łinvalidž.

False alarm Randoop+Jdoctor classifies as passing a test that

Randoop classifies as failing. Randoop’s output requires man-

ual investigation by the programmer, but Randoop+Jdoctor’s

does not.

Missed alarm Randoop classifies the test as passing, but Ran-

doop+Jdoctor classifies it as failing. Randoop misses a bug, but

Randoop+Jdoctor reveals it to the programmer.

Table 3: How Jdoctor output (procedure specifications) im-

proves Randoop’s test classification. Each cell is the count of

candidate tests that were classified differently by Randoop

and Randoop+Jdoctor, for one run of Randoop.

Subjects Same False alarm Missed alarm New test Invalid test

Collections 7527 0 0 2 0

Math 3893 0 0 1 0

Guava 10821 0 34 4 20

JGrapht 4843 0 0 0 0

Plume-lib 4253 0 48 0 0

Graphstream 12454 3 3 8 0

Total 43791 3 85 15 20

Invalid test Randoop classifies the test as passing, but Randoop+

Jdoctor classifies it as invalid. Randoop’s output contains a

meaningless test (e.g. because it violates the preconditions of a

method) that may fail at any time in the future, but Randoop+

Jdoctor ’s does not.

New test Randoop+Jdoctor generates the test that Randoop does

not generate, since it classifies it as invalid, leading to better

coverage and better regression testing.

Table 3 shows the result. The Jdoctor specifications reduce hu-

man effort (łfalse alarmsž column), improve error detection (łmissed

alarmsž column), and reduce invalid tests. We manually inspected

the results, and we could confirm all the 3 False alarms and the 20

Invalid tests. Invalid tests were all newly classified as such thanks

to Jdoctor specifications on parameters. For instance, methodmax()

in class com.google.common.primitives.Longs of Guava states that

parameter array is ła nonempty array of long valuesž. Thus any

test passing an empty array to max() was correctly classified as

invalid since it violates the preconditions. We were expecting to

find many invalid tests in other projects beside Guava, since Jdoctor

could correctly handle many comments on preconditions, as shown

in Section 5. We believe we did not see any improvement because

Randoop may have achieved low coverage of such projects.

To answer RQ4, we manually inspected some of the 85 Missed

alarms. Unfortunately we could spot several incorrect results due

to mis-translated comments (precision is not 100% in Table 2). An

example is due to the comment ł@throws NullPointerException if

the check fails and either @code errorMessageTemplate or @code

errorMessageArgs is nullž which Jdoctor translated as errorMes-

sageTemplate == null || errorMessageArgs == null, incorrectly miss-

ing the part on the failing check. This specification wrongly makes

Randoop+Jdoctor classify tests having any null value as failing if

they do not throw a NullPointerException.

Randoop+Jdoctor could also detect some real defects in the docu-

mentation of these well tested projects. Class NumberFormat of the

JDK wrongly documents thrown exception types in two methods.

7 THREATS TO VALIDITY

Our subject programs, and the classes selected in Section 5, might

not be representative, which may limit the generalizability of the

results. This is mitigated by the fact that the portion of classes

that we manually analyzed is statistically representative of all the

documented classes according to the number of comments and

methods.To evaluate the accuracy of Jdoctor, its results have been

250

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

compared with a ground truth that the authors of this paper de-

fined. Errors in the ground truth influence the accuracy measures

reported in Section 5. To mitigate such risk, each specification in the

ground truth has been independently produced and later reviewed

by at least two of the authors of this paper.11 Section 5 compared

Jdoctor with our (publicly available) implementation of the @tCom-

ment approach [50]. The two @tComment implementations might

produce different results for some input comments, even though

the precision obtained with our implementation is close to what

the original paper reports: 90% vs 98%. Recall values are different

(24% vs 97%) because in the paper presenting @tComment, recall

is computed considering only null-related commentsÐ exactly the

case that @tComment’s pattern matching is tuned toÐwhereas

our experiments consider all the comments that can be translated

to executable form.

8 RELATED WORK

Section 2 already discussed the most closely related work: @tCom-

ment, ALICS, and Toradocu. Our experiments compare to Toradocu

and a re-implementation of @tComment, but not ALICS. We tried

to use ALICS, but it contains no documentation and is incomplete.

We reached out to all the ALICS authors, who confirmed that it is

incomplete, and none of them could run the tool to reproduce their

own experiments. The ALICS paper [41] does not contain enough

information to permit us to re-implement it.

Recently Phan et al. employed a statistical machine translation

technique to generate behavioral exception documentation for any

given code and viceversa [43]. This approach only works for excep-

tional comments, which are easier to handle than other comments

in our experience. It also relies on a trained model that would not

resolve comments of new domains requiring semantic knowledge

(as for JGraphT). We believe it could nicely complement Jdoctor,

but we consider this direction as future work.

Zhou et al. recently proposed an approach that combines natural

language parsing, patternmatching, and constraint solving to detect

errors, i.e., code-comments inconsistencies, in Javadoc documenta-

tion expressing parameter usage constraints [55]. (To the best of

our knowledge, the implementation is not publicly available, even

though used patterns are.) The approach extracts preconditions

and exceptional postconditions from the Javadoc documentation

of a procedure, and analyzes the corresponding source code to

derive what exceptions are raised and for which conditions, and

then verifies that the conditions stated in the documentation are

correct by means of an SMT solver. The approach can achieve good

precision and recall, but it works only for four kind of procedure

preconditions: (non-)nullness of parameters, type restriction, and

range limitation. Instead, Jdoctor supports also non-exceptional

postconditions and generates procedure specifications written as

Java code that can be readily used by other tools.

iComment [48] and aComment [49] are two additional tech-

niques to extract some form of specifications from code comments.

iComment applies NLP techniques to extract function usage rules

from the code comments to detect codeścomment inconsistencies

11Data publicly available for external revision: https://github.com/albertogoffi/
toradocu/tree/master/src/test/resources/goal-output

in C code. aComment analyzes source code and comments to de-

tect concurrency bugs in C code. Although both iComment and

aComment generate specifications, they apply to unstructured com-

ments in C code (rather than semi-structured Javadoc comments

as Jdoctor). Moreover, iComment and aComment focus on narrow

specifications (usage rules and concurrency related specifications),

while Jdoctor generates general pre- and postconditions.

We now briefly survey alternative approaches for generating test

oracles. The main approaches for generating test oracles (1) exploit

heuristics to validate thrown exceptions [11, 12, 32, 39, 40], (2) rely

on previous versions of the software under test to validate the

results (regression oracles) [20], (3) benefit from various kinds of

specifications: algebraic specifications [2, 17, 22], assertions [3, 9,

36, 45, 52], Z specifications [35, 38], context-free grammars [13],

JML annotations [10] and finite state machines [21], (4) manipulate

properties of the system under test, as in the case of metamorphic

testing [8] and symmetric testing [25], and (5) exploit some form

of redundancy of software systems (cross-checking oracles) [7].

Heuristic-based oracles are imprecise; regression-based oracles

are useful only in the context of regression testing; specification

based oracles require the availability of some form of specifications;

metamorphic, symmetric, and cross-checking oracles rely on prop-

erties of the system under test and of its implementations that may

not be always available or easy to exploit. Jdoctor complements

all these techniques by generating procedure specifications from

Javadoc comments. The Jdoctor procedure specifications can be

used to generate test oracles.

9 CONCLUSIONS

This paper presents Jdoctor, a technique to automatically generate

executable procedure specifications from Javadoc comments. Jdoc-

tor enables the application of techniques that require procedure

specifications when such specifications are not available, while

Javadoc comments are. Jdoctor produces procedure specifications

consisting of preconditions, postconditions, and exceptional post-

conditions, by means of a mix of natural language processing, pat-

tern matching, lexical matching, and semantic similarity analysis.

Experimental results show that Jdoctor is effective in producing cor-

rect and complete specifications, with overall precision and recall of

92% and 83%, respectively. Jdoctor outperforms existing state-of-the-

art techniques, with better precision and recall. When procedure

specifications generated by Jdoctor are fed to an automatic test case

generator such as Randoop [40], the generator produces better test

cases. As future work we plan to automatically detect inconsistent

specifications, extend Jdoctor to unstructured documentation, and

possibly focus on integration and system tests [16, 26, 33].

ACKNOWLEDGMENTS

This work was partially supported by the Spanish project DEDETIS, by

the Madrid Regional project N-Greens Software (n. S2013/ICE-2731), and

by the swiss project ASTERIx: Automatic System TEsting of inteRactive

software applIcations (SNF-200021_178742). This material is also based on

research sponsored by DARPA under agreement numbers FA8750-12-2-

0107, FA8750-15-C-0010, and FA8750-16-2-0032. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

251

https://github.com/albertogoffi/toradocu/tree/master/src/test/resources/goal-output
https://github.com/albertogoffi/toradocu/tree/master/src/test/resources/goal-output

Translating Code Comments to Procedure Specifications ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Gabor Angeli, Melvin Johnson Premkumar, and Christopher D Manning. 2015.

Leveraging Linguistic Structure for Open Domain Information Extraction. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL ’15). Association for Computational Linguistics.

[2] Sergio Antoy and Dick Hamlet. 2000. Automatically Checking an Implementation
against Its Formal Specification. IEEE Transactions on Software Engineering 26, 1
(2000), 55ś69.

[3] Wladimir Araujo, Lionel C. Briand, and Yvan Labiche. 2011. Enabling the Runtime
Assertion Checking of Concurrent Contracts for the Java Modeling Language.
In Proceedings of the International Conference on Software Engineering (ICSE ’11).
786ś795.

[4] Marc J. Balcer, William M. Hasling, and Thomas J. Ostrand. 1989. Automatic
Generation of Test Scripts from Formal Test Specifications. In Proceedings of
the Symposium on Software Testing, Analysis, and Verification (TAV3 ’89). ACM,
210ś218.

[5] Boris Beizer. 1990. Software Testing Techniques (2 ed.). Van Nostrand Reinhold
Co., New York, NY, USA.

[6] Arianna Blasi and Alessandra Gorla. 2018. RepliComment: Identifying Clones
in Code Comments. In Proceedings of the International Conference on Program
Comprehension (ICPC’18). ACM.

[7] Antonio Carzaniga, Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, and
Mauro Pezzè. 2014. Cross-checking Oracles from Intrinsic Software Redundancy.
In Proceedings of the International Conference on Software Engineering (ICSE ’14).
ACM, 931ś942.

[8] Tsong Y. Chen, F.-C. Kuo, T. H. Tse, and Zhi Quan Zhou. 2003. Metamorphic
Testing and Beyond. In International Workshop on Software Technology and Engi-
neering Practice (STEP ’03). IEEE Computer Society, 94ś100.

[9] Yoonsik Cheon. 2007. Abstraction in Assertion-Based Test Oracles. In Proceedings
of the International Conference on Quality Software (QSIC ’07). 410ś414.

[10] Yoonsik Cheon and Gary T. Leavens. 2002. A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP ’02). 231ś255.

[11] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robust-
ness tester for Java. Software: Practice and Experience 34, 11 (September 2004),
1025ś1050.

[12] Christoph Csallner and Yannis Smaragdakis. 2005. Check ’n’ Crash: Combining
static checking and testing. In ICSE 2005, Proceedings of the 27th International
Conference on Software Engineering. St. Louis, MO, USA, 422ś431.

[13] J. D. Day and J. D. Gannon. 1985. A Test Oracle Based on Formal Specifications.
In Proceedings of the Conference on Software Development Tools, Techniques, and
Alternatives (SOFTAIR ’85). 126ś130.

[14] Luciano Del Corro and Rainer Gemulla. 2013. ClausIE: Clause-based Open
Information Extraction. In Proceedings of the International Conference on World
Wide Web (WWW ’13). ACM, 355ś366.

[15] Nelly Delgado, Ann Quiroz Gates, and Steve Roach. 2004. A taxonomy and
catalog of runtime software-fault monitoring tools. IEEE Transactions on Software
Engineering 30, 12 (Dec. 2004), 859ś872.

[16] Giovanni Denaro, Alessandra Gorla, and Mauro Pezzè. 2008. Contextual Inte-
gration Testing of Classes. In Proceedings of the 11th International Conference on
Fundamental Approaches to Software Engineering (FASE ’08). Springer, 246ś260.

[17] Roong-Ko Doong and Phyllis G. Frankl. 1994. The ASTOOT approach to test-
ing object-oriented programs. ACM Transactions on Software Engineering and
Methodology 3, 2 (1994), 101ś130.

[18] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying Relations
for Open Information Extraction. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP ’11). Association for Computa-
tional Linguistics, 1535ś1545.

[19] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the European Software
Engineering Conference held jointly with the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE ’11). ACM, 416ś419.

[20] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276ś291.

[21] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou,
and Abderrazak Ghedamsi. 1991. Test Selection Based on Finite State Models.
IEEE Transactions on Software Engineering 17, 6 (1991), 591ś603.

[22] John Gannon, Paul McMullin, and Richard Hamlet. 1981. Data Abstraction,
Implementation, Specification, and Testing. ACM Transactions on Programming
Languages and Systems 3, 3 (1981), 211ś223.

[23] Alejandra Garrido and Jose Meseguer. 2006. Formal Specification and Verification
of Java Refactorings. In Proceedings of the IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM ’06). 165ś174.

[24] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In ISSTA 2016, Proceedings
of the 2016 International Symposium on Software Testing and Analysis. Saarbrücken,
Genmany, 213ś224.

[25] Arnaud Gotlieb. 2003. Exploiting Symmetries to Test Programs. In Proceedings of
the International Symposium on Software Reliability Engineering (ISSRE ’03). IEEE
Computer Society, 365ś374.

[26] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-based system test-
ing: high coverage, no false alarms. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA ’12). ACM, 67ś77.

[27] A. Hartman. 2002. Is ISSTA research relevant to industry?. In ISSTA 2002, Pro-
ceedings of the 2002 International Symposium on Software Testing and Analysis.
Rome, Italy, 205ś206.

[28] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided Component-based Program Synthesis. In Proceedings of the International
Conference on Software Engineering (ICSE ’10). ACM, 215ś224.

[29] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of
test information to assist fault localization. In Proceedings of the International
Conference on Software Engineering (ICSE ’02). ACM, 467ś477.

[30] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From
Word Embeddings to Document Distances. In Proceedings of the International
Conference on International Conference on Machine Learning (ICML ’15). JMLR.org,
957ś966.

[31] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.
2007. Contract Driven Development = Test Driven Development - Writing Test
Cases. In Proceedings of the European Software Engineering Conference held jointly
with the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE ’07). ACM, 425ś434.

[32] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and
Rudolf Ramler. 2015. GRT: Program-Analysis-Guided Random Testing. In Pro-
ceedings of the International Conference on Automated Software Engineering (ASE
’15). ACM, 212ś223.

[33] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2012.
AutoBlackTest: Automatic Black-Box Testing of Interactive Applications. In Pro-
ceedings of the International Conference on Software Testing, Verification and
Validation (ICST ’12). IEEE Computer Society, 81ś90.

[34] Marie-Catherine Marneffe, Bill MacCartney, and Christopher Manning. 2006.
Generating Typed Dependency Parses from Phrase Structure Parses. In Proceed-
ings of the International Conference on Language Resources and Evaluation (LREC
’06). European Language Resources Association (ELRA), 449ś454.

[35] JasonMcdonald. 1998. Translating Object-Z Specifications to Passive Test Oracles.
In Proceedings of the International Conference on Formal Engineering Methods
(ICFEM ’98). 165ś174.

[36] Bertrand Meyer. 1988. Object-Oriented Software Construction (1st ed.). Prentice
Hall.

[37] BertrandMeyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. 2007. Automatic
Testing of Object-Oriented Software. In Proceedings of the 33rd Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM ’07). Springer,
114ś129.

[38] Erich Mikk. 1995. Compilation of Z Specifications into C for Automatic Test
Result Evaluation. In Proceedings of the 9th International Conference of Z Users
(ZUM ’95). 167ś180.

[39] Carlos Pacheco and Michael D. Ernst. 2005. Eclat: Automatic generation and
classification of test inputs. In ECOOP 2005 Ð Object-Oriented Programming, 19th
European Conference. Glasgow, Scotland, 504ś527.

[40] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, MN, USA, 75ś84.

[41] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring method specifications from natural language API
descriptions. In ICSE 2011, Proceedings of the 34th International Conference on
Software Engineering. Zürich, Switzerland, 815ś825.

[42] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring Method Specifications from Natural Language API De-
scriptions. In Proceedings of the International Conference on Software Engineering
(ICSE ’12). IEEE Computer Society, 815ś825.

[43] Hung Phan, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan. 2017. Sta-
tistical Learning for Inference Between Implementations and Documentation.
In Proceedings of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track (ICSE-NIER ’17). IEEE Press, Piscataway, NJ,
USA, 27ś30. https://doi.org/10.1109/ICSE-NIER.2017.9

[44] Research Triangle Institute. 2002. The Economic Impacts of Inadequate Infras-
tructure for Software Testing. NIST Planning Report 02-3. National Institute of
Standards and Technology.

[45] David S. Rosenblum. 1995. A Practical Approach to ProgrammingWithAssertions.
IEEE Transactions on Software Engineering 21, 1 (1995), 19ś31.

[46] Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, et al. 2012. Open
language learning for information extraction. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL ’12). Association for Computational
Linguistics, 523ś534.

252

https://doi.org/10.1109/ICSE-NIER.2017.9

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D. Castellanos

[47] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From Program
Verification to Program Synthesis. In Proceedings of the Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’10). ACM,
313ś326.

[48] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*iComment:
Bugs or Bad Comments?*/. In SOSP 2007, Proceedings of the 21st ACM Symposium
on Operating Systems Principles. Stevenson, WA, USA, 145ś158.

[49] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: Mining Anno-
tations from Comments and Code to Detect Interrupt Related Concurrency Bugs.
In Proceedings of the International Conference on Software Engineering (ICSE ’11).
11ś20.

[50] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In
Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST ’12). IEEE Computer Society, 260ś269.

[51] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In ICST
2012: Fifth International Conference on Software Testing, Verification and Validation
(ICST). Montreal, Canada, 260ś269.

[52] Richard N. Taylor. 1983. An Integrated Verification and Testing Environment.
Software: Practice and Experience 13, 8 (1983), 697ś713.

[53] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. 2003. Model Checking Programs. Automated Software Engineering 10, 2
(2003), 203ś232.

[54] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 3 (February 2002),
183ś200.

[55] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs Documentation and Code to Detect Directive
Defects. In Proceedings of the International Conference on Software Engineering
(ICSE ’17). IEEE Computer Society, 27ś37.

253

	Abstract
	1 Introduction
	1.1 Application: Test Case Generation
	1.2 Contributions

	2 Code Comment Analysis
	3 Motivating Javadoc Examples
	3.1 Preconditions
	3.2 Exceptional Postconditions
	3.3 Normal Postconditions

	4 Jdoctor
	4.1 Text Normalization
	4.2 Proposition Identification
	4.3 Proposition Translation

	5 Evaluation: Translation Accuracy
	5.1 Experimental Setup
	5.2 Accuracy Results (RQ1, RQ2)
	5.3 Inconsistent Specifications

	6 Application: Oracle generation
	6.1 Test Classification
	6.2 Extending Randoop with Jdoctor
	6.3 Methodology
	6.4 Test Classification Changes

	7 Threats to Validity
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

