How do Apps Evolve in Their Permission
Requests? A Preliminary Study

Paolo Calciati®<

Alessandra Gorla®

{paolo.calciati,alessandra.gorla} @imdea.org

AIMDEA Software Institute, Madrid, Spain

Abstract—We present a preliminary study to understand how
apps evolve in their permission requests across different releases.
We analyze over 14K releases of 227 Android apps, and we
see how permission requests change and how they are used.
We find that apps tend to request more permissions in their
evolution, and many of the newly requested permissions are
initially overprivileged. Our qualitative analysis, however, shows
that the results that popular tools report on overprivileged
apps may be biased by incomplete information or by other
factors. Finally, we observe that when apps no longer request
a permission, it does not necessarily mean that the new release
offers less in terms of functionalities.

I. INTRODUCTION

With auto-updates enabled by default on Android devices, it
is easy for developers to produce and distribute new releases of
their apps. Users can immediately use the new releases without
even noticing the update process, unless there are changes in
dangerous permission requests that require their approval. The
most recent releases of the Android framework, though, no
longer notify users about changes in the dangerous permissions
list, unless the app requires a permission that belongs to a
new permission group. For instance, an app declaring the
RECEIVE_SMS permission, and thus capable of receiving
SMS, could suddenly start sending SMS without further user
approval by adding the SEND_SMS permission, since these
two permissions belong to the same group. Changes in the
permissions list are however worth notice, since they most
likely represent a major change in the behavior of the app.

In this paper we perform a preliminary study on the evo-
lution of permission requests of Android apps. We analyze
over 14K different releases of 227 apps, with a minimum of
50 releases per app, and we study how developers request
legitimate permissions (i.e., requested and used in the code)
and overprivileged permissions (i.e., declared in the manifest
file but not used by the app).

This is not the first paper aiming to study the evolution of
permission requests in Android apps. Tailor and Martinovic [8]
studied over 1,6M apps, taking quarterly snapshots of the
Google Play store for almost two years. Their analysis high-
lights trends in the store in terms of permission requests, but
does not look at single applications specifically. Wei et al. [9]
conducted a study similar to the one we present in this paper,
but used a much smaller dataset with an average of 4 releases
per app. Moreover, they focused their interest in comparing
pre-installed apps and third-party apps, while we are mainly

®Universidad Politécnica de Madrid, Spain

interested in the latter. To the best of our knowledge, ours is
the first study to analyze such a big number of releases for
single applications.

Our empirical study highlights several interesting findings:
We see a common trend of apps requiring more permissions
over time, confirming what [9], [8] observed; Some dangerous
permissions that are added in following releases do not need
further approval from the user; There is a mild correlation
between changes in target SDK and permission requests; A
qualitative analysis of the results highlights that permission
removal does not imply the loss of a functionality; Last but
not least, we identify several problems with Androguard, the
state of the art tool to report overprivileged apps, showing that
using it blindly can lead to biased results.

The remainder of the paper is structured as follows: Sec-
tion II introduces the necessary notions of the Android plat-
form; Section III describes the dataset we used and the process
we followed during our study; Section IV presents the main
findings of our quantitative and qualitative studies. Finally,
Section V briefly compares this to the related work.

II. THE ANDROID PLATFORM

Android applications are distributed as APK archive files.
Among other things, the AndroidManifest.xml, which every
APK must contain, specifies the minimum and target Android
API that the app supports, and declares the permissions that the
application needs in order to access protected features of the
API. Android permissions fall into four categories, depending
on the access they grant: normal, dangerous, signature and
signatureOrSystem. The CAMERA permission, for example,
belongs to the dangerous category. If declared in the manifest,
the user has to grant it to give the application access to the
device’s camera. In our analysis we consider only dangerous
permissions, since they represent high-risk accesses to sensi-
tive features.

Android 6 introduced two major changes in the permission
model: 1) Apps targeting SDK 23 or higher request permis-
sions to the user at run-time. Previously, requests occurred
upon installation; 2) if an app requests a dangerous permission,
but there is already another permission granted from the
same group, the system immediately grants it without any
further interaction with the user. The manifest file may contain
overprivileged permissions. A permission is considered as
such if it appears in the manifest, but the app does not
actually need it, and removing it would not hinder the app’s

2400

1800
1200
600 I I I I |
o =1 n " " |
@ = < a4 NN ™M AN A NN ANt NN S
™~ o U U U U U U U U U U U U U U U U U T T T T
Cod N NN ®M®Omom®Om S I T T NN NN OO VO~
B T P B s T T Tt R et e e O = = R
O O O O O 0O O O O O O 0O O o O o o o o o o o
N AN AN AN AN AN AN N AN NN NN NN NN NN NN
Fig. 1: APK date distribution
0,2
0,15
0,1
- | | | I | | I
S (I | o |
-t 4N NNt AN M NN S AN M
o o o U o U U U U U U U U T UT” T T UT"ut T T T T
O 04 N N N M »nm MmN < < < < 0 wnownown wWw wWw w O~
B B B B e =t = = B R = = =
O O O O 0O O 0O 0O O O O O o O o o o o o o o o
N AN N NN NN AN NN NN N NN NN NN N NN
W Permission change Sdk version change

Fig. 2: Permission change vs. Android SDK version change.

functionalities. Overprivileged permissions are considered bad
practice, and raise a security concern, since they leave space
to possible malicious exploits.

III. DATASET AND EVALUATION PROCESS

To run our preliminary empirical evaluation, we resorted
to the Androzoo dataset [2], which comprises a collection of
over 5 million Android apps retrieved from different sources.
Since this study does not focus on malware, we selected the
Google Play store as the only source to consider, given that
several studies have shown that the apps distributed through
this channel are largely trustworthy [1], [7], [10]. From this
selection, we considered only apps with at least 50 releases, to
have enough data for a study on apps evolution. The resulting
set contained 14,880 releases of 235 different applications.

We analyzed each release with Androguard, a tool that
can extract declared permissions and report the overprivileged
ones'. In this study we focused only on Android official
permissions, leaving out app-specific permissions. Androguard
crashed while analyzing the Dalvik bytecode of several re-
leases of 10 different applications. We decided to keep in
our analysis only the apps for which Androguard managed
to analyze at least 50 releases: with this additional pruning,
our final dataset comprises 227 applications with a total of
14,450 releases. The distribution of releases per app goes from
a minimum of 50 up to 171, with a mean value of 64. The
APKs in the dataset have been released within the time-frame
of August 2008 — January 2017, with the distribution shown
in Figure 1. Out of the APKs in our dataset, 727 (5.03%) do
not have a valid release date, as reported by the Androzoo
developers?, and are represented in the plot as n/a.

Uhttps://github.com/androguard/androguard
Zhttps://androzoo.uni.lu/lists

To further understand the nature of the apps in our dataset,
we looked at the category, number of downloads, and rating
as reported in the Google Play store. We conclude that the
dataset is quite varied, since it covers all the 32 Android
categories, but it focuses mainly on high quality and popular
applications, with an average of over 44M downloads per app,
and an average star rating of 4.29 out of 5. All applications
we considered are still active and available on the Google
Play store, except for 8, which either changed package name
or have been discontinued.

IV. EMPIRICAL RESULTS ON PERMISSIONS EVOLUTION

We first focus on a quantitative study to evaluate how per-
mission requests evolve. We later conduct a qualitative study
to have a better understanding of the phenomena observed in
the first study.

A. Quantitative Study

The quantitative study aims to look at how permission
requests change across the lifetime of an APK. More precisely,
we look at the following research questions:

e RQI: How do permission requests evolve? To answer this
question we analyze how the permissions list changes
between a release and its following one. We also look
for specific patterns in the evolution, such as whether a
permission is first requested and actually used only later.

o RQ?2: Which are the most frequently added permissions?
We check which permissions developers tend to add over
time, and whether they are legitimate or overprivileged.
Given the new group permission model in Android 6
(explained in Section II) we also check which are the
most commonly added permissions that would not need
any further approval of the user.

e RQ3: Do permission changes concentrate within specific
time periods, and in particular correlate with changes in
the Android SDK? In this final study we try to understand
if there are relevant facts related to permission changes.

RQI: How do permission requests evolve?: We first look at
how the permissions list changes between a release and its fol-
lowing one. We observe that for 13,637 out of 14,223 release
transitions, which accounts to 95.88% of the total number,
there are no changes in the list of requested permissions.

Figure 3 shows the distribution of added and removed
permissions on each version change after taking the versions
without any change out of the equation. On average we
observe 0.64 permission additions per release, showing a clear
trend of apps increasing the number of asked permissions
over time. As depicted in the plot, most changes involve only
adding a single permission (287 occurrences). We observe only
78 occurrences of adding two permissions at the same time,
while only 42 involving three or more permissions added.
Permissions are rarely removed (151 occurrences in total), and
most of the times this involves a single permission.

Similarly to what Wei et al. did in their work [9], we look
for specific patterns in our dataset: Table I compares results
obtained by Wei et al. with ours. We use the same notation,

300
200
100 I
0 R —— I - e
-8 -4 -3 -2 -1 1 2 3 4 5 6 7 8 10

Fig. 3: Permission change

TABLE I: Patterns compared to [9].

Pattern ‘ Our results (%) ‘ Results in [9] (%)

0—1 80.18 90.46
1—=0 15.27 8.59
I1—-0—1 3.27 0.84
I1=-0—=1—=0 1.27 0.11

where ‘0’ represents a non requested permission, ‘1’ represents
a requested permission, and ‘—’ represents a state transition.
Considering the fact that we have a much larger set of releases
for each application (more than 50 versus an average of less
than 4), and thus it is more likely for us to find longer patterns,
the distribution found in [9] finds confirmation in our results
despite the slight difference in the percentages. The patterns
we consider in this comparison account for 83% of patterns
found in our study, with the remaining 17% containing the
0—1—0 pattern, and longer patterns in negligible percentages.

Our analysis extends to cover also overprivileged permis-
sions. For the rest of the section, we refer with ‘1’ to a
legitimate permission, and with ‘2’ to an overprivileged one:
Table II shows the most frequent patterns we discovered.
Surprisingly, the most frequent pattern is to add a permission
that remains overprivileged for the whole lifetime of the app.
We further analyze these trends in Section I'V-B.

RQ2: Which are the most frequently added permissions?:
Given that RQ1 showed that the most common trend is to add
permissions, whether legitimate or overprivileged, we look at
which ones are most frequently added. Table III shows the
most frequent among the 646 permission addition found.

Taking into account the recent changes in Android 6 ex-
plained in Section II, we further analyze each newly added
permission, and verify if it belongs to a permission group that
was already granted in the previous release: in 35.75% of the
cases (231 permission addition out of 646 in total) the newly
added permission indeed falls in the same group of one of the
already granted permission. READ_EXTERNAL_STORAGE
is the permission for which this behavior happened the
most: many apps add this permission while they al-
ready declare WRITE_EXTERNAL_STORAGE. What is
apparently unclear to developers is that apps granted
with WRITE_EXTERNAL_STORAGE implicitly have read
access as well, so there is no need to additionally
ask for the READ_EXTERNAL_STORAGE permission.
A different story regards accessing the user’s location
through either the ACCESS_COARSE_LOCATION or AC-
CESS_FINE_LOCATION permissions, which belong to the
same permission group but have information from differ-

TABLE II: Observed Patterns in permission evolution.

Pattern ‘ Count ‘ Frequency (%)

0—2 219 24.39
0—1 141 15.70
2 =1 90 10.02
0—-1—0 50 5.57
1 =0 48 5.35

TABLE III: Most Frequently added permission

Permission (legitimate) Usage
ACCESS_COARSE_LOCATION 58 (19.33%)
READ_PHONE_STATE 49 (16.33%)

ACCESS_FINE_LOCATION
CAMERA

49 (16.33%)
32 (10.67%)

READ_CONTACTS 31 (10.33%)
Permission (overprivileged) Usage
READ_EXTERNAL_STORAGE 112 (32.37%)
WRITE_EXTERNAL_STORAGE 25 (7.23%)

READ_SMS
CAMERA
RECEIVE_SMS

25 (7.23%)
25 (1.23%)
24 (6.94%)

ent sources (from the network provider and from the GPS
respectively). We observe that many apps initially use just
coarse location, and request the ACCESS_FINE_LOCATION
afterwards. Thus, without any further consent of the user, they
can obtain more precise location information.

RQ3: Do permission changes concentrate in specific time
periods?: The last step of our quantitative analysis looks at
the distribution of releases over time. More precisely we want
to see if releases are more frequent in specific time frames. We
thus divide the time frame in year quarters (x axis in Figure 2),
and we report the percentage of permission changes that we
observe in that quarter (blue bars in the plot). We can observe
that there are peaks in the number of releases in q3 2013 and
g3 2015, in our opinion due to the low amount of releases in
the preceding quarters. To further understand this trend, we
list changes occurring in two subsequent releases that involve
either the target or the minimum Android SDK. We plot,
as yellow bars, the percentage distribution of such changes
on the same time frame in Figure 2. We see that the two
distributions have similar trends, suggesting that a change in
the minimum or target SDK might trigger permission changes.
We checked whether high change picks would correspond to
release dates of new Android SDKs, but we could not find a
positive correlation.

B. Qualitative Analysis

The results of the quantitative analysis reported in Sec-
tion IV-A show that several apps have interesting patterns in
their permission requests. Some apps, for instance, add and
remove the same permission multiple times in their lifetime,
as if some functionalities were added and removed from the
app. In many other cases, instead, developers seem to ask for
permissions they never use. To further analyze the permission
evolution of the apps in our dataset, we plot legitimate and
overprivileged permission requests as in Figure 4. On the
y-axis we report the permissions that the app requires at

cawer INNNNNNREANE m

READ_CONTACTS

rean_pxrerna_storace [NNNNNRENRNNRNRRRRRAR RN R AR AR AR AR ARNRRAREARAN

READ_PHONE_STATE
white_exTerNAL_sTorAGE ([l

Fig. 4: Permission evolution plot of the TabShop app.

least once in its lifetime, and on the x-axis we report all
the releases for that app. We use white, light blue and dark
blue to represent not requested, legitimate and overprivileged
permissions, respectively.

Figure 4 is the permission evolution of TabShop, a free
shop keeping, cashier and point of sale (POS) app. Among
the functionalities it offers, it can scan barcodes. CAMERA
thus seems an essential permission for the whole lifetime
of this app. The plot, instead, reports that the CAMERA
permission is initially requested but not used up to release
60, it is later legitimately used for several releases, and finally
it disappears after a few more releases that see the CAMERA
permission as overprivileged. We installed and ran different
APKs of this app in the emulator, and found out that in the
first releases it uses an intent to launch “Barcode Scanner”, an
alternative app to scan barcodes. Between release 60 and 110
the app instead implements the feature itself, thus using the
device’s camera directly. Within this timeframe (i.e., between
release 60 and 110) the CAMERA permission appears twice
in the manifest. From version 114 to version 117 the app
switches back to using the intent to “Barcode Scanner”, but
removes only one CAMERA permission from manifest, thus
leaving the duplicate and making it overprivileged. Developers
finally removed the unnecessary permission in version 118.
The qualitative analysis on this app shows us that if an
app removes a permission it does not necessarily mean that
it no longer offers the same functionality, but rather may
implement it in an alternative way. This app is not the
only one in our dataset that declares duplicate permissions.
More precisely, 52 apps of the 227 we analyzed show this
problem in at least one of their releases, with Firefox Beta
topping the list with duplicated permissions in over 100
releases. Similarly, we observe that many apps include mis-
spelled permissions (e.g. VIBRATION instead of VIBRATE).
Although these cases are harmless, since the app asks for
a permission that either does not exist or it already uses,
they represent a bad practice, and may falsely report alarms.
Furthermore, we notice that Androguard incorrectly reports
other permissions as overprivileged. This happens for example
for WRITE_EXTERNAL_STORAGE, which is also one of
the most frequently reported permissions as overprivileged. We
install the app com.popularapp.periodcalendar, v9, released in
2013-02 on an emulator, removing WRITE_ and READ_ EX-
TERNAL_STORAGE permissions, which were both labeled
as overprivileged. Running the repackaged app leads to a crash
when it tries to read or write some information on the SD card,
showing that the WRITE_EXTERNAL_STORAGE is legiti-
mate. The incorrect information reported by Androguard may
be due to different causes: 1) it is known that a complete and

correct mapping between API calls and permissions does not
exist yet [3], [5], [4]; 2) /O operations may be implemented
in native code, preventing Androguard from seeing them; 3)
finally, we also identified a bug in Androguard, which causes
the analysis to always use the API mappings relative to API
19, even when the app targets another release. Thus, the lesson
we learned is that trusting tools such as Androguard blindly
may bias significantly the results.

V. RELATED WORK

Krutz et al. [6] used different static analysis tools to analyze
4416 releases belonging to 1179 apps, creating a dataset
containing information about applications’ development and
maintenance. Taylor and Martinovic [8] performed a longi-
tudinal analysis over 1,6M apps, taking quarterly snapshots
of the Google Play store for almost two years and analyzing
the evolution of permission, with a focus on the dangerous
category. Their analysis highlights different trends in app
permission usage, such as free and popular apps being more
likely to add new permissions. Wei et al. [9] conducted a
study on the evolution of Android permission, focusing on the
differences between pre-installed and third party apps. They
analyzed patterns and permission distributions, and reported
that applications tend to be overprivileged and to request more
permission over time. With respect to the related work, our
analysis focused on studying a small set of apps but with a high
number of releases, rather than simply taking in consideration
the biggest possible APK set. Moreover, we present findings
and qualitative analyses that other works do not cover.

VI. CONCLUSIONS

In this paper we presented an overview on the evolution of
Android permission over a dataset of application with a large
number of versions available. In our quantitative analysis we
see a common trend of apps requiring more permissions over
time, confirming similar studies in the literature. We found new
evolution patterns, and a mild correlation between changes in
target SDK and in permission requests. The qualitative analysis
highlighted some confusion between developers regarding the
use of permissions, as suggested by our finding of mislabeled,
duplicated and overprivileged permissions. Finally, we discov-
ered that the removal of a permission does not imply the loss
of a functionality, as shown with the CAMERA permission
in Section IV-A. Last but not least, we identified several
problems with Androguard, the state of the art tool to report
overprivileged apps, showing that using it blindly can lead to
biased results.

ACKNOWLEDGMENT

This work was supported by the EU FP7-PEOPLE-
COFUND project AMAROUT 1I (n. 291803), by the Spanish
project DEDETIS, and by the Madrid Regional project N-
Greens Software (n. S2013/ICE-2731).

[1]

[2]

[4]

[5]

REFERENCES

K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon.
Empirical assessment of machine learning-based malware detectors
for android - measuring the gap between in-the-lab and in-the-wild
validation scenarios. Empirical Software Engineering, 21(1):183-211,
2016.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo:
Collecting millions of android apps for the research community. In
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 16, pages 468-471, New York, NY, USA, 2016.
ACM.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: analyzing the
Android permission specification. In Proceedings of the 19th Conference
on Computer and Communications Security (CCS), pages 217-228, New
York, NY, USA, 2012. ACM.

A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. Automatically
securing permission-based software by reducing the attack surface: An
application to Android. pages 274-277, 2012.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th Conference on

[6]

[7]

[8]
[9]

[10]

Computer and Communications Security (CCS), pages 627-638, New
York, NY, USA, 2011. ACM.

D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson,
A. Filipski, and J. Smith. A dataset of open-source android applications.
In Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR 15, pages 522-525, Piscataway, NJ, USA, 2015.
IEEE Press.

Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong. Which android app store
can be trusted in china? In Proceedings of the 2014 IEEE 38th Annual
Computer Software and Applications Conference, COMPSAC 14, pages
509-518, Washington, DC, USA, 2014. IEEE Computer Society.

V. F. Taylor and I. Martinovic. A longitudinal study of app permission
usage across the google play store. CoRR, abs/1606.01708, 2016.

X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution
in the android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC 12, pages 31-40, New York,
NY, USA, 2012. ACM.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In NDSS. The Internet Society, 2012.

