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ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are different. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very effective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification
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Redundancy, test oracles, oracle generation
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1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and effective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.

It is possible to also generate oracles automatically, even
though research on test automation has focused mostly on
supporting the testing process, creating scaffolding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely effective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org



alternative version of the program makes this technique
completely generic, but it also makes it quite expensive.

There are also interesting solutions somewhere in between
model-based oracles and pseudo-oracles. For example, AS-
TOOT [19], symmetric testing [25] and metamorphic test-
ing [12] do not require complete behavioral models, and
instead exploit symmetries and equivalences in the specifi-
cation. ASTOOT derives tests and corresponding pseudo-
oracles from algebraic specifications in the form of pairs of
equivalent and non-equivalent sequences of operations. In
a similar way, metamorphic and symmetric testing use the
commutativity of some operations, or the symmetric behav-
ior of an operation with different inputs, to identify different
sets of inputs that should produce the same result.

The testing methods proposed with these techniques are
interesting alternatives to both input-specific and completely
generic oracles. Differently from input-specific oracles, they
are not limited to a fixed set of inputs. And differently from
generic oracles, they do not attempt to compute or verify
a result using an alternative program but instead use the
system as both the original and the alternative program,
effectively making the system test itself.

We propose a similar method that is also rooted in the
idea of a pseudo-oracle. Specifically, we exploit the intrinsic
redundancy of software systems to generate what we call
cross-checking oracles. Unlike other approaches, we use spec-
ifications that are closer to the code and therefore arguably
simpler to obtain. We also decouple the generation of the
oracle from the test input, obtaining a more versatile method
to generate oracles and therefore a more effective testing
process.

In very simple terms, we build oracles by having the sys-
tem under test cross-check itself. These cross-checks exploit
the intrinsic redundancy of the system under test. This is a
property of various systems that we have studied and charac-
terized [10] and that we have used to implement a self-healing
mechanism for Web applications [9] and for general purpose
systems [8]. In this paper we describe a method to exploit
this intrinsic redundancy to generate oracles and enhance
the efficacy of test suites.

As summarized in the next section, the intrinsic redun-
dancy of software systems has various sources, from design
for adaptability and generality to reusability and backward
compatibility. Also, such redundancy manifests itself at
different levels, from single statements, to method calls, sub-
systems, and entire libraries. The technique we propose uses
redundancy at the method level, and in particular generates
oracles localized around the invocations of methods (in the
test driver) that admit to redundant alternative code, which
then leads to potentially fault-revealing cross-checks.

The technique is opportunistic in nature: a cross-check
may exercise the right functions, and such functions may be
redundant enough to reveal a fault. However, cross-checking
oracles are not intended to be complete. On the other hand,
cross-checking oracles can be generated and embedded in a
test suite completely automatically, at practically no cost to
the developers and testers.

We develop a technique to generate and activate oracles
through an aspect-oriented programming mechanism. Notice
that such oracles lead to intermediate checks, as well as checks
on the final result, and such intermediate checks may reveal
faults whose effects may be masked during the complete
execution of the test. We then report the results of an initial

experimental evaluation that demonstrates that this method
can indeed lead to efficient and effective oracles. In summary,
we make the following contributions:

• We introduce the notion of cross-checking oracles ob-
tained by exploiting the intrinsic redundancy of soft-
ware systems and realized through the embedding and
coordinated execution of fragments of cross-checking
code.

• We develop a specific concrete technique that makes
cross-checking oracles practical and accurate.

• We report the results of an experimental evaluation
that shows that cross-checking oracles can be effective
especially in conjunction with automatic test genera-
tion.

The paper is organized as follows. Section 2 introduces
the concept of intrinsic redundancy for software, summarizes
the origins and scope of the phenomenon, and shows some
cases of intrinsic redundancy in libraries at the method level.
Section 3 details a technique to generate and deploy cross-
checking oracles obtained from specifications of redundancies
in the system under test. Section 4 presents the experimental
evaluation of this technique, and in particular shows that
cross-checking oracles complement state-of-the-art test case
generation tools such as Randoop. Section 5 surveys the
main approaches to the generation of oracles with a special
focus on those that are most related to this work. Section 6
summarizes the contributions of the paper and describes
ongoing research work.

2. SOFTWARE REDUNDANCY
We obtain cross-checking oracles by exploiting the intrinsic

redundancy of software systems. In this section we introduce
the concept of intrinsic redundancy informally, and discuss
some manifestations of this redundancy. The interested
reader can find more details about software redundancy and
some of its uses elsewhere [10, 11, 24].

Informally, a system is redundant when it can perform
the same actions through different executions, either with
different code or with the same code but with different in-
put parameters or in different contexts. This happens for
example in systems that use different algorithms for the
same functionality. For instance, the GNU Standard C++
Library implements its basic stable sorting function using
insertion-sort for small sequences, and merge-sort for the
general case. The same redundancy arises in libraries that
provide specialized implementations of functionalities already
available in other components of the system. For instance,
the Trove4j library implements collections specialized for
primitive types that overlap with the standard Java library.

Redundancy can occur in various forms and at different
levels of abstractions in a system, from statements to services
to entire subsystems. The defining elements of this software
redundancy are what is considered different in two executions
and what is considered equivalent in their outcome. For the
purpose of this paper, we consider differences in the code of a
test that amount to different sequences of method calls of the
system under test that then induce different executions of the
same test. And for the outcome of those different executions,
we consider functional properties and therefore we build our
technique on a notion of observational equivalence [28].



1 public boolean put(K key, V value) {
2 Collection<V> collection = map.get(key);
3 if (collection== null) {
4 collection = createCollection(key);
5 if (collection.add(value)) {
6 totalSize++;
7 map.put(key, collection);
8 return true; // mutation: return false;
9 } else {

10 throw new AssertionError(”Spec violated”);
11 }
12 } else if (collection.add(value)) {
13 totalSize++;
14 return true;
15 } else {
16 return false;
17 }
18 }

1 public boolean putAll(K key, Iterable<? extends V> values) {
2 if (!values.iterator().hasNext()) {
3 return false;
4 }
5 Collection<V> collection = getOrCreateCollection(key);
6 int oldSize = collection.size();
7 boolean changed = false;
8 if (values instanceof Collection) {
9 Collection<? extends V> c = Collections2.cast(values);

10 changed = collection.addAll(c);
11 } else {
12 for (V value : values) {
13 changed |= collection.add(value);
14 }
15 }
16 totalSize += (collection.size() − oldSize);
17 return changed;
18 }

Figure 1: Methods put and putAll of the AbstractMultimap<K,V> Class from the Guava Library

We say that two executions of a system are equivalent
(functionally) if their outcome can not be distinguished by
probing the system through its public interfaces. In particu-
lar, two different sequences of method calls on an object may
leave the object in two different internal states. However,
if those two states cannot be distinguished through any se-
quence of methods of the public interface of the object, then
we say that the two sequences are equivalent. Notice that
this is an ideal notion of equivalence. In Section 3 we discuss
the necessary assumptions and limitations we pose for the
actual implementation of the equivalence checks.

Having defined at least informally the notion of redundancy
that we plan to exploit to obtain oracles, we now argue,
again informally, that such redundancy is indeed present in
modern software systems. We start from an example and
then provide more evidence based on prior analyses and other
observations.

Consider the methods put(K key, V value) and putAll(K key,
Iterable<? extends V> values) of the AbstractMultimap<K,V>
class of the popular Google Guava library.2 The put and
putAll methods associate a given key with a given value and
collection of values, respectively. This suggests that put(k,v)
would be equivalent to putAll(k,c) with the same key k and
a singleton collection c containing value v.

The put and putAll methods of the Guava library are
implemented with different code. Figure 1 reproduces the
code of the two methods with only minor formatting changes.
The executions of the two methods may in turn invoke the
same code (for example, line 12 of put and line 13 of putAll,
depending on dynamic binding). Still, one fault in the put
method could be detected by a test that runs that method,
and by an oracle that compares the result with an equivalent
execution of the putAll method. For example, consider a
simple mutation of line 8 of method put that causes put to
return false instead of true. Such a faulty mutation would
be detected by a simple test that calls put to insert one
key–value mapping, and by an oracle that does the same
through putAll. In this case, the equivalence check is trivial,
since the two executions themselves return different values,
and therefore are immediately deemed observationally non-
equivalent without the need for any additional probing calls.

2http://code.google.com/p/guava-libraries/

The effectiveness of test oracles built from related methods
such as put and putAll depends on the independence of their
code. When related methods share some or most of their
code, they may produce the same wrong result and thus may
not be able to detect a failure. And indeed related methods
often share code and sometimes are almost completely identi-
cal, as is the case when a method simply wraps a call to the
other with a few minor initialization or termination steps.
Still, our past experience indicates that software systems
contain many equivalent methods or sequences of methods
that are independent enough and therefore usable for their re-
dundancy [8, 9]. The experiments presented in Section 4 also
offer further evidence that software is intrinsically redundant
and that such redundancy is usable.

Having observed that intrinsic redundancy exists, it is
natural to ask how and where this redundancy might arise.
Without wanting to explore these questions in great depth,
we simply mention some potential sources of useful intrinsic
redundancy with some examples.

There are plausible and general reasons to assume that
modern software systems, especially modular components,
are intrinsically redundant. This is redundancy that is not
deliberately introduced by the designers as in N-version pro-
gramming [5], and therefore that does not incur additional
development costs. Design for reusability is a source of intrin-
sic redundancy. Reusable libraries typically offer different
ways of executing the same functionalities. For example,
Google’s Guava library offers several methods to create im-
mutable collections: copyOf(), builder(), of(), etc. These
methods differ in the interface usage, but they are essentially
equivalent in terms of the final results. Performance optimiza-
tion and context-specific optimization are another source of
redundancy. As we already mention above, a sorting function
may be implemented through multiple different and there-
fore redundant algorithms, and similarly, one library such
as the Trove4j library may provide an optimized version of
the functionality already provided by another library (in this
case, the standard Java library). Backward compatibility
is another source of redundancy. For example, the Java 7
standard library contains 45 classes and 365 methods that
are deprecated and that overlap with the functionality of
newer classes and methods.



There are also various studies that demonstrate that a con-
siderable amount of intrinsic redundancy exists in software
systems at various abstraction levels, in different application
domains and in various forms. Gabel et al. reported more
than 3000 semantic clones in the Linux kernel [22] and Jiang
and Su studied the Linux kernel at a different granularity
level and found more than 600,000 semantically equivalent
code fragments [29], where semantic clones and semantically
equivalent code refer to code fragments that produce the
same results without sharing the whole code.

In previous work, some of these authors identified more
than 150 semantically equivalent sequences of method calls
in popular Javascript Web APIs, such as YouTube, Google
Maps, and JQuery, and more than 4,000 semantic equiva-
lences in Java applications and libraries of non-trivial size
and complexity, including Apache Ant, Google Guava, Joda-
Time, and Eclipse SWT. The same previous work also shows
that this redundancy can be put to a good use, in particular
to implement a self-healing mechanism based on “automatic
workarounds” [8, 9].

For the experiments reported in this paper, we identified
a total of 529 equivalences over 873 methods. We did that
manually, starting from the Javadoc specifications of the
considered libraries, with an effort of about 40 person-hours
by PhD students with some familiarity with the libraries.
Both our group and the group of Martin Monperrus at the
University of Lille are investigating the possibility of identify-
ing redundant methods automatically with dynamic analysis.
The results obtained so far indicate that we can identify
redundant methods automatically with negligible effort.3

3. CROSS-CHECKING ORACLES
We now describe in detail the technique we have developed

to generate test oracles that exploit the intrinsic redundancy
of software systems.

The technique exploits the redundancy present at the level
of method calls. More specifically, we consider systems in
which a method call (possibly a static method) can be re-
placed by one or more other calls plus possibly some glue code.
This redundancy can be expressed through equivalences of
the form:

class.method(type1 param1, . . .)
≡ {code using target of type class and

param1 of type type1, . . . }

class.static method(type1 param1, . . .)
≡ {code using param1 of type type1, . . . }

The right-hand side of the equivalences is in principle
arbitrary code but in practice amounts to little more than
one or a few alternative calls. Below are two examples:

AbstractMultimap.put(String key, Object value)
≡ { List list = new ArrayList();

list.add(value);
target.putAll(key,list); }

AbstractMultimap.clear()
≡ { for (String key : target.keySet()) {

target.removeAll(key);
} }

The first example expresses the equivalence between the
put and putAll methods of the AbstractMultimap class of the
3Martin Monperrus, private communication, 2013.

Guava library. The second example expresses an analogous
equivalence for two other methods of the same class.

The technique we propose takes equivalence specifications
and produces oracles that can be automatically deployed
within any existing test suite. The technique is based on
an instrumentation of the code of the test that, for every
call corresponding to the left-hand side of an equivalence
specification, performs a cross-check that executes both the
original call and the equivalent code specified in the right-
hand side, and then checks that the two executions were
indeed equivalent. Thus the main ingredients of the technique
are:

• Automatic deployment: a mechanism to deploy an
oracle for every call corresponding to the left-hand side
of an equivalence.

• Cross-check execution: a mechanism to correctly exe-
cute both the original call and the corresponding equiv-
alent code, and then to compare their outcomes.

• Equivalence check: a decision procedure to verify that
the outcomes of the two executions are indeed equiva-
lent.

Notice that for the technique to be truly automatic in
general, all the above mechanisms must be independent of
the test and of the system under test, which is one of the
essential technical difficulties of implementing our technique.
Another technical difficulty is to avoid spurious differences
between the executions of the original call and the equivalent
code. This is where we see the most significant limitations of
our technique. For example, such differences may be caused
by interference between the two executions. One form of
interference that our current implementation does not handle
well is through the use of multiple threads in the original or in
the equivalent code. Other problematic forms of interference
are through files and other input/output operations. Yet
other spurious differences might arise from non-determinism
such as the simple use of the system clock, which may return
different results if the two executions are shifted in time.

We now describe our approach to implement each technical
aspect of cross-checking oracles.

3.1 Automatic Deployment
We translate each equivalence into an advice that we then

implement and deploy into test programs using the AspectJ
system.4 See Figure 2 for an example. An equivalence
E defines an advice class AE . The left-hand side of the
equivalence defines the join points for the advice, which is
where the body of the advice is executed and that corresponds
to the specified method invocations. Then, the left-hand side
and the right-hand side of the equivalence translate directly
into an originalCall and an equivalentCode method of the
advice class AE , respectively.

The execution of an oracle derived from an equivalence E
proceeds as follows: (1) the advice implemented in AE .advice
is invoked right before a call corresponding to the left-hand
side of E; (2) AE .advice saves the target object and the pa-
rameters of the call in specifically declared member variables
of the AE class; (3) AE .advice calls the crossCheck method
of its base class that implements a generic cross-check proce-
dure (described in the next section); (4) at some point the

4http://eclipse.org/aspectj/



1 class Oracle1 extends BasicOracle {
2 private String key;
3 private Object value;

5 @Around(”call(put(String,Object))&&target(map)&&args(key,value)”)
6 public void advice(AbstractMultimap m, String k, Object v) {
7 target = m;
8 key = k;
9 value = v;

10 return crossCheck(); // calls BasicOracle.crossCheck()
11 }

13 Boolean originalCall() {
14 return target.put(key,value);
15 }

17 Boolean equivalentCode() {
18 List list = new ArrayList();
19 list.add(value);
20 return target.putAll(key,list);
21 }
22 }

1 abstract class BasicOracle {
2 protected Object target;

4 abstract Object originalCall();
5 abstract Object equivalentCode();

7 protected boolean crossCheck() {
8 Object target orig = target;
9 Object target copy = copy(target);

11 Object orig res = originalCall();
12 target = target copy;
13 Object copy res = equivalentCode();

15 assert(equivalence(orig res,copy res));
16 assert(equivalence(target orig,target copy));
17 }
18 }

Figure 2: Oracle Implementation and Deployment Through Advice Classes

crossCheck method calls the originalCall and equivalentCode
methods that invoke the implementations defined in AE ,
which can then refer to the target and parameters of the
original call saved by AE .advice; (5) the crossCheck method
calls a generic equivalence check to compare the results and
the state of the target object after the executions of orig-
inalCall and equivalentCode; (6) if the comparison detects
an inconsistency then the oracle signals a failure, otherwise
the execution of the test continues with the result of the
originalCall.

3.2 Cross-check Execution
Cross-checking oracles compare the outcome of the exe-

cution of an original method call and an equivalent code
on a target object. We now describe the mechanism that
supports these two executions on the same object within a
test. A fundamental requirement is that the execution of the
equivalent code should not affect the execution of the original
call, and vice-versa, and since a test may contain multiple
oracles, it should also not affect the remainder of the test.
In other words, the execution of the equivalent code should
be invisible, and yet its outcome must be well visible to the
comparison procedure to obtain an accurate cross-check.

Thus, the challenge in implementing cross-checks is to
obtain two independent executions whose outcomes can be
later compared accurately, and with only one of them con-
tinuing beyond the cross-check, as if the other one never
existed—and to do all that efficiently. To solve this challenge
we tried a number of cross-check patterns, striving to make
the cross-check as accurate as possible.

We first explored a solution in which the cross-check forks
the execution of the test into a completely separate virtual
machine [31]. However, this solution proved problematic,
because it is complex and inefficient, but more importantly
because it requires an equivalence check based on the serial-
ization of the state of the target object, which incurs a high
rate of false positives.

We therefore turned to a solution in which the original call
and the equivalent code, as well as the comparison procedure,
execute in the same virtual machine. In this case, without

the isolation guaranteed by the platform, the main problem
is to maintain the state of the execution consistent with an
execution of the original test without cross-checks. We tried
two approaches: one using a checkpoint mechanism and one
using a copy of the target object.

With the checkpoint mechanism we obtain separation by
undoing the effects of the equivalent code by reverting to
the prior state of the test. First we create a checkpoint
of the state of the test; then execute the equivalent code;
save the state of the target object; restore the state of the
test to the checkpoint (but retaining the saved state of the
target object); and then execute the original call. At this
point the equivalence check compares the state of the target
object (after the execution of the original call) with the
state of an object created from the previously saved state
of the target object (after the execution of the equivalent
code). Unfortunately, this solution also incurs false positives
because, similar to forking a separate virtual machine, it
must perform an equivalence check on a de-serialized object.
And again this yields too many false positives.

We then focused on a solution in which the cross-check
would execute the equivalent code on a copy of the target
object: the cross-check starts by creating a copy of the target
object, then it executes the original call on the original target
and the equivalent code on the copy, and then it checks the
equivalence of the two executions by comparing the original
target with the copy, as well as the results of the execution.

This solution is perhaps simple, but with a number of
refinements it also proved to be the most effective one. We
used a generic deep-copy library5 that we had to tweak in
order to reduce the occurrence of false positives. In particu-
lar, we changed the copy procedure to avoid making copies
of singleton objects (for example, those declared as static
final) whose references are often used as special values in
various data structures (for example, compared with the ==
operator). We also changed the way the library handles some
collections, by copying their exact structure as opposed to
using the collection’s specialized putAll or addAll methods.

5http://code.google.com/p/cloning/



No matter what copy mechanism one might use, the exe-
cution of the equivalent code on a copy may still interfere
through static variables or other shared data. To mitigate
this problem, we also instrumented the oracles to detect
interference whenever one execution writes a value that is
then read by the other. However, ultimately we discarded
this detection mechanism because it was itself a source of
false positives, which in the end proved to be much more
problematic than the interference between executions.

Finally, to further reduce the rate of false positives, we
augmented the basic copy pattern with a cascade of pre-
liminary checks. We first check that the copy alone would
not introduce false differences. Further we check that the
execution of the same original sequence on two copies would
still result in an equivalent state, and only then we proceed
with the execution of the equivalent sequence, and compare
its outcome (on a copy) with that of the original sequence
(on the original target). These additional checks are quite
effective and indeed absolutely necessary to discard spurious
differences and therefore to obtain accurate oracles.

3.3 Checking Equivalence
We compare the effects of different executions that are

expected to be semantically equivalent. This requires com-
paring the immediate results of the two executions, as well as
the state of the system after the two executions. In particu-
lar, in the context of object oriented systems, comparing the
state of an execution requires comparing the objects used or
produced during the execution.

We developed a hybrid technique to compare two objects.
On the one hand, we have the standard equals method. How-
ever, we observed that equals tests are sometimes too conser-
vative and lead to false positives. This is because the default
implementation simply compares the two object references,
which is an overly strict equality condition for our purposes
especially since we start with two different objects obtained
through a deep copy. Notice also that we are interested in
determining the semantic equivalence of two objects, and
the default equals method fails to do that. Some applications
override the default method with their specific and more
semantically meaningful equivalence checks. However, those
checks would often directly or indirectly delegate the check
to the equals method of other classes (typically for refer-
enced objects) that in turn may use the default reference
comparison.

To address the shortcomings of the equals method, we
implemented a generic procedure to check the observational
equivalence of two objects. In essence, this procedure tries to
prove that two objects (states) are not equivalent. Thus this
check tries to find a counter-example, meaning a sequence
of calls that, when applied identically to the two objects,
would produce one or more different results. This difference
is decided, for each call, by comparing the output of the call
on the two objects. When a call returns a primitive value, the
comparison is immediate. When the call returns an object,
the comparison may in turn require a recursive check for
the observational equivalence of the returned objects. The
search for a counter-example uses a simple random selection
and is currently limited to methods without parameters. If
the search succeeds, then the equivalence check returns false
and the oracle reports a failure.

We then combine the use of the generic observational equiv-
alence check with the original equals to improve efficiency,

since the observational equivalence is more accurate but also
typically more expensive than the equals method. In the
current implementation we limit the generic search to se-
quences of up to twenty calls, including direct and recursive
calls, and we rely on the application-specific checks when-
ever they are available. To do that, we invoke the equals
method in the cross-check procedure, but we also instrument
the default equals check (implemented in the Object class)
to run our observational equivalence check. This way, the
cross-check uses the observational equivalence check unless
an application-specific equals is available, and it does so even
when the application-specific equals invokes the default check
directly or indirectly. For brevity we omit other details of
the implementation of the equivalence check but we make
the implementation available for further analysis and use.6

4. EXPERIMENTAL EVALUATION
We conducted an experimental evaluation of the idea of

cross-checking oracles embodied in the technique described
above in Section 3. The purpose of this evaluation is to
demonstrate that we can exploit the intrinsic redundancy of
reusable components to generate cross-checking test oracles,
and that such oracles are effective in revealing the presence
of faults in real systems.

We already know that systems are intrinsically redundant,
and our experiments readily demonstrate that the technique
indeed works, meaning that cross-checking oracles can be
deployed and used with minimal runtime overhead. In this
evaluation we do not discuss runtime performance, but we
can say that for our experiments we executed millions of
tests with tens of millions of cross-checking oracles, and in all
cases the tests terminate within a few seconds and most often
in fractions of a second (except some that result in infinite-
loop failures). We conclude that cross-checking oracles are
a practical technique, and the most important remaining
question is whether they can also be effective.

Generally speaking, we measure effectiveness in terms of
the ability of the testing process as a whole to reveal faults.
This includes, and depends crucially on, the choice of test
cases. We consider both hand-written and automatically
generated test suites with which we explore two specific
research questions:

RQ1 How do cross-checking oracles perform within hand-
written test cases? In particular, are they better or
worse than hand-written oracles on the same test in-
puts? And if and when they are worse, can they still
improve the effectiveness of hand-written test cases if
used in conjunction with hand-written oracles?

RQ2 How do cross-checking oracles perform within auto-
matically generated test suites? Do they improve the
fault-revealing ability of those tests in comparison with
generated implicit oracles, such as exceptions and con-
tract violations? Do they achieve a good fault revealing
rate in absolute terms and in comparison with hand-
written test cases?

We attempt to answer these questions experimentally using
seeded faults.

6http://star.inf.usi.ch/star/cross-check



4.1 Evaluation Setup
The subjects of the evaluation are classes taken from the

following three non-trivial open-source Java libraries.

Guava is a large utility library developed by Google that
contains several classes to support collections, caching,
concurrency, string processing, etc.7

Joda-Time is a library to process dates and times that
supports several calendars and is compatible with the
Java date and time classes.8

GraphStream is a library to model and analyze dynamic
graphs.9

Table 1: Subjects Considered in the Evaluation and
Number of Available Equivalences

Subject Class Methods Equiv.
Guava ArrayListMultimap 25 29

ConcurrentHashMultiset 27 32
HashBiMap 20 16
HashMultimap 24 29
HashMultiset 26 30
ImmutableBiMap 25 19
ImmutableListMultimap 30 34
ImmutableMultiset 32 50
LinkedHashMultimap 24 30
LinkedHashMultiset 26 31
LinkedListMultimap 24 29
TreeMultimap 26 28
TreeMultiset 35 37

Joda-Time DateMidnight 118 20
DateTime 153 27
Duration 44 6

GraphStream SingleGraph 107 41
MultiGraph 107 41

From these libraries we consider concrete classes for which
we have a set of equivalences and also a set of test cases writ-
ten by the developers. We first select a subset of the classes
of the Guava collections and Joda-Time that we already
analyzed and for which we identified a list of equivalences
in previous studies [8]. We then consider other classes from
the GraphStream library for which we identify additional
equivalences. In total, we select 18 subject classes: 13 from
Guava, 3 from Joda-Time, and 2 from GraphStream, with a
total of 529 equivalences. We then translate each equivalence
into an AspectJ aspect as described in Section 3. Table 1
lists and briefly characterizes the subject classes selected for
our experiments.

We assemble two types of test suites for each subject class.
We first take the tests written by the developers, which we
refer to as the hand-written test suites. We then generate
test suites using Randoop, one of the most popular tools
for generating unit tests for Java [39]. We refer to these
as the generated test suites. The hand-written tests come
with corresponding oracles that are also hand-written by the
developers. The generated tests also come with oracles. In
particular, Randoop generates oracles based on previously
seen values, which amount to regression oracles, and oracles
based on implicit language contracts, such as the fact that

7https://code.google.com/p/guava-libraries
8http://joda-time.sourceforge.net
9http://graphstream-project.org

the equals method must be symmetric. We refer to these
latter ones as implicit oracles. Since we do not examine
regression testing in this evaluation, we only consider the
implicit oracles in the generated test suite.

We evaluate the effectiveness of cross-checking oracles by
means of a systematic mutation analysis. We generate mu-
tants of the subject libraries (Guava, Joda-Time, and Graph-
Stream) using the Major mutation analysis framework [30],
activating all the mutation operators that the tool supports.
To simulate the normal use of the technique by a developer,
we generate a test suite for each mutant. We then test each
mutant with both the corresponding generated test suite and
the hand-written test suite, each with various combinations
of oracles. We then record which mutant is revealed (or
“killed”) by which oracle and in which test.

In summary, we proceed with the following experimenta-
tion process for each subject class:

1. We seed faults in the class under test and in its direct
and indirect super-classes with Major. We then inject
those mutations in the source code. We do that because
Major instruments the bytecode directly, but we must
have the mutation in the source code to use Randoop
to generate a specific test suite.

2. We create a set of generated tests and we select a set
of relevant mutants for those tests as follows:

(a) For each mutant of the class under test, we use
Randoop to generate a test suite. We specify
the class under test as the only target of the test
and we use a timeout of 90 seconds for Randoop
to generate each test suite. We discard the few
mutants for which Randoop fails to generate a test
suite.

(b) We run each generated test suite on its correspond-
ing mutant.

(c) When running a generated test suite on the cor-
responding mutant, we check whether the test
suite covers the mutation. We then discard all
the mutations that could not be covered by the
corresponding test suite. In other words, since we
are interested in evaluating the oracles rather than
the tests, we disregard those tests within which
an oracle would not even have a chance to detect
the fault.

3. We select a set of the generated mutants for the hand-
written tests in a similar way, by retaining only those
mutants that are covered by at least one test.

4. We then activate the cross-checking oracles and run
both the generated and hand-written test suites on the
respective selected mutants. We activate one equiva-
lence at a time to identify precisely which equivalence
would kill which mutant in which test. We also record
the kill scores of the hand-written oracles in the hand-
written tests, and the kill scores of the implicit oracles
in the generated tests. In any case, since our focus is on
the effectiveness of the oracles, we do not count runtime
exceptions in the kill scores, unless the exceptions are
raised within a test oracle.



Table 2: Results of the Experiments on the Classes Under Test
Generated Tests Hand-Written Tests

selected
mutants

mutants killed by which oracle
selected
mutants

mutants killed by which oracle

implicit cross-
checking

both hand-
written

cross-
checking

both
Subject Class

ArrayListMultimap 30 7 11 0 80 30 1 41
ConcurrentHashMultiset 89 0 64 0 150 54 2 60
HashBiMap 12 4 1 0 14 5 0 6
HashMultimap 40 7 12 0 90 21 0 47
HashMultiset 66 0 35 0 83 27 1 38
ImmutableBiMap 13 2 1 1 30 6 0 3
ImmutableListMultimap 22 1 8 0 43 19 0 11
ImmutableMultiset 49 6 5 0 72 44 0 4
LinkedHashMultimap 26 11 10 0 95 29 0 46
LinkedHashMultiset 53 0 33 0 89 31 0 39
LinkedListMultimap 24 2 4 0 61 45 0 12
TreeMultimap 35 1 10 0 81 24 0 43
TreeMultiset 113 0 37 0 121 27 2 55

DateMidnight 81 2 11 0 134 72 0 24
DateTime 148 0 8 0 181 78 0 34
Duration 146 2 26 0 152 119 0 26

SingleGraph 243 0 10 0 248 71 12 14
MultiGraph 254 0 11 0 253 74 14 13

4.2 Evaluation Results
Table 2 summarizes the high-level results of our exper-

iments. For each subject class we report the number of
mutants selected for the experiments, which are those whose
mutation is executed by at least one test case. We then
count the numbers of mutants “killed” by the generated and
hand-written test suites. For the generated test suites we
report how many mutants were killed only by the implicit
oracles, only by the cross-checking oracles, and by both. Sim-
ilarly, for the hand-written tests we count how many mutants
were killed only by the hand-written oracles, only by the
cross-checking oracles, and by both.

Notice that all the kill scores reported in this paper are
true positives, as determined by an analysis of the individual
tests and the corresponding failure reports. We discuss this
analysis in Section 4.3.
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Figure 3: Kill Ratios for Generated Tests

Figures 3 and 4 illustrate the relevant data from Table 2 in
terms of kill ratio, meaning the portion of covered mutants
killed by each type of oracle. Consider first the case of

generated test cases shown in Figure 3. In general, the
graph shows that cross-checking oracles are quite effective
in revealing faults for many of the subject classes (RQ2).
Notice that the reported kill ratios are conservative measures,
first because some selected mutants may be ineffective, but
also because, in order to focus on the effectiveness of the
oracles, we do not consider failures resulting from runtime
exceptions. Such failures typically abort the execution of a
test and therefore may shortcut the execution of our oracles,
which may also be able to reveal the fault.

Figure 3 also shows that the implicit oracles can also be
effective. However, a further analysis of the successful uses
of the implicit oracles reveals that all those cases correspond
to mutations of the equals method, which happens to be
checked by implicit contracts (symmetry and reflexivity of
the equals relation).

Figure 3 shows that cross-checking oracles are most effec-
tive with classes of the Guava library and least effective with
GraphStream. A plausible explanation is that the Guava
subjects are collection classes that presumably possess more
redundancy than the GraphStream subjects. A review of
the GraphStream code supports this hypothesis. Another
potential issue with GraphStream is that many of its core
methods are private and therefore not visible from the user
documentation. This means that we did not even consider
those methods in writing equivalences. A knowledgeable
developer could write more direct and therefore more effec-
tive equivalences. However, in order to take advantage of
equivalences on private methods, we would have to extend
our oracle deployment technique, perhaps using reflection.

The case of GraphStream highlights some limitations of
cross-checking oracles, but it is nevertheless a positive case.
In fact, our cross-checking oracles evidenced a true and
previously unknown fault confirmed by a developer.10 Also,
as we see below in Figure 4, GraphStream is the subject
with which our cross-checking oracles achieve the highest
improvement over hand-written oracles.

10https://github.com/graphstream/gs-core/issues/109
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Figure 4: Kill Ratios for Hand-Written Tests

The experiments with generated test suites are represen-
tative of the primary usage we envision for cross-checking
oracles. However, our evaluation also demonstrates that
cross-checking oracles are useful also in conjunction with
hand-written test suites (RQ1). Considering that the sub-
ject cases we used are part of mature software libraries that
come with many carefully written tests, it is not surprising
to see that specific hand-written oracles are superior at re-
vealing faults. However, our generic cross-checking oracles
still achieve significant kill ratios (up to 53% of all covered
mutants) and in some cases even improve the effectiveness
of the test suite by revealing additional faults (up to +6%
overall and +16% relative to the hand-written oracles).

4.3 Accuracy
We validate the accuracy of all oracles by analyzing all

test failures. Since different cross-checking oracles can be de-
ployed within the same test case, possibly multiple times, we
analyze all the individual failures signaled by a cross-checking
oracle within a failed test. For each oracle (cross-checking
or other) we examine the test case, the oracle invocation,
and the mutation, to see if the failure is real or spurious. As
soon as we find one real individual failure, we record that
the test accurately killed the mutant thanks to the oracle.
Conversely, if none of the individual oracles signals a true
failure, we classify that test failure as a false positive.

As it turns out, this analysis was not very time consum-
ing for our cross-checking oracles. In all those cases, for all
the true positives we found a true individual failure almost
immediately, and for all the false positives (two) we had to
analyze a single individual failure for each test failure. The
same analysis was instead quite laborious for the implicit
oracles. One reason is that the implicit oracles reported a
large number of failures. Another reason is that most of those
failures were violations of contracts on the equals relation
that required an in-depth analysis. In particular, for each
failure we had to determine whether the violation of the
contract (for example, the symmetry of the equals relation)
was attributable to a mutation within the equals method, or
to an indirect effect of a mutation elsewhere, or to a delib-
erately non-conforming (non-symmetric) implementation of
the equals method provided by the developers.

Table 3 shows, for both the generated and hand-written
tests, the number of false positives incurred by our cross-

Table 3: Accuracy of Cross-Checking Oracles

Reported Test Failures
Generated Hand-Written

Subject Class total false total false
ArrayListMultimap 11 0 42 0
ConcurrentHashMultiset 64 0 62 0
HashBiMap 1 0 6 0
HashMultimap 12 0 47 0
HashMultiset 35 0 39 0
ImmutableBiMap 2 0 3 0
ImmutableListMultimap 8 0 11 0
ImmutableMultiset 7 2 4 0
LinkedHashMultimap 10 0 46 0
LinkedHashMultiset 33 0 39 0
LinkedListMultimap 4 0 12 0
TreeMultimap 10 0 43 0
TreeMultiset 37 0 57 0
DateMidnight 11 0 24 0
DateTime 8 0 34 0
Duration 26 0 26 0
SingleGraph 10 0 26 0
MultiGraph 11 0 27 0

checking oracles compared to the total number of failures
signaled by the same oracles. The results are excellent in all
cases. The only two false positives (for ImmutableMultiset)
are due to a limitation in the deep-clone used within the cross-
checking oracles. In particular, a clone and the original object
may have a different hash, which may lead to a different
observable behavior whenever the object is used as a key in
a hash table.

4.4 Threats to Validity
The most crucial threat to the validity of our claims is the

limited number of classes used to evaluate the effectiveness of
our technique. The number of subjects was limited primarily
by the cost of the analysis we conducted on each subject.
In particular, since we wanted to report accurate results for
our cross-checking oracles (true positives) we had to analyze
each individual failure manually.

Another threat to validity is the nature of the faults we
considered in our study. We resorted to seeded faults pro-
duced by Major, and these faults may not be representative
of real faults in the classes we analyzed. However, according
to the study by Andrews et al. [2], mutation analysis can be
used as a valuable way to assess the effectiveness of a test
suite. Yet another threat to the validity of the evaluation is
in the analysis of false positives. We performed this analysis
manually and we may have misjudged some cases. In order
to mitigate the effects of this threat, we will publish all the
data collected in the experimentation.11

5. RELATED WORK
Baresi and Young surveyed the research literature on test-

ing oracles in 2001 [7] and back then they found very little
on how to generate proper oracles. Most of what they found
were techniques to generate oracles from formal specifications
such as algebraic specifications [3, 23], assertions [33, 42, 44],
Z specifications [32, 35], context free grammars [18], and
finite state machines for protocol conformance [21].

11http://star.inf.usi.ch/star/cross-check



A recent survey by Harman et al. [27], which also covers
advances in the last decade, finds again techniques to generate
oracles from various forms of specifications, in particular
from models [45], contracts [16, 34], assertions [4, 14], and
annotations [15], and also from models and assertions derived
from dynamic traces [37, 47] (including tests) that amount to
regression oracles. Harman et al. also find a few other specific
techniques that exploit symmetries in the input [13, 25, 48]
or human knowledge [40], but still conclude that the problem
of automatically generating test oracles is “less well explored
and comparatively less well solved” than other important
problems in software testing.

One such problem that has received much attention in
recent years is the generation of test cases. Test cases can
be generated automatically at the unit [4, 6, 14, 20, 39],
integration [41] or system level [26]. Input generation tech-
niques do not compete with but rather complement the oracle
generation technique we propose. However, some of these
techniques also generate oracles. These oracles are either
assertions of generic contracts (e.g., x.equals(y)==y.equals(x))
or they are assertions of previously seen values, and therefore
amount to regression oracles.

Recently, Staats et al. have proposed a technique that can
suggest oracles by observing the actual behavior of the unit
under test, and by selecting among different candidates the
ones that have higher mutation scores [43]. This technique
is more akin to a discovery of invariants than a generation
of algorithmic oracles.

The technique we propose is most related to the notion of
an implicit oracle, whereby the system under test contains
within itself the ability to replicate and therefore check some
of its functionalities. Symmetric testing embodies this notion
by exploiting the commutativity of the function under test
to generate different but supposedly equivalent inputs [25].
Thus symmetric testing compares the results of the same
function called with two permutations of the inputs (for
example, mult(a,b)==mult(b,a)). Metamorphic testing also
exploits equivalences as implicit oracles, but relies on different
rather than symmetric inputs (for example, sin(x)==sin(PI-
x)) [13, 48]. Murphy et al. refine the idea of metamorphic
and symmetric testing in a framework that, given a set of
metamorphic properties, can automatically generate and
execute test cases at the system level [36]. Very similar
ideas were developed earlier in the context of fault tolerant
systems by Amman and Knight, who propose data diversity
as a technique to execute the same program on different but
equivalent inputs and then select the output with a voting
mechanism [1].

All these techniques share the same basic idea of testing
a function by exploiting symmetries and equivalences of
that function. Our technique is more general, since we can
also exploit symmetries and equivalences across different
functions, as well as other forms of redundancy that cannot
be expressed as simple commutative relations.

Similarly to our technique, ASTOOT exploits symmetries
across different functions to automatically generate test cases
with implicit oracles [19]. However ASTOOT assumes that
the component under test comes with a full set of algebraic
specifications from which it derives sequences of operations
that should or should not be equivalent. Therefore, ASTOOT
generates test oracles that are bound to the generated test
cases, which are themselves limited to operations that are
provably equivalent according to the specifications. By con-

trast, our technique produces oracles that are more general
(although partial) and therefore that are more likely to re-
veal faults whose effect propagates to any of the equivalent
operations. Also, crucially, these more general oracles can
be easily integrated within any test case and therefore can
be coupled with any test case generation technique.

6. CONCLUSIONS
In recent years we observed and studied the intrinsic ability

of software systems to perform the same actions in different
ways. Our intent was (and still is) to exploit this cheap
form of redundancy to make software systems more reliable.
With this paper we propose a technique to use this same
redundancy for testing. In particular, we describe a technique
to create and automatically deploy test oracles.

The technique we propose is valuable also because oracles
have been somewhat neglected in the efforts to assist and
automate software testing. Moreover, the technique is also
significant because it is almost completely independent of
the test input, and therefore can be combined with various
automated test input generation techniques for which the
only available oracles are very basic forms of assertions.

The main use of our technique is in conjunction with the
many tools that automatically generate test inputs. These
tools, like Randoop and Evosuite, generate large amounts
of test inputs with very basic oracles, like checks of runtime
exceptions, simple checks on the symmetry of equals, and
verification of non-regression problems [20, 38]. The lack
of good oracles reduces the effectiveness of automatically
generated test suites. Enhancing test inputs with manually
designed test oracles has prohibitive costs that nullify the
advantages of generating test inputs automatically. Our ora-
cles can be generated automatically with almost no overhead
and can reveal semantic failures that are likely impossible
to identify with simple checks, as shown in the experimental
data reported in the paper. The comparison with carefully
hand-written oracles indicates that our technique not only
generates oracles that can reveal important failures that
would otherwise escape automatically-generated tests, but
that also identifies a surprisingly high percentage of the fail-
ures revealed by ad-hoc test oracles, and also improve those
oracles by revealing additional failures.

The only manual step of the technique is the identification
of redundant methods. We are currently working on a formal-
ization of equivalence and redundancy, and on techniques to
automatically identify redundant methods. These techniques
use interface specifications and common patterns to discover
potential equivalences, and then dynamic analysis to validate
that those equivalences indeed hold. The preliminary results
are promising and we expect to be able to infer redundant
code with good precision and with no additional effort by
developers, thus eliminating the only human cost that, al-
though proven not too high in our experiments, still impacts
on the overall cost of the approach.
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