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Abstract. Software engineering methods can increase the dependability
of software systems, and yet some faults escape even the most rigorous
and methodical development process. Therefore, to guarantee high levels
of reliability in the presence of faults, software systems must be designed
to reduce the impact of the failures caused by such faults, for example
by deploying techniques to detect and compensate for erroneous runtime
conditions. In this chapter, we focus on software techniques to handle
software faults, and we survey several such techniques developed in the
area of fault tolerance and more recently in the area of autonomic com-
puting. Since practically all techniques exploit some form of redundancy,
we consider the impact of redundancy on the software architecture, and
we propose a taxonomy centered on the nature and use of redundancy
in software systems. The primary utility of this taxonomy is to classify
and compare techniques to handle software faults.

1 Introduction

This work addresses the engineering of software systems that are used in the
presence of faults. Arguably, despite mature design and development methods,
despite rigorous testing procedures, efficient verification algorithms, and many
other software engineering techniques, the majority of non-trivial software sys-
tems are deployed with faults. Also, in practice, computing systems cannot exist
in isolation as purely mathematical objects, and therefore are inevitably affected
by faults. For these reasons, we accept the assumption that many systems can
not be completely rid of faults, and that the reliability of such systems can
be improved by allowing them to prevent or alleviate the effects of faults, and
perhaps even to correct the faults at runtime. These are essentially the goals of
much research in the area of fault tolerance [1, 2] and more recently in autonomic
computing [3, 4].

There are important differences between the approaches to reliability found
in the fault tolerance and autonomic computing literature, respectively. First, at
a high level, fault tolerance is a more focused area, while autonomic computing
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covers a larger set of objectives. In fact, the term autonomic computing refers
to the general ability of a system to respond to various conditions such as per-
formance degradation or changes in the configuration of the environment, many
of which may not be caused nor affected by faults. In this chapter we will limit
ourselves to a sub-area of autonomic computing, typically called self-healing,
whose specific objective is to achieve an automatic reaction to, or prevention of
functional faults and failures.

Another difference is in the nature of the intended application domain. fault
tolerance research has been driven primarily by highly specialized and safety-
critical systems, whereas autonomic computing—specifically, self-healing—is tar-
geted towards general purpose components or loosely coupled systems where the
effects of failures are less destructive. These two application domains also have
significant differences in the levels of costs and ultimately in the type of designs
that are considered acceptable.

Yet another difference is that fault tolerance research explicitly addresses
both hardware and software faults with different techniques that may be hard-
ware or software, while self-healing research does not distinguish different classes
of faults and has so far studied mostly software techniques. Finally, classic fault
tolerance approaches have a stronger architectural implications than many re-
cent self-healing approaches.

Their differences not withstanding, fault tolerance and self-healing in auto-
nomic computing share the same goal of rendering software systems immune
or at least partially resilient to faults. Therefore, in this chapter we propose to
unify the contributions of these two somewhat separate research areas in a co-
herent classification. In particular, we propose to focus on what we see as the
central, common element of most of the techniques developed in both commu-
nities, namely redundancy. We will pay particular attention to techniques that
handle software faults, and to their architectural implications.

A system is redundant when it is capable of executing the same, logically
unique functionality in multiple ways or in multiple instances. The availability of
alternative execution paths or alternative execution environments is the primary
ingredient of practically all systems capable of avoiding or tolerating failures. For
example, a fairly obvious approach to overcome non-deterministic faults, such as
hardware faults, is to run multiple replicas of the system, and then simply switch
to a functioning replica when a catastrophic failure compromises one of the
replicas. In fact, redundant hardware has been developed since the early sixties
to tolerate development faults as well as manufacturing faults in circuits [5–7]. An
analogous form of redundancy is at the core of many widely studied replication
techniques used to increase the availability of data management systems [8].
Similarly, redundancy has been used extensively to tolerate software faults [1].
This paper focuses primarily on techniques that exploit software redundancy for
tolerating such faults.

Software poses some special challenges and also provides new opportunities
to exploit redundancy. For example, while simple replication of components can
handle some classes of production faults typical of hardware design, it cannot



deal with many failures that derive from development and integration problems
that occur often in software systems. On the other hand, software systems are
amenable to various forms of redundancy generally not found in hardware sys-
tems. A form of redundancy for software systems that is analogous to basic
replication techniques used for non-deterministic hardware faults is N-version
programming. In this case, replicas run independently-developed versions of the
same system, and therefore may also be able to tolerate deterministic faults [9].
As another example, consider a self-healing system that, in order to overcome
deterministic faults, detects the faulty component and redirects every request
for that faulty component to another, more or less equivalent component [10,
11].

The availability of such a replacement component is a form of redundancy,
and is also generally applicable to hardware systems. However, the nature of
software components and their interactions may make this technique much more
effective, in terms of time and costs, for software rather than hardware compo-
nents. Yet another example is that of micro-reboots, which exploit another form
of redundancy rooted in the execution environment rather than in the code. In
this case, the system re-executes some of its initialization procedures to obtain
a fresh execution environment that might in turn make the system less prone to
failures [12, 13].

Having centered our taxonomy on redundancy, we proceed with a high-level
classification by examining the following four questions. We first ask what is
the intent of redundancy. We ask whether a fault tolerance mechanism relies on
redundancy that is deliberately added to the system, or whether the mechanism
opportunistically exploits redundancy that occurs naturally in the system. For
example, N-version programming is clearly a deliberate form of redundancy,
while micro-reboots are opportunistic in nature, since they do not require the
design of redundant code. This question of intent is correlated with the costs
and effectiveness of a technique: Generally speaking, redundancy established by
design is more effective but also more costly. This question is also important
because it may highlight useful forms of latent redundancy, that is, forms of
redundancy that, even though not intentionally designed within a system, may
be exploited to increase reliability.

Then, we ask what type of redundancy is employed in a particular system.
This question in effect identifies the elements of the execution of the system that
are made redundant. The three high-level categories we distinguish are code,
data, and environment, which follow quite closely the taxonomy proposed by
Ammar et al., who introduce the concepts of spatial, information and temporal
redundancy [14]. For example, micro-reboot employs redundancy in the execu-
tion environment, whereas N-version programming amounts to code redundancy.

Third, we look at how redundancy is used. Specifically, we ask whether it
is used preventively, to avoid failures, or reactively to mask or otherwise com-
pensate for the effects of faults. For example, the recovery blocks mechanism is
reactive, while software rejuvenation is preventive [15]. In the case of methods
that use redundancy reactively, we also explore the nature of the failure detectors



needed to trigger the reaction, and the corrective measures used in the reaction.
We examine these two aspects especially in relation to redundancy.

The fourth question differentiates mechanisms according to the nature of the
faults they are most effective with. We distinguish two large classes of faults:
those that affect a system deterministically when given the same input vector,
and those that are non-deterministic in nature, for instance because of some
inherent non-determinism of the system or most likely its environment. Faults
of these two classes are often referred to as Bohrbugs and Heisenbugs, respec-
tively [16, 17].

Fault tolerance and autonomic computing are well-established research areas.
The former is arguably more mature, but the latter has received more attention
in recent years, and both have been surveyed extensively. Most surveys of these
two areas either focus on specific techniques and applications, or adopt general
conceptual models and a historical perspective. In any case, existing surveys
consider only one of these two areas. For example, Huebscher and McCanne re-
view many techniques developed in the context of of self-managed systems [18]
but do not relate them to fault tolerance. Specifically, they organize their sur-
vey around a foundational but rather high-level model of autonomic computing.
At the other end of the spectrum, De Florio and Blondia compile an extensive
survey of software fault tolerance techniques [19]. In particular, they discuss
some techniques related to redundancy (for instance, N-version programming)
but primarily they review domain-specific languages and other linguistic tech-
niques to enhance the reliability of software systems at the application level.
Another related survey is one by Littlewood and Strigini [20], who examine the
benefits of redundancy—specifically diversity—to increase system reliability in
the presence of faults that pose security vulnerabilities. Yet another example of
a focused survey is the widely cited work by Elnozahy et al. on rollback-recovery
protocols [21].

Particularly interesting in the scope of this paper are the taxonomies by Am-
mar et al. [14] and Avizienis et al [2]. Ammar et al. propose an extensive survey
of the different aspects of fault tolerance techniques, and, in this context, dis-
tinguish spatial, information and temporal redundancy. This taxonomy focuses
on the dimensions of redundancy, and matches well the differences of redundant
techniques for handling hardware as well as software faults. The classification in
terms of code, data and environment redundancy adapts better to different types
of redundancy introduced in the context of fault tolerance as well as self-healing
research to handle software faults. Avizienis et al. propose a fault taxonomy that
has become a de-facto standard. In this chapter, we refer to Avizienis’ terminol-
ogy and taxonomy limited to the aspects relevant to software faults.

Our goal with this survey is rather different. First, at a high level, we take a
broad perspective on this field and consider a wide range of techniques. Therefore
we do not attempt to examine every technical aspect of each technique in great
detail. Nevertheless, we make an effort to maintain a strictly technical approach
in our classification, distinguishing methods and systems on the basis of their
technical features and merits, and regardless of the conceptual model used to



describe them or the application domain for which they were developed. Second,
we intend to unify the two areas of fault tolerance and self-healing under a single
taxonomy, ignoring the historical path that lead to one technique or another,
and instead basing our taxonomy on what we see as the essential, common ideas
behind both fault tolerance and self-healing. Finally, we focus on techniques
for handling software faults, and we discuss the different aspects as well as the
overall architectural implications.

In Section 2 we discuss the main architectural implications of redundancy,
and we identify few simple design patterns. In Section 3 we detail the classifica-
tion method we used in our survey. We then proceed with the analysis of several
systems, first in Section 4 where we discuss systems based on the deliberate use
redundancy, and then in Section 5 where we discuss opportunistic redundancy.

2 Architectural Implications

Although implicitly discussed in different papers, the architectural implications
of fault tolerance mechanisms have been explicitly addressed only recently. Gacek
and de Lemos suggest that dependability should be designed at the architecture
level, and define the requirements for embedding fault tolerant approaches into
architectural description languages [22]. Feiler and Rugina enrich the architec-
tural description language AADL with error annexes to model dependability
at the architectural level. Harrison and Avgeriou discuss the implementability
of fault tolerance tactics within different architectural patterns [23]. Hanmer
presents an extensive set of patterns for error and fault handling [24]. In this
section, we shortly illustrate the conceptual impacts of redundancy on software
architectures.

From the software architecture viewpoint, redundancy can be introduced ei-
ther at intra- or at inter-component level. When introduced at intra-component
level, redundancy does not alter the structure of the connections between compo-
nents, but only the single components. This is the case for example of wrappers
that filter component interactions, robust data structures that introduce redun-
dancy at the level of data structure to handle data related faults, and automatic
workarounds that exploit redundancy that is implicitly present in the program.

When introduced at inter-component level, we can recognize few recurrent
patterns that are shown in Figure 1. In the parallel evaluation pattern, an ad-
judicator evaluates the results of several alternative implementations that are
executed in parallel. The adjudicator is often a simple voting mechanism that
identifies failures. This is the case for example of N-version programming that
executes N different versions with the same input configuration, and of data
diversity and process replicas that execute identical copies with different in-
put configurations. In the parallel selection pattern, the adjudicator is active at
the end of each program executed in parallel to validate the result and disable
failing components. The pattern is implemented in self-checking programming.
In the sequential alternative pattern, alternative programs are activated when
adjudicators detect failures. This pattern is implemented by recovery blocks,



self-optimizing applications, registry-based recovery, data diversity and service
substitution approaches. We will discuss the different approaches in more details
in the next sections when introducing a taxonomy for redundancy.

3 A Taxonomy for Redundancy

As discussed in the introduction, both fault tolerance and autonomic computing
are well established research areas, and both have been surveyed extensively.
Particularly interesting for this paper are the surveys by Ammar et al. [14],
Elnozahy et al. [21], Littlewood and Strigini [20], and De Florio and Blondia [19],
who survey approaches to fault tolerance and the use of redundancy in fault
tolerance from different perspectives, and the work by Huebscher and McCanne
who survey approaches to self-managed systems [18]. All these surveys focus on
either fault tolerance or self-healing systems, and none of them suites well both
research areas. The taxonomy proposed in this paper aims to provide a unifying
framework for the use of redundancy for handling software faults both in fault
tolerant and self-healing systems.

To survey and compare the different ways redundancy has been exploited in
the software domain, we identify some key dimensions upon which we define a
taxonomy of fault tolerance and self-healing techniques. These are the intention
of redundancy, the type of redundancy, the nature of triggers and adjudicators
that can activate redundant mechanisms and use their results, and lastly the
class of faults addressed by the redundancy mechanisms. Table 1 summarizes
this high-level classification scheme.

Table 1. Taxonomy for redundancy based mechanisms

Intention: deliberate
opportunistic

Type: code
data
environment

Triggers and adjudicators: preventive (implicit adjudicator)
reactive: implicit adjudicator

explicit adjudicator

Faults addressed by redundancy: interaction - malicious
development: Bohrbugs

Heisenbugs

Intention Redundancy can be either deliberately introduced in the design or
implicitly present in the system and opportunistically exploited for fault han-
dling. Some approaches deliberately add redundancy to the system to handle
faults. This is the case, for example, of N-version programming that replicates
the design process to produce redundant functionality to mask failures in single



configuration

C1 C2 Cn

adjudicator

...

(a) Parallel evaluation

C1

adjudicator

C2

adjudicator

Cn

adjudicator

...

NO NO
FAIL

OK OK OK

(b) Parallel selection

C1

adjudicator

C2

adjudicator

Cn

adjudicator

...

NO

NO

FAIL

OK

OK

OK

(c) Sequential alternatives

Fig. 1. Main architectural patterns for inter-component redundancy.



modules [9]. Other approaches opportunistically exploit redundancy latent in the
system. This is the case, for example, of automatic workarounds that rely on the
equivalence of different compositions of the internal functionality [25]. Although
approaches from both categories can be applied to different classes of systems,
deliberately adding redundancy impacts on development costs, and is thus ex-
ploited more often in safety critical applications, while opportunistic redundancy
has been explored more often in research on autonomic and self-healing systems.

Type A system is redundant when some elements of its code, its input data, or its
execution environment (including the execution processes themselves) are par-
tially or completely replicated. Some approaches rely on redundant computation
that replicates the functionality of the system to detect and heal a faulty compu-
tation. For example, N-version programming compares the results of equivalent
computations to produce a correct result. This is a case of code redundancy.
Other approaches rely on redundancy in the data handled during the compu-
tation. For example, so-called data diversity relies on redundancy in the data
used for the computation, and not on the computation itself, which is based on
the same code [26]. Yet other approaches exploit environmental conditions that
influence the computation. For example environment perturbation techniques
rely on redundancy that derive from different reactions of the environment [27].
Different types of redundancy apply to different types of systems and different
classes of faults. As indicated in the introduction, the classification based on the
type of replicated elements is similar to Ammar’s classification in spatial, infor-
mation and temporal redundancy [14] that applies better to the more general
kind of redundancy that can be found when considering techniques to handle
both hardware and software faults.

Triggers and adjudicators Redundant components can be either triggered pre-
ventively to avoid failures, or exploited reactively in response to failures. In the
first case, the system must decide when and where act to maximize the chance of
avoiding failures. Examples of the preventive use of redundancy are rejuvenation
techniques that reboot the system before failures occur [15]. In the second case,
the system must at a minimum detect a failure, and therefore decide how to ex-
ploit the redundancy of the system in order to cope with the failure. We refer to
the component of the system that makes these decisions as the adjudicator. We
further classify a system by distinguishing adjudicators that are either implic-
itly built into the redundant mechanisms, or explicitly designed by the software
engineers for a specific application. For example, N-version programming reveal
errors automatically by comparing the results of executing redundant equivalent
code fragments; the result is chosen with a majority vote between the different
executions, and therefore amounts to an implicit adjudicator. On the other hand,
recovery-blocks require explicit adjudicators that check for the correctness of the
results to trigger alternative computations [28].

Faults Redundancy may be more or less effective depending on the types of
faults present in the system. In our taxonomy, we indicate the primary class of



faults addressed by each mechanism. In particular, we refer to the fault taxon-
omy proposed by Avizienis et al. and revised by Florio et al. [2, 19]. Avizienis et
al. distinguish three main classes of faults: physical, development, and interaction
faults. Physical faults are hardware faults caused either by natural phenomena
or human actions. Examples of physical faults are unexpected lacks of power,
or physical hardware damages. Development faults are faults introduced during
the design of the system, for example incorrect algorithms or design bottlenecks.
Interaction faults are faults that derive from the incorrect interaction between
the system and the environment, for example, incorrect settings that cause bad
interactions with the system or malicious actions that aim to violate the sys-
tem security. In this chapter, we focus on software faults, and thus we consider
development and interaction faults, and not physical faults that are related to
hardware problems. We further distinguish development faults that consistently
manifest under well defined conditions (Bohrbugs) form development faults that
cause software to exhibit non-deterministic behavior (Heisenbugs) [17, 16], and
we refer to interaction faults introduced with malicious objectives [2].

Table 2 summarizes the main exploitations of redundancy in fault tolerance
and self-healing systems, characterized according to the categories introduced
in this section. In the following sections, we discuss the taxonomy illustrated
in Table 2. Here we identify the techniques listed in the table with a quick
description and a reference to the main architectural implications. N-version
programming compares the results of executing different versions of the pro-
gram to identify errors (parallel evaluation pattern). Recovery blocks check the
results of executing a program version and switch to a different version if the
current execution fails (sequential alternatives pattern). Self-checking program-
ming parallelizes the execution of recovery blocks (parallel selection pattern).
Self-optimizing code changes the executing components to recovery from perfor-
mance degradation (sequential alternatives pattern). Exception handling acti-
vates handlers to manage unplanned behaviors (sequential alternatives pattern).
Rule engines code failure handlers that are activated through registries (sequen-
tial alternatives pattern). Wrappers intercept interactions and fix them when
possible (intra-component). Robust data structures and software audits augment
data structures with integrity checks (intra-component). Data diversity executes
the same code with perturbed input data (either parallel selection or sequential
alternatives pattern). Environment perturbation changes the execution environ-
ment and re-executes the failing code. Rejuvenation preventively reboots the
system to avoid software aging problems. Process replicas execute the same pro-
cess in different memory spaces to detect malicious attacks. Dynamic service
substitution links to alternative services to overcome failures (sequential alter-
natives pattern). Genetic programming for fault fixing applies genetic algorithms
to fix faults (intra-component). Automatic workarounds exploit the intrinsic re-
dundancy of software systems to find alternative executions (intra-component).
Checkpoint-recovery rebuilds a consistent state and re-executes the program.
Reboot and micro-reboot restart the system to recovery from Heisenbugs.



Table 2. A taxonomy of redundancy for fault tolerance and self-managed systems

Intention Type Adjudicator Faults

N-version programming
[9, 29–31]

deliberate code
reactive
implicit

development

Recovery blocks
[28, 29]

deliberate code
reactive
explicit

development

Self-checking programming
[32, 29, 33]

deliberate code
reactive

expl./impl.
development

Self-optimizing code
[34, 35]

deliberate code
reactive
explicit

development

Exception handling, rule engines
[36–38]

deliberate code
reactive
explicit

development

Wrappers
[39–42]

deliberate code preventive
Bohrbugs
malicious

Robust data structures, audits
[43, 44]

deliberate data
reactive
implicit

development

Data diversity
[26]

deliberate data
reactive

expl./impl.
development

Data diversity for security
[45]

deliberate data
reactive
implicit

malicious

Rejuvenation
[46, 15, 17]

deliberate environment preventive Heisenbugs

Environment perturbation
[27]

deliberate environment
reactive
explicit

development

Process replicas
[47, 48]

deliberate environment
reactive
implicit

malicious

Dynamic service substitution
[10, 49, 11, 50]

opportunistic code
reactive
explicit

development

Fault fixing, genetic programming
[51, 52]

opportunistic code
reactive
explicit

Bohrbugs

Automatic workarounds
[53, 25]

opportunistic code
reactive
explicit

development

Checkpoint-recovery
[21]

opportunistic environment
reactive
explicit

Heisenbugs

Reboot and micro-reboot
[12, 13]

opportunistic environment
reactive
explicit

Heisenbugs



4 Deliberate Redundancy

Deliberately adding redundancy is common practice in the design of computer
systems at every level, from single registers in a processor to entire components
in a computer, to entire computers in a data center. In this section, we survey
software fault tolerance and self-healing techniques that deliberately introduce
redundancy into software systems at the code, data and environment levels.

4.1 Deliberate Code Redundancy

Deliberate software redundancy has been widely exploited at the code level.
Classic approaches explored the use of N-version programming and recovery-
blocks to tolerate software faults. Later approaches introduced the concepts of
self-checking and self-optimizing programming to overcome a wider variety of
faults as well as performance issues. Recently some approaches proposed various
forms of registries to identify healing procedures, mostly in the context of BPEL
processes. A different form of deliberate code redundancy, defined in various
contexts, is represented by wrappers. Wrappers add redundant code to detect
and correct interaction problems such as incompatibilities of formats or protocols
between software components.

N-version programming The approach was originally proposed by Avizienis et
al., and is one of the classic approaches to the design of fault tolerant software
systems [9]. N-version programming relies on several programs that are designed
independently and executed in parallel. The results are compared to identify and
correct wrong outputs. The multiple versions must differ as much as possible
in the use of design and implementation techniques, approaches, and tools. A
general voting algorithm compares the results, and selects the final one based
on the output of the majority of the programs. Since the final output needs a
majority quorum, the number of programs determines the number of tolerable
failures: a three-versions system can tolerate at most one faulty result, a five-
versions system can tolerate up to two faulty results, and so on. In general, in
order to tolerate k failures, a system must consists of 2k + 1 versions.

The original N-version mechanism has been extended to different domains, in
particular recently to the design of web- and service-based applications. Looker
et al. define WS-FTM, a mechanism that supports the parallel execution of
several independently-designed services. The different services implement the
same functionality, and their results are validated on the basis of a quorum
agreement [30]. Dobson implements N-version programming in WS-BPEL, by
implementing the parallel execution of services with a voting algorithms on
the obtained responses [29]. Gashi et al. describe and evaluate another typi-
cal application of N-version programming to SQL servers [31]. In this case, N-
version programming is particularly advantageous since the interface of an SQL
database is well defined, and several independent implementations are already
available. However, reconciling the output and the state of multiple, heteroge-
neous servers may not be trivial, due to concurrent scheduling and other sources
of non-determinism.



N-version programming is a relevant instance of deliberate code-level redun-
dancy, since it requires the design of different versions of the same program.
The approach relies on an general built-in consensus mechanism, and does not
require explicit adjudicators: The voting mechanism detects the effects of faults
by comparing the results of the program variants, and thus acts as a reactive,
implicit adjudicator. N-version programming has been investigated to tolerate
development faults, but, if used with distinct hardware for the different variants,
it can tolerate also some classes of physical faults. This makes the approach par-
ticularly appealing in domains like service-oriented applications, where services
are executed on different servers and may become unavailable due to server or
network problems.

Recovery-blocks The approach was originally proposed by Randell, and relies on
the independent design of multiple versions of the same components [28]. Con-
trary to N-version programming, in this case the various versions are executed
sequentially instead of in parallel. When the running component fails, the tech-
nique executes an alternate (redundant) component. If the alternate component
fails as well, the technique selects a new one, and in the case of repeated fail-
ures, this process continues as long as alternate components are available. The
recovery-blocks mechanism detects failures by running suitable acceptance tests,
and relies on a rollback mechanism to bring the system back to a consistent state
before retrying with an alternate components.

As for N-version programming, the core ideas behind recovery blocks have
been extended to different domains, and in particular to web- and service-based
applications. In their work that extends N-version programming to WS-BPEL,
Dobson exploits also the BPEL retry command to execute an alternate service
when the current one fails [29]. As in the classic recovery-block approach, alter-
nate services are statically provided at design time.

The recovery block approach is another classic implementation of deliberate
code-level redundancy, since it relies on redundant designs and implementations
of the same functionality. However, recovery blocks differ from N-version pro-
gramming in that they rely on reactive, explicit adjudicators to detect failures
and trigger recovery actions. In fact, recovery blocks detect component failures
by executing explicitly-designed acceptance tests. Like N-version programming,
recovery-blocks target development faults, but, unlike N-version programming,
they are less than ideal for physical faults, as they do not exploit parallel exe-
cution.

Self-checking programming Further extending the main ideas of N-version pro-
gramming and recovery blocks, Laprie et al. proposed self-checking program-
ming, which is a hybrid approach that augments programs with code that checks
its dynamic behavior at runtime [32]. A self-checking component can be either
a software component with a built-in acceptance test suite, or a pair of inde-
pendently designed components with a final comparison. Each functionality is
implemented by at least two self-checking components that are designed inde-
pendently and executed in parallel. If the main self-checking component fails, the



program automatically checks the results produced by the alternative compo-
nent to produce a correct result. At runtime, they distinguish between “acting”
components that are in charge of the computation, and “hot spare” components
that are executed in parallel to tolerate faults of the acting components. An
acting components that fails is discarded and replaced by the hot spare. This
way, self-checking programming does not require any rollback mechanism, which
is essential with recovery blocks. The core idea of self-checking software goes
back to 1975, when Yau et al. suggested software redundancy to check for the
correctness of system behavior in order to improve system reliability [33].

Similarly to previous approaches, Dobson applies also the self-checking pro-
gramming approach to service oriented applications, by calling multiple services
in parallel and considering the results produced by the hot spare services only
in case of failures of the acting one [29].

Self-checking programming is yet another example of deliberate code-level re-
dundancy, since it is based on redundant implementations of the same function-
alities. Self-checking programming uses reactive adjudicators that can be implicit
or explicit depending on the design of the self-checking components. Components
with a built-in acceptance test suite implement reactive, explicit adjudicators,
while components with a final comparison of parallel results implement reactive,
implicit adjudicators. Similarly to N-version programming and recovery blocks,
self-checking programming has been introduced to tolerate development faults.

Self-optimizing code Development faults may affect non-functional properties
such as performance. The term self-optimization, used within the larger study
of self-managed systems, refers to an automatic reaction of a system that would
allow it to compensate for and recover from performance problems. Some ap-
proaches to self-optimization rely on redundancy. Diaconescu et al. suggest im-
plementing the same functionalities with several components optimized for differ-
ent runtime conditions. Applications can adapt to different performance require-
ments and execution conditions at runtime by selecting and activating suitable
implementations for the current contexts [34].

Naccache et al. exploit a similar idea in the Web services domain [35]. They
enhance web service applications with mechanisms that choose different imple-
mentations of the same service interfaces depending on the required quality of
service. To maintain the required performance characteristics in web services ap-
plications, the framework automatically selects a suitable implementation among
the available ones.

These self-optimizing approaches deliberately include code redundancy. In
fact the presence of different components and web services at design time is
required to allow these frameworks to work at runtime. The adjudicators are
reactive and explicit, since the frameworks monitor the execution and when the
quality of service offered by the application overcomes a given threshold then
another component or service is selected.

Exception handling and rule engines (Registries) Exception handling is a clas-
sic mechanism that catches pre-defined classes of errors and activates recovery



procedures (exception handlers) explicitly provided at design time [54]. Rule
engines extend classic exception handling mechanisms by augmenting service-
based applications with a registry of rule-based recovery actions. The registry is
filled by developers at design time, and contains a list of failures each one with
corresponding recovery actions to be executed at runtime. Both Baresi et al. [36]
and Pernici et al. [37] propose registry-based approaches. They enhance BPEL
processes with rules and recovery actions. In both cases, failures are detected
at runtime by observing violations of some predetermined safety conditions, al-
though the two approaches differ in the way they define rules and actions.

Mechanisms that rely on exception handlers and registries add redundant
code deliberately, and rely on explicit adjudicators, which are managed as ex-
ceptions. Recovery actions address development faults.

Wrappers The term wrapper indicates elements that mediate interactions be-
tween components to solve integration problems. Wrappers have been proposed
in many contexts. Popov et al. propose wrappers in the context of the design
of systems that integrate COTS components to cope with integration problems
that derive from incomplete specifications [39]. Incompletely specified COTS
components may be used incorrectly or in contexts that differ from the ones
they have been designed for. The wrappers proposed by Popov et al. detect clas-
sic mismatches and trigger appropriate recovery actions, for example they switch
to alternative redundant components. Chang et al. require developers to release
components together with sets of healing mechanisms that can deal with fail-
ures caused by common misuses of the components [40]. Failure detectors and
so-called healers are designed as exceptions that, when raised, automatically
execute the recovery actions provided by the developers.

Salles et al. propose wrappers for off-the-shelf components for operating sys-
tems. With wrappers, Salles et al. improve the dependability of OS kernels that
integrate COTS components with different dependability levels [41]. Fetzer et
al. introduce “healers” to prevent some classes of malicious faults [42]. Fetzer’s
healers are wrappers that embed all function calls to the C library that write
to the heap, and perform suitable boundary checks to prevent buffer overflows.
Wrappers deliberately insert redundant code to prevent failures. They have been
proposed to deal both with Bohrbugs and malicious attacks.

Costs and efficacy of code redundancy As our survey shows, deliberate code re-
dundancy has been exploited primarily to cope with development faults, and has
been recently extended to cope with performance and security faults. Different
approaches try to mitigate the additional design and execution costs, by trading
recovery and adjudicator design costs for execution costs. N-version program-
ming comes with high design and execution costs, but works with inexpensive
and reliable implicit adjudicators. Recovery blocks reduce execution costs, but
increase the cost of designing adjudicators. Self-checking components support
a flexible choice between the two approaches at the price of complex execu-
tion frameworks. Software execution progressively consumes the initial explicit
redundancy, since failing elements are discard and substituted with redundant



ones. The efficacy of explicit redundancy is controversial. Supporters of explicit
redundancy acknowledge the increased reliability of properly designed redundant
systems [55]. Detractors provide experimental evidence of the limited improve-
ments of the reliability of redundant over non redundant systems. For example,
Brilliant et al. indicate that, in N-version programs, the amount of input er-
rors increases unexpectedly, and the correlation is higher than predicted, thus
reducing the expected reliability gain [56].

4.2 Deliberate Data Redundancy

Although with less emphasis, redundancy has been deliberately added to both
data and, more recently, to the runtime environment. Deliberate data redun-
dancy has been proposed to increase the dependability of data structures, to
reduce the occurrences of failures caused by specific input-dependent conditions
(e.g., corner cases in data structures), and very recently to cope with some classes
of security problems.

Robust data structures and software audits Connet et al. introduced a prelimi-
nary form of data redundancy in the early seventies [44]. They augment systems
with so called software audits that check for the integrity of the system itself at
runtime. Taylor et al. exploited a form of deliberate data redundancy to improve
the reliability of data structures [43]. Taylor et al. propose data redundancy
consisting of additional code to trace the amount of nodes in data structures
and of additional node identifiers and references to make data structures more
robust. They use the redundant information to identify and correct faulty refer-
ences. These approach exploits data redundancy that is deliberately added to the
programs to tolerate development faults. The redundant information implicitly
enables failures detection, thus adjudicators are reactive and implicit.

Data diversity Knight et al. apply deliberate data redundancy to cope with
failures that depend on specific input conditions [26]. Knight’s approach is ap-
plicable to software that contains faults that result in failures with particular
input values, but that can be avoided with slight modifications of the input. The
approach relies on data “re-expressions” that can generate logically equivalent
data sets. Re-expressions are exact if they express the same input in a different
way, thus producing the expected output; They are approximate if they change
the input and thus produce a different output but within an accepted range.
Data diversity is implemented in the form of either “retry blocks” that borrow
from the idea of recovery blocks, or “N-copy programming” that redefine N-
version programming for data. Therefore, data diversity uses both reactive and
implicit adjudicators. As for recovery blocks and N-version programming, data
diversity addresses development faults.

Data diversity for security Recently Knight et al. extended the conceptual frame-
work of data diversity to cope with security problems [45]. They apply data di-
versity in the form of N-variant systems to provide high-assurance conjectures



against a class of data corruption attacks. Data are transformed into variants
with the property that identical concrete data values have different interpreta-
tions. In this way attackers would need to alter the corresponding data in each
variant in a different way while sending the same inputs to all variants. The
only available implementation is run in parallel on the different data sets, and
executions are compared. Thus this approach relies on data redundancy deliber-
ately added to tolerate malicious faults. Since the approach relies on the parallel
execution and the comparison of results, the adjudicator is implicit.

Despite early attempts trace back almost 30 years, deliberate data redun-
dancy has not been exploited as thoroughly as code redundancy. Most ap-
proaches focus on development faults. Recent work indicates space for appli-
cations to non-functional faults.

4.3 Deliberate Environment Redundancy

Deliberate environment redundancy is the most basic form of redundancy, and
has been used extensively to increase reliability in the face of purely hardware
faults, for example in the case of database replication. Deliberate environment
redundancy consists of deliberately changing the environment conditions and re-
execute the software system under the new conditions. Thus, this form of redun-
dancy impacts on the program execution rather then on the program structure.
We only mention this well-known and widely studied application of environment
redundancy in passing here because we intend to focus specifically on software
faults. Therefore we describe in detail only some more recent uses of environment
redundancy that are more significant for this class of faults.

Rejuvenation The first notable attempt to deliberately modify the environment
conditions to work around failures tracks back to the nineties, when Wang et al.
proposed software rejuvenation. Rejuvenation is a technique that works with en-
vironment diversity, and relies on the observation that some software systems fail
due to “age,” and that proper system reinitializations can avoid such failures [57,
17]. Wang et al. focused on memory-management faults, such as memory leaks,
memory caching, and weak memory reuse, that can cause the premature termi-
nation of the program execution. Rejuvenation amounts to cleaning the volatile
state of the system periodically, whenever it does not contain useful informa-
tion. The same research group improved software rejuvenation by combining it
with checkpoints: By rejuvenating the program every N checkpoints, they can
minimize the completion time of a program execution [46].

Software rejuvenation approaches are deliberate redundant changes to the
environment, since the memory state is cleared intentionally by re-executing
some global initialization procedures, thereby presenting a new environment to
the system. Rejuvenation acts independently from the occurrence of failures, thus
it can be both reactive or preventive. However it does not rely on an adjudicator
that explicitly identifies a failure, and thus we classify it as preventive from the
adjudicator viewpoint. These approaches work well for Heisenbugs.



Environment perturbation Using the analogy of allergies in humans and other
animals, and specifically of the treatment of such allergies, Qin et al. suggested
a rollback mechanisms, called RX, that partially re-executes failing programs
under modified environment conditions to recover from deterministic as well as
non deterministic faults [27]. The mechanism is based on environment changes
that include different memory management strategies, shuffled message orders,
modified process priority, and reduced user requests. These changes in the exe-
cution environment can prevent failures such as buffer overflows, deadlocks and
other concurrency problems, and can avoid interaction faults often exploited by
malicious requests.

Similarly to software rejuvenation, RX is based on deliberate environment
redundancy, since the applied changes explicitly create different environments
where the programs can be re-executed successfully. However, contrary to reju-
venation, RX relies on reactive and explicit adjudicators to start proper recovery
actions. In particular, the environment changes are triggered by exceptions or
by sensors that monitor the system execution. This technique works mainly with
Heisenbugs, but can be effective also with some Bohrbugs and malicious faults.

Process replicas The main concepts of N-version programming have been ex-
tended to environment changes to cope with malicious faults. Cox et al. pro-
posed executing N-variants of the same code under separate environment con-
ditions and compare their behavior to detect malicious attacks [47]. The aim is
to complicate the attackers’ task by requiring malicious users to simultaneously
compromise all system variants with the same input to actually succeed in the
attack. The framework provided by Cox starts from the original program, and
automatically creates different variants by partitioning the address space, and
by tagging the instructions. Partitioning the address space can prevent mem-
ory attacks that involve direct reference to absolute addresses, while tagging
the instructions (that is, prepending a variant-specific tag to all instructions)
can detect code injection. Bruschi et al. improved Cox’ process replicas with
a new mechanism that also detects attacks that attempt to overwrite memory
addresses [48].

Approaches based on process replicas deliberately add redundancy to the
execution environment, since the variants are obtained through explicit, though
automatic, changes. Cox’ tagging mechanism acts on the program, and thus
also creates redundancy in the code. Process replicas do not require explicit
adjudicators, but instead rely on reactive, implicit mechanisms in the same way
that N-version programming derives a single output value, by executing the
variants in parallel, and then by comparing execution results at runtime. Process
replicas target malicious faults, and do not seem well suited to deal with other
types of faults.

In general, deliberate redundancy in environment execution conditions has
been exploited only recently, and seems well suited to deal with Heisenbugs and
some classes of interaction faults, especially malicious faults, that are particularly
difficult to detect and remove.



5 Opportunistic Redundancy

While deliberate redundancy has been exploited since the seventies and in many
contexts, implicit redundancy has been explored only recently, with some promis-
ing results. Implicit redundancy at the code level usually stems from the complex-
ity of system internals, which in turn result in a partial overlap of functionality
within different program elements. Implicit redundancy at the environment level
comes from the complexity of the execution environment, which typically does
not behave deterministically to all requests, and therefore may allow for different
but functionally equivalent behaviors.

5.1 Opportunistic Code Redundancy

Implicit redundancy at code level has been exploited both in specific application
domains, mostly in the context of service oriented applications and more general
of dynamically bound components, and with specific technologies, namely genetic
programming.

Dynamic service substitution Popular services are often available in multiple
implementations, each one designed and operated independently, each one also
possibly offering various levels of services, but with every one complying to an
equivalent, common interface. In fact, this is more or less the vision of service-
oriented computing. Some researchers propose to take advantage of the available,
independent implementations of the same or similar service to increase the relia-
bility of service-oriented applications, especially for failures that may be caused
by malfunctioning services or unforeseen changes in the functionalities offered by
the current implementation. Subramanian et al. enhance BPEL with constructs
to find alternative service implementations of the same interfaces in order to
overcome unpredicted response or availability problems [10]. Taher et al. enhance
runtime service substitution by extending the search to services implementing
similar interfaces, and by introducing suitable converters to use services that,
although different, are sufficiently similar to admit to a simple adaptation [49].
Sadjadi et al. further simplify the substitution of similar service implementations
by proposing transparent shaping to weave alternative services invocation at run-
time, thus avoiding manual modification of the original code [11]. Mosincat et al.
define an infrastructure to handle dynamic binding of alternative services that
can handle both stateless and stateful Web services [50]. In summary, service
substitution amounts to exploiting available redundant code in an opportunistic
manner, it is triggered in reaction to faults thanks to explicit adjudicators, and
allows systems to tolerate both development faults and physical faults.

Fault fixing using genetic programming Recently both Weimer et al. and Arcuri
et al. investigated genetic programming as a way to automatically fix software
faults [51, 52]. Both approaches assume the availability of a set of test cases to
be used as adjudicator. When the software system fails, the runtime framework
automatically generates a population of variants of the original faulty program.



Genetic algorithms evolve the initial population guided by the results of the test
cases that select a new “correct” version of the program.

Genetic programming does not require the deliberate development of redun-
dant functionality, but exploit the implicit code redundancy opportunistically to
produce variants of the original programs and select a “correct” variant. Genetic
approaches react to failures detected by test suites, and thus rely on reactive and
explicit adjudicators to identify and correct Bohrbugs.

Automatic workarounds In some recent work, we investigated the possibility of
automatically identifying workarounds by opportunistically exploiting the im-
plicit redundancy present in the code [53, 25]. We observed that many complex
software systems provide the same functionality through different combinations
of elementary operations. So, in order to respond to a failing sequence of op-
erations, we proposed a technique to automatically identify alternative execu-
tion sequences that are expected to have the same intended effect of failing
sequence, but that are not affected by failures, and therefore that can be used
as workarounds. Our technique relies on other mechanisms to detect failures,
and to bring the system back to a consistent state immediately after the fail-
ure. When the system fails, the technique automatically examines the failing
sequence, and on the bases of a specification of the system or its interface, gen-
erates alternate execution sequences that serve as potential workarounds. The
generated sequences are sorted according to the likelihood of success and are
then executed up to a correct execution. This technique explores opportunistic
redundancy in a new way, to some extent mimicking what a real user would
do in the attempt to work around emerging faulty behaviors. Being completely
automatic, the technique can also explore redundancy not exploitable by end
users, thus with better chances to find a useful solution to the problem.

The approach of automatic workarounds is therefore opportunistic in the
way it explores intrinsic code redundancy. It is triggered by an explicit, reactive
adjudicator, and is useful primarily to avoid the effects of development faults.

Considerations on the opportunistic exploitation of code redundancy It is only
recently that researchers have started to investigate the possibility of exploit-
ing code redundancy opportunistically. These studies rely on characteristics of
emergent application domains, like service-based applications, and programming
techniques like genetic programming. The results are encouraging and suggest
that implicit code redundancy can be exploited also in classic application do-
mains to increase reliability with little additional costs. However, we should
emphasize that making good use of redundancy in an opportunistic manner is
an issue of availability and cost. Contrary to the approaches discussed in the
previous section in which redundancy is added by design, opportunistic tech-
niques such as automatic fault fixing and automatic workarounds do not require
the development of any redundant code. Service substitution does require mul-
tiple implementations, but their development cost is presumably amortized over
several systems sharing the same pool of service implementations. So, the main



advantage of the opportunistic approach is that it does not incur serious addi-
tional development costs. However, it should be clear that the same approach
still relies on code redundancy, although it does so implicitly. So, there is always a
question of whether such latent redundancy really exists. And furthermore, even
when redundant code exists, it typically requires runtime search and adaptation.

5.2 Opportunistic Environment Redundancy

Approaches that opportunistically exploit environment redundancy extend and
formalize the common experience of non-deterministic behavior of the execution
environment: Simple system reboots are often used as last resource to overcome
unexpected failures.

Checkpoint-recovery Checkpoint and recovery techniques exploit environment re-
dundancy by periodically saving consistent states to be used as safe roll backs [21].
When the system fails, it is brought back to a consistent state and re-executed,
to solve temporary problems that may have been caused by accidental, transient
conditions in the environment.

These approaches opportunistically exploit environment redundancy, since a
system would re-execute the same code without trying to modify the environ-
ment, but instead relying on spontaneous changes in the environment to avoid
the conditions that created the failure. Notice that this is different from other ex-
plicit approaches, such as that of the RX method by Qin et al. that deliberately
changes the environment before re-executing the code [27]). Checkpoint-and-
recovery requires reactive and explicit adjudicators to determine if the system
has failed, and therefore to roll back to a consistent state. These techniques are
effective in dealing with Heisenbugs that depend on temporary execution con-
ditions, but do not work well for Bohrbugs that persist in the code and in the
execution environment.

Reboot and micro-reboot The classic brute force but surprisingly effective ap-
proach that consists in simply rebooting the systems has been refined by Can-
dea et al., who propose local micro-reboots to avoid the high cost of complete
reboots [12]. The same approach was extended to service-based applications by
Zhang et al. [13]. Although intuitively simple, micro-reboot approaches require
careful modular design of the systems as well as adequate runtime support for
reboot operations that do not affecting the overall execution. These approaches
are opportunistic, and exploit redundant behavior of the execution environment
to overcome Heisenbugs. As in the other cases, they operate when triggered
by reactive, explicit adjudicators, since they react to system failures explicitly
notified by the adjudicators.

6 Conclusions

Both the fault tolerance and the self-healing communities work on techniques
to reduce the runtime effects of faults during software execution, to guarantee



software reliability also in the presence of faults. The many techniques investi-
gated so far tackle several problems, work under different assumptions, impact in
various forms on the development and execution costs, address various applica-
tion domains, and may affect software architectural issues. The known attempts
to frame the various approaches under a unifying view have focused either on
fault tolerance or self-healing techniques, but do not unify well the results of
both communities. Thus, they miss the important relations between the work
in the two areas that are strictly intertwined. In this paper, we identify few
general architectural patterns that are implemented by different techniques, and
we propose a unifying framework to classify techniques that reduce the effects
of faults at runtime, and we compare the main approaches to fault tolerance
and self-healing. The framework elaborates on the different ways the techniques
proposed so far exploit redundancy and reveals open areas of investigation.
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40. Chang, H., Mariani, L., Pezzè, M.: In-field healing of integration problems with
COTS components. In: ICSE’09: Proceeding of the 31st International Conference
on Software Engineering. (2009) 166–176

41. Salles, F., Rodrguez, M., Fabre, J.C., Arlat, J.: Metakernels and fault contain-
ment wrappers. In: International Symposium on Fault-Tolerant Computing, Los
Alamitos, CA, USA, IEEE Computer Society (1999)

42. Fetzer, C., Xiao, Z.: Detecting heap smashing attacks through fault containment
wrappers. In: In Proceedings of the 20th IEEE Symposium on Reliable Distributed
Systems. (2001) 80–89

43. Taylor, D.J., Morgan, D.E., Black, J.P.: Redundancy in data structures: Improving
software fault tolerance. IEEE Transactions on Software Engineering 6(6) (1980)
585–594

44. Connet, J.R., Pasternak, E.J., Wagner, B.D.: Software defenses in real-time control
systems. In: in Proceedings of the International Symposium on Fault-Tolerant
Computing. (1972) 94–99

45. Nguyen-Tuong, A., Evans, D., Knight, J.C., Cox, B., Davidson, J.W.: Security
through redundant data diversity. In: DSN’08: IEEE International Conference on
Dependable Systems and Networks. (2008) 187–196



46. Garg, S., Huang, Y., Kintala, C., Trivedi, K.S.: Minimizing completion time of a
program by checkpointing and rejuvenation. SIGMETRICS Performance Evalua-
tion Review 24(1) (1996) 252–261

47. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J.,
Nguyen-Tuong, A., Hiser, J.: N-variant systems: a secretless framework for secu-
rity through diversity. In: USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, Berkeley, CA, USA, USENIX Association (2006)

48. Bruschi, D., Cavallaro, L., Lanzi, A.: Diversified process replicae for defeating
memory error exploits. In: WIA’07:3rd International Workshop on Information
Assurance, IEEE Computer Society (2007)

49. Taher, Y., Benslimane, D., Fauvet, M.C., Maamar, Z.: Towards an approach for
web services substitution. In: IDEAS ’06: Proceedings of the 10th International
Database Engineering and Applications Symposium, Washington, DC, USA, IEEE
Computer Society (2006) 166–173

50. Mosincat, A., Binder, W.: Transparent runtime adaptability for BPEL processes.
In Bouguettaya, A., Krger, I., Margaria, T., eds.: ICSOC ’08: Proceedings of the 6th
International Conference on Service Oriented Computing. Volume 5364 of Lecture
Notes in Computer Science. (2008) 241–255

51. Weimer, W., ThanVu Nguyen, a.C.L.G., Forrest, S.: Automatically finding patches
using genetic programming. In: ICSE’09: Proceeding of the 31st International
Conference on Software Engineering. (2009) 364–374

52. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: CEC ’08: Proceeding of IEEE Congress on Evolutionary Computation.
(2008)
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