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Abstract. This paper tackles the problem of structural integration test-
ing of stateful classes. Previous work on structural testing of object-
oriented software exploits data flow analysis to derive test requirements
for class testing and defines contextual def-use associations to charac-
terize inter-method relations. Non-contextual data flow testing of classes
works well for unit testing, but not for integration testing, since it misses
definitions and uses when properly encapsulated. Contextual data flow
analysis approaches investigated so far either do not focus on state de-
pendent behavior, or have limited applicability due to high complexity.
This paper proposes an efficient structural technique based on contex-
tual data flow analysis to test state-dependent behavior of classes that
aggregate other classes as part of their state.

1 Introduction

Object-oriented programs are characterized by classes and objects, which enforce
encapsulation and behave according to their internal state. Object-oriented fea-
tures discipline programming practice, and reduce the impact of some critical
classes of faults, for instance those that derive from excessive use of non-local
information or from unexpected access to hidden details. However, they intro-
duce new behaviors that cannot be checked satisfactorily with classic testing
techniques, which assume procedural models of software [1]. In this paper, we
focus on structural testing of state-based behavior, which impacts on both unit
and integration testing of classes.

The most promising structural approaches to testing object oriented software
exploit data flow analysis to implicitly capture state-based interactions. Harrold
and Rothermel proposed data flow analysis for structural testing of classes in
1994 [2]. In their early work, Harrold and Rothermel define a class control flow
graph to model data flow interactions within classes, and apply data flow anal-
ysis to characterize such interactions in terms of flow relations of class state
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variables. This analysis supports well unit testing, but does not apply satisfacto-
rily to integration testing of classes. In fact, when accesses to state variables are
properly encapsulated, standard data flow analysis does not distinguish chains
of interactions that flow through different methods, thus missing several inte-
gration dependencies, and in particular dependencies of classes that aggregate
other classes as part of their state. In 2003, Souter and Pollock proposed a con-
textual data flow analysis algorithm for object oriented software [3]. Souter and
Pollock’s algorithm distinguishes accesses to the same variables through different
chains of method invocations, and thus captures inter-method interactions even
when variables are encapsulated in classes. Differently from our work, the work
of Souter and Pollock does not focus on state dependent behavior. Moreover,
Souter and Pollock’s algorithm is very accurate, but quite expensive (O(N?) in
the size of the program). The complexity of the algorithm limits the scalability
of the approach and the development of efficient tools.

This paper proposes an approach to state based integration testing of classes
that properly extends the early approach by Harrold and Rothermel: We use
contextual information about method invocations to analyze state-dependent
behavior of classes that can aggregate other classes as part of their state. We
share the main concept of contextual def-use associations with Souter and Pol-
lock, but with different goals: Souter and Pollock pursue exhaustive analysis
of single methods, while we focus on state based interactions between methods
that can be independently invoked from outside the classes. Moreover, differ-
ently from Souter and Pollock, we extend the algorithm proposed by Harrold
and Soffa to capture inter-procedural propagations of definitions and uses by
including contextual information [4]. Our algorithm for contextual data flow
analysis is more efficient, albeit less accurate, than the algorithm of Souter and
Pollock: it is quadratic in the size of the program in the worst case, and more
efficient in many practical cases.

This paper describes an efficient contextual data flow analysis approach for
object oriented software, discusses the computational complexity, and proposes
structural coverage criteria for class integration testing (Sect. 2). It introduces
a prototype implementation that we used for evaluating the suitability of the
proposed approach (Sect. 3). It presents empirical data that support the ap-
plicability of the proposed coverage, and discusses the limits of the approach
(Sect. 4). It surveys the main related work, and acknowledges the contribution
of previous research (Sect. 5). It concludes by summarizing the contribution of
the paper, and by describing ongoing research work (Sect. 6).

2 Contextual Data Flow Testing of Classes

A class is a (possibly) stateful module that encapsulates data and exports op-
erations (aka methods). At runtime, a method takes a class instance (aka an
object) as part of its input, and reads and manipulates the object state as part
of its action. Thus in general, the behavior of the methods depends on the state
of the objects, and the set of reachable states of the objects depends on the



1 public class Msg { 18 public void setStored(byte b){
2 private byte info; 19 stored = b;

3 public Msg(){info = 0;} 20 }

4 public void setInfo(byte b){ 21 public byte getStored(){

5 info=b; 22 return stored;

6 } 23 }

7 public byte getInfo (){ 24 public void recvMsg(Msg m){
8 return info; 25 byte recv = m.getInfo ();
9 } 26 msg.setInfo (recv);

0 3} 27 }

11 public class Storage { 28 public void storeMsg (){

12 private Msg msg; 29 byte b = msg.getInfo ();
13 private byte stored; 30 setStored(b);

14 public Storage (){ 31 }

15 msg = new Msg(); 32}

[
=

stored = 0;

}

[
3

Fig. 1. A sample Java program

methods. The states of the classes are often composed of instances of other
classes. To thoroughly test classes, we need to identify test cases, i.e., sequences
of method calls, that exercise the relevant state dependencies of the methods in
the reachable (composed) states.

Data flow analysis can assist testing of classes: it identifies the relevant de-
pendencies between methods by capturing definitions and uses of state variables
across methods [2]. Section 2.1 briefly recaps the minimal background on data
flow testing. Section 2.2 discusses the limits of classic data flow analysis in identi-
fying chains of interactions that flow through different classes. As a consequence,
classic data flow analysis misses interactions through structured variables prop-
erly encapsulated in classes, which are extremely relevant during integration
testing. Section 2.3 introduces our approach that leverages previous work on
data flow testing of classes, making it amenable for the purpose of class integra-
tion testing.

2.1 Def-Use Associations

Given a program variable v, a standard (context-free) def-use association (d,u)
is a pair of program locations, definition (d) and use (u) locations for v, where
v is assigned a new value at d, and has its value read and used at u. Testing
a def-use association (d,u) executes a program path that traverses first d and
then u, without traversing statements that define v between d and u (the subpath
between d and u is def-free). Def-use associations lead to many testing criteria [5].

Methods of a class interact through local variables, parameters, state vari-
ables and global objects. Def-use associations capture such interactions by iden-
tifying methods that use values set by other methods. For example the def-use
association for variable stored at lines (19, 22) of Fig. 1 captures the dependency
between methods setStored() and getStored().



Def-use associations that involve local variables and parameters characterize
method interactions through these elements, and are exploited by many tools,
e.g., Coverlipse [6], and are not further considered in this paper.

2.2 Contextual Def-Use Associations

Contextual def-use associations extend def-use associations with the context of
the method invocations. A context is the chain of (nested) method invocations
that leads to the definition or the use [3]3. A contextual def-use association for a
variable v is a tuple (d,u, cd, cu), where (d, ) is a def-use association for v, and
cd and cu are the contexts of d and wu, respectively. This concept is illustrated in
Fig. 1: The context-free def-use association for variable stored at lines (19,22)
corresponds to two contextual def-use associations (— indicates method calls):
(19, 22, Storage: :setStored(), Storage: :getStored()) and
(19, 22, Storage: :storeMsg() — Storage::setStored(), Storage: :getStored())

In general, in absence of context information, def-use associations are satisfied
by test cases that focus on trivial rather than complex interactions, while context
information identifies a more thorough set of test cases. For example, the context-
free def-use associations at lines (19,22) can be satisfied with a simple test
case that invokes methods setStored() at line 18 and getStored() at line 21,
while the corresponding contextual def-use associations illustrated above require
also the (more interesting) invocations of methods storeMsg() at line 28 and
getStored() (line 21). We clarify the concept through some common design
practice: accessor methods and object aggregation.

Accessor methods are used to guarantee controlled access to state variables.
A common design style is to define get methods (e.g., getStored()) to access
state variables, and set methods (e.g., setStored()) to define state variables.
Context-free definitions and uses of variables with accessors are always located
within the accessor methods themselves, by construction. Thus, all state inter-
actions that involve these variables are characterized by the few (context-free)
def-use associations that derive from the accessor methods, while the many in-
teractions mediated by the accessors are not captured. A test suite that covers
all (context-free) def-use associations involving accessors would focus on trivial
interactions only, missing the relevant ones. Contextual def-use associations dis-
tinguish between direct and mediated invocations of accessors, thus capturing
also interactions between methods that access state variables through acces-
sors. In the previous example the test cases derived from context-free def-use
associations would focus on the trivial interaction between setStored() and
getStored () only, missing the more relevant interaction between storeMsg()
and getStored (), while the test cases derived from contextual def-use associa-
tions would capture all interactions through variable stored.

3 In presence of multiple invocations from the same method, context may or may not
distinguish the different invocation points. For the goals of this paper we do not need
to distinguish different invocation points in the same method.



Table 1. Definitions and uses computed for the sample program in Fig. 1

Method Line (state var) Context
Defs@exit
Msg::Msg 3 (info) Msg::Msg
Msg::setInfo 5 (info) Msg::setInfo
Storage::Storage 16 (stored) Storage::Storage
Storage::setStored 19 (stored) Storage::setStored
Storage::storeMsg 19 (stored) Storage::storeMsg— Storage::setStored
Storage::Storage 15 (msg) Storage::Storage
Storage::Storage 3 (msg.info) Storage::Storage— Msg::Msg
Storage::recvMsg 5 (msg.info) Storage::recvMsg— Msg::setInfo
Uses@entry
Msg::getInfo 8 (info) Msg::getInfo
Storage::getStored 22 (stored) Storage::getStored
Storage::recvMsg 26 (msg) Storage::recvMsg
Storage::storeMsg 29 (msg) Storage::storeMsg

Storage::storeMsg 8 (msg.info) Storage::storeMsg— Msg::getInfo

Object aggregation indicates the use of an object as part of the data struc-
ture of another object. Since it is a good practice to encapsulate the state of
an aggregated object within its methods, definitions and uses of the internal
state variables are located within these methods. State interactions that involve
internal variables of aggregated objects are then characterized by context-free
def-use associations that involve methods of the aggregated object only. Test
cases that cover context-free def-use associations focus on single objects and not
the aggregated ones, thus missing complex and usually semantically more rele-
vant interactions, while contextual def-use associations identify interactions of
simple as well as aggregated objects and lead to a more thorough set of test
cases. For example the context-free def-use association for variable info at lines
(5,8) in Fig. 1 characterizes both the interaction between methods setInfo()
and getInfo() in class Msg, and the interaction between methods recvMsg()
and storeMsg() in class Storage (which aggregates a Msg object as part of its
state).

2.3 Deriving Contextual Associations

We compute state-based def-use associations by first identifying contextual def-
initions and uses that reach method boundaries, and then pairing definitions
and uses of the same state variables across methods. In this phase, our main
contribution is the redefinition of the classic algorithms for data flow testing:
Differently from Harrold and Rothermel, we compute contextual information of
definitions and uses, and thus we capture important inter-procedural proper-
ties of object oriented software; We adapt the classic Harrold and Soffa’s inter-
procedural algorithm to contextual definitions and uses in the context of object
oriented software; We borrow the definitions of contextual information by Souter
and Pollock, but we use a more efficient algorithm that focuses on definitions
and uses of state variables that reach method boundaries as illustrated in the
next paragraphs.



Table 2. Def-use associations for the sample program in Fig. 1

Class (state var) Assoc. Def context Use context

Msg (info) (3, 8) Msg::Msg Msg::getInfo

Msg (info) (5, 8) Msg::setInfo Msg::getInfo

Storage (stored) (16, 22) Storage::Storage Storage::getStored

Storage (stored) (19, 22) Storage::setStored Storage::getStored

Storage (stored) (19, 22) Storage::storeMsg—Storage::setStored Storage::getStored

Storage (msg) (15, 26) Storage::Storage Storage::recvMsg

Storage (msg) (15, 29) Storage::Storage Storage::storeMsg

Storage (msg.info) (3, 8) Storage::Storage—Msg::Msg Storage::storeMsg—Msg::getInfo
Storage (msg.info) (5, 8) Storage::recvMsg—Msg::setInfo Storage::storeMsg—Msg::getInfo

We illustrate the algorithm through the example of Fig. 1. In the first step,
we statically analyze the methods of the classes under test, and we compute two
sets of data, defs@exit and uses@entry. The defs@exit set includes all contextual
definitions of state variables that can reach the end of the method, i.e., for which
there exists at least a (statically identified) def-free path from the definition to
an exit of the method. The uses@entry set includes all contextual uses of state
variables that can be reached from the entry of the method, i.e., for which there
exists at least one def-free path from the entry of the method to the use. For each
element in the two sets, we record location, related state variable, and context
information. Table 1 shows the defs@exit and uses@entry sets for the code in
Fig. 1.

In the second step, we match the information computed in the first step by
combining definitions in defs@ezit and uses in uses@entry that relate to same
state variables. In this way, we compute the set of contextual def-use associations
for the class under analysis. Table 2 shows the complete set of def-use associations
for the classes in Fig. 1.

Our data flow analysis implements intra-procedural analysis according to the
classic reaching definition algorithm [7, 8]. We then compute inter-procedural re-
lationships by elaborating the inter-procedural flow graph (IFG), as proposed by
Harrold and Soffa [4]. We extended the algorithm to propagate the context infor-
mation on the control-flow edges that represent inter-procedural relationships.

Context tracking in presence of recursive calls and programs with recursive
data structures requires specific handling. Recursion of method calls may gener-
ate infinitely many new contexts, which may cause the algorithm to diverge. To
avoid divergence, at each node of the IFG our algorithm distinguishes only one
level of nested calls, by merging contexts that contain repeated subsequences of
method calls. Recursive data structures define aggregations of possibly infinite
state variables, which may generate unbounded sets of definitions and uses. Our
algorithm expands recursive data structures up to one level of recursion. While
limiting the depth of recursion and recursive data structures may threaten the
completeness of the analysis, we conjecture that one level of depth is enough to
test at least once all interactions between distinct modules, and thus this limit
should not impact significantly on integration testing.

The extended algorithm works with the same number of propagation steps as
the original rapid data flow algorithm, and thus has a temporal complexity of the
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Fig. 2. Logical structure of the DaTeC prototype

same order of magnitude as the original one (O(n?) worst case complexity and
linear in most practical situations[4, 7,8], while Souter and Pollock’s algorithm
is O(n%).) Space complexity slightly increases because of the extra space for
memorizing context information, and because definitions and uses that reach
IFG nodes through different contexts are now tracked as distinct items. The
details of the algorithm, omitted here for space limitations, are discussed in [9].

In our experiments, we completed static data flow analysis in few minutes,
even for large programs (see Sect. 4 for details.)

3 Evaluation Framework

Contextual def-use analysis captures many non-trivial object interactions that
depend on program state. Thus testing all contextual def-use associations should
increase the possibility of revealing state-dependent faults, and the confidence
in the proper behavior of the program. However, complex interaction patterns
may result in many contextual def-use associations, which may be expensive
to compute. Moreover, the contextual information may increase the amount of
infeasible associations, thus weakening the strength of testing all contextual def-
use associations.

To empirically evaluate our approach, we built a prototype. Fig. 2 illustrates
the fundamental components of the DaTeC (Data flow Testing of Classes) pro-
totype and the information flow to and from a classic testing environment. In a
classic testing environment, a test driver (for instance JUnit), executes a set of
test cases for the classes under test, and produces a set of test results. DaTeC
extends a classic testing environment by computing the contextual def-use as-
sociations of the classes under test, and by identifying the contextual def-use
associations exercised during testing. The prototype is composed of a data flow
analyzer that statically computes the contextual def-use associations for the
classes under test, a code tracer that inserts probes into the classes under test
to identify the executed definitions, uses and contexts, and a coverage analyzer
that identifies the associations executed by a test suite. The code tracer has been
implemented by instantiating a general purpose monitor. In the next paragraphs,
we describe the data flow and the coverage analyzers.



The Data Flow Analyzer instantiates contextual data flow analysis for an-
alyzing Java bytecode. Our implementation relies on the JABA API (Java Ar-
chitecture for Bytecode Analysis [10]) for exploring the control flow graphs of
the methods. Following the schema presented in Sect. 2.3, we adapted the tra-
ditional algorithms (reaching definitions and its inter-procedural counterpart)
to compute contextual def-use associations of state variables for given sets of
classes under test.

The Coverage Analyzer computes the contextual def-use associations that
belong to a set of program traces. A trace T is a sequence of program locations
that correspond to a program execution. For each location, a trace records the
class and the object involved in the execution at that point.* A specific trace T'
covers a contextual def-use association (d, %, cd, @) for a state variable ¥ if and
only if:

the locations d and @ occur in T in this order;

the variable v is instantiated within the same object;

— no killing definition for T occurs in T between d and T;

the trace T satisfies the contexts cd and @u at locations d and 7, respectively.
A generic trace T satisfies a context ¢ at a location [, if, in T', [ is reached
through a chain ¢ of method invocations. Notice that if T satisfies ¢ at [, it
satisfies also all contexts obtained by considering the tails of c.

The algorithm for coverage analysis is computation intensive. The trivial
algorithm that scans all traces and checks all def-use associations for each trace
has a complexity linear in the product of the number of traces, the length of
the traces, and the number of def-use associations. To reduce the execution time
and memory consumption, we compare contexts incrementally, and we index
the def-use associations by the traversed locations. In this way, we consider only
the associations related to the locations in the trace currently analyzed, thus
reducing the impact of the total number of associations on the complexity. In
our experiments, we processed programs with traces containing up to 108 entries,
and a total of up to 10° contextual def-use associations without problems.

Although the technique is applicable to general Java programs, the prototype
does not currently handle exceptions and polymorphism; it does not statically
analyze the code for aliases; and it treats arrays with some imprecision. Here we
briefly discuss the impact of these limits on the experiments.

Exceptions require special treatment as discussed by Sinha and Harrold [11],
Chatterjee and Ryder [12], and Chatterjee et al. [13]. Exceptions are part of the
plans for the next release of our prototype. In the current release, the data flow
analyzer ignores exception handlers and the coverage analyzer does not report
the related coverage.

Polymorphism and dynamic binding can cause an exponential explosion of
combinations. Rountev et al. propose a technique to efficiently treat polymor-
phism based on class analysis that can be integrated with our approach [14]. The

4 Object identifiers are ignored for static methods.



Table 3. Statistics of our contextual data flow analysis on a set of sample programs

Number of classes [SLOC [State vars [[Max assoc. for 95% of classes || Time (in sec)
Jedit 910 92,213 2,975 381 70
Ant 785 80,454 4,081 331 60
BCEL 383 23,631 929 792 24
Lucene 287 19,337 (1,013 410 17
JTopas 63 5,359 196 49 8
NanoXML|(25 3,279 39 4 5
Siena 27 2,162 66 35 5

SLOC indicates the number of lines of source code, excluding blank and comment lines. SLOC has
been computed using SLOCCount (under Linux).

All benchmarks are public open-source software: Ant, BCEL and Lucene are available at apache.org;
JEdit is available at jedit.org; Siena, NanoXML and JTopas are available from the SIR repository [19].

current prototype does not solve the bindings, but considers the ones indicated
by the user.

Aliases widen the set of possible interactions. We are currently evaluating
alias analysis algorithms for inclusion in the next release [15,16].

Data flow analysis, as most static analysis techniques, cannot handle well
arrays, since array elements are often accessed through indexes whose values
are computed dynamically. The Java dynamic initialization of arrays worsen
the problem. Forgdcs and Hamlet et al. present some techniques for handling
arrays efficiently [17, 18]. The current prototype approximates arrays as a whole,
without distinguishing accesses to single element.

The limitations discussed in this section characterize most static analysis
techniques, but none of them prevents the applicability of data flow analysis.

4 Empirical Data

We tested the technique proposed in this paper to check for efficiency (the ability
of dealing with large programs), feasibility (the portion of infeasible contextual
def-use associations), and effectiveness (the ability of revealing failures).

4.1 Scalability

The size of the programs that can be analyzed may be limited by the complexity
of data flow and coverage analysis. As discussed in Sects. 2 and 3, our data flow
analysis is quadratic in the worst case and linear in many practical cases, while
coverage analysis depends on both the length of the analyzed traces and the
amount of contextual def-use associations.

To appreciate the impact of the complexity of data flow and coverage analysis,
we analyzed a set of sample open-source programs of increasing complexity with
our prototype. Table 3 reports the amount of associations and the time for
computing them. The first four columns identify the analyzed programs and
their complexity (program name, number of classes, lines of code and number
of state variables). Column Time indicates the overall time for completing the



analysis with our prototype running on a Dell PowerEdge 2900 server with two
3.0 GHz Dual-Core Intel Xeon processors and 8 GB of RAM.

Column Mazx Assoc. for 95% of classes indicates the maximum amount of
associations computed for a single class, excluding the outliers (the 5% of the
classes with the highest number of contextual def-use associations.) We decided
to exclude the outliers because most classes present a relatively small number of
contextual def-use associations with few exceptions, as illustrated in Fig. 3 that
plots the relation between the lines of code and the number of associations in a
class for all the sample programs. In the cases considered so far, the outliers are
algorithm intensive classes, tokenizers or parsers for Jedit, BCEL, Lucene and
JTopas, which use state variables for storing intermediate results of the compu-
tation. Most of these classes are automatically produced with parser generators,
and are of little interest from the class testing viewpoint. Thus, we can obtain
good testing results even ignoring the associations of these classes.

As shown in the example of Sect. 3, a single test case may cover several
associations, thus we can cover the associations with a number of test cases
smaller than the amount of associations.
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Fig. 3. SLOC and number of associations for all sample programs classes

4.2 Feasibility

Testing criteria may not be effective when they statically identify too many infea-
sible elements, thus resulting in highly variable coverages. Typical industrially-
relevant criteria, such as statement, branch and MC/DC coverage, result in 75%
to 95% of feasible elements [1]. To evaluate the impact of infeasible associa-
tions, we inspected all contextual def-use associations derived from the packages



junit.framework of JUnit and a lucene.document of Lucene (all the details
can be found in [9]). The package junit.framework presents a total of 102
contextual def-use associations, and only 3 of them are infeasible. Thus 96%
contextual def-use associations are feasible in junit.framework. Three associa-
tions are infeasible because they involve uses in unreachable code, and none is
infeasible due to data flow limitations. The classes of the Lucene package that
we inspected contain a total of 354 contextual def-use associations, 280 (80%) of
which are feasible. All the infeasible contextual def-use associations derive from
the impossibility of executing all associations in all possible contexts, since some
classes invoke some methods with a subset of parameter values that restrict the
amount of code that can be executed in the specific contexts.

4.3 Effectiveness

We studied the ability of exposing failures by comparing the performance of
standard test suites with test suites that guarantee coverage of feasible contex-
tual def-use associations. We ran the experiments on the 3.8.1 distribution of
the package junit.framework of JUnit, since it is distributed with a standard
test suite. We first augmented the test suite provided with the distribution with
additional test cases that guarantee 100% coverage of the feasible contextual
def-use associations. We then compared the effectiveness of the standard and
the augmented test suites by measuring the ability of revealing a set of seeded
faults.

The 58 test cases of the standard test suite cover only 52% of the contex-
tual def-use associations (54 out of a total of 102 associations, 99 of which are
feasible). We augmented the default test suite with 19 additional test cases to
cover all 99 feasible associations. Neither of the suites find any faults, as ex-
pected, since JUnit is a mature tool, and the package junit.framework, which
we analyzed, is the core of the tool.

A qualitative inspection of the additional test cases indicates that the original
test suite omits some relevant checks: The test cases of the original suite (1) do
not check for the consistency of the initial state of most objects, (2) do not check
some functionalities, and (3) do not check the behavior of some methods when
invoked in states that violate the preconditions of the methods. For example, in
JUnit, test suites can be given a name, but no original test case checks for the
correct treatment of this case. Moreover JUnit requires test cases to be defined
in public classes, but the behavior in presence of test suites included in private
classes is not checked by the standard test suite.

To further assess the performance of the augmented test suite, we evaluated
the original and the augmented suites with respect to a set of 83 mutants gen-
erated with mutant operators applied to constructs involving the state of the
classes. The original suite identifies only 56 out of 83 seeded faults, the orig-
inal suite augmented with 9 test cases to reach 100% coverage of the feasible
statements identifies 65 seeded faults, while the test suite augmented to cover
all feasible contextual def-use associations identifies all 83 faults.



This preliminary result suggests that the increment of test cases required to
execute all feasible contextual def-use associations is less than the increment in
the number of revealed faults. To execute all feasible contextual def-use associa-
tions we ran 77 test cases, 33% more than the original suite (58) and 15% more
than the suite that executes all statements (67), but we revealed all 83 seeded
faults, 48% more than the seeded faults revealed by the original suite, and 28%
more than the suite that covers all feasible statements.

4.4 Limitations and Threats to Validity

The main threats to the validity of the empirical results reported in this sec-
tion derive from the limitations of the prototype used in the experimental work:
the language issues that are not addressed by the prototype (exception handling,
polymorphism, and reference aliasing) might affect the precision of the computed
sets of contextual def-use associations, thus biasing our figures. Alias analysis
algorithms, such us the ones proposed by Liang, Pennings and Harrold [15] and
Milanova, Rountev and Ryder [16] should improve the precision of the results.
We are currently evaluating such algorithms to include alias analysis in the next
release of the prototype. Exception handlers may worsen the problem of infeasi-
ble associations, but we believe that they should be addressed independently.

The results on fault-detection effectiveness based on mutation analysis may
be biased by the set of injected faults, even if they confirm the preliminary feed-
back from comparing different test suites. We are currently experimenting with
known faults in publicly available applications to further confirm the preliminary
results of mutation analysis.

Additional validity threats may derive from having experimented only with
open-source software, which could not adequately represent software produced
in industrial settings. We are working with our industrial partners to confirm
the preliminary results obtained with open-source software.

5 Related Work

The problem of testing state-dependent behavior has been originally addressed
in the domain of communication protocols, and then further extended to cope
with object oriented software [1,20]. Most work on testing the state-dependent
behavior of object oriented software has focused on deriving test cases from
state-based specifications, often UML (e.g., [21, 22]).

The most relevant code-based approaches to testing the state-dependent be-
havior of object-oriented software have exploited data flow analysis techniques.
Harrold and Rothermel first, and Souter and Pollock later laid down the foun-
dations [2—4].

Harrold and Rothermel introduced a suitable data flow model of class in-
teractions, and defined intra- and inter-class testing. We based our analysis on
this model, and our prototype on the JABA library [10], which extracts the



model from Java bytecode. Our work properly extends Harrold and Rothermel’s
approach by computing contextual information of definitions and uses.

Souter and Pollock introduced contextual def-use associations for better char-
acterizing the interactions within object-oriented software, and proposed an al-
gorithm that analyzes method interactions by examining complete chains of
method invocations. Our framework adapts the notion of contextual def-use as-
sociations defined by Souter and Pollock, to provide a framework for defining
intra-class integration testing strategies.

Souter and Pollock instantiated their approach in the tool TATOO [23] that
analyzes inter-method interactions, and used this tool to explore the use contexts
of different granularity. TATOO was not publicly available at the time of writing,
thus we could not make a direct comparison with our prototype. Based on what
published in the literature [3, 23], our prototype seems to scale up better than
TATOO: uses of TATOO are reported for programs up to 10 KLOC and 100
classes, while we have successfully analyzed programs up to 100 KLOC and
1,000 classes. On the other hand, our static analysis for building contextual def-
use associations is less precise than Pollock and Souter’s one. Their algorithm
analyzes each method separately for each context in which it can be invoked, and
partially accounts for reference aliasing that can differ across different contexts.
We ignore aliasing for the moment.

Other tools that address data flow coverage for Java programs, e.g., Cover-
lipse [6] and JaBUT1 [24], consider only intra-method interactions, thus they are
not suitable for integration testing.

Several papers propose approaches to increase the precision of the data flow
analysis for Java by accounting for reference aliasing, exception handling and
polymorphism [13-16, 25,26]. We are currently extending our prototype to in-
clude alias analysis, and improve the precision of the results.

The presence of libraries or components available without source code im-
pacts on the precision of data flow analysis. Rountev et al. propose an approach
to inter-procedural data flow analysis that relies on summary information pro-
vided with external libraries, and does not require access to the source code [27].
Since our analysis works at the bytecode level, we face this problem only in
presence of native code in Java libraries.

6 Conclusions

Classic structural testing approaches do not adequately address subtle failures
that may depend on state-dependent behavior of object-oriented classes. Data
flow analysis techniques have been recently extended to capture dependencies
from instance variables that determine the state of the classes, taking into ac-
count the context in which methods that access instance variables are invoked.

In this paper, we propose a framework that adapts and extends previous
results to structural integration testing of classes [2], aiming to better support
integration testing of classes. Our approach exploits contextual def-use associa-
tions defined by Souter and Pollock, but differently from them focuses on state



dependent behavior and proposes a more efficient algorithm, thus improving
scalability. We report a preliminary set of empirical data obtained though a
prototype implementation of the approach on a set of open-source programs.

The analysis proposed in this paper can be performed incrementally on sin-
gle classes, since definition and use sets can be combined at integration time,
while Souter and Pollock’s analysis combines the points-to-graphs of the differ-
ent methods for each method invocation, and thus gains precision at the expense
of scalability. Souter and Pollock’s approach applies well to the analysis of com-
plete programs and single methods, while our approach fits better the analysis
of the interactions of methods that can be invoked independently from outside
the class.

The empirical results confirm the complexity results and suggests that the
technique proposed in this paper scales up well to mid-size programs (we ana-
lyzed programs of up to 100,000 lines of code and 1000 classes in few minutes).
The results indicate also a high percentage of feasible contextual def-use associa-
tions, thus sustaining the usefulness of the proposed structural coverage. Finally,
the results suggest that the coverage proposed in this paper includes relevant
state-dependent behavior that are ignored by classic structural coverage criteria.
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