
DaTeC: Contextual Data Flow Testing of Java Classes∗

Giovanni Denaro†

denaro@disco.unimib.it
Alessandra Gorla‡

gorlaa@lu.unisi.ch
Mauro Pezzè†‡

mauro.pezze@unisi.ch
†University of Milano Bicocca ‡University of Lugano

20126, Milan, Italy CH-6904, Lugano, Switzerland

Abstract

Many mature development processes use structural cov-
erage metrics to monitor the quality of testing. Recent stud-
ies suggest that commonly used control flow testing crite-
ria poorly address state-based behavior of object oriented
software. This paper presents DaTeC, a tool that provides
useful coverage information of Java object states by imple-
menting a novel contextual data flow testing approach.

1 Introduction

In object oriented software the interactions of methods
can bring class instances to complex states. Recent research
work indicates that classic structural criteria do not pro-
vide enough information about the coverage of state-based
behavior, and extends data flow coverage criteria to ade-
quately cover state-based behavior [2, 3, 1]. In previous
work, we described an efficient structural technique based
on contextual data flow analysis to test state-dependent be-
havior of classes that aggregate other classes as part of their
state [1]. Our technique draws on the early approach pro-
posed by Harrold and Rothermel [2], and shares the main
concept of contextual def-use associations with Souter and
Pollock [3], but with different goals; Souter and Pollock
pursue exhaustive analysis of single methods, while we fo-
cus on state-based interactions between methods that can be
independently invoked from outside the classes.

This paper presents DaTeC (Data flow Testing of
Classes), a data flow testing prototype that computes state-
related coverage of Java classes. DaTeC is based on our
contextual data flow analysis that extends Harrold and
Rothermel’s approach by adding context information when
analyzing method invocations [1]. DaTeC uses contextual
data flow information to identify the sequences of method
invocations that are involved in relevant state-based interac-

∗This work has been partially funded by the SNF project PerSeoS.

tions, and identifies states that are not adequately tested by
computing context data flow coverage.

2 DaTeC structure

DaTeC computes contextual data flow coverage of Java
programs by executing the Java bytecode suitably instru-
mented to record the coverage of contextual def-use associ-
ations. Testers can execute their test suites and incremen-
tally double-check object state coverage. Data about con-
textual data flow coverage are made available at different
levels of granularity, from the finest grain level that presents
all covered and not-yet-covered associations, to the coars-
est granularity level that summarizes the amount of covered
pairs for selected classes only.

Figure 1 shows the components of DaTeC. The Data
Flow Analyzer, built on top of Soot1, identifies contextual
definitions and uses of class state variables according to the
approach that we presented in [1]. Contextual definitions
and uses associate classic definitions and uses with a con-
text, that is the chain of (nested) method invocations that
lead to the definition or the use. In this way, a contextual
data flow analysis records definitions and uses of a state
variable for a method, either if the method accesses the vari-
able directly or if it invokes other methods that access it.
Classic data flow analysis does not record the context, and
consequently can miss definitions and uses that are filtered
by other methods, thus missing relevant state information.
For example, classic data flow analysis does not record the
definitions and the uses in methods that use getter and setter
methods of other classes to access their state, while con-
textual data flow analysis does. The Bytecode Instrumenter
instruments the bytecode of the classes, to monitor the ex-
ecution of def-use associations. It is implemented on top
of Soot too: it instruments (1) method entry and exit points
to trace the context at runtime, (2) statements that contain
definitions and uses of instance variables to identify both
executed def-use associations and the object identity (hash

1http://www.sable.mcgill.ca/soot

Bytecode
Instrumenter

Classes
under test

Data Flow
Analyzer

Contextual
Def-Use

Associations

Test execution
Test
suiteInstrumented

Classes Coverage
Analyzer

Coverage

Soot

Soot

Figure 1. DaTeC components

code). Recording the object hash code is important to cor-
rectly pair definitions and uses of instance variables of the
same object, and thus record correct information on cover-
age. The Coverage Analyzer identifies at runtime the asso-
ciations covered by the test suite, by tracing definitions to
uses of instance variables of the same object.

3 DaTeC example

We present DaTeC through a simple Java control pro-
gram for a coffee machine. The program is composed of
a main class CoffeeMaker and two service classes Inven-
tory and Recipe that store the ingredients and the portions
needed for preparing the hotdrinks, respectively. The meth-
ods of CoffeeMaker access the instance variables of Inven-
tory and Recipe through set and get methods. For example,
method addInventory uses the setters and getters of class In-
ventory to modify the amount of available ingredients.

1 class CoffeeMaker{
2 public CoffeeMaker(){
3 ...
4 inv = new Inventory();
5 }
6 public boolean addInventory(int amtCoffee,int amtSugar){
7 if(amtCoffee < 0 || amtSugar < 0) return false;
8 /* FAULT! Next statement should use inv.getCoffee() */
9 inv.setCoffee(inv.getSugar() + amtCoffee);

10 inv.setSugar(inv.getSugar() + amtSugar);
11 return true;
12 }
13 public int makeCoffee(Recipe r,int amtPaid){
14 if(amtPaid < r.getPrice() || !inv.enoughIngredients(r))
15 return amtPaid;
16 inv.setCoffee(inv.getCoffee() - r.getAmtCoffee());
17 inv.setSugar(inv.getSugar() - r.getAmtSugar());
18 return amtPaid - r.getPrice();
19 }
20 ...
21 }

Method addInventory is faulty at line 9 since getSugar is
called in place of getCoffee, a typical fault that can be in-
duced by a syntax driven editor that auto-completes method
names while the developer types. This fault can be revealed
only by test cases that call method addInventory in a state

Figure 2. Report after testing CoffeMaker

different from the initial one, that is in a state with different
values for coffee and sugar. Such state can be reached only
by test cases that call method addInventory more than ones,
since the first call of this method refers to zero amount of
both coffee and sugar as set by the constructor. Classic cov-
erage criteria do not require methods to be invoked in differ-
ent states, and thus can be satisfied by test suites that do not
reveal this fault. For instance, the following test cases do
not reveal the fault, albeit providing 100% statement cover-
age of the code:

CoffeeMaker(); addInventory(-10, 20);
CoffeeMaker(); addInventory(10, 20); ... makeCoffee(R, 5)
CoffeeMaker(); addInventory(10, 20); ... makeCoffee(R, 1)

Similarly, classic data flow testing criteria can be satis-
fied by test suites that do not reveal the fault. In fact, they
require test cases to cover the state of classes Inventory and
Recipe that contain direct accesses to the state variables cof-
fee and sugar, but not the state of class CoffeeMaker that ac-
cesses these state variables through setter and getter meth-
ods of the other classes.

Figure 2 shows the report produced by DaTeC after ex-
ecuting a test suite that satisfies both statement and non-
contextual criteria, but does not reveal the fault. The test
suite covers all non-contextual def-use pairs, but misses sev-
eral contextual def-use pairs. Looking at the coverage report
of class CoffeeMaker, the contextual pair that involves vari-
able inv.sugar defined within method addInventory at line
10, and used within the subsequent invocation of the same
method at line 9 is not covered. This is the pair that re-
quires the execution of the faulty statement in a faulty state,
and has to be covered by a test suite satisfying contextual
criteria.

References

[1] G. Denaro, A. Gorla, and M. Pezzè. Contextual integration
testing of classes. In Proc. of FASE, pages 246–260, 2008.

[2] M. J. Harrold and G. Rothermel. Performing data flow testing
on classes. In Proc. of FSE, pages 154–163, 1994.

[3] A. L. Souter and L. L. Pollock. The construction of contextual
def-use associations for object-oriented systems. IEEE TSE,
29(11):1005–1018, 2003.

