
On the Usage of Programming Languages in the
iOS Ecosystem

Daniel Domı́nguez-Álvarez
IMDEA Software Institute

Madrid, Spain

Alessandra Gorla
IMDEA Software Institute

Madrid, Spain

Juan Caballero
IMDEA Software Institute

Madrid, Spain

Abstract—This paper studies how developers use different
programming languages in the iOS ecosystem by examining
161,883 releases of 25,231 third-party libraries spanning 11
years available through CocoaPods, a popular iOS dependency
manager. Our empirical study shows that since its release, Swift
has been widely adopted, but most libraries, even recent ones,
still use Objective-C as their primary programming language.
Looking at a small set of 38 open-source iOS apps, instead, we
observe that apps are instead predominantly written in Swift by
now. We also observe significant C usage across both libraries
and apps. Our results suggest that analysis tools for iOS apps
should not only support Swift, but also Objective-C and C code.

Index Terms—iOS, third-party libraries, mobile apps, Swift,
Objective-C, CocoaPods

I. INTRODUCTION

The Android ecosystem of mobile apps and third-party
libraries has been widely studied. There exist many tools to
statically and dynamically analyze Android apps and their
behavior, and to automatically identify third-party libraries
used by apps [1]–[3]. Moreover, many empirical studies pro-
vide insights, among others, on the usage of programming
languages by Android developers [4]–[6], and their release
and test engineering practices [7]–[10].

This is not the case for iOS. Its ecosystem is quite closed
and obscure from many points of views. This is primarily
due to the many challenges that researchers have to face
when analyzing iOS apps. For example, it is challenging to
collect iOS apps from the iTunes store and downloaded app
binaries must be decrypted before they can be analyzed. More
importantly, apps and third-party libraries can be developed
in different programming languages. Native iOS apps and
libraries were originally developed using Objective-C, but in
June 2014 Apple released the Swift programming language to
replace Objective-C. On Apple platforms such as iOS, Swift
uses the Objective-C runtime library, which allows Swift,
Objective-C, C++, and C code to run within the same program.
Thus, iOS apps and libraries may be developed using a single
programming language, but can also use a combination of
Swift, Objective-C, C++, and C. However, while Swift code
can fully interoperate with Objective-C code, the opposite is
not true, e.g., pure Objective-C apps cannot not use pure Swift
libraries. Furthermore, not all Swift versions are compatible,
e.g., Swift 5 and Swift 4 are compatible, but Swift 3 is not.

In this paper we investigate how library and app developers
use different programming languages in the iOS ecosystem.
We analyze the adoption of Swift over time; the use of Swift,
Objective-C, C, C++, and other programming languages; and
the adoption of Swift major versions. These questions are
fundamental to understand what language analysis tools for
iOS should support, e.g., whether there is still a need to support
Objective-C and old Swift versions.

Our investigation examines the source code of both iOS
libraries and iOS apps. To obtain iOS libraries we leverage Co-
coaPods, a popular iOS dependency manager. The CocoaPods
library repository acts a central place for app developers
to identify third-party libraries to use in their apps. Our
study examines 25,231 libraries, comprising 161,883 releases
spanning over 11 years. These libraries have public GitHub
repositories, which allow us to fully access their development
history. We also use a small dataset of 38 open-source iOS
apps to compare the usage of programming languages between
iOS libraries and apps.

This work answers the following research questions:

RQ1: What is the predominant programming language
used for developing iOS libraries and apps? We expect
Objective-C and Swift to be the predominant languages, with
Swift quickly growing since its introduction in June 2014.
Indeed, the results show that Swift has been widely adopted.
However, as of December 2021 (more than seven years after
the release of Swift), 57% of third-party libraries still use
Objective-C as their primary programming language, com-
pared to 41% for Swift. On the other hand, 73% of apps use
Swift as their main language by now. Thus, Swift adoption
by apps has been quicker than adoption by libraries. This is
likely explained by the fact that Objective-C libraries can be
used by apps written in Swift and Objective-C, while libraries
written in Swift can only be used by Swift apps.

RQ2: What programming languages, beyond the pre-
dominant one, are used by iOS libraries and apps? iOS
allows projects to mix multiple programming languages. Thus,
we also analyze all languages (beyond the predominant one)
used in the development of libraries and apps. We observe
68 languages in use. Surprisingly, while C rarely is the
predominant language in libraries and apps, it is frequently
used in both, being second in popularity across apps after
Swift, and surprisingly in front of Objective-C. However, C

usage is largely due to C libraries being copied into the source
code of libraries and apps and is slowly decreasing over time as
those vendored libraries are turned into external dependencies.

RQ3: Is the presence of Objective-C code in libraries
a consequence of legacy code? We study the adoption of
Swift in libraries created before and after its introduction.
The results show that 95% of the libraries released before
the Swift introduction never adopted it at all, highlighting the
lack of incentive for Objective-C library developers to change
language. Surprisingly, 53% of the libraries released after the
Swift introduction do not use Swift at all, compared to 45%
written purely in Swift. Thus, developers of new libraries still
prefer to code them fully in Objective-C. Again, this is likely
due to apps written in Swift being able to use Objective-C
libraries, while the opposite is not true.

RQ4: Do developers update their libraries according to
new Swift releases? Last, we analyze if developers update
their libraries to support new Swift releases. We expect well-
maintained projects to update to the most recent version of
Swift. The results show that on December 2021, 52% of
libraries target Swift 5, the latest Swift major version. The
48% libraries still using older Swift versions are largely not
maintained, e.g., 88% of libraries using Swift 4 on December
2021 do not have commits in the previous two years. Of the
libraries that update Swift, 73% upgrade at major releases.

We conclude that iOS analysis tools should not only support
Swift, but also Objective-C and C code, and that it may take
long time for Objective-C to be fully replaced by Swift, due
to the limited incentive for language replacement in libraries.

II. THE COCOAPODS ECOSYSTEM

The usage of third-party libraries by iOS apps is often
handled by dependency managers. There are three main iOS
dependency managers: CocoaPods, Carthage, and SwiftPM.
Of these, CocoaPods is the only one using a centralized
repository of available library versions, which app developers
can search for to use in their apps. To distribute a library
version through CocoaPods, the library developer commits to
the CocoaPods repository a podspec, i.e., a text file containing
metadata such as the library name, the version, the source from
where the library version can be obtained, and the target iOS
and Swift versions. For the purpose of this work we care about
the following podspec fields illustrated in Figure 1:

• The name field uniquely identifies the library.
• The source field contains the location from where the li-

brary version can be downloaded such as a Git repository
and a specific release tag in the repository.

• The source files field captures the path to the library
source files. We use this field to ignore other code (e.g.,
scripts, test cases) that may also be available in the
repository of a library.

• The pushed with swift version field optionally specifies
the target Swift version for Swift-based libraries.

Most iOS developers use the official XCode GUI to develop
their apps. To use CocoaPods, an iOS app developer adds

{name: "SwiftTransition",
source: {
git: "https://github.com/...",
tag: "1.4"

},
source_files: "SwiftTransition/Classes/**/*",
pushed_with_swift_version: "3.0"

}

Fig. 1. Excerpt of a podspec for the SwiftTransition 1.4 library version.

a podfile to the app’s XCode project. The podfile is a text
file listing the libraries the app depends on (with optional
constraints on specific library versions or version ranges).
CocoaPods selects the library versions that will be installed,
i.e., those that satisfy the constraints in the podfile and any
additional dependencies those libraries may introduce. Then,
it adds a compilation script to the XCode project so that the
dependencies are included in the build process.

III. DATASET COLLECTION

For our study, we collect the source code of iOS libraries
and iOS apps.

Libraries. We collect metadata on third-party libraries from
CocoaPods. As of December 2021, the CocoaPods repository
contained 82,785 libraries and 528,409 library versions, From
that initial list, we select only library versions whose source
field in the podspec is a Git repository with an associated
release tag. The use of a Git repository allow us to examine
the full development history of the library, not possible for the
71,589 library versions whose source is an HTTP endpoint.
The use of non-Git repositories is marginal: 111 library
versions for SVN and 41 for Mercurial. Requiring a release tag
allows us to obtain the source code snapshot for the specific
version from the library repository. This filtering leaves 77,480
libraries and 450,684 library versions.

We try to clone each Git repository hosted in GitHub, filter-
ing out unclonable repositories (e.g., private, dead). Finally, we
apply PyDriller [11] on each successfully cloned repository to
check out the snapshot for each release tag that corresponds
to a library version in CocoaPods. Our final library dataset
comprises 25,231 libraries and 161,883 library versions, each
version with its own source code snapshot.

We apply cloc1 to each source code snapshot to extract
statistics about the number of lines written in each program-
ming language. We apply cloc only to the folders listed in the
source files field of the library version podspec (see Figure 1)
to exclude non-source files (e.g., scripts, examples, test cases).

To analyze Swift version adoption, we build a subset dataset
with the library versions that contain a target Swift version
in their podspec. This subset comprises 8,276 libraries and
52,375 library versions, 32% of the full library dataset.

iOS apps. We start our app collection from a curated list of
open-source iOS apps2. From that list, we select apps that

1https://github.com/AlDanial/cloc
2https://github.com/dkhamsing/open-source-ios-apps

Fig. 2. Predominant programming language in CocoaPods libraries.

Fig. 3. Predominant programming language in apps dataset.

are hosted in GitHub, have at least 100 GitHub stars, were
last updated throughout 2021, are predominantly written in
Swift or Objective-C, and for which we can successfully clone
their repository. This selection process leaves 38 apps that are
popular, maintained, have not been written using frameworks
(e.g., React Native, Dart, Cordova), and for which we can
obtain their source code. We apply PyDriller to each cloned
repository to check out each commit. To obtain statistics about
programming languages used, we apply cloc to each commit,
ignoring well-known directories from dependency managers in
order to exclude the source code of third-party libraries. One
limitation is that if the source code of a third-party library was
copied into the app’s repository instead of using a dependency
manager (what we call a vendored library), its code will be
considered part of the app. The final app dataset contains
204,846 commits for 38 apps.

IV. EMPIRICAL STUDY

This Section answers our four research questions.

A. RQ1: Predominant Programming Language

We first measure the usage of different programming lan-
guages over time focusing on the predominant language
for each project. In particular, we use the cloc statistics
to determine, for every library release, or app commit, the
programming language with largest LoC. Figures 2 and 3 show

TABLE I
TOP 10 CLOC ENTRIES BY CUMULATIVE LOC ACROSS ALL VERSIONS IN

THE LIBRARY DATASET.

Name Releases LOC
Objective-C 84,309 214,727,108
Swift 69,216 115,231,160
C/C++ Header 107,104 61,885,536
C 3,272 24,834,241
C++ 1,343 19,312,751
JavaScript 281 5,445,147
Objective-C++ 2,274 5,101,405
XML 11,368 3,582,887
JSON 1,573 1,218,541
CSS 141 576,513

for each month between April 2009 and December 2021, the
number of libraries and apps, respectively, whose most recent
release (commit for apps) at the beginning of that month had a
specific predominant language. The plots show the following:

• At any point, over 98% of libraries are predominantly
written using Objective-C and Swift. Very few libraries
are predominantly written using other programming lan-
guages such as C and C++. On December 2021, out of
25,231 libraries, 57.12% use Objective-C as the main
language, 41.12% use Swift, 0.98% use C, 0.43% use
Objective-C++, and 0.35% use C++.

• In contrast, Swift dominates on the apps dataset since
mid-2018. On December 2021, Swift is the predominant
language for 73.68% apps, followed by Objective-C
(21.05%), and C (5.26%). C++ and Objective C++ do
not predominate in any app.

• Swift immediately starts to get adopted after its release
on June 2014. Swift adoption by libraries grows slowly
over time. On December 2021, more than seven years
after its first release, Objective-C is still predominant
in more than half of the libraries. We believe that the
reasons why Swift has not yet surpassed Objective-C
usage are twofold. First, library developers may still
prefer to develop in Objective-C, since apps written in
Swift can use Objective-C libraries, while the opposite is
not true. We further analyze this aspect in Section IV-B.
Second, developers who published their library before
Swift was introduced may not want to take the effort to
port the library to a new programming language, given
Objective-C is still supported. We explore this research
question in Section IV-C.

B. RQ2: Programming Languages Used

Since developers may use different programming languages
in the same project, we study the prevalence of each language
beyond the predominant one. We thus compute the cumulative
LoC for each language for the most recent library version,
or app commit, at the beginning of each month. Figures 4
and 5 show the results for libraries and apps, respectively. We
observe the following:

• While C was rarely the predominant language in libraries
and apps in Section IV-A, it is frequently used in both

Fig. 4. Programming language LoC across CocoaPods libraries.

Fig. 5. Programming language LoC across apps.

libraries and apps, being more popular than Objective-C
in apps. Still, its usage is slowly decreasing over time.

• Objective C++ had a peak of usage in 2012. After the
introduction of Swift, its usage stabilizes: it does not
increase, but it does not disappear either.

• On December 2021, 51.92% of library code is written
in Objective-C, 31.96% in Swift, 10.81% in C, 4.24% in
C++, and 1.07% in Objective-C++.

• Beyond those five languages, there are another 63 lan-
guages that developers use in their libraries. Table I shows
the top 10 cloc entries in libraries.

These results show that library development and app de-
velopment follow different strategies in terms of what pro-
gramming languages to use. They indicate that iOS analysis
tools should support both Swift and Objective-C. Furthermore,
analysis tools should also support C code, which still has
significant use in both libraries (10.81%) and apps (12.84%).
The presence of C seems mostly due to the bad practice of
including entire externally developed components as vendored
libraries in the codebase of some iOS apps, rather than adding
them as dependencies. For example, Figure 5 shows a couple
of sudden drops in the use of C code in apps. The first drop
on early 2017 is due to the removal of the SQLite source
code from the codebase of the Firefox iOS app, which was
replaced with a pre-compiled SQLite binary instead. Another

drop around the end of 2018 is due to a bunch of vendored
C libraries that were also removed from the Firefox iOS app
codebase, but were this time added as external dependencies.

C. RQ3: Legacy vs New Libraries in CocoaPods

One hypothesis, which would explain why Objective-C is
still so prevalent among libraries, is that CocoaPods may
include many old, though still usable, libraries originally
written in Objective-C, which developers never bothered to
port to Swift. To analyze this, we split the library dataset
in two: libraries first released before Swift’s first release and
libraries first released after Swift’s introduction.

We classify libraries first released before the introduction of
Swift into four disjoint groups. The vast majority of libraries
(95.79%) do not adopt Swift at all (i.e., cloc reports 0% Swift
LoC). This is likely due to Objective-C libraries being fully
compatible with new Swift apps. A second group of 3.48%
libraries fully replace old code with Swift over time (i.e.,
cloc reports versions with 100% Swift LoC). These libraries
decided that full rewriting was worth the effort. The remaining
libraries introduce Swift, but do not fully replace the old
code. We split them in two. 0.53% libraries introduce Swift
as a minor language (i.e., cloc reports some Swift, but less
than Objective-C) while 0.21% libraries introduce Swift as
the predominant language (i.e., cloc reports more Swift than
Objective-C).

We similarly classify libraries first released after the intro-
duction of Swift. Of those, 52.96% do not use Swift at all,
44.84% are purely written in Swift, 1.58% use more Swift than
Objective-C, and 0.62% use less Swift than Objective-C. These
numbers capture a rather surprising result. Developers of new
libraries, released after Apple introduced Swift as the official
language for the iOS ecosystem, still prefer to develop fully in
Objective-C. The main hypothesis regarding this result is that
Objective-C libraries can be used by apps written in Swift and
Objective-C, while libraries written in Swift can only be used
by Swift apps. Thus, in an attempt to make their component
compatible with as many apps as possible, developers may
have preferred to stick to Objective-C. The opposite happens
in apps, where only 7.89% of the apps created after the release
of Swift do not use any Swift at all, while 47.37% of them all
fully written in Swift. In apps with both languages, Swift tends
to be the primary language (34.21%) as opposed to Objective-
C (10.53%).

D. RQ4: Update to new Swift Releases

Our last research question focuses on whether libraries are
updated whenever there are new Swift releases, expecting
maintained libraries to do so. Swift has five major versions,
with the 5.6.1 being the current latest version. Figure 6 shows
how the Swift target version in the podspec of the libraries in
the Swift subset dataset changes over time. We can see that:

• On December 2021, 51.88% CocoaPods libraries are up
to date targeting Swift 5.x (i.e., major or minor releases).
Among the rest, 28.95% target Swift 4.x and 18.93%
target Swift 3.x.

Fig. 6. Support of Swift versions

• 72.82% of libraries that upgrade the target Swift during
their lifetime tend to do it upgrading among major re-
leases (e.g., upgrading from Swift 4.0 to 5.0). A quarter of
libraries (27.18%) upgrade Swift across minor versions.

• We see many horizontal lines in the plot, which represent
libraries that keep the same Swift version for the whole
timeline. Libraries stuck with Swift 3 are mostly not
maintained (97.70% of these libraries do not have com-
mits in the last 4 years). Similarly, 87.75% of libraries
stuck with Swift 4 are not maintained (i.e. they do not
have commits in the last 2 years).

• Finally we observe a few jumps back, i.e. libraries that
target Swift 5.1 and then change it to 5. We examined
the commit messages, but could not find useful insights
on why developers did this. We believe it is because they
realize that a newer version of Swift breaks the building
process due to some dependencies. In fact, most of the
times the rollbacks happen within one day.

Given these findings, we conclude that analysis tools should
support Swift 4.0 onward, since it is compatible with Swift 5,
and some libraries still use old releases of Swift.

V. RELATED WORK

Similarly to what Apple did with Swift, Google in 2019
announced that “Android development would be Kotlin-first”.
Several studies have examined the adoption of Kotlin over Java
in the Android ecosystem [4]–[6], showing is that there has
been a rapid adoption of Kotlin, especially among the most
popular apps. Our results do not show this fast adoption in the
iOS ecosystem, instead, at least among third-party libraries.
Rahkema and Pfahl previously studied the CocoaPods ecosys-
tem [12]. However, they focused on studying the dependencies
among components and how known vulnerabilities may have
an impact on CocoaPods and other package managers for
iOS. Finally, other researchers studied the iOS ecosystems
from other points of view. Cassee et al. looked at how
iOS developers handle errors using the Swift programming
language [13], showing that developers tend to react to issues
rather than preventing them with proper error handling mech-
anisms. Rahkema et al. [14] and Habchi et al. [15] both study

the prevalence of code smells in iOS apps, showing that iOS
apps are quite affected by code smells, although in general
they seem less prone to smells than Android apps.

VI. CONCLUSION AND FUTURE WORK

This paper presented the first study on how developers use
different programming languages in the iOS ecosystem. Our
empirical study shows that since its release, Swift has been
widely adopted, but developers still use Objective-C as the
predominant programming language to develop recent third-
party libraries. On a small dataset of 38 open source iOS
apps, we instead observe that apps are predominantly written
in Swift by now. We also observe significant usage of C code
on both libraries and apps, as a secondary language. The main
takeaway message of our study is that analysis tools for iOS
apps should support not only Swift, but also Objective-C and
C code to provide high coverage of the codebase. One caveat
of our work is that our app dataset is fairly small. In the future
we would like to confirm our results in a larger app dataset.
Moreover, we would like to analyze other iOS dependency
managers to confirm our observations on CocoaPods libraries.

Code and dataset are available at
https://github.com/0xddom/cocoapods-evolution

ACKNOWLEDGMENTS

This work was partially supported by the Spanish Government’s
SCUM grant RTI2018-102043-B-I00, Grant RYC2020-030800-I
funded by MCIN, and the Madrid Regional project BLOQUES
S2018/TCS-4339, and gifts from Facebook.

REFERENCES

[1] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in ICSE, 2016.

[2] M. Li, P. Wang, W. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo, and
W. Zou, “Large-scale third-party library detection in android markets,”
IEEE TSE, vol. 46, no. 9, pp. 981–1003, 2020.

[3] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in CCS, 2016, pp. 356–367.

[4] G. Hecht and A. Bergel, “Quantifying the adoption of kotlin on android
stores: Insight from the bytecode,” in MobileSoft, 2021, pp. 94–98.

[5] M. Peters, G. L. Scoccia, and I. Malavolta, “How does migrating to
kotlin impact the run-time efficiency of android apps?” in SCAM, 2021.

[6] R. Coppola, L. Ardito, and M. Torchiano, “Characterizing the transition
to kotlin of android apps: a study on f-droid, play store, and github,” in
WAMA, 2019, pp. 8–14.

[7] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in ESEM, 2016, pp. 29:1–29:10.

[8] D. Domı́nguez-Álvarez and A. Gorla, “Release practices for ios and
android apps,” in WAMA, 2019, pp. 15–18.

[9] M. Nayebi, B. Adams, and G. Ruhe, “Release practices in mobile apps
-– users and developers perception,” in SANER, 2016, pp. 552–562.

[10] D. Domı́nguez-Álvarez, D. Tomic, and A. Gorla, “Rechan: An auto-
mated analysis of android app release notes to report inconsistencies,”
in MobileSoft, 2022, pp. 73–83.

[11] D. Spadini, M. F. Aniche, and A. Bacchelli, “Pydriller: Python frame-
work for mining software repositories,” in ESEC/FSE, 2018.

[12] K. Rahkema and D. Pfahl, “Dataset: Dependency networks of open
source libraries available through cocoapods, carthage and swift PM,”
in MSR, 2022, pp. 393–397.

[13] N. Cassee, G. Pinto, F. Castor, and A. Serebrenik, “How swift developers
handle errors,” in MSR, 2018, pp. 292–302.

[14] K. Rahkema and D. Pfahl, “Empirical study on code smells in ios
applications,” in MobileSoft, 2019, pp. 61–65.

[15] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha, “Code smells in ios apps:
How do they compare to android?” in MobileSoft, 2017, pp. 110–121.

https://github.com/0xddom/cocoapods-evolution

	Introduction
	The CocoaPods Ecosystem
	Dataset Collection
	Empirical Study
	RQ1: Predominant Programming Language
	RQ2: Programming Languages Used
	RQ3: Legacy vs New Libraries in CocoaPods
	RQ4: Update to new Swift Releases

	Related Work
	Conclusion and Future Work
	References

