
Presentation: An application of KLEE to aerospace industrial software

JUAN FRANCISCO GARCÍA, DANIEL JURJO, FERNANDO MACÍAS, JOSÉ F. MORALES, and ALESSAN-
DRA GORLA, IMDEA Software Institute, Spain

1 CONTEXT AND MOTIVATION
This work is framed in the MFoC project1. The general goal of the
project is to explore hardware and software solutions to make the
development of aerospace systems more cost-effective by lowering
the development time, while maintaining high levels of reliability.
In particular, our work so far has been oriented towards improving
the testing workflow of an international aerospace company with
several goals: automatise test input generation, improve test cover-
age, minimise test suites and streamline testing-related continuous
integration tasks, i.e. regression testing. In this abstract we present
the details of our approach to achieve the first two goals by using
KLEE and the advantages of the Model-Driven Development (MDD)
process used in the company. It is important to note that we cannot
disclose the name of the company—so we keep using “the company”
to refer to it in the remainder—neither the actual artefacts or very
specific details due to a non-disclosure agreement.

Testing is a critical task in aerospace software development. The
nature of the missions makes it hard or even impossible to debug
or patch the software once the mission is launched. Moreover, a
software failure that leaves the system unable to recover or to receive
input from the ground is likely to result in a failure of the mission,
causing a huge economic loss. To ensure that aerospace software
is thoroughly tested, authorities like the European Space Agency
impose severe requirements. This in turn increases the amount
of resources that must be allocated for testing tasks during the
development of such software, compared to other areas.
In the company we collaborate with, unit testing is used as the

main source of verification. Test harnesses are used to automate the
execution of tests and report the results, but test generation is still
a mostly manual task, guided by structural coverage. In particular,
statement (every instruction is executed at least once by one of the
tests) and branch (every branch is executed at least once by one of
the tests) coverage are used. An initial set of tests is created using
a process called “ramping”, where values are given for each input
within a range (decided according to requirements and expertise of
the engineer). Based on the coverage of this first set, engineers man-
ually provide additional inputs to incrementally improve coverage
until it reaches 100%.

The company usesMDD,meaning that the C code that is deployed
is automatically generated from Simulink models using strict rules
to ensure that it adheres to code standards like MISRA-C. The same
models are also subject to exhaustive, worst-case simulations to en-
sure their correctness. Once this process is completed, these models
1https://flightonchip.es/

Authors’ address: Juan Francisco García, juanfrancisco.garcia@imdea.org; Daniel Ju-
rjo, daniel.jurjo@imdea.org; Fernando Macías, fernando.macias@imdea.org; José F.
Morales, josef.morales@imdea.org; Alessandra Gorla, alessandra.gorla@imdea.org,
IMDEA Software Institute, Campus Montegancedo s/n, Pozuelo de Alarcón, Madrid,
Spain, 28223.

serve as a reference for expected outputs of the unit tests in the
generated code, i.e. the models become the test oracle for the C
code. Therefore, the goal of the testing process is to ensure that the
behaviour of the code predicted by the models is the same as the
one exhibited by the code. Models and automatically generated code
may exhibit different behaviour because of third-party libraries,
hardware and configuration, which are sources of variability that
may compromise the reliability of the code. The discussion regard-
ing the process of verification of the models is out of scope of this
work, so we also use the outputs predicted by the models as oracles
in our approach.

In the following section, we illustrate our initial approach using
KLEE in this project.

2 USING KLEE FOR TEST GENERATION
To understand how we managed to use KLEE successfully with
the AOCS code, we must first comment on the features of that C
code that we had to deal with. First, all the loops in the code of the
component we tested are bounded by an integer constant, usually
of a very low value, e.g. used to traverse a fixed-length array. Also,
recursion is not used anywhere in the code, and the branching
conditions are based in most cases on the values of Boolean flags.
All these features make this software a perfect subject for achieving
path coverage with KLEE, which provides better confidence than
branch coverage, since exploring all paths subsumes the exploration
of all branches. It is also worth mentioning that all constant values
are declared in hierarchical C structs, which makes analysis and
parsing easier. On the other hand, the software component also
uses a small number of branch conditions based on floating-point
arithmetic, usually normalised. The consequences of this fact are
discussed in Section 4.
The development and testing workflow that we designed with

our industrial partner in the project account for the following steps:
(1) Build a Simulink model; (2) Verify the model using physics
simulations; (3) Generate C code from the model; (4) Parse the C
code and generate symbolic function calls; (5) Run KLEE to generate
the test inputs; (6) Run the test inputs on the code and get the
outputs; (7) Run the test inputs on the model (requires an adapted
version) and compare with the output from the code.

Steps (1) to (3) are not discussed, since they remain unmodi-
fied from the company’s original workflow. Hence, the key to our
approach are steps (4) to (7), which have been automatised in a
one-click fashion, as well as the adaptation of the Simulink model to
use it as oracle. The current prototype implementation is based on
a Python and bash driver scripts, and a simplified C parser tailored
to the restricted subset of C necessary in this case study.

3 EXPERIENCES AND EARLY RESULTS
We tested the workflow presented in Section 2 in two laptops, both
with an Intel Core i5 CPUs and 8 GB RAM. The execution time for



2 • Juan Francisco García et al.

the whole process explained in the previous section is in the order of
magnitude of seconds, which extrapolated to the full AOCS system
would keep it in the order of magnitude of minutes. Besides, our
process has shown better results than human-made tests, since it
reduces both bias and dependence on expertise. Moreover, the test
suite is heavily minimised, while maintaining the highest coverage
even with a strict metric like path coverage. In one of the modules
of the AOCS for which we had the original test suite, KLEE just
needed 54 tests to achieve path coverage, whereas the ramping-
based together with the manual test generation of the company
yielded more than 6000 tests. This fact does not mean that the
test suite could not be extended if necessary, based on variable
ranges specified in requirements (see Section 4). We believe that our
process can run in parallel or as an enhancement of the company’s
current approach. Specifically, we believe that our solution could be
employed to generate tests daily, in order to save time and manual
work of engineers. The solution currently employed by the company
could still be used every now and then, for instance on a major
release or when it is time to certify the software.

4 CHALLENGES AND LIMITATIONS
As said before, we found mixing floating-point with other data
types a challenge for test generation. In our experience, extensions
of KLEE to support floats (e.g., KLEE-Float) works efficiently when
the model is small, but it seems to suffer from path explosion and
inefficiencies on the bigger ones, potentially due to the bit-blasting
approach of Z3 to solve floating point constraints (known to be good
to find counter-examples). On the other hand, other theories like
real arithmetic (unbounded rational numbers) are not applicable in
this scenario where accurate floating point modeling is mandatory.
For those cases where a white-box may not scale for larger pro-

grams, or is impractical due existence of closed software/hardware
components, we are considering a mixed approach where KLEE
is combined with a black or grey-box steps (fuzzers). This has the
added potential of detecting divergent behaviors in components
such as the Simulink simulator, the different implementations of
floating point libraries, or even the actual hardware. In practice this
is one of the main challenges for testing-based code certification in
our context. On the technical side, we found that coverage-guided
fuzzers like libfuzzer are easy to integrate and customize in our
KLEE workflow (Section 2) via corpus sharing and custom mutation.

5 RELATED WORKS
Researchers have proposed several techniques to automatically gen-
erate test cases from Simulink models. Gonzalez et al. propose a
SysML-based modeling methodology for model testing of Cyber-
Physical Systems, and an efficient SysML-Simulink cosimulation
framework to conduct testing at early stages and over executable
models [3]. Liu et al. aim to improve fault localization in automotive
Simulink models by adding new automatically generated test cases.
They resort to a four-objectives search-based algorithm to achieve
diversity in the test suite, and to keep it minimized at the same
time [5]. This technique follows the same intuition of a previous
work by the same research group [7]. The key contribution is a test
generation approach applicable to Simulink models which resorts to
a meta-heuristic search to produce test outputs signals that differ as

much as possible. Holling et al. present an automatic test case gen-
erator for generated C code that aims to identify over-/underflows
and divisions by zero failures that may not occur when simulating
the original Simulink model [4].

Other works focus on test oracles. Matinnejad et al. visualize the
controller behavior over its input space to help the manual work
of engineers during testing [6]. Menghi et el. use Signal First Order
logic to specify requirements on Simulink models that can later be
checked automatically at runtime [8].
Out of the CPS domain, several approaches can automatically

produce test inputs to achieve high structural coverage using sym-
bolic and concolic execution, search based algorithms, and ran-
dom/fuzzing strategies [1, 2, 9, 11].
6 CONCLUSIONS AND FUTURE WORK
We report here our initial experiences on the application of KLEE to
industry-level aerospace software. We achieved positive results in
the comparatively small amount of tests generated that still provides
better coverage than the original ones, and also in the high degree
of automation and the short execution times of our approach. Some
initial attempts with KLEE-Float and fuzzing have also provided
promising results.

We envision several lines of future work. First, we plan to evaluate
the combination of KLEE with different fuzzers and configurations.
Second, we plan to keep experimenting with KLEE-Float for the
specific cases in our code where branch conditions are based on
floating-point arithmetic. And third, we would like to improve the
oracles by not relying on the comparison of outputs, but rather
defining a memory-based equivalence relation [10].

REFERENCES
[1] Gordon Fraser and Andreas Zeller. 2011. Generating parameterized unit tests. In

ISSTA 2011. 364–374.
[2] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-

mated random testing. In PLDI 2005. 213–223.
[3] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand, and Yago

Isasi. 2018. Enabling Model Testing of Cyber-Physical Systems. In MODELS 2018.
176–186.

[4] Dominik Holling, Alexander Pretschner, and Matthias Gemmar. 2014. 8Cage:
lightweight fault-based test generation for simulink. In ASE 2014. 859–862.

[5] Bing Liu, Shiva Nejati, Lucia, and Lionel C. Briand. 2019. Effective fault localization
of automotive Simulink models: achieving the trade-off between test oracle effort
and fault localization accuracy. EMSE 24, 1 (2019), 444–490.

[6] Reza Matinnejad, Shiva Nejati, and Lionel C. Briand. 2017. Automated testing of
hybrid Simulink/Stateflow controllers: industrial case studies. In ESEC/FSE 2017.
938–943.

[7] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. In ICSE
2016. 595–606.

[8] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019. Gen-
erating automated and online test oracles for Simulink models with continuous
and uncertain behaviors. In ESEC/FSE 2019. 27–38.

[9] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE 2007. 75–84.

[10] David A Ramos and Dawson R Engler. 2011. Practical, low-effort equivalence
verification of real code. In CAV 2011. Springer, 669–685.

[11] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In ESEC/FSE 2005. 263–272.


	1 Context and Motivation
	2 Using KLEE for Test Generation
	3 Experiences and early results
	4 Challenges and Limitations
	5 Related Works
	6 Conclusions and future work
	References

