
Automatic Workarounds as Failure Recoveries∗

Alessandra Gorla
University of Lugano
Faculty of Informatics
Lugano, Switzerland

alessandra.gorla@lu.unisi.ch

ABSTRACT
Mechanisms to automatically recover from problems are key
elements to designing self-managed software systems. So
far most research on self-managed systems focused on non-
functional problems, such as architectural mismatches, per-
formance problems and configuration incompatibilities.

In our work, we focus on techniques for automatically re-
covering from functional failures. We aim to exploit the in-
trinsic redundancy of many complex software systems that
can produce the same results in several ways. We are inves-
tigating techniques that, in case of failure, look for execution
sequences that are equivalent to the one that leads to the
failure, and can thus be executed in alternative to the failing
one to produce the expected results. We refer to sequences
that are equivalent to failing ones and can recover from fail-
ures as automatic workarounds.

The contribution of the thesis will be the definition of tech-
niques to automatically generate equivalent sequences from
different models, and to identify automatic workarounds with-
in sets of equivalent sequences, and a thorough evaluation
of the techniques in the context of self-healing software sys-
tems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability ; D.2.5 [Software Engineering]: Test-
ing and Debugging—Error Handling and Recovery

General Terms
Reliability

Keywords
Self-healing, autonomic computing, workarounds, equivalent
sequences, fault recovery

∗This work is supported by the project PerSeoS funded by
the Swiss National Fund

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-16 Doctoral Symp., November 10, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-378-5 ...$5.00.

1. RESEARCH PROBLEM
Many modern software systems are increasingly complex

and hard to manage with classic engineering approaches.
Autonomic and self-managed techniques aim to reduce the
cost of software failures and increase software reliability by
providing mechanisms to automatically recover from run-
time problems [15, 16, 18].

Autonomic and self-managed approaches cope with sev-
eral types of problems that span from performance (self-
optimization) to security (self-protection), architecture mis-
matches (self-adaptation), configuration (self-configuration)
and functional failures (self-healing).

In our work, we focus on techniques for healing from func-
tional failures (self-healing). Such techniques must automat-
ically detect failures, that is identify wrong behaviors of the
software system, diagnose faults, that is localize the causes
of failures, recover from faults, that is repair the problems,
and verify that the system behaves as expected after repair-
ing.

Within self-healing approaches, we investigate fault recov-
ery mechanisms. Fixing faults, that is modifying the incor-
rect statements in the code, can be very hard without human
judgment. We do not aim to automatically fix faults, but we
investigate recovery techniques that automatically mask the
faults, and thus avoid failures without modifying the actual
code.

Some software systems are redundant, in the sense that
the same functionality can be obtained through different se-
quences of operations. We call different sequences of op-
erations that implement the same functionality equivalent
sequences. Our research aims to exploit the intrinsic re-
dundancy of many software systems to automatically derive
workarounds that can produce correct results by avoiding
the execution of faulty components.

We assume the availability of a model that may be de-
rived from software specifications or correct software execu-
tions [19, 7], the presence of a failure detection mechanism
that can signal failures, and a roll-back mechanism that can
bring the software systems back to a consistent state.

Our research hypothesis is that we can identify equivalent
sequences from models, and we can select effective work-
arounds by matching the set of equivalent sequences with
the failing execution sequence that is identified by the failure
detection and the roll-back mechanisms.

The main expected contribution of our research will be
the definition and experimentation of a fault recovery mech-
anism based on the automatic identification and execution
of workarounds to mask faults. This includes the defini-

tion of techniques for automatically identifying equivalent
execution sequences based on different kinds of models, and
techniques for dynamically selecting sequences that repre-
sent effective workarounds of software faults.

2. BACKGROUND AND RELATED WORK
In the context of self-managed systems, many of the ap-

proaches proposed so far focus on software architecture prob-
lems, and in particular on how systems should adapt to
meet environment changes [22], to solve architectural mis-
matches [6, 8], and to fix architectural faults [12]. Other
approaches deal with performance problems, mainly focus-
ing on self-optimization of component based systems [9] and
Web applications [21].

Techniques to automatically recover from functional faults
have been historically investigated in the context of fault tol-
erant systems [23, 17]. Most fault tolerant approaches either
imply high development costs or target specific classes of fail-
ures. For example, n-version programming techniques, that
rely on multiple versions of the same software subsystem
designed and implemented by different engineers to reduce
the probability of coincidental failures, increase development
costs. On the other hand, rebooting and (more efficient) mi-
cro rebooting techniques, that periodically reboot (part of)
the system, target specific classes of failures, namely non
deterministic failures, like the ones due to memory leaks [2,
3, 24].

In the context of self-managed software systems, little
work has addressed functional faults so far. Fuad et al. [11]
save the system administrator’s recovery actions in a repos-
itory, add wrappers to Java classes to catch run time excep-
tions and look for suitable recovery actions in the recovery
repository when a failure occurs. This work shares our goals,
but relies on recorded human actions, that may not be avail-
able in several important classes of systems.

Other self-healing approaches rely on registries containing
sets of rules that code failures and corresponding recovery
actions. Examples of these approaches are Dynamo [1] and
SH-BPEL [20]. Dynamo monitors BPEL processes, checks
assertions on functional and non-functional requirements,
and executes the recovery actions specified in the registry.
SH-BPEL offers the possibility of specifying simple recovery
actions like alternative services, or process restart, as well
as recovery actions in the form of alternative execution se-
quences. In SH-BPEL alternative executions sequences are
coded by designers in the recovery registry. We aim to au-
tomatically derive sequences and workarounds from models,
to cope with a larger set of failures, including failures not
expected by designers.

We based our idea of looking for equivalent sequences
on background work that proposed equivalent sequences to
cope with different classes of problems. In the early nineties,
Doong and Frankl [10] proposed to automatically generate
test oracles from algebraic specifications by using equivalent
scenarios. Doong and Frankl’s work aims to automatically
generate sets of both equivalent and non-equivalent scenar-
ios to verify the results of test executions, and focuses on the
effectiveness of the generated scenarios to validate the test
results. Later, Henkel and Diwan [14] defined a technique to
automatically derive algebraic specifications from Java code.
They infer axioms based on the observational equivalence of
methods execution. Mocci and Ghezzi [13] proposed a tech-

nique that relies on classes behavioral models to optimize
Henkel and Diwan’s approach to infer algebraic specifica-
tions.

We work in a different context and for different goals:
Doongl and Frankl require the presence of detailed alge-
braic specifications, while Henkel and Diwan, and Mocci and
Ghezzi derive executions sequences from code to maximize
behavioral coverage, and thus produce complete specifica-
tions; We start with a failing execution and an overall model
of the expected behavior.

3. HYPOTHESES AND APPROACH
As stated in the introduction, our research hypotheses are

the following:

• Complex software systems usually have intrinsic re-
dundancy at some abstraction level, in the sense that
the same functionality can be achieved in several ways;

• This intrinsic redundancy can be exploited to iden-
tify equivalent execution sequences, that is, executions
that produce equivalent results from the user view-
point. Equivalent sequences can be automatically de-
rived from a model of the program behavior;

• Given a failure detection mechanism, and a roll back
mechanism that brings the software system back to a
consistent state after a failure occurrence, the execu-
tion of sequences equivalent to the failing one can pro-
duce effective workarounds that mask software faults.

Let us consider for example a text editor that offers ap-
pend and set operations. The set operation sets the value of
the text in a document (overwriting the text present in the
document), while append adds new text to the document at
the end of the existing text. Appending text a to text b,
is equivalent to setting the text to ba. From our viewpoint
the software system is redundant, in the sense that there is
more than one way to set the text to ba. The two execution
sequences 〈set(b) append(a)〉 and 〈set(ba)〉 are equivalent,
since they produce the same results. If we can detect a fail-
ure of the software system after calling an append(), and we
can bring the system back to the state before the failure, we
can mask the fault in the append by invoking an equivalent
set operation.

Several interesting research challenges come out of this
scenario:

• Verify our hypothesis about the existence of redun-
dancy in some interesting classes of software systems.
We plan to focus on component- and service-based
software systems, where components and services of-
ten provide partially overlapping functionalities, and
we plan to experimentally validate the hypothesis.

• Define a technique to automatically identify execution
sequences equivalent to failing ones starting from mod-
els of the expected behavior of the software. We plan
to focus on different models, starting from operational
models, like finite state machines and statecharts, to
later include other kinds of models, like algebraic mod-
els.

• Define strategies to identify effective workarounds from
equivalent sequences. We plan to investigate prioriti-
zation schemas that sort equivalent sequences accord-
ing to the likelihood of representing effective work-
arounds.

• Experimentally verify the effectiveness of the approach.
We plan to conduct experiments with increasingly com-
plex software systems.

The core of the automatic workarounds approach is the
ability of identifying sequences that are equivalent to the
one that led to a failure.

To identify equivalent sequences we rely on models of the
application. So far we studied finite state machines. Con-
sider, for example, the finite state machine in Figure 1 that
represents a simple sale functionality. Customers can add
items to their wish list, put the items in their cart, and buy
them.

Two sequences are equivalent if they have the same in-
tended effect, that is if, starting from the same state, the
correct execution of the two sequences leads to the same fi-
nal state. Notice that we do not consider equivalent two
sequences that have the same actual effect, since in pres-
ence of failures the final state of the two sequences can be
different. For these reasons, the models we rely on for the
derivation of equivalent sequences must represent correct be-
haviors. We consider either specification models, or dynamic
models derived from correct executions.

Given a failing sequence of operations, we identify the ini-
tial state (the state from where the failing sequence has been
invoked), the intended final state (the state where the se-
quence was supposed to take the system to), and the fallback
state (the state where the failing sequence actually brought
the system to). Then we generate all the possible sequences
equivalent to the failing one.

We first produce a new finite state machine from the orig-
inal one by removing all the invocations of the failing se-
quence that do not affect the reachability of the intended
final state from the fall-back state. We then generate se-
quences that connect the fall-back state to the intended fi-
nal state. For example, if the failing sequence of the sale
function of Figure 1 consists of the only invocation of func-
tion addToCart from state onSale, we can remove transition

onSale

inCart sold

inWishList

re
m
ov
eF
ro
m
W
ish

Li
st

pay

ad
dT
oW

ish
Li
st

add
ToC

art

remo
veFr

omC
art

addToCart

addToWishList

Figure 1: FSM model of a simple sale functionality

addToCart from state onSale to state inCart, without affect-
ing the reachability of the intended final state, and identify
sequences equivalent to the failing one, for instance:

addToWL, addToCart

addToWL, removeFromWL, addToWL, addToCart

addToWL, addToCart, removeFromCart, addToWL, addToCart

If none of the invocations that belong to the failing se-
quence can be removed from the FSM without making the
intended final state unreachable from the fall-back state, we
interleave invocations of the failing sequence with indifferent
invocation sequences. Indifferent sequences are sequences
that, according to the specification, do not affect either the
application behavior or the final result, and that, when in-
voked in presence of failure, may mask or avoid the problem.
Such invocations can involve single functions that alter only
the timing or scheduling, and thus have no functional effect
(for example, delay the execution of a function), or main-
tenance actions (for example, clean the browser cache) that
have no direct functional effect on the application. They can
also involve sequences of two or more services that mutually
mask their effects (for example, pairs of add and remove, or
load and unload operations). Thus, it is possible to generate
sequences equivalent to the failing one by interleaving the
failing sequence of invocations with indifferent invocations.
For example, if the failing sequence of the sale function of
Figure 1 consists of the only invocation of function pay from
state inCart, we cannot remove transition pay from state
inCart to state Sold, without affecting the reachability of
the intended final state. Thus, we generate sequences equiv-
alent to the failing one by adding indifferent invocations, for
instance:

removeFromCart, addToCart, pay

removeFromCart, addToWL, removeFromWL, addToCart, pay

The number of equivalent sequences can be very high, and
sometimes can even be infinite. Thus, it is important to se-
lect sequences that are highly likely to be valid workarounds.
We plan to investigate different strategies to prioritize equiv-
alent sequences to select likely workarounds. Possible strate-
gies include prioritization according to:
Length, under the hypothesis that short sequences that do
not include the faulty invocation are likely to be as effective
as long sequences.
Weight, under the hypothesis that we can weight sequences
according to the similarity to the failing one and select the
least similar sequences.
History, under the hypothesis that sequences that share el-
ements with successful workarounds are likely to work also
for new failures.
Information about fault localization, assuming the availabil-
ity of mechanisms that provide information about the actual
fault, and can thus be used to discriminate among equivalent
sequences.
Combination of different strategies, under the hypothesis
that none of the strategies provides conclusive information,
but combined with others may be more effective.

4. EVALUATION PLAN
To validate our approach we plan to (1) identify classes of

software systems that have intrinsic redundancy at some ab-
straction level, (2) verify that we can automatically identify

equivalent sequences from different models, and (3) verify
that we can automatically select valid workarounds.

We plan to perform several experiments on increasingly
complex software systems. First we plan to study classes
of systems, starting from component- and service-based sys-
tems, to verify the presence of intrinsic redundancy at the
right abstraction level. We then plan to work on known
faults, derive models from specifications or with dynamic
analysis tools, reproduce the known failures, identify equiva-
lent sequences from the models, select automatic workarounds
and measure the effectiveness of the technique as the rank-
ing of the first effective workaround. Finally, we plan to
apply the technique to a set of applications to measure the
number of failures that can be automatically prevented.

We conducted a set of preliminary experiments with some
popular applications like Apache Tomcat, Google maps and
Flickr [4, 5]. We have reproduced known failures; we have
generated sequences equivalent to the failing one from finite
state machine models; and we have ranked the sequences
according to their length to gather preliminary data on the
approach. The results are positive: we have been able to
automatically generate equivalent sequences, and identify
suitable workarounds.

5. REFERENCES
[1] L. Baresi, S. Guinea, and L. Pasquale. Self-healing

BPEL processes with Dynamo and the JBoss rule
engine. In ESSPE ’07: Intl. workshop on Engineering
of software services for pervasive environments, pages
11–20, 2007. ACM.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery.
In OSDI’04: Proc. of the 6th Conf. on Symposium on
Operating Systems Design & Implementation, 2004.

[3] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and
A. Fox. JAGR: An autonomous self-recovering
application server. In Active Middleware Services,
pages 168–178. IEEE Computer Society, 2003.

[4] A. Carzaniga, A. Gorla, and M. Pezzè. Self-healing by
means of automatic workarounds. In SEAMS ‘08:
Proc. of the 2008 Intl. Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
pages 17–24, 2008. ACM.

[5] A. Carzaniga, A. Gorla, and M. Pezzè. Healing web
applications through automatic workarounds. Intl.
Journal on Software Tools for Technology Transfer, to
appear.

[6] L. Cavallaro and E. D. Nitto. An approach to adapt
service requests to actual service interfaces. In SEAMS
’08: Proc. of the 2008 Intl. workshop on Software
engineering for adaptive and self-managing systems,
pages 129–136, 2008. ACM.

[7] V. Dallmeier, C. Lindig, A. Wasylkowski, and
A. Zeller. Mining object behavior with ADABU. In
WODA ’06: Proc. of the 2006 Intl. workshop on
Dynamic systems analysis, pages 17–24, 2006. ACM.

[8] G. Denaro, M. Pezzè, and D. Tosi. Adaptive
integration of third-party web services. In DEAS ’05:
Proc. of the 2005 workshop on Design and evolution of
autonomic application software, pages 1–6, 2005.
ACM.

[9] A. Diaconescu and J. Murphy. A framework for using
component redundancy for self-optimising and
self-healing component based systems. In WADS ’03:
Proc. of the Workshop on Software Architectures for
Dependable Systems, 2003.

[10] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering Methodology,
3(2):101–130, 1994.

[11] M. M. Fuad and M. J. Oudshoorn. Transformation of
existing programs into autonomic and self-healing
entities. In ECBS ‘07: Proc. of the 14th Annual IEEE
Intl. Conf. and Workshops on the Engineering of
Computer-Based Systems, pages 133–144, 2007. IEEE
Computer Society.

[12] D. Garlan, S. W. Cheng, and B. Schmerl. Increasing
system dependability through architecture-based
self-repair. In Architecting Dependable Systems,
volume 2677 of Lecture Notes in Computer Science,
pages 175–194. Springer, 2003.

[13] C. Ghezzi, A. Mocci, and M. Monga. Efficient recovery
of algebraic specifications for stateful components. In
IWPSE ’07: Ninth Intl. workshop on Principles of
software evolution, pages 98–105, 2007. ACM.

[14] J. Henkel, C. Reichenbach, and A. Diwan. Discovering
documentation for java container classes. IEEE
Transactions on Software Engineering, 33(8):526–543,
Aug. 2007.

[15] P. Horn. Autonomic computing: IBM perspective on
the state of information technology. In AGENDA 01,
Scottsdale, AR, 2001.

[16] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[17] I. Koren and C. M. Krishna. Fault Tolerant Systems.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007.

[18] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of
Software Engineering, pages 259–268, 2007. IEEE
Computer Society.

[19] D. Lorenzoli, L. Mariani, and M. Pezzè. Inferring
state-based behavior models. In WODA ’06: Proc. of
the 2006 Intl. workshop on Dynamic systems analysis,
pages 25–32, 2006. ACM.

[20] S. Modafferi, E. Mussi, and B. Pernici. SH-BPEL: a
self-healing plug-in for ws-bpel engines. In MW4SOC
’06: Proc. of the 1st workshop on Middleware for
Service Oriented Computing, pages 48–53, 2006.

[21] H. Naccache and G. Gannod. A self-healing framework
for web services. In ICWS ’07: Proc. of the 2007 IEEE
Intl. Conf. on Web Services, pages 398–345, July 2007.

[22] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[23] L. L. Pullum. Software Fault Tolerance Techniques
and Implementation. Artech House, Inc., Norwood,
MA, USA, 2001.

[24] R. Zhang. Modeling autonomic recovery in web
services with multi-tier reboots. In ICWS’07: Proc. of
the IEEE Intl. Conf. on Web Services, 2007.

