
Towards Design for Self-healing

Alessandra Gorla
University of Lugano

via Buffi 13
6904 Lugano, Switzerland

alessandra.gorla@lu.unisi.ch

ABSTRACT
Self-healing mechanisms are increasingly attracting the in-
terest of both industrial and research communities as a way
of increasing reliability of software systems, while overcom-
ing technical and cost limitations of classic analysis and test-
ing techniques.

Many recent studies focus on techniques for enabling self-
healing mechanisms independently from software design.
These approaches are effective, but often limited by early
design decisions. In this position paper, we argue that a
disciplined design approach can enable a wide and effec-
tive range of self-healing mechanisms, thus overcoming many
limitations of the current approaches.

We discuss the differences between design for testability
and design for self-healing approaches, and we propose the
foundation for a new design for self-healing methodology.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Design, Reliability

Keywords
Self-healing, design for self-healing

1. INTRODUCTION
Classic maintenance of software systems implies high costs

and long repairing cycles due to the involvement of humans
in detecting and repairing faults. Self-abilities enable soft-
ware systems to automatically detect and repair faults with-
out human intervention, thus reducing both costs and la-
tency. Self-abilities may solve many different classes of prob-
lems that span from performance (self-optimization) to secu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOQUA ’07 September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-724-7/07/09 ...$5.00.

rity (self-protection), architecture (self-adaptation), config-
uration (self-configuration) and functionality problems (self-
healing) [9, 11].

In this paper we focus on self-healing mechanisms, that
is mechanisms that detect and repair problems of function-
ality and services offered by software systems. While the
behavior of single components and services is usually easy
to test and analyze, often complex software systems suffer
from unexpected integration problems that remain latent in
the software despite accurate analysis and integration test-
ing, and can lead to subtle run time problems difficult to
prevent and repair. Self-healing mechanisms focus on de-
tecting and overcoming such problems.

Although integration and system testing focuses on sim-
ilar problems [13], they differ from self-healing mechanisms
in goals, use and execution conditions: Integration and sys-
tem testing aim to maximize failure occurrence, to identify
and remove as many faults as possible before system de-
ployment, while self-healing mechanisms aim to minimize
the impact of failures when they occur in the deployed sys-
tem; Testing aims to provide information to (manually) re-
move faults, while self-healing aims to prevent the effects of
fault occurrence; Testing provides support to human inter-
vention, while self-healing requires no human involvement;
Test suites can be re-executed several times to reproduce
failures, while self-healing mechanisms cannot reproduce ex-
ecutions, but try to avoid repeated occurrences of failures.

Although some simple mechanisms can be added to soft-
ware systems independently from their development, suit-
able approaches to software design can enable powerful mech-
anisms that can deal with a large variety of problems. Such
design approaches can be referred to as design for self-healing.

Design for self-healing introduces features that enable de-
tecting run-time failures and identifying and isolating faulty
behaviors of components or services. Due to the differences
between testing and self-healing mechanisms, design for self-
healing approaches cannot rely on the same assumptions and
techniques developed over time for design for testability [1,
12, 5], but require new approaches.

The main goal of this position paper is to outline a re-
search agenda for design for self-healing, by discussing the
main requirements for design for self-healing techniques (Sec-
tion 2), analyzing the limitations of design for testability ap-
proaches (Section 3), and proposing an initial set of design
for self-healing methods (Section 4).

2. REQUIREMENTS FOR SELF-HEALING
To detect and repair problems of software functionality

and services, self-healing mechanisms must be able to pre-
dict or detect failure occurrences, identify their causes, and
isolate them to prevent further failures, making sure that
prevention mechanisms do not lead to unexpected faulty be-
haviors. Design for self-healing aims to support each of these
main phases, failure prediction or detection, fault diagnosis
or localization, fault isolation or failure recovery, and vali-
dation, by enabling supporting mechanisms. In this Section
we summarize the main requirements for each phase to pro-
vide the background for discussing design for self-healing
approaches.

Failure prediction or detection. Healing mechanisms are
triggered by failures. Self-healing mechanisms must either
detect or better predict failures. Detecting failures may be
enough for some classes of reparable failures, but may be
too late for other classes of failures. For example, detecting
failing transactions while still keeping transaction informa-
tion may be sufficient to trigger healing actions that bring
the system back to a consistent state, while detecting sys-
tem crashes may be easier, but not enough if the goal is to
guarantee a minimum level of functionality.

Automatically detecting or predicting failures requires sys-
tems to be able to identify either explicitly or implicitly devi-
ations from the expected behavior. Systems must (1) be able
to observe their behavior by self-monitoring execution with-
out significantly alter either functionality or non-functional
properties like response time, and (2) infer actual or poten-
tial failures from the monitored data.

Useful self-healing systems do not have to predict all pos-
sible failures, but may focus on either detecting or predict-
ing only some classes of failures. Detection and prediction
mechanisms may co-exist and deal with different as well as
similar classes of failures.

Fault diagnosis or localization. To recover from failures,
self-healing mechanisms must localize their causes. While
debugging aims to completely identify the faults [15], self-
healing mechanisms may not be able to fully diagnose the
actual faults automatically, but may be able to localize faults
only with some level of approximation, still providing enough
information to trigger suitable healing actions [2]. For ex-
ample, self-healing systems may identify incompatibilities
between components or parameters that can lead to fail-
ures, but may not be able to localize the actual faults. Al-
though the diagnosis is incomplete, the information may be
sufficient to trigger healing mechanisms that prevent calling
incompatible components or using incompatible parameters,
thus avoiding system failures.

Tracking failures to faults may become very difficult when
failures manifest themselves far from the fault occurrences.
Fault diagnosis and localization require reducing the gap
between fault occurrence and failure manifestation, that is,
occurrences of faults should produce revealable effects as
soon as possible. Moreover, once failures are predicted they
should be prevented before their occurrence without signif-
icantly altering system performances, while when detected,
their effects should be neutralized before causing irrepara-
ble damages to the system. Faults must be diagnosed early
enough to trigger failure prevention mechanisms in time.

For example, self-healing systems should turn occurrences
of faults that cause memory leaks into diagnosable effects
early enough to prevent system crashes due to memory ex-
haustion.

Fault isolation or failure recovery. When faults are diag-
nosed or localized before the actual failures, healing mech-
anisms can try to either remove the faults, or, more real-
istically, isolate them to prevent their effects (fault isola-
tion) [6]. When failures cannot be prevented, healing mech-
anisms can try to partially or totally eliminate their effects
(failure recovery). For example, invocations of methods with
incompatible values for their parameters may be substituted
with different invocation sequences that produce the same fi-
nal effect, thus avoiding the predicted failure. For instance,
if a method to add an individual to a set fails when the
individual already belongs to the set, a self-healing mech-
anism may automatically substitute the invocation of the
add method with the invocation of a check-for-membership

method followed by the add method if the individual is not
a member of the set. If the method invocation cannot be
prevented and the system fails, e.g., by corrupting the set
of individuals, the self-healing mechanism can try to backup
to a consistent state of the set.

Isolating faults and recovering from failures require sys-
tems to modify their execution by either altering the se-
quence of statement executions or the state or both. Ex-
ecutions and states may be altered at different levels and
with different temporal validity. Alterations may be perma-
nent, when the diagnosis clearly indicates permanent faults
that can be eliminated, or temporary, when the diagnosis
does not provide enough information to completely localize
and correct the faults, or the faults cannot be automatically
corrected with the available healing mechanisms.

Validation. Healing mechanisms may produce undesirable
effects. Similarly to classic debugging approaches, self-healing
mechanisms may suffer from diagnosis errors that may fail
in identifying the actual faults, or may produce unexpected
side-effects that may cause further failures. Moreover, since
in the same system, there may coexist many independent
self-healing mechanisms, healing actions may unexpectedly
interact causing new failures or leading to system instability.
For example, self-healing clients and servers may adapt their
interfaces to overcome mutual protocol mismatch problems
in an infinite cascade of adaptation actions.

Verifying the adequacy of the healing actions is compli-
cated by the fact that contrary to classic testing and debug-
ging, self-healing systems cannot execute expensive regres-
sion test suites to verify the suitability of the corrections.
Self-healing systems must be able to verify their behavior
without requiring expensive test executions, and must be
able to coordinate autonomous mechanisms that may exist
at different system level or in different subsystems.

3. DESIGN FOR TESTABILITY
Although not immediately applicable to designing self-

healing software systems, design for testability approaches
provide interesting hints. In this section, we discuss uses
and limitations of the main design for testability guidelines
in the context of design for self-healing.

While design for testability is widely applied in hard-

ware with techniques as BIST (Built-In Self Test) and BISR
(Built-In Self Repair) [10, 3], the applications to software de-
sign are still limited. The main design for testability guide-
lines require visibility and controllability [1, 12, 5]. Visi-
bility is the ability to observe states, outputs and resource
usage during software execution. It is instantiated in many
ways, for example, verbose outputs, event logging, resource
monitoring, and run-time verification of design by contract
assertions. Controllability is the ability to modify inputs
and states during software execution, to study different be-
haviors and what-if situations. Design for testability is often
paired with test automation, and is related to the automatic
generation of scaffolding and test oracles.

The main principles of visibility and controllability can be
useful also in the context of design for self-healing, but most
instantiations for design for testability focus on human visi-
bility (for example, verbose outputs, event logging, resource
monitoring), and on controlled executions and re-executions
of software, while in the context of self-healing, humans are
out of the loop, and executions cannot be repeated for the
sake of testing.

Visibility can enable failure detection, fault diagnosis and
verification of the behavior after healing, but can be use-
ful when instantiated into inter-system notifications that do
not involve humans. We may for example take advantage
of modules that expose part of their state in a computer
readable form, to enable healing features to detect failures
and diagnose faults, but verbose outputs and event logging
in human readable form may be of little if no relevance.

Controllability can enable mechanisms for healing or iso-
lating faults, by allowing automatic reschedule of module or
service executions to circumvent faults and faulty modules.
Controllability mechanisms may for example enable rolling
back to correct states, healing corrupted states, or disabling
faulty modules, but do not produce benefits when used to
re-execute faulty modules to expose the fault for off-line di-
agnosis, while the system is in operation.

When used during operation, as in the case of self-healing,
both visibility and controllability mechanisms must obey
strong overhead constraints and must prevent major failures,
while during testing, there are no relevant constraints on
execution overhead, and exposing major failures is not only
allowed, but often desirable to avoid their occurrence after
deployment. Thus some design for testability approaches
may not only be of little use, but even undesirable when
designing self-healing systems.

4. APPROACHING DESIGN FOR S-H
In the former section we have argued that the main de-

sign for testability principles, visibility and controllability,
continue to be valid for designing self-healing software sys-
tems, but call for different instantiations. In this section,
we propose some guidelines for enhancing self-healing capa-
bilities of software systems during the design. Self-healing
systems require abilities for detecting failures, diagnosing
and healing faults, and verifying the changes. Each phase
needs different abilities and design approaches.

Failure detection. To enable failure detection, we must be
able to efficiently detect requirement violations at run time.
The strong limitations to run time overhead make it impos-
sible to check for “global” properties, that is properties that
require non-local view of the computation state, and call for

“locally verifiable” properties, that is assertions that refer
only to the “local” computation state, as in the design-by-
contract paradigm.

The design must facilitate accessibility to the informa-
tion involved in the checks (values of variables, parameters,
etc). Design for self-healing may also identify “history” val-
ues, that is values of some variables useful in later checks.
Such values can be properly stored in “history” variables to
make them locally accessible in later checks. We may for ex-
ample introduce “before-method-call” variables that record
the value of the parameters before calling methods, to make
such values locally available for checks during and after the
method execution.

Self-healing mechanisms may evolve during the life of the
software system by learning from system execution. The
system may for example trace the causes of an unexpected
run-time failure to a given combination of values, and may
decide to automatically trace those values to prevent further
failures of the same type, or it may identify values useless
to trace after fixing some faults. This call for automatically
adaptable tracing mechanisms that can dynamically change
depending on the values to be traced.

Detecting failures long after fault occurrences complicates
diagnosis and healing. For example, when buffer overflows
or memory leaks cause failures long after their occurrences,
they become very difficult to diagnose and often almost im-
possible to fix. Failure detection mechanisms must reduce
the gap between fault occurrence and failure detection. This
can be achieved by introducing design practices that insert
probes at convenient granularity levels. In order to detect
memory leaks, we may for example inspire from the Purify
approach that records and checks the state of memory lo-
cations as soon as accessed, thus detecting memory faults
when they occur and not much later, when they lead to a
visible failure [8].

Fault diagnosis. Self-healing systems aim to reduce both
the time overhead required to diagnose faults and the effects
of fault propagation. It may be preferable to quickly isolate
a faulty component, rather than fully identify the fault after
a long and expensive process.

Fault propagation can be limited by design mechanisms
that support “system standby”, by allowing (1) system exe-
cution to be temporary suspended between failure detection
and fault healing, and (2) fault propagation analysis, such
as data flow dynamic slicing, to identify portions of the code
potentially affected by the fault.

Fault diagnosis is supported by design decisions that sim-
plify the reconstruction of recent past execution, and pro-
mote separation of concerns, to isolate fault effects.

Fault healing. Healing mechanisms depend on the kind of
faults and the class of systems. In this paragraph, we iden-
tify a preliminary set of mechanisms that can be adapted to
different classes of faults and can influence design decisions.

Once diagnosed, faults can be isolated by activating alter-
native computation paths built-in at design time, which may
be designed as: redundant modules, following the direction
of fault tolerant systems, alternative modules, by adapting
equivalent scenarios as proposed by Doong and Frankl for
testing [7], version rollback, that consists of redeploying for-
mer versions of the faulty components, when the faults are
diagnosed as caused by the updated versions.

Simpler and somehow less intrusive recovery mechanisms
may be based on simple rollback [14] or reboot mechanisms,
following atomic transaction design approaches that are com-
mon practice in data base design (atomic transactions), and
microreboot mechanisms [4] common practice in operating
system design.

Validation. Program changes may fail in restoring correct
execution either because of bad diagnosis or undesired in-
teractions.

Changes based on bad diagnosis may not address the ac-
tual fault and sometimes even affect correct portions of the
program. Design can enable easy discovery of such cases by
providing mechanisms for recording the faulty behaviors and
checking for the absence of such behaviors after changes.

Undesired interactions may involve subsystems that share
the same self-healing facilities or subsystems with indepen-
dent self-healing mechanisms. In the first case, undesired
interactions may derive from unexpected side effects, which
can be either avoided or isolated by adopting clean design
practices that explicitly identify all side effects. In the sec-
ond case, undesired interactions may derive from indepen-
dent healing mechanisms that try to heal the same fault. For
example, different subsystems may detect failures that de-
rive from exchanging semantically incompatible values, and
may independently trigger healing mechanisms to solve the
diagnosed incompatibilities, leading to newly incompatible
situations.

Simple monitoring and recovery procedures may be based
on design mechanisms that prescribe a sort of publish-subscribe
mechanisms between independent subsystems to notify changes
and thus react properly when detecting interfering changes
implemented by independent modules.

5. CONCLUSIONS
Designing self-healing systems poses new challenges and

problems. In this position paper, we draft a first set of re-
quirements for design for self-healing techniques, we discuss
why the main principle underlying design for testing ap-
proaches still hold, but most design for testing techniques do
not apply straightforwardly, and we propose a set of guide-
lines for defining design for self-healing approaches. The re-
search area is open and wide, and we are currently working
on instantiating the guidelines on concrete recommendations
and design methodologies.

6. ACKNOWLEDGMENTS
The work presented in this paper is supported by the

Founds National Suisse de la Researche Scientifique as part
of the project PerSeoS: Pervasive self-adaptive software sys-
tems.

7. REFERENCES
[1] R. V. Binder. Design for testability in object-oriented

systems. Communications of the ACM, 37(9):87–101,
1994.

[2] P. Bodic, G. Friedman, L. Biewald, H. Levine,
G. Candea, K. Patel, G. Tolle, J. Hui, A. Fox, M. I.
Jordan, and D. Patterson. Combining visualization
and statistical analysis to improve operator confidence
and efficiency for failure detection and localization. In
ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing, pages 89–100,
Washington, DC, USA, 2005. IEEE Computer Society.

[3] M. Bushnell and V. Agrawal. Essentials of Electronic
Testing for Digital, Memory and Mixed-Signal VLSI
Circuits., pages 463–488. Kluwer Academic Publishers,
2000.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery.
In OSDI ’04: Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, pages
31–44, San Francisco, CA, USA, 2004.

[5] R. Coelho, U. Kulesza, and A. von Staa. Improving
architecture testability with patterns. In OOPSLA
’05: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 114–115, New York,
NY, USA, 2005. ACM Press.

[6] R. de Lemos and J. L. Fiadeiro. An architectural
support for self-adaptive software for treating faults.
In WOSS ’02: Proceedings of the first workshop on
Self-healing systems, pages 39–42, New York, NY,
USA, 2002. ACM Press.

[7] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 3(2):101–130, April 1994.

[8] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Proceedings of the
Winter USENIX Conference, pages 125–136. USENIX
Association, January 1992.

[9] P. Horn. Autonomic computing manifesto - IBM’s
perspective on the state of information technology.
IBM Research, October 2001.

[10] N. K. Jha and S. Gupta. Testing of Digital Systems,
pages 560–679. Cambridge University Press, New
York, NY, USA, 2002.

[11] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[12] B. Pettichord. Design for testability. In PNSQC ’02:
Proceedings of the 20th Annual Pacific Northwest
Software Quality Conference, pages 243–270, 2002.

[13] M. Pezzè and M. Young. Software Testing and
Analysis. John Wiley & Sons, 2007.

[14] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:
treating bugs as allergies—a safe method to survive
software failures. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems
principles, pages 235–248, New York, NY, USA, 2005.
ACM Press.

[15] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, October 2005.

