
Analyzing the User Interface of Android Apps

Konstantin Kuznetsov♣· Vitalii Avdiienko♣· Alessandra Gorla♠· Andreas Zeller♣

♣CISPA, Saarland University,
Saarbrücken, Germany

♠IMDEA Software Institute,
Madrid, Spain

ABSTRACT
When interacting with Android apps, users may not always get
what they expect. For instance, when clicking on a button labeled
“upload picture”, the app may actually leak the user location while
uploading photos to a cloud service. In this paper we present BACK-
STAGE, a static analysis framework that binds UI elements to their
corresponding callbacks, and further extracts actions, in the form
of Android sensitive API calls, that may be triggered by events on
such UI elements. We illustrate how the analysis implemented by
BACKSTAGE works, and we compare it with similar frameworks.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
• Theory of computation→ Program analysis;
ACM Reference Format:
Konstantin Kuznetsov

♣
· Vitalii Avdiienko

♣
· Alessandra Gorla

♠
· Andreas

Zeller
♣
. 2018. Analyzing the User Interface of Android Apps. In Proceedings

of MOBILESoft ’18: 5th IEEE/ACM International Conference onMobile Software
Engineering and Systems , Gothenburg, Sweden, May 27–28, 2018 (MOBILESoft
’18), 4 pages.
https://doi.org/10.1145/3197231.3197232

1 INTRODUCTION
Users interact with Android mobile apps through their user inter-
faces, but it is often unclear whether the actual underlying behavior
of an app reflects the user expectations. There may be many reasons
why the actual behavior differs from the expected one: App devel-
opers may intentionally hide some undesired behavior to the final
user to secretly collect sensitive information. The actual behavior
may differ from the expected one even when app developers have
good intentions, but have little experience with good UI design.
As an example, consider Figure 1, showing a menu in the Android
Health Tracker Lite app. Users can export their data to a CSV file,
resulting in a “file saved” message confirming the successful export.
However, when users choose the “Send User Data By Email” but-
ton, they obtain the very same message. Just a few seconds later, a
mail dialog pops up that allows to send the just saved file, but the
message is still confusing. Finally, the actual behavior may differ

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5712-8/18/05.
https://doi.org/10.1145/3197231.3197232

Figure 1: Health Tracker Lite app. The same message “File
saved” is shown for export as well as for the email actions.

from what users expect because of an implementation bug in the
app. Whatever the scenarios, and whatever the motivation might
be, in order to fully test, analyze, or simply understand the behavior
of Android apps there needs to be a technique that can analyze the
app’s UI and the code associated to it as a whole thing.

The challenges include:
Obtaining the set of UI elements. In ANDROID apps, many UI

elements are statically declared in a layout file, but can also be
created, enabled, or disabled dynamically in code.

Modeling UI control flow. The control flow of ANDROID apps
is determined by the lifecycle and interactions of the UI ele-
ments which are defined be means of associated event handling
callbacks.

Obtaining UI element contents. Contents of UI elements may
also be defined or updated from code, again calling for analysis
of callback code.
In principle, this data could be obtained dynamically, using UI

event generation to systematically explore the user interface of an
app—but then one would struggle to achieve high coverage [3]. In
this paper, we present BACKSTAGE, a static analysis framework that
runs the following analyses on a given ANDROID app:
Analysis of UI Elements. BACKSTAGE determines all UI elements

that are declared in the app, either in the (static) layout file,
or created dynamically from within callbacks. For the Health
Tracker app, for instance, BACKSTAGE determines the UI buttons
shown in Figure 1, as they would be declared in the layout file.

Analysis of UI control flow. By associating and analyzing the
callback functions that would be activated with a UI element,
BACKSTAGE can determine how UI elements invoke or activate
each other. In the Health Tracker app, for instance, BACKSTAGE
finds that the “Send User Data by Email” and “Export to CSV file”
buttons both invoke a Toast notification message.

Analysis of reachable Android API calls. Using the identified
callbacks as entry points, BACKSTAGE can see which sensitive

https://doi.org/10.1145/3197231.3197232
https://doi.org/10.1145/3197231.3197232


MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Kuznetsov et al.

Android API calls can be reached. We refer to sensitive API
calls as that subset of the whole Android framework API that
can perform concerning operations, such as accessing user’s
sensitive data (e.g. precise location and phone number), sending
text messages or making phone calls.

With these analyses in place, BACKSTAGE can 1) identify buttons
such as “Send User Data by Email” and “Export to CSV file”, 2)
retrieve their corresponding labels (even when dynamically set),
3) identify that the callbacks associated to the buttons both lead
to the temporary “File saved” message visible in Figure 1, and a
FileWrite API call. When such message appears, the app executes
a write operation to the device SD card, which is one of the sensitive
API calls that BACKSTAGE considers.

The association of natural language text of UI elements to API
calls opens several possibilities for mining and analyzing apps.
BACKSTAGE, for instance, is used to detect stealthy behavior [1]
(similar to [4]), or to detect usability issues, as in the case of the
Health Tracker app.

BACKSTAGE can provide a complete association between both UI
elements, their code, and their contents, whether declared statically
or created and updated dynamically.

2 ANALYZING UI AND CODE
BACKSTAGE takes as input the APK of an ANDROID app, which
includes the bytecode and resources such as the layout files that
declare the individual UI elements in each activity. It produces as
output the set of UI elements, each element e associated with:
• parents P of e in the UI hierarchy tree, as well as the activity,
to which element e belongs;

• the visible label in natural language text l of e;
• the callbacks C associated with e , including the APIs and in-
tents A that may be reached from such callbacks;

• other UI elementsM , e.g. notification messages, that would be
activated as a result of activating e .

Thus, each UI element e is represented by a tuple e(l , P ,C,A,M).
BACKSTAGE follows three main steps:
(1) It retrieves the set of UI elements that the app defines, and it

identifies the callbacks that are associated to them (Section 2.1),
(2) Using the callbacks as entry points, it retrieves the list of reach-

able sensitive Android API calls and intents (Section 2.2), and
(3) It analyzes the content of UI elements to collect the natural

language text associated to them (Section 2.3).
None of these analyses is trivial, given the complexity of the An-
droid GUI [7].

2.1 Mapping UI Elements to Callbacks
In the ANDROID framework, an activity is a single screen containing
several UI elements, such as buttons and text fields, organized in a
hierarchy. Each app may contain multiple activities (and typically
does so). The layout of the activity is usually declared in XML files
residing in layout folder. Developers can bind an activity to a
layout XML file thanks to the Activity:setContentView(layoutFileId)
method. As an example of a layout file, consider Listing 1.

BACKSTAGE parses the XML layout files to determine the set of
declared UI elements, together with their callbacks and their (yet

1 <?xml version="1.0" encoding="utf−8"?>
2 <LinearLayout style="@style/layout_background"...>
3 <Button android:id="@id/send_button" android:text="@string/

↪→ send_button" android:drawableLeft="@drawable/icon_send"/>
4 <Button android:id="@id/about" android:text="About"

↪→ android:onClick="showAbout"/>
5 </LinearLayout>
Listing 1: Extract fromXML layout file of theHealth Tracker
app

symbolic) content. BACKSTAGE supports all common techniques of
reusing layouts in different contexts, together with the inclusion
and merging of layout files, as well as fragments. BACKSTAGE also
handles complex UI elements combined in menus (multiple option,
contextual, and drop-down), drawer layouts and tab views.

In Listing 1 we can see how the association between UI elements
and code takes place. Each UI element has an identifier (such as
@id/send_button) that allows the code to refer to it to activate it or
update its content. UI elements also may have text which typically
comes as a symbolic label (such as@string/send_button) that would
be replaced by a string according to the user’s language. Finally,
UI elements are tied to callbacks—functions that would be invoked
when the UI element is activated. For the @id/about button, the
onClick callback is defined statically in the xml. When the button is
clicked, the method public void onClickMethod(View v) is invoked,
with v being the @id/about UI element.

Developers can dynamically bind an onClick callback to a UI
element by using setOnClickListener() method. The same feature is
available for all the 57 callbacks that the Android framework offers 1.
BACKSTAGE can correctly bind all 57 callbacks to UI elements when
they are assigned dynamically, as in Listing 2.

Context Sensitivity. BACKSTAGE analysis is context and object-
sensitive. It can precisely propagate UI objects and bind callbacks,
including the ones defined by means of anonymous inner classes
and overridden in subclasses. In ANDROID, multiple UI elements
may share the same callback, when the control flow is controlled
by switch constructs. To correctly bind callbacks and UI elements,
BACKSTAGE examines each method that is reachable from a par-
ticular callback, and analyzes the branch based on the Id of the UI
element. Currently it supports switch cases, but does not handle
arrays and assignments inside a loop.

Dealing with Fragments. Fragments are, in essence, modular sec-
tions of an Activity. A fragment has its own lifecycle and responds
to its own input events. According to the official Android documen-
tation, there are two different ways to include a fragment into an
1 public class com.benoved.phr_lite.manage_activity{
2 public void showAbout(View view){...}
3 @Override
4 public void onCreate(android.os.Bundle bundle){
5 Button sendUserData = (Button)findViewById(2131624047);
6 sendUserData.setOnClickListener(new onClickListener(){
7 public void onClick(View v) {...}
8 });}}
Listing 2: Callback assignment to the “Send User Data By
Email” button.

1https://developer.android.com/guide/topics/ui/ui-events.html



Analyzing the User Interface of Android Apps MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

Activity: statically, within a layout file, and dynamically by means
of the FragmentManager class. A notable feature of using fragments
in an Activity is the ability to add, remove, replace, and perform
other actions with them, in a response to user interactions. Each set
of changes committed to the activity is called a transaction, and it
can be performed by means of APIs in FragmentTransaction. List-
ing 3 shows an example on how to replace the my_button element
with the content of the myFragmentClass in runtime.
1 FragmentManager fragmentManager = getFragmentManager();
2 FragmentTransaction fragmTransaction = fragmentManager.beginTransaction();
3 Fragment fragment = newMyFragmentClass();
4 fragmTransaction.add(R.id.myButton, fragment);
5 fragmTransaction.commit();

Listing 3: Manipulating fragments in runtime

Dealing with Fragments is vital to properly analyze the UI of An-
droid apps. BACKSTAGE treats Fragments as special Activities, and
performs the same analysis. Thus, in presence of statically declared
Fragments, i.e., when a Fragment is declared inside a layout file,
BACKSTAGE treats them as include tags. Dynamically added frag-
ments, instead, require to statically analyze the code. BACKSTAGE
searches for all method signatures of the FragmentTransaction
class that append a fragment to an activity: add() and replace(). It
then performs an inter-procedural reachability analysis to identify
the id of the inflated fragment container.

2.2 Analyzing User Interface Code
What happens when events on UI elements trigger callbacks? And
how do these callbacks in turn affect the UI elements? To this end,
BACKSTAGE employs a static analysis built on top of the SOOT
framework to map callbacks to sensitive Android APIs [6]. The
analysis works along the following steps:
(1) BACKSTAGE identifies the callbacks from the UI analysis phase

as discussed in Section 2.1, and sets them as entry points for
the call graph construction.

(2) It builds the call graph using the Rapid Type Analysis algorithm
(RTA), which limits the over-approximation by identifying those
classes in the program that are possibly instantiated [2].

(3) For each method reachable from a callback, BACKSTAGE collects
the list of sensitive Android API [5] invocations including the
ones that can activate user notifications: toast messages, alert
dialogs or push notifications.

Apps often includes libraries, and many API invocations that
BACKSTAGE identifies may belong to third party libraries. Some
analyses may not be interested in library code, and as a conse-
quence BACKSTAGE provides a parameter to limit the analysis only
to the application code, thus excluding libraries and speeding up the
process. To achieve this goal, we filter classes based on their pack-
age name prefix. Thus, for instance, when analyzing the Twitter
app, we would focus only on classes belonging to the com.twitter
package. To achieve a higher scalability, BACKSTAGE also includes a
parameter to limit the depth of the call graph analysis starting from
the entry points. The farthest the code is from the entry points, the
more likely it contains unfeasible invocations. The default settings
consider only invocations to the Android API that are in methods
with a maximum depth of five calls from any callback2.

2based on the median value of 1000 random apks analyzed

2.3 Analyzing User Interface Content
The final step in the BACKSTAGE analysis is to determine the text
associated to each UI element regardless of whether they are stati-
cally or dynamically generated. In ANDROID there are several ways
to define the text of UI elements, and BACKSTAGE supports all of
them
Content assignment in layout files. Developers can define the

content of UI elements in the XML layout file by setting the
android:text attribute. The text can be defined either by us-
ing the reference to the app’s resources with the "@string/"
prefix or directly by providing the string that will be displayed.
BACKSTAGE supports both options. In our Health Tracker ex-
ample, BACKSTAGE determines the content of a button such as
“Send User Data By Email” by extracting the string from the
android:text attribute of the corresponding button.

Content assignment in style files. Developers can assign labels
to UI elements using the styles.xml file. This option is typi-
cally used when the text of UI labels changes depending on the
style. Developers can specify labels of UI elements by creating
an <item> with the attribute name="android:text".

Content assignment from code. ANDROID allows to change the
content of arbitrary UI elements dynamically—for instance, to dis-
play data, or to reuse buttons in different activities. The method
View:setText(resourceId) allows to give an existing UI ele-
ment a new identifier (thus also changing its appearance depend-
ing on the statically declared settings for this ID). The method
View:setText(text) allows to redefine the (textual) content
for UI elements. Since text content is frequently dynamically
computed from other strings and values, BACKSTAGE performs
an intra-procedural backward analysis from the setTextmethod
parameter if needed. BACKSTAGE also analyzes String concate-
nations from StringBuilder instances to identify the desired
text. One UI element can be reused several times, for instance, in
fragments. BACKSTAGE tracks these re-definitions and reports all
values collected, each one supplied with the class name where it
was changed. Therefore, the UI can be correctly mapped to the
corresponding callback.

Content from icons and graphics. Many UI elements use icons
rather than text, as they can represent the semantic of UI ele-
ments in an intuitive and space efficient way. BACKSTAGE handles
icons by extracting both icon names (such as icon_send) and
alternative text, which is often provided for speech-based acces-
sibility services. Developers can specify such alternative text in
the android:contentDescription attribute of the UI element.
With these analyses BACKSTAGE knows the UI elements declared

in an app, the content of all UI elements, such as the buttons and
messages, and which buttons invoke which APIs, which in turn
invoke which messages with which content.

3 EVALUATION
As a preliminary evaluation of BACKSTAGE we aimed to compare
its abilities against the latest version of GATOR (November 2017) [8].
On its core, the goal of BACKSTAGE is similar to GATOR’s, since
they both aim to create a precise mapping between UI elements and
their corresponding callbacks. However, BACKSTAGE also addresses
the specific need to extract natural language text from UI elements,



MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Kuznetsov et al.

Table 1: User Interface Elements Support.

UI Element GATOR BACKSTAGE

<include>xml tag ✓ ✓

LayoutInflater ✓ ✓

<fragment>xml tag ✗ ✓

FragmentManager ✗ ✓

Option menu ✓ ✓

Pop-up menu ✗ ✓

Contextual menu ✓ ✓

Navigation-Drop-Down menu ✗ ✓

Drawer Layout ✓ ✓

Tab View (via ActionBar) ✗ ✓

ViewPager
xml defined ✓ ✓

via PagerAdaptor ✗ ✓

AlertDialog ✓ ✓

Toast ✗ ✓

Notification ✗ ✓

Table 2: Listeners Support.

Listener Type GATOR BACKSTAGE

Layout xml file ✓ ✓

Style xml file ✗ ✓

Anonymous inner class ✶ ✓

Menu callbacks ✓ ✓

Listener interface ✶ ✓

Shared superclass ✶ ✓

Listener assigned in a loop ✶ ✗

✓— listener correctly identified, ✗— listener not found,
✶— too many listener found, over-approximation

as well as to identify which sensitive API calls can be reached from
such UI elements. We first ran BACKSTAGE and GATOR on a small
set of synthetic examples that cover many different features of the
Android UI. We present the results of our analysis in Section 3.1.
We conclude our comparison by briefly presenting the results on
the Health Tracker app in Section 3.2.

3.1 Comparison on Synthetic Samples
To compare which features are supported by BACKSTAGE and
GATOR, we carefully reviewed the Android documentation and
crafted a set of synthetic samples to validate capabilities of each
tool. Table 1 and Table 2 report the results of our analysis. It is
worth notice that GATOR correctly identified menus of two types.
However, it could not find Pop-up menu, and mistakenly assigned
a Contextual menu to a wrong button. Finally, it does not support
Navigation-Drop-Down menus as well. Moreover, GATOR tends to
over-approximate in most cases (see Table 2), assigning too many
listeners to UI elements.

3.2 Comparison on the Health Tracker app
On the HealthTracker app, GATOR reported 9 listeners bound to the
Send User Data By Email button. Actually, it assigned the exact same
set of listeners to each of the 7 buttons in Figure 1. Two additional

listeners come from buttons of the Dialog invoked by one of the
button. This dialog was correctly identified by GATOR, but the
list of listeners is over-approximated, and its layout is completely
blunderedwith the elements of the underlying activity. Thus, for the
Health Tracker app GATOR could produce only a rough model of the
activity, missing many details. In contrast, BACKSTAGE generated
a precise model of an activity. It correctly assigned all listeners to
the corresponding buttons. Along with handler binding it supplied
each button with its label, and produced a list of APIs reachable
from each listener.

The major cause of over-approximation in UI hierarchy con-
struction and callback handler binding of GATOR is caused by the
missing support of dynamic dispatch recognition. For instance, for
a set of subclasses, it reports a union of all layouts assigned by
means of a method defined in a shared superclass, whereas layout
id is redefined inside each subclass. The same over-approximation
also happens for listeners implemented by means of anonymous
inner class. Namely, GATOR can not distinguish listeners declared
via anonymous inner class, i.e. if two UI elements have different
listeners it will assign both to each of them.

4 CONCLUSION
In this paper we presented BACKSTAGE, a static analysis framework
to analyze the UI of Android apps. We presented the challenges
to deal with this domain, and we compared with the state of the
art showing that our BACKSTAGE can solve some of the current
shortcomings that other technique have.

The code of BACKSTAGE is open source and available at:
https://github.com/uds-se/backstage

ACKNOWLEDGMENTS
This work was supported by the EU FP7-PEOPLE-COFUND project
AMAROUT II (n. 291803), by the European Research Council, project
SPECMATE, by the Spanish project DEDETIS, and by the Madrid
Regional project N-Greens Software (n. S2013/ICE-2731).

REFERENCES
[1] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and A. Zeller.

Detecting behavior anomalies in graphical user interfaces. In ICSE 2017: Proc. of
the 39th Intl. Conf. on Software Engineering Companion, pages 201–203, 2017.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls.
In OOPSLA ’96: Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, pages 324–341, 1996.

[3] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for
android: Are we there yet? In ASE 2015: Proc. of the 30th Annual Intl. Conf. on
Automated Software Engineering, pages 429–440. IEEE Computer Society, 2015.

[4] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid: detecting stealthy
behaviors in Android applications by user interface and program behavior contra-
diction. In ICSE 2014: Proc. of the 36th Intl. Conf. on Software Engineering, pages
1036–1046. ACM, 2014.

[5] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for classifying
and categorizing Android sources and sinks. InNDSS 2014: 20th Annual Symposium
on Network and Distributed System Security, 2014.

[6] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot –
a Java bytecode optimization framework. In CASCON, pages 13–23. IBM Press,
1999.

[7] Y. Wang, H. Zhang, and A. Rountev. On the unsoundness of static analysis for
Android GUIs. In SOAP 2016: Proc. of the 5th ACM SIGPLAN Intl. Workshop on the
State Of the Art in Java Program Analysis, pages 18–23, 2016.

[8] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis of
user-driven callbacks in Android applications. In ICSE 2015: Proc. of the 37th Intl.
Conf. on Software Engineering, pages 89–99. IEEE Press, 2015.

https://github.com/uds-se/backstage

	Abstract
	1 Introduction
	2 Analyzing UI and Code
	2.1 Mapping UI Elements to Callbacks
	2.2 Analyzing User Interface Code
	2.3 Analyzing User Interface Content

	3 Evaluation
	3.1 Comparison on Synthetic Samples
	3.2 Comparison on the Health Tracker app

	4 Conclusion
	References

