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Abstract—A number of tools are available to software de-
velopers to check consistency of source code during software
evolution. However, none of these tools checks for consistency of
the documentation accompanying the code. As a result, code and
documentation often diverge, hindering program comprehension.
This leads to errors in how developers use source code, especially
in the case of APIs of reusable libraries. We propose a technique
and a tool, upDoc, to automatically detect code-comment inconsis-
tency during code evolution. Our technique builds a map between
the code and its documentation, ensuring that changes in the
code match the changes in respective documentation parts. We
conduct a preliminary evaluation using inconsistency examples
from an existing dataset of Java open source projects, showing
that upDoc can successfully detect them. We present a roadmap
for the further development of the technique and its evaluation.

Index Terms—Documentation, Natural Language Processing,
Software Quality

I. INTRODUCTION

Program source code constantly evolves to meet new func-
tionality requests, to fix issues or simply due to refactoring
tasks. Unlike source code, whose correctness in case of
changes is ensured by dedicated tools such as parsers, analyz-
ers, compilers and linters, maintaining the correctness of its
documentation is still responsibility of the programmer. This
has two undesirable consequences: (a) existing documentation
becomes outdated and is not necessarily fixed in a timely
manner, and (b) documentation is not written in the first place
to avoid the problem altogether [1], [2]. Program comments are
often the only documentation format available to programmers,
and they can aid significantly in program comprehension
unless they have become outdated and misleading [3].

Listing 1 shows a method and its documentation from
the AdaptiveIsomorphismInspectorFactory class of the
JGraphT [4] library. We highlight with matching colors the
code and the corresponding “doc comment” that relates input
description, input validation and exceptional behavior. The doc
comment mentions method parameters twice: implicitly in the
free-form description part (line 2: “one of the graphs”) and
explicitly with the @param tags (lines 5-6).

1 /**
2 * Checks if one of the graphs is from unsupported graph type
3 * and throws IllegalArgumentException if it is. The current
4 * unsupported types are graphs with multiple-edges.
5 * @param graph1
6 * @param graph2
7 * @throws IllegalArgumentException
8 */
9 protected static void assertUnsupportedGraphTypes(

10 Graph graph1,
11 Graph graph2)
12 throws IllegalArgumentException
13 {
14 Graph [] graphArray = new Graph [] {
15 graph1, graph2
16 };
17 for (int i = 0; i < graphArray.length; i++) {
18 Graph g = graphArray[i];
19 if ((g instanceof Multigraph)
20 || (g instanceof DirectedMultigraph)
21 || (g instanceof Pseudograph)) {
22 throw new IllegalArgumentException(
23 "graph type not supported for the graph" + g);
24 }
25 }
26 }

Listing 1. Method body with its doc comment

We are interested in changes to this code snippet in revi-
sions b4805f5 and a68071b. The first one modifies both the
signature and the body of this method, but not the respective
documentation, introducing code-comment inconsistency:
- protected static void assertUnsupportedGraphTypes(
- Graph graph1,
- Graph graph2)
+ protected static void assertUnsupportedGraphTypes(Graph g)

throws IllegalArgumentException {
- Graph [] graphArray = new Graph [] {
- graph1, graph2
- };
- for (int i = 0; i < graphArray.length; i++) {
- Graph g = graphArray[i];

The second revision updates the documentation but the
“one of the graphs” to the old parameters remains un-
changed, even though the method now has only one input:
- * @param graph1
- * @param graph2
+ * @param g

These two revisions are separated by 7.5 years.
Such situations routinely occur because comments are still

treated with less care compared to source code, even when
they form part of the software (e.g., official API documen-
tation). Our aim is to change this status quo and introduce
automated analysis techniques that would help in detecting and
suggesting possible fixes for outdated method documentation
comments if the corresponding source code changes. We
propose the upDoc tool to support our technique. In future
work we plan to integrate it into standard IDEs and CI systems,
to give immediate feedback to developers about code-comment
inconsistencies, and to suggest fixes that developers can accept
or flag as false positives. Specifically, we propose a NLP-based

https://github.com/jgrapht/jgrapht/commit/b4805f5d86b128879dfab0c1dd754e481a6373b2
https://github.com/jgrapht/jgrapht/commit/a68071b429bd54a8b2c7cb0da3c938088e80ad9a
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Fig. 1. upDoc workflow diagram

approach to inconsistency detection based on fine-grained
mapping between source code and documentation.

Our motivation is supported by the results of two separate
studies of co-evolution of comments and code on open source
Java programs. Fluri et al. [1] aim to understand how changes
in the source code affect the respective comments. They note
that (a) comment change is triggered by the respective code
change in less than half cases of code changes, and (b) for
some projects, up to 10% of those comment changes happen
more than 3 revisions later. Wen et al. [2] performe a large-
scale quantitative and qualitative study that involved an auto-
matic analysis of code changes in 1500 projects and a manual
analysis of 500 commits. Authors confirm that “in most of the
cases, code and comments do not co-evolve” simultaneously.
Moreover, co-evolution occurs roughly in 20% of the time.
These studies also stress that documentation comments have
become first class citizens in code changes and refactoring,
yet currently they are still treated more syntactically rather
than semantically. State of the art techniques capture incon-
sistencies only by means of predefined patterns, and thus
miss cases such as the reference to “one of the graphs” of
the motivating example. With upDoc we aim to go one step
further by semantically analyzing comments and code and thus
detecting even non-obvious relations.

II. WHAT’S UPDOC?

We schematically illustrate the full upDoc architecture and
workflow in Figure 1. The tool consists of five principal
modules combined in a pipe and filter architecture:
• Parser (Sec. III-A) is the pipeline entry point; it takes

two revisions of a Java class source code and extracts
tuples of method bodies and their doc comments into an
intermediate representation.

• Mapper (Sec. III-B) creates a mapping between the
structural units of the source code and the comment for
each method of the code version before the change, i.e.,
SourceCode v.0 in Figure 1.

• Change Extractor (Sec. V-B) compares the two represen-
tations produced by the Parser module for both source
code versions comprising the change and creates a diff for
both code and comment structural units for each method.

• Change Analyzer (Sec. V-C) inspects the changes in the
two revisions of each method: if there are any detected
changes in the code (as registered in the diff), it uses the

mapping to check that all related comments are changed
as well (and thus also registered in the diff). This module
produces the final report on whether a comment should
be further altered to match the code changes.

• Fix Advisor (Sec. V-D) combines the information about
the necessary changes and a suitable fix template to
automatically suggest reasonable modifications to the
programmer.

III. CURRENT IMPLEMENTATION

A. Source Code Parsing

We rely on the Javaparser [5] library to extract doc com-
ments [6] and method-level AST nodes from the Java source
code, and we interface with it while creating the structured
intermediate representation of the code that upDoc works with.
For each comment we extract both the free-text descriptive
comment part and the sentences starting with tags @param,
@exception, @throws, and @return. We disregard sentences
with other tags as they typically contain information that is
not related to the implementation. Note that each of these
comment parts could be composed of multiple sentences, and a
comment sentence is the smallest unit our technique works on.
For each method we extract its signature AST nodes only, and
we store the method name, return type name, thrown exception
type names, and parameter names together with respective type
names for each of them.

B. Code to Comment Mapping

We pre-process the full text of each doc comment by
removing any HTML markup such as <p> and <em> tags and
any Javadoc markup such as {@code . . . }. Next, from each doc
comment we extract the full period-terminated sentences using
the Stanford CoreNLP toolkit [7]. Finally, we produce a bag-of-
words (BoW) representation of each sentence by (a) splitting
all code identifiers into constituents with regular expressions
that allow for camelCase and special character splitting, (b)
expanding abbreviations with a custom list (we plan to enhance
it by incorporating the dataset of [8]), (c) reducing each word
to its stem, and (d) filtering out stop-words with the “Short
English stopwords list” [9].

We use AST-based representations of source code, just as
ChangeDistiller [10] tool and the GumTree framework [11].
AST-based representation allows us to vary the granularity of
the source code elements (as AST nodes at different depths)



TABLE I
SIMILARITY MEASURES SENSITIVITY

Comment [1:illeg,1:argument,1:throw,1:one,1:except,1:check,1:unsupport,1:type,2:graph]

Word Mover’s Distance Cosine Similarity

Method (BC) [1:illeg,1:argument,1:void,1:assert,1:except,1:unsupport,1:type,4:graph,1:first,1:second] 70% 75%
Method (AC) [1:illeg,1:argument,1:void,1:assert,1:g,1:except,1:unsupport,1:type,2:graph] 66% (-4%) 75% (no score change)

mapped to the comment text. We build the bag-of-words
representation of AST nodes (currently, only method signature
nodes) similarly to how we do it for the comments.

We produce a many-to-many mapping between the AST
nodes of source code and sentences of the comments. The
mapping reflects how similar code is to its relative natural
language documentation comment. This depends on the vo-
cabularies of the units of these two elements. For a code and
a comment unit to be related and included into the mapping the
similarity score of their BoW representations must be higher
than a predefined threshold. There are various metrics to assess
the similarity between two texts. Some of them, like cosine
similarity, can only assess lexical similarity. Others, such as
Word Mover’s Distance [12] have a semantic understanding of
natural language words. It is possible to employ them thanks
to the existence of many pre-trained models [13][14].

To illustrate the advantage of a semantic understanding of
text over a more naive one, consider once again the code
example of the Listing 1. In Table I we report similarity scores
of the BoW representations of the comment text (which did not
change), and the method signature before and after the change
(BC and AC respectively). Using Word Mover’s Distance
upDoc can relate the method parameters graph1 and graph2

to the independent clause of the first sentence of the method
doc comment (“Checks if one of the graphs is from

unsupported graph type”). When Graph graph1 and
Graph graph2 disappear to leave only Graph g, the semantic
understanding detects a decrease of the similarity with respect
to the comment. With cosine similarity upDoc does not detect
this inconsistency as the vocabulary is still too syntactically
similar, despite the change.

We implement both metrics in upDoc as one of our goals
is to study performance baselines for code-coment incon-
sistencies detection using simple BoW representation. These
baselines then can be used to evaluate how our technique is
competitive with more elaborate approaches that rely on more
advanced NLP techniques and semantic models of code and
comment vocabularies.

IV. PRELIMINARY EVALUATION

Our evaluation of upDoc assesses whether our approach
to code-comment mapping produces reliable links between
method implementation and documentation. For this purpose
we rely on the dataset produced by Wen et al. [2] of 500
commits of supposed documentation fixes for Java methods.
In our experiment we inspect the differences between code-
comment mappings in two source code versions. We run

upDoc on the version before the commit, which is supposed to
have at least one inconsistency, and on the commited version,
which is supposed to fix inconsistencies. As upDoc evaluates
the code-comment consistency based on similarity scores as
described in Section III-B, our research hypothesis is that
upDoc would report higher similarity scores in a mapping for
the fixed version.

We focus on the first 50 entries of the dataset, and we
manually analyze the results of upDoc runs. We first check the
quality of these entries and discard 8 of them because none
of the changes involved comment lines (i.e., these are false
positives admittedly included in the dataset [2]). We further
discard entries that do not involve comments that upDoc
focuses on: 4 documentation changes affecting only class-
level doc comments (either general class or field descriptions),
and 18 entries that involve changes only in comments within
method bodies (i.e., implementation comments which upDoc
does not process yet). This leaves us with 20 commits, each
involving one or more changes in method doc comments which
we use to evaluate mappings produced by upDoc.

For these 20 commits, which amount to a total of 67
changes, we follow this evaluation protocol: 1) We run upDoc
on the version right before the commit, and we store the
similarity score for each method and corresponding comment
affected by the change. 2) We run upDoc on the supposedly
fixed version. 3) We compare the similarity score for each
method signature and each corresponding doc comment sen-
tence, before and after the change. We reportthe following:

• In 50 cases the similarity scores improve as expected.
Nearly half of these cases (24 out of 50) are trivial cases
where there was no documentation and developers added
some. 26 cases are instead actual fixes or significant
semantic improvements to the comment text.

• In 10 cases the similarity scores did not change. Manual
analysis reveales that all these changes are either minor
formatting fixes (e.g., adding/removing white spaces and
new lines) or other minor edits that do not change the
semantics of the documentation. The results produced
by upDoc are thus expected, since these changes do not
address a real code-comment inconsistency.

• In 7 cases upDoc reports unexpected decreases in the
similarity scores. The manual analysis shows that these
are all due to current limitations of the prototype, which
at the moment analyzes only method signatures. Details
included in the documentation indeed could match similar
elements in the method body, but they do not always
match the signature alone.



On this small dataset upDoc achieves the same results both
running with Word Mover’s Distance and cosine similarity.
As confirmed in previous research [15], [16], developers tend
to write documentation with a vocabulary that is close to the
one composing code entities names. It is thus not surprising
that, on a limited dataset of 67 changes, a clear advantage of
Word Mover’s Distance may not emerge. However, measures
like cosine similarity cannot grasp inconsistencies like the one
in Listing 1. Given the higher flexibility of Word Mover’s
Distance, we think it is worth keeping a semantic under-
standing of natural language to face complex code-comment
inconsistencies that exist in practice.

upDoc’s mapping between methods and doc comments
accurately reflects inconsistencies in 90% of the cases.

V. ONGOING AND FUTURE WORK

A. Improving Parsing and Mapping

We now list improvements that would allow upDoc to better
exploit all the useful information conveyed by both the natural
language comments and the code, thus making the mapping
between them more precise and reliable.

We plan to enhance our current bag-of-words
representations to include the original non-split identifiers
appearing in the comment text and in the source code,
increasing the mapping robustness as implemented in [15].We
also plan to add a constituency parsing step to split
compound sentences and construct a more fine-grained
mapping. Moreover, we plan to add synonyms support both
using common English synonym sets like WordNet[17] and
software-specific ones like SWordNet[18]. At the same time
we can benefit from the coreference resolution facilities of the
CorefAnnotator component of CoreNLP [7], e.g., in cases like
one in Listing 1 in lines 2-3: “it” -> “graph”. We would also
include inline and block comments for method-level mapping
and investigate the efficiency of our technique in class-level
mapping. We also plan to support more kinds of AST nodes
for the mapping creation, starting with those considered
in [2]. Another immediate direction is the source code IR
enhancement with the information from control and data
flow analyses, which would allow to establish links between
different AST nodes. For example, in the code example
of the Listing 1 it would allow us to relate the variable g

and the method parameters graph1 and graph2, thus linking
the independent clause of the first sentence of the method
doc comment (“Checks if one of the graphs is from

unsupported graph type”) in the line 2 and the conditional
expression node in the lines 19-24.

B. Structural Change Extraction

Working with AST-based representation of the source code
allows us to filter out any purely syntactic changes (both for
comments and code), such as whitespaces and formatting edits.
We are primarily interested in detecting AST nodes that have
been deleted and modified in the change, as they are likely to
require a matching change in the existing comment text. Code

addition is not strongly associated with comment changes, but
rather with new comment addition if any [19], so detecting
changes with added AST nodes has a lower priority for us. We
will build the Change Extractor component of upDoc around
the source code differencing functionalities of the GumTreeDiff
framework [20] to benefit from the AST-based diffs of the
source code under change.

C. Inconsistency Detection

According to previous research studies, it is more likely that
a change in the code should have a corresponding change in
its documentation rather than the reverse [1], [21]. To detect
such inconsistencies we will combine a list of AST nodes that
are marked as modified or deleted in the source code diff,
and a list of related comment sentences for each AST node as
present in the mapping. Iterating through the related sentences
of the node under change we will check if all related sentences
are present in the diff and warn the programmer if not. In case
of code modification (or addition) upDoc will issue a warning
if the new code does not have any relation to the comment
text (e.g., common identifiers or domain terms). In the case
of code deletion upDoc will also report the lines in comment
that are most likely affected by the change.

D. Suggesting Fixes

Our final goal is to be able not only to notify the developer
about the mismatch, but also suggest a possible fix. We would
take advantage of the source code mining techniques devel-
oped for automatic comment generation based on code clone
analysis [22], and software changes guiding based on previous
change history [23]. We would build on these previous works
to produce a fix template set, and offer template filling
functionality for the concrete code snippets under change.

E. Technique Scalability and Evaluation

We would like to see how much effort it takes to adapt
our technique to other programming and natural languages.For
this latter task we would leverage the recent advances in
transfer learning. We also pursue several goals for enhancing
the experimental evaluation. The primary goal is to obtain a
few baseline performance rates for the different mapping gran-
ularity levels, starting with just the BoW mapping approach
presented in this paper. The second one is to scale up the
evaluation to more projects, and the full data set of [2] is of
great practical interest.

VI. RELATED WORK

Arnaoudova et al. [24] analyze linguistic antipatterns (LAs),
i.e., poor software documentation practices that result in code-
comment discrepancies. Aghajani et al. [3] show that LAs
lead to a 29% higher chance of introducing bugs, highlighting
the negative effect that outdated documentation has on code
quality. The Catcher tool [25] can detect API misuses that lead
to program crashes, and the study shows that such misuses are
often not correctly documented. In [26] the authors confirm
that “Developers prefer documentation that is correct, com-
plete, up to date, usable, maintainable, readable and useful.”



The above findings emphasize the need for tools that automate
and assist in comment updates during software evolution.

Zhou et al. [27] propose a first order logic-based approach
to detect code-comment inconsistencies in API documentation.
It limits its attention on documentation sentences and program
statements describing method exceptional behavior on variable
nullness, type errors, and value range limitation. Similarly, the
JavadocMiner tool [28] allows one to model code-comment
named entity relations with ontologies, and describes metrics
to evaluate comment quality, and its coherence with respective
source code. We see this line of work extremely valuable for
improving accuracy in code-comment matching, but for the
broader applicability of upDoc we aim not to rely on specific
heuristics or pattern-matching mechanisms.

Learning-based techniques can be used for bidirectional
code-comment modeling and inference. Phan et al. [29]
present a preliminary evaluation of an approach for bidi-
rectional inference of behavioral exception conditions and
their documentation based on statistical machine translation.
In [30] Liu et al. propose a machine learning-based method for
detecting outdated block and line comments in method bodies
during code changes.

Several research lines exploit the bidirectional correspon-
dence of code and comments in different software engineering
activities, such as testing (@tComment [16], JDoctor [15]),
clone/software similarity detection (CLCDSA [31], CroL-
Sim [32]), code comprehension (APIBot [33], MULAPI [34]),
and traceability links recovery [35]. Such techniques need the
documentation to be reliable and well-maintained, thus we
believe they would benefit from tools like upDoc.

VII. CONCLUSION

This paper outlines a techinique to automatically detect
code-comment inconsistencies during code evolution based
on a mapping between the source code and its comments.
We have implemented a prototype tool upDoc and evaluated
the accuracy of its core component, the mapping module,
on a dataset of code-comment inconsistency fixes. Our re-
sults show good reliability of the mapping method to detect
code-comment inconsistencies. We believe this work sets a
foundation for future efforts in assisted maintenance of code-
comment consistency for many software engineering tasks.
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