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We provide a novel definition of quantitative information flow, called transmissible

information, that is suitable for reasoning about informational-theoretically secure (or

non-cryptographic) systems, as well as about cryptographic systems with their

polynomially bounded adversaries, error probabilities, etc. Transmissible information

captures deliberate communication between two processes, and it safely

over-approximates the quantity of information that a process unintentionally leaks to

another process.

We show that transmissible information is preserved under universal composability,

which constitutes the prevalent cryptographic notion of a secure implementation. This

result enables us to lift quantitative bounds of transmissible information from simple

ideal functionalities of cryptographic tasks to actual cryptographic systems.

We furthermore prove a connection between transmissible information in the

unconditional setting and channel capacity, based on the weak converse of Shannon’s

coding theorem. This connection enables us to compute an upper bound on the

transmissible information for a restricted class of protocols, using existing techniques

from quantitative information flow.

1. Introduction

Preserving the confidentiality of sensitive data is one of the fundamental goals of many

security protocols. However, in some scenarios, the partial release of sensitive data is

acceptable, or even unavoidable: a password checker necessarily reveals some information

about the secret password, the length of a ciphertext reveals partial information about

the plaintext, etc. Intuitively, these protocols are still secure as long as only a small

quantity of secret information is revealed. For example, entering a wrong password in

the password checker allows an attacker to exclude a single password candidate, which

reduces the attacker’s initial uncertainty about the secret password by a small quantity.

For more sophisticated programs, it is a challenge to establish quantitative bounds on

the secret information they reveal.

There has been remarkable progress on defining and computing bounds for the amount

of leaked information for different models of computation (see the section on related

work). However, the existing approaches are not directly applicable for quantifying

information-flow in cryptographic systems because they use information-theoretic no-

tions of entropy as a measure for quantifying leakage. The security guarantees associ-



ated with those measures hold for attackers with unbounded computational resources;

they are of limited use for analyzing protocols with cryptographic primitives and their

complexity-theoretic security guarantees: On the one hand, information-theoretic ap-

proaches would vastly over-approximate the amount of information leaked by modern

cryptographic primitives, e.g., although a public-key encryption intuitively does not re-

veal any information about its plaintext, from an information-theoretic perspective it

already contains all information about the plaintext. On the other hand, cryptographic

messages might intuitively carry more information than expected from the perspective of

information theory; e.g., if a computationally bounded adversary knows a certain number

of public-key encryptions, but not the plaintexts and the secret key, then no information

about these plaintexts is revealed. However, if the adversary receives the decryption key

during a protocol run, he can decrypt all ciphertexts. In this way, releasing a small amount

of information in the information-theoretic sense (the key) may trigger the release of a

large amount of information in the computational sense (the plaintexts). Any meaningful

attempt to define quantitative information flow in cryptographic settings must account

for such scenarios, and any such definition should be general enough to reason about

common cryptographic settings.

Furthermore, the definition of quantitative information flow for cryptographic settings

should be complemented with a general methodology for establishing quantitative bounds

on the information flow. This methodology should link this definition to information-

theoretic foundations and their tools for quantifying information flow, and provide suit-

able techniques for concisely determining this quantification for cryptographic systems

with all their idiosyncrasies, such as error probabilities, computational restrictions, their

reactive execution with surrounding protocols, etc.

1.1. Our contribution

We make the following contributions to this problem space: (1) We define transmis-

sible information, a novel notion of quantitative information flow for general reactive,

cryptographic settings; (2) we show that transmissible information is preserved under

universal composability, which constitutes the prevalent cryptographic notion of a se-

cure implementation; (3) we prove a connection between transmissible information and

the information-theoretic notion of channel capacity. We moreover illustrate by means

of a simple, public-key encryption-based example how these results can be combined for

deriving quantitative security guarantees.

Novel definitions of quantitative information flow. We present a definition of information

flow, which we call transmissible information. The definition has an unconditional case

that is suitable for reasoning about information-theoretically secure or non-cryptographic

systems, as well as a computational case that allows for reasoning about cryptographic

settings with their polynomially bounded adversaries, error probabilities, etc. Our defi-

nition captures the maximal probability that one process (called the high user) correctly

transmits a given number of bits to another process (called the low user), using the

considered cryptographic protocol as a means of communication. Roughly, we maximize
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over all possible different behaviors of the high user and the low user, and we deter-

mine the probability that the low user correctly determines the bits that were initially

only given to the high user. Imposing no computational constraints on the behaviors of

these users yields the unconditional case of the definition; the complexity-theoretic case

of the definition is obtained by only maximizing over those behaviors that belong to

the considered complexity class; e.g., we require both users to run in probabilistic poly-

nomial time. Transmissible information captures deliberate communication between the

two processes, and it safely over-approximates the quantity of information that a process

unintentionally leaks to another process. In this way, transmissible information can be

used for expressing security against covert channels and against information leaks.

Preservation under universal composability. We show that transmissible information in

both unconditional and computational settings is preserved under universal composabil-

ity, which constitutes the prevalent cryptographic notion of a secure implementation:

since the invention of the UC framework (Can01) and the related Reactive Simulata-

bility (RSIM) framework, a vast amount of subsequent works have built upon these

frameworks to establish the security of novel cryptographic constructions by means of

comparing them to corresponding ideal functionalities. Preservation means that securely

implementing an ideal functionality by a cryptographic primitive in the sense of uni-

versal composability does not increase the probability of correctly transmitting a given

number of bits in the unconditional case, and only by a negligible quantity in the compu-

tational case. This preservation theorem makes it substantially easier to place a bound

on the quantity of transmissible information in a cryptographic system, since universal

composability helps to eliminate cryptography-related details such as error probabilities

and complexity-theoretic restrictions. Moreover, the preservation theorem allows us to di-

rectly benefit from the increasing number of ideal functionalities that have been shown to

have a secure cryptographic implementation, and enables the seamless integration of our

definition with state-of-the-art compositional security proofs of cryptographic protocols.

Relationship to channel capacity. Third, we use the weak converse of Shannon’s cod-

ing theorem to establish a formal connection between transmissible information in the

unconditional setting and channel capacity. This connection enables us to compute an

upper bound on the transmissible information for a restricted class of protocols, using

existing automated techniques from quantitative information flow. Since a bound on

transmissible information for unbounded settings is by definition also a bound for com-

putational settings, this result enables existing techniques from information theory to

derive meaningful computational bounds as well.

1.2. Outline

Section 2 gives an overview on how the results established in the subsequent sections

can be combined to obtain bounds on the transmissible information for cryptographic

settings. Section 3 briefly reviews the Sequential Probabilistic Process Calculus (SPPC),

which we use to state our definitions and results. Section 4 presents the definition of

transmissible information and shows that it is preserved under universal composability.
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input msg ∈ {0, 1}≤m

begin

b← L

if b = 0

output loss

else

output Epk (msg)

return

end

Fig. 1. The example protocol
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Section 5 presents the connection between transmissible information in the unconditional

setting and channel capacity. Section 6 shows in detail how the example protocol can be

analyzed using our results. Section 7 discusses related work. Section 8 concludes.

2. Illustrative Example

In this section, we illustrate how the notion of transmissible information proposed in this

paper can be used to leverage existing techniques from quantitative information flow for

the quantitative analysis of cryptographic protocols. For this, we analyze the following

simple example protocol. Consider an agent A whose only means of communication is

a secure (i.e. encrypted) channel to an agent B. Consider further an agent C who can

observe a certain fraction of the encrypted packets sent from A to B. Suppose that –

although there is no legitimate communication channel between A and C – A wants to

transmit a message to C. A can encode the message to C by varying the lengths of the

messages sent to B. As C can observe the ciphertexts, he can estimate these lengths and

hence decode the message. Intuitively, this is the only possible way for A to transmit

information to C, since the encryption will hide everything except for the lengths of the

plaintexts.

We model the channel from A to C as the protocol depicted in Figure 1. The protocol

expects as input a message msg of length at most m and outputs either loss or the

encryption of msg under a public key pk ; we assume that the corresponding secret key is

only known to the protocol. E denotes a semantically secure public key encryption, i.e.,

an encryption scheme that is secure under passive attacks (GM84). The command b← L

denotes that b is chosen according to a distribution L; the probability of choosing b = 0

corresponds to the probability of a packet not being observed by C, which we denote by

ploss . Our goal is to derive a limit on the information that can be transmitted from A

to C. We provide such a limit in terms of the probability p of C correctly recovering l

bits from n runs of the program. For illustration purposes, we choose l = 1000, n = 500,

m = 1024, and ploss = 0.99. The analysis of the protocol proceeds in two main steps,
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which we illustrate below; these two steps exploit results that we formalize and prove in

the remainder of this paper.

In the first step, we determine the channel capacity of the core protocol – a stripped-

down version of the initial protocol – where all encryption operations are replaced by

constants corresponding to different message lengths; i.e., the protocol outputs the length

|msg | ∈ {1, . . . ,m} instead of Epk (msg). We use this core protocol to determine the

information-theoretic characteristics of the original protocol. The core protocol corre-

sponds to the information-theoretic channel of Figure 2, where a message msg is first

mapped to |msg | and then, with probability ploss , to loss. The left-hand side of the chan-

nel is deterministic, and the right-hand side of the channel constitutes an m-ary erasure

channel, which is known to have a capacity of c := (1− ploss) logm, see (DG06; CT06).

For ploss = 0.99 and m = 1024 in our example, the channel’s capacity thus amounts to

0.1. The data processing inequality then shows that this capacity bound remains valid

even if we perform arbitrary computations with the channel’s output, as long as they

are independent of the channel’s input. In particular, this holds true if we replace i by

Epk (0i), i.e., by the encryption of a string of zeros of length i. In this work, we establish

a theorem that uses capacity to bound the probability p that l bits can be transmitted

in n runs:

p ≤ c · n+ 1

l
For our parameters, we obtain p ≤ 0.051 for transmitting l = 1000 bits in n = 500

protocol runs. Channel-capacity based bounds on the transmissible information are safe

(but not necessarily tight) over-approximations of the transmissible information, see also

Section 5. Moreover, they can be derived using existing tools from information theory

and quantitative information flow.

In the second step, we show how this information-theoretic bound translates to a

setting with real payload data and computationally bounded adversaries. This requires us

to formalize and relate the notions of transmissible information in information-theoretic

and computationally bounded settings. After that, we exploit the semantic security of the

encryption scheme to conclude that Epk (0|msg|) and Epk (msg) are indistinguishable for

probabilistic polynomial-time attackers. As a consequence, using the compositionality of

our underlying framework, a protocol that outputs Epk (0|msg|) is indistinguishable from a

protocol that outputs Epk (msg). In this work, we establish a novel preservation theorem

that shows that transmissible information is preserved under universal composability.

This means that the probability of correctly transmitting l bits in n protocol runs is

upper bounded by p plus a negligible quantity in the security parameter.

3. A primer of SPPC

In this section, we briefly review the Sequential Probabilistic Process Calculus (SPPC)

(DKMR08). SPPC is a calculus for reactive systems with a probabilistic execution model,

providing universal composability properties while including computational aspects as

needed for cryptography. SPPC provides a compact syntax for describing communicating

machines and their interaction, and it is flexible enough to concisely capture different
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security notions, without the notational clutter of more concrete models. Its simplicity

and its holistic approach to defining security properties makes SPPC an ideal foundation

for our definition of quantitative information flow in cryptographic settings, which we

present in Section 4. While our results will be formulated over SPPC, they can be easily

recast in other reactive security models such as the Reactive Simulatability (RSIM)

framework (BPW07) or the Universally Composable (UC) framework (Can01). All details

and extended features of SPPC that are not relevant for our results are omitted here;

they can be found in (DKMR08).

3.1. Review of the Syntax

Intuitively, SPPC describes interacting probabilistic polynomial-time machines. Every

such machine is a black-box that receives inputs, performs polynomially-bounded com-

putation and then produces outputs. Inputs are received on input channels and outputs

are sent through output channels. A system of interacting machines is then simply a set

of individual machines where any input channel of one machine can be connected di-

rectly to an identically named output channel of another machine. The manner in which

these machines are wired together is uniquely determined by the channel names, yielding

a valid set of machines. Two machines are compatible if they have the same channel

names. We permit output channels that are not connected to any input channels; these

correspond to overall (external) outputs of the system. The execution of a system of

machines is defined sequentially: the currently active machine makes its transition, the

output is transmitted to the connected machine, which now is considered active, etc. One

machine is additionally marked as the designated master process that is triggered if the

execution does not proceed, e.g., because the currently active machine does not produce

any output.

More formally, SPPC models every machine (interacting entity) as a process P. Such

a process corresponds to, e.g., a description of an interactive Turing machine or I/O

automaton. A process P can be parameterized by a security parameter and free variables

~x = x1, . . . , xi that represent initial inputs (auxiliary information) to the process. We

write Pk(~a) to denote the process obtained from the process P(~x) by replacing the

variables ~x by values ~a and using k as the security parameter. We write Pr[Pk(~a) ~b] to

denote the probability that process P outputs ~b when run on security parameter k and

input ~a. In the following, we often omit the security parameter for readability.

For a set of valid processes P1, . . . ,Pn, we write P1 � . . . � Pn to denote the combined

system of these machines. Instead of interpreting P1 � . . . � Pn as a system of n ma-

chines, one can consider this system to be an identically behaving single machine, which

internally consists of n submachines. We write P1 � . . . � Pn
Pi ~b to denote the event

that process Pi outputs ~b (as part of the overall output) in the execution of the system.

3.2. Defining Universal Composability

Universal composability constitutes the cryptographic notion that a process P securely

realizes another process Q. Intuitively, it formalizes the idea that whatever might happen
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to a surrounding protocol interacting with process P can also happen to the protocol

interacting with process Q, under the assumption that both P and Q offer the same

set of channels to which the protocol can connect. More precisely, we assume that the

channels of P and Q are partitioned into IO channels and network channels. Then P
and Q are required to have identical IO channels; we speak of IO-compatible processes P
and Q in this case. To reflect that Q is an idealized version of P, one often says that Q
is an ideal functionality, and writes F instead of Q. More precisely, we will require that

for every process A, called the real adversary, there exists a process I, called the ideal

adversary, such that E � A � P and E � I � F are computationally indistinguishable for

every process E , called the environment. Intuitively, E should not be able to distinguish

if it is interacting with the process and the real adversary, or with the ideal functionality

and the ideal adversary. By definition of processes, the adversary A and the environment

E can interact, similarly for I and E .

To formally define universal composability, we need to define the set of valid adversaries

and valid environments of a given process Q; these are processes that adhere to certain

syntactic constraints such as only connecting to certain classes of channels. We write

Adv(Q) to denote the set of processes that constitute valid adversaries of Q: Adv(Q)

consists of all non-master processes that are valid for Q, and that do not connect to the

IO channels of Q. We write AdvP(Q) to denote the set of all processes P ′ ∈ Adv(Q)

such that P ′ � Q and P are compatible. Similarly, we write Env(Q) to denote the set of

processes that constitute valid environments of Q: Env(Q) consists of all master processes

that are valid for Q, that do not connect to the network channels of Q, and that contain

a distinguished output channel of range {0, 1} for outputting the final result of the

overall computation. Intuitively, this final result denotes the environment’s decision about

whether is interacting with the real process or the ideal functionality.

Definition 1 (Indistinguishability). Two systems of processes P(~x) and Q(~x) are

called indistinguishable, written P(~x) ≡ Q(~x), iff for every polynomial p(n) there exists

k0 such that

|Pr[Pk(~a) 1]− Pr[Qk(~a) 1]| ≤ 1

p(k)

for every k ≥ k0 and for every tuple ~a of bitstrings.

We will now define universal composability. Recall that the final output of each of these

systems is the value that E writes on its distinguished output channel.

Definition 2 (Universal Composability). Let P be a process and F an ideal func-

tionality.

— We say that P securely realizes F computationally, written UCcomp(P,F) iff P and F
are IO-compatible, and for every probabilistic polynomial-time A ∈ Adv(P) (called

the real adversary) there exists a probabilistic polynomial-time I ∈ AdvA�P(F) (called

the ideal adversary) such that E � A � P ≡ E � I � F for every probabilistic

polynomial-time E ∈ Env(A � P) (called the environment).

— We say that P securely realizes F perfectly, written UCperf(P,F) if the above state-
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ment holds as well if A, I, and E are not required to run in probabilistic polynomial-

time, and if indistinguishability is replaced by equality of probability distributions.

One trivially obtains that UCperf(P,F) implies UCcomp(P,F) for arbitrary processes P
and F .

4. Quantifying Transmissible Information in Reactive Systems

In this section, we provide a notion of confidentiality that captures the amount of infor-

mation that can be transmitted via an arbitrary reactive system (expressed as a process

in SPPC). The definition is suited to reasoning about both computationally unbounded

and computationally bounded settings. We show that our definition has universal com-

posability features: If an ideal functionality allows the transmission of l bits with at most

a certain probability, then any process that securely realizes this functionality allows the

transmission of l bits with at most the same probability, up to a negligible error. This

compositionality property is key for modular analysis: it allows for analyzing transmis-

sible information of simple ideal functionalities, and for automatically inferring results

about the transmissible information for real, cryptographic systems, which are typically

much more difficult to analyze.

4.1. Defining Transmissible Information

To define the quantity of transmissible information of an arbitrary process P, we assume

two users, called high and low. We provide the high user with a number l of secret bits

that he tries to transmit to the low user via P. Intuitively, we say that P allows for

transmitting l bits from high to low, if there exist two processes (representing the high

and low users, respectively) that connect to P and behave as follows: First, the high

user chooses l random bits. Then high and low users start interacting with P (but not

with each other). Intuitively, we say that P allows for transmitting l bits from high to

low, if after interacting with P, the low user can successfully output the l bits chosen

by the high user (with a certain probability). The advantage of this definition is that it

can be used to reason about transmissible information in various computational settings;

e.g., we can consider arbitrary unbounded users, or require them to run in probabilistic

polynomial time.

To cast this definition in SPPC, let Γ denote a partition of P’s IO channels into high

and low; we say that Γ is an IO partition of P. We model the high user and the low user

as an environment process that is split in two parts EH and EL, which each connect to

a given process P only through the respective channels in Γ. In order to ensure that EH
and EL can only communicate via P, we additionally require that they do not share a

common channel. More formally, we write EnvΓ(P) to denote the set of pairs of processes

that constitute valid split-environments of P: EnvΓ(P) consists of all pairs (EH , EL) such

that EH � EL ∈ Env(P), EH connects to the high channels in Γ, EL connects to the low

channels in Γ, and the only unconnected channel of EH and EL is the distinguished overall

output channel, which belongs to EL.
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We are now ready to define the quantity of transmissible information in arbitrary

reactive systems. The definition considers unbounded (perfect) as well as probabilistic

polynomial-time (computational) adversaries and environments.

Definition 3 (Transmissible Information). Let P be a process, Γ an IO partition of

P, and p : N→ R≥0 a function that maps into the nonnegative reals.

— We say that P perfectly allows the transmission of l bits with probability at most p,

written P �Γ,perf
l p, if for every A ∈ Adv(P) and for every (EH , EL) ∈ EnvΓ(A � P)

we have

Pr[~a = ~b : ~a
r←− {0, 1}l, (EH(~a) � EL � A � P)

EL ~b] ≤ p(k),

where k denotes the implicit security parameter.

— We say that P computationally allows the transmission of l bits with probability at

most p, written P �Γ,comp
l p if, for every probabilistic polynomial-time A ∈ Adv(P)

and for every probabilistic polynomial-time EH and EL such that (EH , EL) ∈ EnvΓ(A �
P), there exists a negligible function ε such that

Pr[~a = ~b : ~a
r←− {0, 1}l, (EH(~a) � EL � A � P)

EL ~b] ≤ p(k) + ε(k),

where k denotes the implicit security parameter.

The definition of transmissible information thus captures the following situation: First, l

bits are chosen uniformly at random, and are subsequently given to EH (as the variable

~a). Second, the reactive system (EH(~a) � EL � A � P) is executed, and the probability is

considered that EL correctly outputs these l bits, i.e., that the event ~a = ~b occurs. This

probability should be bounded by p(k) for all valid adversaries and split-environments.

The following two simple lemmas serve as a sanity check of this definition: (1) the prob-

ability of transmitting l bits cannot be increased by switching from an unbounded to a

computationally bounded setting; (2) the probability of transmitting l+ 1 bits can be at

most as large as the probability of transmitting l bits.

Lemma 1. Let P be a process, Γ an IO partition of P, and p : N → R≥0 a function.

Then P �Γ,perf
l p implies P �Γ,comp

l p.

Proof. Every valid adversary A ∈ Adv(P) and every valid split-environment (EH , EL) ∈
EnvΓ(A � P) in the computational case are also a valid adversary and a valid split-

environment in the unbounded (perfect) case, respectively. Hence Pr[~a = ~b : ~a
r←−

{0, 1}l, (EH(~a) � EL � A � P)
EL ~b] ≤ p(k) by assumption. The claim follows using

the negligible function ε(k) := 0.

Lemma 2. Let P be a process, Γ an IO partition of P, and p : N → R≥0 a function.

Then P �Γ
l p implies P �Γ

l+1 p. This holds both for �perf and �comp.

Proof. Assume that the process P does not allow the transmission of l + 1 bits with

probability at most p (either perfectly or computationally). Hence there exists a (prob-

abilistic polynomial-time) adversary A ∈ Adv(P) and (probabilistic polynomial-time)

EH and EL with (EH , EL) ∈ EnvΓ(A � P) such that we have q(k) > p(k) for some k in
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the perfect case, and q(k) > p(k) + 1
pol(k) for some polynomial pol for infinitely many

values of k in the computational case, respectively, where q(k) := Pr[~a = ~b : ~a
r←−

{0, 1}l+1, (EH(~a) � EL � A � P)
EL ~b].

We show that in this case we obtain a contradiction to the assumption of a probability

bound of P for the transmission of l bits. To this end, define the process E ′H as follows:

given an l-bit input vector ~a′, it chooses a bit q at random and behaves as EH(~a′||q)
does, i.e., it interacts with P as EH(~a′||q) would. Similarly, define E ′L as the process that

behaves as EL does, except that E ′L only outputs the first l bits of the output ~b of EL,

i.e., the last bit s is discarded. Since EH and EL run in probabilistic polynomial-time, so

do E ′H and E ′L. By construction of E ′H and E ′L, we have (E ′H , E
′

L) ∈ EnvΓ(A � P) and

Pr[~a′ = ~b′ : ~a′
r←− {0, 1}l, (E

′

H(~a′) � E
′

L � A � P)
E
′
L ~b′]

= Pr[~a′ = ~b′ : ~a′
r←− {0, 1}l, q r←− {0, 1}, (EH(~a′||q) � EL � A � P)

EL (~b′, s)]

≥ Pr[~a = ~b : ~a
r←− {0, 1}l+1, (EH(~a) � EL � A � P)

EL ~b]

= q(k) .

Since q(k) > p(k) for some k in the perfect case, and q(k) > p(k) + 1
pol(k) for some

polynomial pol for infinitely many values of k in the computational case, we obtain a

contradiction to the transmission bound for l bits. This concludes the proof.

Lemma 2 asserts that the transmission probability does not increase if one tries to

transmit more bits. This might seem weak a statement at first glance, since one might

expect this probability to strictly decrease once the number of bits increases. For arbitrary

reactive systems, however, this expectation is flawed: consider a system that keeps track

of prior invocations; once l bits have been transmitted, it simply behaves like a lossless

channel, immediately delivering all inputs from the high user to the low user. For this

system, the probability of transmitting l′ bits is the same for all l′ ≥ l.

4.2. Preservation of Transmissible Information under Universal Composability

We now show that our notion of transmissible information is preserved under universal

composability. More precisely, consider two processes P1 and P2 such that P1 securely

realizes P2. Then we show that if P2 allows the transmission of l bits with probability at

most p, then P1 allows the transmission of l bits with probability at most p as well.

Theorem 1 (Preservation of Information Flow). Let P1 and P2 be two processes,

Γ an IO partition of P1, and p : N→ R≥0 a function. Then we have

— If P2 �Γ,perf
l p and UCperf(P1,P2), then P1 �Γ,perf

l p.

— If P2 �Γ,comp
l p and UCcomp(P1,P2), then P1 �Γ,comp

l p.

Proof. Assume for contradiction that P1 �Γ,x
l p does not hold, where x ∈ {perf, comp}.

In the following, we use brackets to denote additional restrictions on processes in the case

x = comp. Hence there exists a (probabilistic polynomial-time) adversary A1 ∈ Adv(P1)
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and (probabilistic polynomial-time) processes EH and EL with (EH , EL) ∈ EnvΓ(A � P1)

such that we have q(k) > p(k) for some k in the perfect case, and

q(k) > p(k) +
1

pol(k)

for some polynomial pol for infinitely many values of k in the computational case, re-

spectively, where q(k) := Pr[~a = ~b : ~a
r←− {0, 1}l, (EH(~a) � EL � A1 � P1)

EL ~b].

Now UCx(P1,P2) implies that there exists a (probabilistic, polynomial-time) process

A2 ∈ AdvA1�P1
(P2) such that for every (probabilistic polynomial-time) environment

E ∈ Env(A1 � P1) we have

E � A1 � P1 ≡ E � A2 � P2. (1)

Consider the perfect case (x = perf). Then (1) means equality of probability distribu-

tions, i.e., E � A1 � P1 = E � A2 � P2. Since (EH , EL) ∈ EnvΓ(A1 � P1), we have that

EH � EL ∈ Env(A1 � P1). We thus in particular obtain

EH � EL � A1 � P1 = EH � EL � A2 � P2.

This shows Pr[~a = ~b : ~a
r←− {0, 1}l, (EH(~a) � EL � A2 � P2)

EL ~b] = q(k); since q(k) > p(k)

for some k, P2 �Γ,perf
l p does not hold.

Consider the computational case (x = comp). Since P2 �Γ,comp
l p holds, we know

that for every probabilistic polynomial-time A ∈ Adv(P2) and for every probabilistic

polynomial-time E∗H and E∗L such that (E∗H , E∗L) ∈ EnvΓ(A � P2), there exists a negligible

function µ such that Pr[~a = ~b : ~a
r←− {0, 1}l, (E∗H(~a) � E∗L � A � P2)

E∗L ~b] ≤ p(k)+µ(k). We

consider the adversary A2 ∈ AdvA1�P1(P2) ⊆ Adv(P2). Since (EH , EL) ∈ EnvΓ(A1 � P1),

we have that EH � EL ∈ Env(A1 � P1). Equation 1 immediately implies Env(A1 � P1) =

Env(A2 � P2) since otherwise the indistinguishability cannot even hold syntactically;

hence EH � EL ∈ Env(A2 � P2). We thus in particular obtain

Pr[~a = ~b : ~a
r←− {0, 1}l, (EH(~a) � EL � A � P2)

EL ~b] ≤ p(k) + ε(k)

for some negligible function ε.

Now consider the overall environment E in Equation 1 that behaves as EH at the high

ports of P2 and as EL at the low ports of P2. If the output of EL matches the input of

EH , i.e., if ~a = ~b, E outputs 1, and 0 otherwise. Since EH and EL run in probabilistic

polynomial-time, E runs in probabilistic polynomial-time.

We obtain |Pr[E � A1 � P1  1] − Pr[E � A2 � P2  1] ≥ 1
pol(k) − ε(k) for some

polynomial pol for infinitely many values of k, which is not negligible. This contradicts

Equation 1 and concludes the proof.

5. Computing Bounds On The Transmissible Information

In this section, we prove a formal connection between channel capacity and transmissible

information in the unconditional setting. To this end, we view processes as communication

channels in the information-theoretic sense and define their capacity. We prove a variant
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of the converse of Shannon’s coding theorem and use it to give upper bounds on the

probability of correct transmission in terms of the channel capacity. This connection

enables one to compute an upper bound on the transmissible information for a restricted

class of protocols, using existing automated techniques from quantitative information

flow. To begin with, we recall some basic information theory.

5.1. Basic Information Theory

Let A be a finite set and d : A→ [0, 1] a probability distribution. For a random variable

X : A → X we denote by Pr [X = x] the probability that X takes value x ∈ X , i.e.

Pr [X = x] =
∑

a∈X−1(x) d(a). We sometimes denote the corresponding distribution (of

type X → [0, 1]) by Pr [X].

The (Shannon) entropy (Sha48) of X is defined as

H(X) = −
∑
x∈X

Pr [X = x] log2 Pr [X = x] .

The entropy is a lower bound on the average number of bits required for representing the

results of independent repetitions of the experiment associated with X. Given another

random variable Y : A→ Y, one denotes by H(X|Y = y) the entropy of X given Y = y,

that is, with respect to the conditional distribution Pr [X|Y = y].

The conditional entropy H(X|Y ) of X given Y is defined as the expected value of

H(X|Y = y) over all y ∈ Y, namely,

H(X|Y ) =
∑
y∈Y

Pr [Y = y]H(X|Y = y) .

Entropy and conditional entropy are related by the equation H(XY ) = H(Y )+H(X|Y ),

where XY is the random variable defined as XY (a) = (X(a), Y (a)).

The mutual information I(X;Y ) of X and Y is defined as the reduction of uncertainty

about X when one learns Y , namely,

I(X;Y ) = H(X)−H(X|Y ) .

The mutual information is a symmetric function in X and Y ; it is 0 if and only if X and

Y are independent; and it is upper-bounded by min{H(X), H(Y )}.
A discrete channel is a conditional probability distribution Pr [Y |X] : X × Y → [0, 1].

Here, X models the input to the channel and Y the output. The capacity of the channel

Pr [Y |X] is defined as maxPr [X] I(X;Y ), where Pr [X] ranges over all distributions of

X. A channel is noiseless if the output is determined by the input, i.e. if H(Y |X) = 0.

A channel is lossless if the input is determined by the output, i.e. if H(X|Y ) = 0.

5.2. Channel Processes

A process P with IO partition Γ is a channel process if P’s communication behavior on the

high and low SPPC channels can be captured by a discrete channel in the information-

theoretic sense. More precisely, we require that P accepts only a finite set X of possible
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inputs on the high channels and produces only a finite set Y of possible outputs on the

low channels, and that there is a conditional probability distribution Pr [Y |X], with

Pr [Y = y|X = x] = Pr[P(x) y].

Additionally, P has to ignore all other communication. We define the capacity CapΓ(P)

of P as the capacity of the information-theoretic channel Pr [Y |X].

A process is an n-use channel process if it satisfies the requirements of a channel

process, but only accepts n inputs (and produces n outputs) before it terminates any

communication. We define the capacity of an n-use channel process as the capacity of

the corresponding channel process without any restrictions on the number of usages.

5.3. Information Theoretic Bounds on the Transmissible Information

In this section, we establish an upper bound on the probability that an n-use chan-

nel process P perfectly allows the transmission of l bits. To this end, we first state

three basic lemmas from information theory; their proofs can be found in (CT06).

The first lemma is Fano’s inequality, which provides a lower bound on the proba-

bility of error for arbitrary estimators. For the lemma, recall that random variables

X,Y, Z form a Markov chain, denoted by X → Y → Z, if Pr [X = x, Y = y, Z = z] =

Pr [X = x] Pr [Y = y|X = x] Pr [Z = z|Y = y]. In particular, the Markov property im-

plies that Pr [Z = z|Y = y] = Pr [Z = z|Y = y,X = x], i.e. the distribution of Z given

Y does not depend on X.

Consider now the special case where Z is an estimator forX, i.e. it is intended to recover

the value of X from Y . Fano’s inequality implies a lower bound on the probability of

error for any such estimator in terms of the conditional entropy H(Y |X).

Lemma 3 (Fano’s inequality). Let X → Y → X̂ be a Markov chain and let q =

Pr[X 6= X̂]. Then

1 + q log2 |X| ≥ H(X|Y ) .

The second lemma is the data processing inequality, which states that computation can-

not increase information.

Lemma 4 (Data processing inequality). Let X → Y → Z be a Markov chain. Then

I(X;Y ) ≥ I(X;Z) .

The third lemma states that the channel capacity is an upper bound on the mutual

information between sequence of inputs and outputs that are transmitted through the

channel.

Lemma 5. Let Y m be the result of passing Xm (i.e. m-tuples of values of a random

variable X) through a discrete channel Pr [Y |X] of capacity C. Then

I(Xm;Y m) ≤ mC .

We are now ready to prove the main result of this section, which is a lower bound on the
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transmission probability in terms of the channel capacity, the number of channel uses,

and the number of transmitted bits.

Theorem 2. Let P be an n-use channel process and Γ an IO partition of P. Then we

have

P �Γ,perf
l

CapΓ(P)n+ 1

l
.

Proof. The transmission process can be modeled as the Markov-chain

Z → Xm → Y m → Ẑ

with m ∈ {0, . . . , n}. Here, the random variable Z captures the experiment ~a
r←− {0, 1}l,

the random variables Xm and Y m capture the m ≤ n inputs and outputs of the n-

use channel process P, respectively, and Z → Xm and Y m → Ẑ capture the behavior

of EH and EL, respectively. The Markov property is satisfied because (i) the high and

low processes of the split environment (EH , EL) ∈ EnvΓ(A � P) do not share a network

channel, and because (ii) P is a n−use channel process and hence does not participate

in communication with the adversary. That is, the dependency between the inputs to EH
and the outputs of EL is entirely captured by the m inputs and outputs of P.

A calculation similar to (CT06), pp 206, shows

H(Z) = H(Z|Ẑ) + I(Z; Ẑ) (2)

≤ H(Z|Ẑ) + I(Xm;Y m) (3)

≤ H(Z|Ẑ) +mC (4)

≤ 1 + q l +mC , (5)

where (2) is the definition of the mutual information, (3) follows from Lemma 4, (4)

follows from Lemma 5, and (5) follows from Lemma 3 and H(Z) = l. Here, q denotes

the probability of an decoding error, i.e. q = Pr[Z 6= Ẑ]. Consequently, we have

p ≤ nC + 1

l

for the probability p = 1− q of correctly transmitting l bits using P.

Theorem 2 is a variant of the so-called weak converse of Shannon’s coding theorem. It

differs from the one given in (CT06) in that it does not assume deterministic encoders

or decoders and in that it abstracts away from the actual code and its rate. The coding

theorem shows that, for any fraction l
n < C, the probability of correctly transmitting

l bits can be arbitrarily close to 1 if n is sufficiently large. This result shows that the

bound of Theorem 2 can become tight for large n.

For small values of n and l, however, the information-theoretic bounds given by The-

orem 2 are not necessarily tight: for the example of the binary erasure channel and

n = l = 1, Theorem 2 yields a bound of p ≤ 1.5. A direct calculation shows that in

reality p = 0.5 + 0.5 · 0.5 = 0.75. However, for more complex systems and for larger

parameters n and l, such a direct computation of p may be too expensive.
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R Q P

CapΓ(R) ≤ c =⇒ CapΓ(Q) ≤ c

⇓
Q �Γ,perf

l p

⇓
Q �Γ,comp

l p =⇒ P �Γ,comp
l p

Fig. 3. Overview of the proof of Theorem 3.

5.4. Tools for Determining Channel Capacity

In Section 5.3 we have given bounds on the probability of perfectly transmitting in-

formation in terms of the channel capacity of n-use processes. The channel capacity

can be determined using a number of existing tools from information theory and quan-

titative information flow. For many important classes of strongly structured channels,

e.g., symmetric channels, erasure channels, deletion channels, and buffer channels, closed

expressions for the channel capacity are known, see e.g. (CT06; DG06) and references

contained therein. For channels given in terms of a conditional probability distribution

(e.g. represented as channel matrix) the channel capacity can be approximated using the

Blahut-Arimoto algorithm. A recent approach proposes sampling to estimate the channel

matrix from program code (CCG10).

A number of recent approaches enable the automatic computation of channel capacity

from program code. The key observation here is that the capacity of a channel of range Y
is upper-bounded by log2 |Y|. This observation is has been used, e.g. for (Low02) quanti-

fying channel capacity of CSP-processes. More recently, this result has served as a basis

for automating the computation of channel capacity by counting the number of reachable

states of a program. Existing approaches leverage techniques from automated verifica-

tion, such as model-checking, #SAT-algorithms, and abstract interpretation (BKR09;

KR10; HM10; MS11).

In combination with the techniques developed in this paper, these approaches can be

used for the formal analysis of the transmissible information of programs with crypto-

graphic primitives, as we will show next.

6. Formal Illustrative Example

In this section, we show how the techniques presented in this paper can be leveraged for

deriving quantitative security guarantees for protocols that contain cryptographic prim-

itives. The section serves as a formal counterpart to the illustrative example presented

in Section 2.

The Example Process. We analyze the process P shown in Figure 4 with IO partition

Γ = {cH , cL}. The process receives string inputs of length at most m bits on the high

channel cH and produces string outputs on the low channel cL. Internally, it uses a

public-key encryption scheme (Gen,E ,D).

Upon first activation, P generates a key pair (pk , sk) using the key generation function

15



input msg ∈ {0, 1}≤m on channel cH
begin

1 if first activation

2 (pk , sk) := Gen(1k) and i := 0

3 if i < n do

4 b← L

5 if b = 0

6 send(loss, cL)

7 else

8 send(Epk (msg), cL)

9 i← i + 1

10 od

end

Fig. 4. The process P

Gen(1k) and sets an invocation counter i to 0. P then first checks whether it has already

been invoked n times, and aborts in this case. Depending on the value of b, the process

either sends the message in encrypted form using the public key pk , or outputs loss. We

denote the probability of b = 0 according to distribution L by ploss . Finally, the invocation

counter i is incremented. We claim the following theorem concerning the transmissible

information of process P.

Theorem 3. If (Gen,E ,D) is a semantically secure public-key encryption scheme, then

P �Γ,comp
l

n(1− ploss) logm+ 1

l
.

The proof proceeds in three major steps, which we describe in detail below. The overall

proof structure is depicted in Figure 3. To increase readability, we did not instantiate

the values of p and c in this figure.

Determining the Capacity of a Stripped-down Version R of P. As the first step

of our analysis, we determine the information-theoretic characteristics of P. In Figure 3,

this corresponds to the statements right below the line.

For this, we proceed in two sub-steps, which are formalized by Lemmas 6 and 7 below.

We define two processes R and Q as follows. R is obtained from P by replacing the com-

mand send(Epk (msg), cL) in Line 8 of Figure 4 by the command send(|msg |, cL), where

|msg | ∈ {1, . . . ,m} represents the message length; Q is obtained from P by replacing the

command send(Epk (msg), cL) in Line 8 by the command send(Epk (0|msg|), cL).

Lemma 6. The process R is an n-use channel process with

CapΓ(R) = (1− ploss) logm.

Proof. To see that R is an n-use channel observe that, upon the first activation, i is

set to 0, and that it is increased for each use of the channel until i ≥ n. For determining

the capacity of R observe that, with probability 1 − ploss , R sends the length of the
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inputs received on cH to cL, and that R outputs loss otherwise. This behavior precisely

corresponds to the m-ary erasure channel (see also the picture in Section 2), which is

known to have capacity (1− ploss) logm, see (DG06; CT06).

The data processing inequality informally states that arbitrary computation does not

increase information. In particular, the channel capacity does not increase by replacing

every i ∈ {1, . . . ,m} with the encryption Epk (0i).

Lemma 7. The process Q is an n-use channel process with

CapΓ(Q) ≤ (1− ploss) logm.

Proof. Let X → Y with X = {0, 1}≤m and Y = {0, . . . ,m, loss} represent the channel

implemented by R, and let Y → Z denote the channel defined by loss 7→ loss and i 7→
Epk (0i), for all i ∈ {1, . . . ,m}. Then X → Y → Z represents the channel implemented

by Q. The data processing inequality (Lemma 4) shows that I(X;Y ) ≥ I(X;Z), from

which the claim follows.

Translating Capacity to Reactive Contexts. As the second step of our analysis, we

transform the bounds on the capacity of Q into bounds on the transmissible information

of Q in the computational setting. This corresponds to the vertical proof chain in the

middle of Figure 3.

Lemma 8. For the process Q, we obtain

Q �Γ,comp
l

n(1− ploss) logm+ 1

l
.

Proof. We apply Theorem 2 to the result of Lemma 7 to obtain Q �Γ,perf
l (n(1 −

ploss) logm+ 1)/l. The claim then follows from Lemma 1.

Preservation of Transmissible Information Finally, it remains to be shown that

P �Γ,comp
l

n(1− ploss) logm+ 1

l
.

Since we already proved that Q �Γ,comp
l (n(1− ploss) logm+ 1)/l holds, the preservation

theorem (Theorem 1) immediately yields the desired result, provided that we can prove

that UCcomp(P,Q) holds:

Lemma 9. If (Gen,E ,D) is a semantically secure public-key encryption scheme, then

UCcomp(P,Q).

Proof. Our proof of UCcomp(P,Q) follows the standard lines of proofs of universal com-

posability: we first isolate the cryptographic part of the process and use compositionality

to obtain the desired property for the overall process.

To this end, we first rewrite P into a process P’ that interacts with a suitable encryp-

tion subprocess instead of computing encryptions itself. We consider a real encryption

subprocess EReal and a simple ideal functionality EIdeal of public-key encryption. We show
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input msg ∈ {0, 1}≤m on encin
1 begin

2 if first activation

3 (pk , sk) := Gen(1k)

4 send(Epk (msg), encout)

end

Fig. 5. The real encryption

functionality EReal

input msg ∈ {0, 1}≤m on encin
1 begin

2 if first activation

3 (pk , sk) := Gen(1k)

4 send(Epk (0|msg|), encout)

end

Fig. 6. The ideal encryption

functionality EIdeal

input msg ∈ {0, 1}≤m on channel cH
begin

1 if first activation

2 (pk , sk) := Gen(1k) and i := 0

3 if i < n do

4 b← L

5 if b = 0

6 send(loss, cL)

7 else

8 send(msg , encin)

9 receive(x, encout)

10 send(x, cL)

11 i← i + 1

12 od

end

Fig. 7. The rewritten process P ′

that P ≡ P ′ � EReal and Q ≡ P ′ � EIdeal, i.e., P ′ behaves as P or Q, respectively, depend-

ing on whether the real or the ideal encryption subprocess is used. Finally, we exploit

the semantic security of the encryption scheme to show that UCcomp(EReal, EIdeal). The

composition theorem then implies UCcomp(P,Q).

Let the simple ideal functionality EIdeal for public-key encryption be defined according

to Figure 6. EIdeal expects inputs on a channel encin and produces outputs on channel

encout . In its first activation, EIdeal generates a key pair (pk, sk) using Gen(1k). Upon

input msg , EIdeal outputs Epk (0|msg|). EReal is defined in Figure 5. It is identical to EIdeal
except that it outputs Epk (msg) instead of Epk (0|msg|). The rewritten process P ′ differs

from P only in Line 8 of Figure 4: instead of computing Epk (msg) itself, it sends msg

on channel encin and expects on answer x on channel encout , which it then outputs on

channel cL. For completeness, the definition of P ′ is given in Figure 7.

Showing the Universal Composability Relation By construction, we obtain that P ≡
P ′ � EReal and Q ≡ P ′ � EIdeal, since P ′ is just a syntactic rewriting of both processes

when calling subprocesses EReal and EIdeal, respectively. Moreover, one easily shows the
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following lemma that asserts that EReal securely realizes EIdeal computationally if the

encryption scheme is semantically secure.

Lemma 10. If (Gen,E ,D) is a semantically secure public-key encryption scheme, then

UCcomp(EReal, EIdeal).

The lemma follows immediately from the semantic security property, see (PW01).

In (PW01), universal composability is even shown for public-key encryption function-

alities that additionally offer decryption requests; these are answered by the ideal func-

tionality using table look-up.

Finally, since P ≡ P ′ � EReal, Q ≡ P ′ � EIdeal, and UCcomp(EReal, EIdeal) hold, the compo-

sition theorem of SPPC yields UCcomp(P,Q).

A concluding remark. We conclude this section by substantiating the claim from the

introduction that cryptographic messages might even carry more information than ex-

pected from the perspective of information theory. Consider a modification of process P
from Figure 4 with an additional Line 9.5: if i = n send(sk, cL); i.e., the decryption key

sk is additionally leaked in the n-th execution. Theorem 3 has shown that without di-

vulging the secret key sk in the n-th execution, the process P allows for computationally

transmitting l bits with probability at most p := n(1−ploss) log m+1
l . For the sake of illus-

tration, let ploss = 0 and m = 1. Thus p = 1/l, i.e., at most one bit can be transmitted

with probability 1. If sk is divulged in the n-th execution, however, even transmitting

l := n bits is possible with probability 1: EH enters its input ~a = (a1, . . . , an) of length n

bitwise into P; EL simply stores all encryptions ci := Epk(ai) it receives from P, decrypts

them to bi := Dsk(ci) after it received sk, and outputs ~b = (b1, . . . , bn). The correctness

property of the encryption scheme ensures ~a = ~b with probability 1; i.e., P allows n bits

to be correctly transmitted. Thus sending a (short) k-bit string sk triggers the additional

transmission of n− 1 bits, where n is an arbitrary polynomial in k.

7. Related Work

The first approach to use information-theoretic capacity for the analysis of covert chan-

nels is (Mil87). A connection between Shannon’s coding theorem and nondeterministic

notions of information flow has been made in (WJ90). A generalization of Shannon’s

theorem and its converse to finite-state channels can be found in (Gal68) and (Ari73),

respectively. The notion of channel capacity has been generalized to stateful channels

with feedback (Gra92); however, a coding theorem for this model of communication is

only conjectured. An approximation of channel capacity in terms of the number of pos-

sible behaviors of a CSP process is given in (Low02). In contrast to these works, our

definition of transmissible information can be used for expressing information flow in the

context of stateful reactive systems with cryptographic primitives; moreover, it enjoys an

explicit connection to channel capacity in the stateless case.

A study of conditions for the safe use of one-way functions in a programming language

is presented in (Vol00). The considered security property captures the secrecy of a spe-

cific secret rather than non-interference. The first investigation of non-interference in a
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computational setting can be found in (Lau01). The presented definition is non-reactive

and specific to encryption as the only cryptographic primitive. Definitions of information

flow that allow for complexity-theoretic reasoning about extended cases such as reactive

scenarios and additional cryptographic primitives can be found in (BP02; BP03; FR08;

FGR09). However, these definitions do not capture quantitative aspects of information

flow. The only prior work to combine quantitative information flow with computational

assumptions is (Bac05). This work proposes a measure of the transmitted information

based on the computational distance between two low-user observations under varying

high-user behaviors. This distance, however, was not shown to correspond to the amount

of transmitted bits, and no relationship to information theory was presented. Finally,

a recent study considers public-key cryptosystems in which information about the key

is leaked (KS10). The main result shows that complexity-theoretic security is not com-

promised if only a logarithmic (in the security parameter) number of bits are leaked. In

contrast, in this paper we consider the deliberate communication between two processes

rather than the unintended leakage of the key.

In Section 5.4, we have already discussed tools for determining the channel capacity of

programs. For completeness, we briefly present a number of closely related approaches. A

type system for statically deriving quantitative bounds on the information that a straight-

line program leaks is presented in (CHM05; CHM07). The type system is complemented

by a formula that characterizes the leakage of loops in terms of the loop’s output and the

number of iterations (Mal07). These approaches capture leakage with respect to a fixed

probability distribution on the inputs. It would be interesting to see whether they can be

extended to derive bounds on the channel capacity, which requires the quantification over

all input probability distributions. Finally, the dynamic analysis from (ME08) enables

one to derive bounds on the information that is leaked in a single run of the program.

The results are not directly applicable to the problem at hand, as this would require the

derivation of bounds that hold for the entirety of program runs.

Finally, we mention that the techniques developed in this paper can be used to check a

protocol’s adherence to a quantitative declassification policy. In particular, bounds on the

number of disclosed bits can be seen as a special case of restricting “what” information is

released (SS09). For a formal connection of qualitative (typically relational) specifications

of declassification policies and quantitative policies, see (BKR09; VC11).

8. Conclusion and Future Work

We have presented a novel definition of quantitative information flow, called transmissible

information, that is suitable for reasoning about information-theoretically secure or non-

cryptographic systems, as well as about cryptographic systems with their polynomially

bounded adversaries, error probabilities, etc. We have shown that transmissible informa-

tion is preserved under universal composability, which enables its seamless integration

with state-of-the art compositional security proofs of cryptographic protocols. We have

furthermore proven a connection between transmissible information in the unconditional

setting and channel capacity, based on the weak converse of Shannon’s coding theorem.

This connection enables us to compute an upper bound on the transmissible information

20



for a restricted class of protocols, using existing techniques for quantitative information-

flow analysis. Finally, we applied our results to derive quantitative security guarantees

for a simple public-key encryption-based example.

On the information-theoretic side, we consider it interesting future work to investigate

whether existing bounds for the transmission over finite-state channels (Kie74) can be

turned into bounds of transmissible information of more general cryptographic systems.

On the cryptographic side, a particularly interesting task is to mechanize security analyses

(such as the one we performed in Section 6), e.g., using transformational type systems.

We hope that advances on both sides will eventually lead to tools for the mechanized,

quantitative information flow analysis of more complex cryptographic systems.
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