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Résumé

Le paradigme du code mobile consiste à la distribution des applications,
telles que les applets ou les scripts Web, transferés à travers un réseau non
sécurisé comme Internet, qui sont executées dans des systèmes distants, par
exemple un ordinateur, un téléphone mobile ou un PDA (Assistant personnel).

Naturellement, cet environnement peut ouvrir la porte au déploiement
de programmes malveillants dans des plateformes distantes. Dans certains
cas, la mauvaise conduite du code mobile ne constitue pas un risque grave,
par exemple lorsque l’intégrité des données affectées par l’exécution n’est pas
critique ou lorsque l’architecture d’exécution impose de fortes contraintes sur
les capacités d’exécution du code non sécurisé.

Il y a cependant des situations dans lesquelles il est indispensable de vérifier
la correction fonctionnelle du code avant son exécution, par exemple lorsque la
confidentialité de données critiques comme l’information des cartes de crédit
pourrait être en danger, ou lorsque l’environnement d’exécution ne possède
pas un mécanisme spécial pour surveiller la consommation excessive des res-
sources.

George Necula a proposé une technique pour garantir aux utilisateurs la
correction du code sans faire confiance aux producteurs. Cette technique,
Proof Carrying Code (PCC) [49, 51], consiste à déploier le code avec une
preuve formelle de sa correction. La correction est une propriété inhérente du
code reçu qui ne peut pas être directement déduite du producteur du code.
Naturellement, cela donne un avantage à PCC quant-aux méthodes basées sur
la confiance à l’autorité d’un tiers. En effet, une signature d’une autorité ne
suffit pas à fournir une confiance absolue sur l’exécution du code reçu.

Depuis les origines du PCC, le type de mécanisme utilisé pour générer des
certificats repose sur des analyses statiques qui font partie du compilateur.
Par conséquent, en restant automatique, il est intrinsèquement limité à des
propriétés très simples. L’augmentation de l’ensemble des propriétés à consi-
derer est difficile et, dans la plupart des cas, exige l’interaction humaine. Une
possibilité consiste à vérifier directement le code exécutable. Toutefois, l’ab-
sence de structure rend la vérification du code de bas niveau moins naturelle,
et donc plus laborieuse. Ceci, combiné avec le fait que la plupart des outils de
vérification sont developés pour le code de haut niveau, rend plus appropriée
l’idée de transferer la production de certificats au niveau du code source. Le
principal inconvénient de produire des certificats pour assurer l’exactitude du
code source est que les preuves ne comportent pas la correction du code com-
pilé. Plusieurs techniques peuvent etre proposées pour transférer la preuve
de correction d’un programme à sa version exécutable. Cela implique, par
exemple, de déployer le programme source et ses certificats originaux (en plus
du code exécutable) et de certifier la correction du processus de compilation.
Toutefois, cette approche n’est pas satisfaisante, car en plus d’exiger la dis-
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II Résumé

ponibilité du code source, la longueur du certificat garantissant la correction
du compilation peut être prohibitive.

Une alternative plus viable consiste à proposer un mécanisme permettant
de générer des certificats de code compilé à partir des certificats du pro-
gramme source. Les compilateurs sont des algorithmes complexes composées
de plusieurs étapes, parmi lesquelles le programme original est progressive-
ment transformé en représentations intermédiaires. Barthe et al. [14] et Pav-
lova [57] ont montré que les certificats originaux sont conservés, à quelques
différences non significatives près, par la première phase de compilation : la
compilation non optimale du code source vers une représentation non struc-
turée de niveau intermédiaire. Toutefois, les optimisations des compilateurs
sur les représentations intermédiaires représentent un défi, car a priori les
certificats ne peuvent pas être réutilisés. Dans cette thèse, nous analysons
comment les optimisations affectent la validité des certificats et nous propo-
sons un mécanisme, certificate translation, qui rend possible la génération de
certificats pour le code mobile exécutable à partir des certificats au niveau
du code source. Cela implique transformer les certificats pour surmonter les
effets des optimisations de programme.
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Certificate Translation alongside Program Transformations

Abstract

Software applications have gained a notable role in our everyday activities,
mobile code applications being a significant portion of these software agents.
The mobile code paradigm entails the distribution of applications from the
code producer to heterogeneous client environments in which they are exe-
cuted. An extended practice of this paradigm consists in the development of
third party components that are transferred across an untrusted network such
as the Internet and finally integrated in a host execution environment such as
a PC or a cellular phone.

Naturally, this computational environment opens the door to the deploy-
ment of malicious code in client workstations. In some cases a potential mis-
behavior of the mobile code does not constitute a serious risk, for example
when the integrity of the data affected by the execution is irrelevant, or when
the execution architecture imposes strong constraints on the computational
capabilities of the foreign application.

There still are, however, situations in which it is essential to verify the
functional correctness of the code before executing it, for instance when the
confidentiality of critical data such as credit card information could be com-
promised, or when the execution environment does not have a special mech-
anism to monitor excessive resource consumption.

George Necula proposed a technique to provide trust to code consumers
about the program correctness without trusting the code producer side. The
technique, Proof Carrying Code (PCC) [49, 51], consists in deploying code
together with a formal proof of its correctness. Correctness is an inherent
property of the received code that cannot be inferred from the identity of the
code producer. That naturally puts PCC in advantage with respect to methods
based on trusting a third party authority. Indeed, a signature from a trusted
authority it is not sufficient to provide absolute trust on the execution of the
received code.

From its origins, the typical mechanism of PCC to generate certificates
relies on a certifying compiler, an extension of a standard compiler that au-
tomatically produces certificates for decidable safety policies. Extending the
set of enforceable properties is challenging and in the most general case it
requires human interaction. One possibility is to verify the final executable
code from scratch. However, the lack of structure makes low level code verifi-
cation a less natural and, hence, more daunting task. This, together with the
fact that verification environments target mostly high level code, makes more
appropriate the idea of moving the generation of certificates at the source
code level. The main drawback of producing certificates ensuring source code
correctness is that they do not entail correctness of the final compiled code.
Several techniques may be proposed to transfer evidence of program correct-
ness from the source code to the executable counterpart. That includes, for
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IV Abstract.

instance, deploying the source program and original certificates in addition to
the executable code and certifying the correctness of the compilation process.
However, this approach is not satisfactory, since in addition to require avail-
ability of the source code, a certificate ensuring compiler correctness can be
prohibitively large.

A more viable alternative is to provide a mechanism to generate certifi-
cates for compiled code from certificates of the original source program. Com-
pilers are complex procedures composed of several steps, in which the original
program is progressively transformed into intermediate lower level representa-
tions. Barthe et al. [14] and Pavlova [57] have shown that original certificates
are preserved, up to minor differences, along with the first compiler phase:
a nonoptimizing compilation from source level to an unstructured intermedi-
ate representation. However, compiler optimizations applied to the interme-
diate representations represent a challenge since a priori certificates cannot
be reused. In this thesis, we analyze how optimizations affect the validity of
certificates and propose a mechanism, Certificate Translation, to transform
certificates in order to overcome the effects of program transformations, ren-
dering feasible the generation of certificates for executable mobile code at the
source level.

Chapter 2 introduces certificate translation for common compiler opti-
mizations applied in the context of an intermediate RTL language. The main
difficulties are presented, and a classification of program transformations is
given in terms of the effort required to transform the original certificates. A
general scheme is provided to cover transformations that perform arithmetic
simplifications such as constant propagation and common subexpression elim-
ination. In addition, ad-hoc techniques are proposed for other standard opti-
mizations that do not correspond to this classification. Chapter 3 studies the
existence of certificate translators in a mild extension of an abstract interpre-
tation framework that includes a notion of certificates. This abstract setting
provides considerable advantages with respect to the approach of Chapter 2
since it allows us to extend certificate translation to diverse programming lan-
guages and several analysis environments. Certificate transformation is stud-
ied in this abstract setting for simple program transformations which can be
composed to represent a wide variety of program optimizations, for instance
those considered in Chapter 2. In a second part of the thesis, we extend cer-
tificate translation to less typical settings, which can be of interest in PCC
scenarios. More precisely, the chapters in the second part consider the as-
pect oriented paradigm, hybrid verification methods, and parallel programs
executing in memory hierarchies. For each setting, appropriate analysis and
verification settings are provided. Then, the effect of common transformations
over verification results are studied.
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1

Introduction

The mobile code paradigm entails the distribution of applications from the
code producer to heterogeneous client environments in which they are exe-
cuted. An extended practice of this paradigm consists in the development of
third party components, which are transferred across an untrusted network
such as the Internet and finally integrated in a host execution environment
such as a PC or a cellular phone. Naturally, this computational environment
opens the door to the deployment of malicious code in client workstations.
In some cases a potential misbehavior of the mobile code does not consti-
tute a serious risk, for example when the integrity of the data affected by
the execution is irrelevant or when the execution architecture imposes strong
constraints on the computational capabilities of the foreign application. In
other cases, it is sufficient to automatically estimate a bound of the resource
consumption or check whether confidential data is not leaked. There still are,
however, situations in which it is essential to verify more complex properties.
For instance when a downloaded component is required to follow a particu-
lar functional specification in order to match a particular API, or when the
program complexity renders hard to verify a simple confidentiality property.

George Necula proposed a technique to provide trust to code consumers
about the program correctness, dispensing them from trusting code produc-
ers (that are potentially malicious), networks (that may be controlled by an
attacker), and compilers (that may be buggy). The technique, Proof Carry-
ing Code (PCC) [49, 51], consists in requiring mobile code to be sent along
with verifiable evidence of their adherence to an appropriate policy that may
involve requirements about their safety, security, or functionality.

PCC benefits from a number of advantageous features. First, PCC is based
on verification rather than trust. Indeed, PCC focuses on correctness, which
is an inherent property of the received code that cannot be directly inferred
from trust in the code producer. Second, it is transparent for end users, since
they are not required to build proofs. Rather, it requires code consumers to
check proofs, which is fully automatic. Third, the principle of Proof Carrying
Code is general; the only restriction on the security policy is that it should
be expressible in the formal logic, which is often very expressive. Finally, PCC
technology does not sacrifice performance to security as it advocates for static



2 Chapter 1. Introduction

verification at compile-time, and therefore does not incur in the overhead cost
inherent to dynamic techniques based on monitoring.

A PCC infrastructure builds upon several elements: a logic, a verification
condition generator, a formal representation of proofs, and a proof checker.
Figure 1.1 shows a scheme of the client side of a PCC architecture. We briefly

Mobile Code

Specification VCgen

Proof Obligations

Proof CheckerCertificates OK

Execution

Fig. 1.1. PCC Scheme - Client Side.

describe each component:

A formal logic for specifying and verifying policies. The specification is used
to express the expected requirements on the incoming component. PCC
adopts first-order predicate logic as a formalism to both specify and verify
the correctness of components, and focuses on safety properties. Thus,
requirements are expressed as a pre and postcondition relating the initial
and final states of a function invocation.

A verification condition generator (VCgen). For each component, the VCgen
produces a set of proof obligations whose validity will be sufficient to
ensure that the component respects the safety policy. PCC adopts a VC-
gen based on programming verification techniques such as Hoare-Floyd
logics and weakest precondition calculi, and it requires that components
come equipped with extra annotations, e.g., loop invariants that make the
generation of verification conditions feasible.

Certificates. A certificate is a formal representation of proofs that conveys
easy-to-verify evidence of the validity of proof obligations and, thus, that
the code is correct. Commonly, certificates are terms of the lambda calcu-
lus, as suggested by the Curry-Howard isomorphism, and routinely used
in modern proof assistants such as Coq and LF.
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A proof checker. The objective of a proof checker is to verify that the cer-
tificate does indeed establish the proof obligations generated by the VC
Generator. Proof checking can be reduced to type checking by virtue of
the Curry-Howard isomorphism, so that the proof checker only needs to
verify that the certificate is of the correct type. One very attractive advan-
tage of this approach is the simplicity of the proof checker, which forms
part of the client environment.

The Trusted Computing Base (TCB) of a PCC environment is the set
of components that must be trusted in order to ensure the soundness of a
certified program. Any bug in the components outside the TCB does not
affect the soundness of the code execution. For instance, in the overall scheme
shown in Figure 1.1, it is essential and sufficient to rely on the correctness of
the VCgen, the Proof Checker, and the execution environment.

Figure 1.2 shows an overall representation of a typical automatic certifi-
cate generation. Certifying compilers [51] extend traditional compilers with a
mechanism to automatically generate certificates for sufficiently simple safety
properties, exploiting the information available about a program during its
compilation. Note that the certifying compiler does not form part of the client
TCB; nevertheless, it is an essential ingredient of PCC, since it reduces the
burden of verification on the code producer side.

Source Code Compiler Mobile Code

VCgen Specification

Proof Obligations

Automatic Prover Certificates

Fig. 1.2. Code Producer Side - Typical Certificate Generation

While certificate checking is reasonably understood, certificate generation
remains a challenging problem.

An early example of certifying compiler is the Touchstone compiler [51],
which was intended to explore the feasibility of PCC. This compiler gener-
ates, for programs written in a type-safe fragment of C, a formal proof for
type-based safety and memory safety of the resulting program in DEC Alpha
assembly language. The Touchstone compiler automatically inserts the loops
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invariants in the resulting program and generates the correctness proofs. Cer-
tifying compilation is by design restricted to a specific class of properties and
programs— in order to achieve automatic generation of certificates and, thus,
to reduce the burden of verification on the code producer side. The counter-
part of this approach is that the ensured properties are restricted to simple
properties, namely typing predicates.

While it is possible to generate certificates automatically for properties
that are enforceable by automated program analyses, and in particular type
systems, certificate generation remains necessarily interactive in the general
case. For instance, in situations where the functional correctness of the down-
loaded code is essential, and where certificate issues such as size or checking
time are not relevant.

In order to enforce arbitrary properties on arbitrary programs, there are
several frameworks to verify low-level code but little work studying the link
between reasoning at source and compiled levels. The essence of certificate
translation is to extend standard compilers to automatically transfer the result
of formal source code verification to a certificate for the compiled code.

Source code verification is increasingly being used to validate safety-critical
or security-critical software [4, 25, 22, 15]. While automated theorem provers
are useful to detect many common programming mistakes and sometimes to
establish some simple policies, the use of interactive verification tools might be
required for many policies, including basic safety policies for complex software
(the complexity of the software may render relatively simple safety policies
difficult to verify automatically), and complex policies that involve the func-
tional behavior of software. Several program verification environments have
been developed for popular programming languages such as Eiffel, Java or
C [46, 31]. The focus on high level languages is beneficial for developers, since
it enables them to gain increased confidence or feedback directly on their code,
without the need to consider the particular runtime environment where the
code shall be executed.

The primary objective of certificate translation is precisely to overcome
the limitation of certifying compilers and extend the scope of PCC to complex
policies. To this end, certificate translation transforms certificates of source-
language programs into certificates of compiled programs and, thus, fills the
gap between widely used interactive source code verification environments and
PCC. An overall scheme of certificate generation by proof transformation is
shown in Figure 1.3. In the figure, the code producer extracts a set of proof
obligations from the source code and the policy specification. Then, certificates
entailing source code correctness are generated. Finally, certificates for the
mobile code generated by compilation of the source code are obtained by
certificate translation from the certificates of the source program.

Given a compiler represented by the function T·U, a function T·Uspec to
transform specifications, and certificate checkers (expressed as a ternary re-
lation “c is a certificate that P adheres to φ” and written c : P |= φ), a
certificate translator is a function T·Ucert such that for all programs p, policies
φ, and certificates c,

if c : p |= φ then TcUcert : TpU |= TφUspec
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Source Code Compiler Mobile Code

VCgenSpecification

Proof Obligations

Interactive Prover Source Certificates

Certificate Translation Certificates

Fig. 1.3. Overall Scheme of Certificate Translation

Building a certificate translator for nonoptimizing compilation is relatively
simple since proof obligations are preserved (up to minor differences), and
hence it is possible to reuse the certificates of source code programs for the
compilation result; see e.g. the work of Barthe et al. [14] and Pavlova [57].
However, program optimizations successively applied at the intermediate com-
piler phases do not preserve proof obligations and, hence, certificates cannot
be reused. It is precisely the object of this thesis to study how to overcome the
proof transformations that are needed to translate certificates in the presence
of program optimizations. For each optimization step, we show how to appro-
priately transform the certificates. Then, they can be combined to translate
certificates for the complete compilation process.

Outline and Sources

Part I: Foundations of Certificate Translation

The first part focuses on the existence of certificate translation procedures for
standard compiler optimizations.

Chapter 2: In Chapter 2, we study the existence of certificate translation
procedures for standard program optimizations applied at intermediate
compilation stages.
As a verification environment, we adopt a weakest-precondition-based VC-
gen. Program verification consists in extracting from a partially annotated
program a set of verification conditions, which must be discharged in or-
der to prove the program correct. To represent the verification condition
proofs that are subject to transformation, we propose an abstract notion
of proof algebra. Then, certificate translators are defined from a set of
functions, closed in the domain of certificates, which represent the appli-
cation of logic rules, such as introduction and elimination for the ∧ and
∨ connective and for the ∀ quantifier.
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As stated in common compiler textbooks, compilation proceeds by suc-
cessive transformations that gradually translate the code into a series
of lower level representations, bringing the program closer to the actual
executable encoding. For each step, we build an appropriate certificate
translator, paying special attention on standard optimizations applied to
an intermediate Register Transfer Language (RTL) representation. The set
of optimizations includes Constant Propagation, Loop Induction Variable
Strength Reduction, Common Subexpression Elimination, Copy Propaga-
tion, Dead Register Elimination, Unreachable Code Elimination, Register
Allocation, and Function Inlining.
Commonly, compiler optimizations are performed in two phases: first, a
static analyzer computes some information from the syntactic program
representation and then, on the basis of this information, a semantics-
preserving transformation is applied. For some optimizations that per-
form arithmetic simplifications, the existence of a certificate translation
procedure requires a formal proof ensuring the correctness of the result of
the analysis. We show that, for the standard optimizations considered in
this chapter, it is feasible to define an automatic procedure to construct
a certificate for the logical interpretation of the result of the analysis. We
leave for Chapter 3 a formalization of the set of requirements in order to
define a certifying analyzer. For other optimizations that do not fit in this
category, e.g. dead variable elimination, an ad-hoc certificate translator is
proposed.
This work is an extension of the refereed paper Certificate Transla-
tion for Optimizing Compilers [7], coauthored with Gilles Barthe,
Benjamin Grégoire and Tamara Rezk, presented at the 13th International
Static Analysis Symposium (SAS 2006). A large portion of this chapter
has been accepted for publication in the ACM Transactions on Program-
ming Languages and Systems (TOPLAS).

Chapter 3: In this chapter, we take a more general approach and formalize the
results of Chapter 2 under an abstract interpretation framework, which is
a unifying model for the two main components of a certificate translation
procedure: the verification environment in which the original certificate
is produced and the static analysis that justifies a program optimization.
The choice of an abstract framework provides a substantial leverage with
respect to previous results, since it enables us to extend our results to a
wider set of programming languages and verification environments.
In the abstract setting, annotations are represented as partial labellings
from program nodes to abstract values and verification consists in checking
whether the labeling satisfies a set of inequalities in the abstract domain.
To facilitate checking that the labeling bound to the program satisfies the
required constraints, we provide a mild extension of the abstract interpre-
tation model to incorporate a certificate infrastructure. One can see that
the VCgen framework defined in Chapter 2 is a particular instance of the
extended abstract interpretation framework.
As stated above, a certifying analyzer is a main component in the defini-
tion of a certificate translator. We show in this chapter that proving the
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existence of a certifying analyzer boils down to discharging the verification
conditions required to prove consistency of the analysis with respect to
the verification environment.
Instead of considering specific program optimizations, we study certificate
translation in the presence of basic transformations that, combined, can
represent a wide range of program optimizations such as those presented
in Chapter 2.
The contents of this chapter are an extension of the refereed paper Cer-
tificate Translation in Abstract Interpretation [10] coauthored with
Gilles Barthe, presented at the 17th European Symposium on Program-
ming (ESOP 2008).

Part II: Case Studies

In this part, we extend the application of certificate translation to less typical
programming and verification scenarios.

Chapter 4: Aspect Oriented Programming (AOP) has an interesting applica-
tion in the development of Proof Carrying Code scenarios, since it enables
one to separate concerns such as resource control and security from the
basic functionality of an application. In this incremental development pro-
cess, the expected functionality can be provided by a baseline program,
and successive refinements that improve non-functional concerns can be
possibly provided by third parties.
In Chapter 4, we explore a PCC architecture that accommodates an in-
cremental development process, based on aspect oriented programming,
and extend the results of Part I to show, in the context of a Simple AOP
Language (SAL), that it is possible to generate certificates of executable
code from proofs of aspect oriented programs. To achieve this goal, we
introduce a notion of specification preserving advice, and provide a veri-
fication method for programs with specification-preserving advice. Infor-
mally, an advice a is specification-preserving for an annotated piece of
code {Φ}c{Ψ}, where Φ and Ψ denote the pre and postcondition for c,
respectively, if the result of weaving the advise a with program c satisfies
the same pre and postcondition.
A specification-preserving advice is natural in the context of PCC with
intermediaries, since many aspects related to security (resource man-
agement, logging, etc.) and efficiency (e.g., cached functions, optimized
code, etc.) fall in this category. Another advantage is that a specification-
preserving advice support “separate verification”, allowing intermediaries
to treat correctness proofs of the baseline code and the advice as black-
boxes.
We define a simple stack-based language (SBL) into which the simple AOP
programs can be compiled, and a VCgen for SBL programs. We then show
that correct SAL programs are compiled into correct SBL programs.
Chapter 4 is based on the refereed paper Certificate translation for
specification-preserving advice [9], coauthored with Gilles Barthe,
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presented at the Foundations of Aspect-Oriented Languages workshop
(FOAL 2008).

Chapter 5: In order to reduce the verification effort, hybrid verification envi-
ronments increasingly rely on combining static analyses and verification
condition generation. The VCgen exploits the information of the analysis
in two useful ways: on the one hand, verification conditions that originate
from spurious edges in the control-flow graph are discarded. This leads
to fewer and smaller proof obligations. Furthermore, the VCgen adds the
results of the analysis as additional assumptions to help prove the verifi-
cation conditions.
In Chapter 5, we introduce two hybrid verification frameworks for source
code and low level bytecode, respectively. The objective of this work is to
extend preservation of proof obligations to hybrid verification methods.
One well-known difficulty with the preservation of static analysis results is
the loss of precision incurred by compilation [45]. To solve this difficulty,
we achieve preservation of solutions by defining at bytecode level a sym-
bolic execution that decompiles stack instructions. Finally, we show that
programs that are provably correct using the hybrid method are prov-
ably correct using standard VCgen. To this end, we define a compiler that
transforms a hybrid specification (merging logical assertions and analy-
sis results) into a standard one by giving a logical interpretation of the
analysis results. This result ensures soundness of the hybrid verification
method from the soundness of the standard VCgen.
The contents of Chapter 5 are presented in the refereed paper Preser-
vation of proof obligations for hybrid verification methods [11],
coauthored with Gilles Barthe, David Pichardie, and Julian Samborski-
Forlese, published at the 6th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2008).

Chapter 6: As parallel programming languages for high-performance comput-
ing are increasingly gaining wide acceptance, there is a need to provide
analysis and verification methods to help developers write, maintain, and
optimize their high-performance applications.
In Chapter 6, we propose a framework to specify and certify the behav-
ior of parallel divide-and-conquer programs over hierarchical memories.
Sequoia is a special purpose program representation to exploit the high-
performance support offered by modern computer architectures. The lan-
guage contains explicit constructions to successively fragment computa-
tions into smaller tasks, which are executed down in the memory hierar-
chy. We use the framework of abstract interpretation to design analysis
and verification frameworks to reason about Sequoia programs. A main
component of this framework is an analysis that checks whether subtasks
operate over disjoint portions of the memory. In this setting, we study
whether a certificate translator procedure can be defined for optimiza-
tions that are typical for explicitly parallel tasks executing in hierarchical
memories.
Chapter 6 is an extension of the paper Certified Reasoning in Mem-
ory Hierarchies [12], coauthored with Gilles Barthe and Jorge Sacchini,
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published at the 6th ASIAN Symposium on Programming Languages and
Systems (APLAS 2008).





Part I

Foundations of Certificate Translation





2

Certificate Translation alongside Standard RTL
Optimizations

This chapter outlines the principles of certificate translation, and instanti-
ates it in the context of an optimizing compiler from a high-level imperative
language to an intermediate RTL representation. Compilation proceeds by
successive transformations: imperative programs are first translated into RTL
programs, then common program optimizations are successively applied to
RTL programs in order to produce the final RTL program. For completeness,
we first state a well-known result for the first compilation phase [14, 8]: proof
obligations are preserved, up to minor differences, by a nonoptimizing com-
piler from the high-level to RTL representation. Then, for each of the succesive
optimizations applied to the RTL program representation, we define an ap-
propriate certificate translator.

The verification infrastructure builds upon verification condition gener-
ators (VCgen), which are part of the standard PCC infrastructure and are
also used in many interactive verification environments. A VCgen can be seen
as an automatic strategy for applying Hoare logic rules; it generates from a
program p and a specification φ a set of proof obligations PO(p, φ) whose va-
lidity ensures that the program meets its specification. In this setting, c is a
certificate that p satisfies φ (denoted c : p |= φ) iff c is a set of (logical) cer-
tificates such that for every proof obligation ψ ∈ PO(p, φ), there is a (logical)
certificate d ∈ c whose mere existence ensures the validity of ψ, denoted with
the binary relation d |=po ψ.

Of course, certificate translation also depends by definition on the format
of certificates, and on the procedure to check that a certificate establishes a
property ψ. Nevertheless, one does not need to commit to a particular cer-
tificate infrastructure for proof obligations in order to study the existence of
certificate translators. Instead, the existence of certificate translators for com-
mon program optimizations is shown under the assumption that certificates
are closed under a few logical rules that include introduction and elimination
rules for the ∧ and ⇒ connectives and for the ∀ quantifier, as well as sub-
stitution of the subexpressions e1 by e2 (or viceversa) under the hypothesis
e1 = e2.
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Difficulties

Building a certificate translator for non-optimizing compilation is relatively
simple since proof obligations are preserved up to minor differences. Dealing
with optimizations is more challenging because:

- Optimizations that perform arithmetic simplifications such as constant prop-
agation or common subexpression elimination, do not necessarily preserve
verification conditions. Consider the following piece of code to which con-
stant propagation is applied:

r1 := 1
{true}
r2 := r1

{r1 = r2}

r1 := 1
{true}
r2 := 1
{r1 = r2}

Proof obligations for the assignment instruction to r2 are true ⇒ r1 = r1

and true⇒ r1 = 1 for the original and optimized version, respectively. The
second proof obligation is unprovable, since it is unrelated to the sequence
of code containing the assignment r1 := 1.
Remark: Notice that, for the short code fragment above, proof obligations
do not coincide due to our particular definition of wp. Consider a more
complex V Cgen that propagates the computation of wp for the assignment
r1 := 1 over the proof obligations true ⇒ r1 = r1 and true ⇒ r1 = 1.
Such alternative V Cgen returns proof obligations that are identical when
given the example above as input. Notice, however, there are still cases in
which a more complex V Cgen also fails, for instance, when given as input
an alternative example

c
{true}
r2 := r1

{r1 = r2}

where c is a non-trivial loop from which the analysis can infer the postcon-
dition r1 = 1. End of Remark.

The conditions that justify an optimization opportunity must be prop-
agated through every intermediate assertion. Therefore, typical analyzers
must be extended into certifying analyzers, which justify analyses upon
which the optimizations rely by expressing their results in the logic of the
PCC architecture, and produce a certificate of the analysis for each pro-
gram. Then, a function weaves the certificate of the original program and
the certificate produced by the certifying analyzer, to produce the certificate
of the optimized program. The process is presented in Figure 2.1;

- Optimizations that eliminate instructions without computational role (as-
signments to dead registers, nop instructions) may also eliminate informa-
tion that is required to prove the program correct. For example, eliminating
nop instructions may lead to delete assertions attached to them, or dead reg-
ister elimination may remove registers that occur in intermediate assertions
of the program. Considering the following transformation:
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x := n;
...

{x = n}
y := x;

...
{x = y}

−→

x := n;
...

{x = n}
y := n;

...
{x = y}

After performing constant propagation, the variable x becomes dead. How-
ever, one cannot simply remove the first assignment since proof obligations
referring to dead registers ({x = n} in this case) cannot be proved because
all hypotheses about these registers would be lost. Thus, in order to define
a certificate translator for dead register elimination, we propose a different
kind of transformation that performs simultaneously dead variable elimina-
tion in instructions and in assertions.

TCB Program Specification

Certifying
Analyzer

Analysis Result Certificate of 
Analysis Result

Interactive 
Verification

Program
Certificate

Certificate
Translator

Optimization

Optimized 
Program

VCgen

Proof 
Checker

Certificate for 
Optimized 
Program

Fig. 2.1. Overall picture of certificate translation

According to the characteristics of their certificate translators, optimiza-
tions fall in one of the following categories:

— PPO (Preservation of Proof Obligations): PPO deals with transforma-
tions for which the annotations are not rewritten, and where the proof obli-
gations (for the original and transformed programs) coincide. This category
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covers transformations such as nonoptimizing compilation and unreachable
code elimination;

— IPO (Instantiation of Proof Obligations): IPO deals with transforma-
tions where the annotations and proof obligations for the transformed pro-
gram can be described as a variable renaming of the annotations and proof
obligations for the original program, thus certificates are translated by α-
equivalence. This category covers dead register elimination and register allo-
cation;

— SCT (Standard Certificate Translation): SCT deals with transforma-
tions for which the annotations are not rewritten, but where the verification
conditions do not coincide. This category covers transformations such as loop
unrolling and function inlining;

— CTCA (Certificate Translation with Certifying Analyzers): CTCA
deals with transformations for which the annotations need to be rewritten,
and for which certificate translation relies on having certified previously the
analysis used by the transformation, using certifying analyzers that produce
a certificate that the analyzer is correct on the source program. This category
covers constant propagation, common subexpression elimination, strength re-
duction, and other optimizations that rely on arithmetic.

2.0.1 Contents

This section:

• introduces certificate translation as a means to extend significantly the
scope of PCC to complex security policies;

• classifies certificate translation for common optimizations, including con-
stant propagation, loop induction variable strength reduction, dead reg-
ister elimination, common subexpression elimination, copy propagation,
unreachable code elimination, register allocation, and function inlining.
We present each of the certificate translators for the RTL language.

In Section 2.1, we introduce our proof carrying code setting, including a
Register Transfer Language (RTL) and its verification infrastructure. In Sec-
tion 2.2, we present certificate translation for nonoptimizing compilers. In
Section 2.3, we describe certificate translation for several standard optimiza-
tions.

2.1 PCC Setting

2.1.1 RTL Language

Our language RTL (Register Transfer Language) is a low-level, side-effect free,
language with conditional jumps and function calls, extended with annota-
tions drawn from a suitable assertion language. The choice of the assertion
language does not affect our results, provided assertions are closed under the
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connectives and operations that are used by the verification condition gener-
ator.

The syntax of expressions, formulas, and RTL programs (suitably extended
to accommodate certificates, see Section 2.1.4), is shown in Figure 2.2, where
n ∈ N and r ∈ R, with R an infinite set of register names. We let ϕ, φ, and
ψ range over assertions. A program p is defined as a function from RTL func-

comparison / ::= < | ≤ |= | ≥ |>
expressions e ::= n | r | −e | e+ e | e ∗ e | . . .

assertions ϕ ::= true | e / e | ϕ ∧ ϕ | ¬ϕ | ∀r. ϕ | . . .
comparisons cmp ::= r / r | r / n

operators op ::= n | r | n+ r | . . .
instr. desc. ins ::= rd := op, L

| rd := f(~r), L
| cmp ? Lt : Lf
| return r
| nop, L

instructions I ::= (φ, ins) | ins

fun. decl F ::= {~r; ϕ; G; ψ; λ; ~Λ}

Fig. 2.2. Syntax of RTL

tion identifiers to function declarations. RTL functions return integer values.
Every program comes equipped with a special function, namely main, and its
declaration. The body of a function is defined as a mapping G from program
labels to instructions, and instructions are equipped with explicit successors.
Hence, the body of a function constitutes a (closed) directed graph. A mapping
from program points to instructions is preferred, rather than an instruction
sequence, to abstract from the details of label updating when modifying the
function code. In the sequel, the distinguished label Lsp is used as an entry
point for every function body. A declaration F for a function f includes its
formal parameters ~r, a precondition ϕ, a (closed) graph code G, a postcondi-
tion ψ, a certificate λ, and a function ~Λ from reachable labels to certificates
(the notion of certificate is defined in Section 2.1.4). For clarity, we often use
a subscript f for referring to elements in the declaration of a function f , e.g.,
the graph code of a function f as Gf .

As will be defined below, the VCgen generates one proof obligation for
each program point containing an annotation plus one proof obligation for
the entry point Lsp. The component λ is a certificate that attests the validity
of the latter proof obligation and ~Λ maps every program point that contains
an assertion to the certificate of its associated proof obligation.

Formal parameters are represented as a list of registers, from the set R,
which we suppose to be local to f . For specification purposes, we introduce
for each register r in ~r a (pseudo)register r∗, not appearing in the code of
the function, and which represents the initial value of a register declared as
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formal parameter. We let R∗ denote the set {r∗ | r ∈ R} and ~r∗ denote a
sequence of registers in R∗. We also introduce, for specification purposes, a
(pseudo)register res, not appearing in the code of the function, and which
represents the result or return value of the function. The annotations ϕ and ψ
in Figure 2.2 provide respectively the specification of pre and postcondition of
the function, and are subject to well-formedness constraints. The precondition
of a function f , also referred as pre(f), is an assertion in which the only
registers to occur are the function formal parameters, hereafter denoted ~rf ;
in other words, the precondition of a function can only talk about the initial
values of its parameters. The postcondition of a function f , also referred as
post(f), is an assertion1 in which the only registers to occur are res and the
formal parameters ~rf

∗; in other words, the postcondition of a function can
only talk about its result and the initial values of its parameters.

A graph code of a function is a partial function from labels to instructions.
We assume that every graph code includes a special label, namely Lsp, corre-
sponding to the starting label of the function, i.e., the first instruction to be
executed when the method is called. Given a function f and a label L in the
domain of its graph code, we will often use f [L] instead of Gf (L), i.e., the
application of graph code of f to label L.

An instruction is either an instruction descriptor ins or a pair (φ, ins) con-
sisting of an annotation φ and an instruction descriptor ins. An instruction
descriptor can be an assignment, a function call, a conditional jump, or a
return instruction. Operations on registers are those of standard processors,
such as movement of registers or values into registers rd := r, and arithmetic
operations between registers or between a register and a value. Furthermore,
every instruction descriptor carries explicitly its successor label(s); due to this
mechanism, we do not need to include unconditional jumps, i.e., “goto” in-
structions, in the language. Immediate successors of a label L in the graph of a
function f are denoted by the set succf (L). We assume that the graph is closed;
and in particular, if L is associated with a return instruction, succf (L) = ∅.

2.1.2 Operational Semantics

The operational semantics of RTL is standard. In particular, neither proofs nor
assertions interfere with the semantics. The semantics is defined in Figure 2.3
as a big step relation between non terminal states and a terminal state. A non
terminal state is defined as a tuple with two elements: the current instruction
and a map ρ from local registers to values. The expression [ρ | x 7→ n] stands
for the function ρ′ s.t. ρ′y = n if x = y and ρ′y = ρy otherwise.

Let JK be a standard interpretation function that takes an assertion and a
map from registers to values and returns a logical proposition. For clarity, the
interpretation J.Kρ

∗

ρ refers to two parameters ρ and ρ∗ with disjoint domains
R and R∗, respectively. When it is clear from the context that an assertion
φ does not contain registers in R∗, e.g., when φ is a precondition, we may
simply write JφKρ instead of JφKρ

∗

ρ .

1 Notice that a postcondition is not exactly an assertion in the sense that it uses
register names from ~r∗, which do not appear in preconditions.
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〈ins, ρ〉 f n
〈(ϕ, ins), ρ〉 f n

〈f [L], [ρ | rd 7→ JopKρ]〉 f n
〈rd := op, L, ρ〉 f n

〈f [Lt], ρ〉 f n
〈cmp ? Lt : Lf , ρ〉 f n

if J〈cmp〉Kρ

〈f [Lf ], ρ〉 f n
〈cmp ? Lt : Lf , ρ〉 f n

if ¬J〈cmp〉Kρ

〈g[Lsp], [~rg 7→ ρ~r]〉 g m 〈f [L′], [ρ | ret 7→ m]〉 f n
〈ret := g(~r), L′, ρ〉 f n

〈return r, ρ〉 f ρr

Fig. 2.3. Operational Semantics

We say that an assertion is valid, if for every assignments ρ and ρ∗, JφKρ
∗

ρ is
a valid logical proposition. Similarly, we define an interpretation function J.K
for expressions, which takes the assignments ρ and ρ∗ respectively for registers
in R and R∗. When an expression e does not contain registers in R∗, e.g.,
when it is an expression of the programming language, we may simply write
JeKρ instead of JeKρ

∗

ρ .

2.1.3 Verification Condition Generator

Verification condition generators (VCgens) produce the proof obligations that
must be discharged in order to guarantee that the program meets its specifica-
tion. The predicate transformer wp is a partial function that computes, from a
sufficiently annotated program, a fully annotated program in which all labels
of the program have an explicit precondition attached to them. To ensure the
computability of the wp function, its domain is restricted to well-annotated
programs. This domain can be characterized by an inductive and decidable
definition and does not impose any specific structure on programs.

Definition 2.1.

• The graph of a function f is closed if for every node all its successors are
in the graph:

closed(f) = ∀L ∈ Gf , succf (L) ⊆ Gf
• A label L′ is reachable from a label L in f , if L = L′, or if it is the

successor of a label reachable from L:

L ∈ reachablef,L
L′ ∈ reachablef,L ⇒ ∀L′′ ∈ succf (L′), L′′ ∈ reachablef,L
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• A label L in a function f reaches annotated labels, if its associated in-
struction contains an assertion, or if its associated instruction is a return
instruction (in that case the annotation is the post condition), or if all its
immediate successors reach annotated labels. More precisely, reachAnnotf
is defined as the smallest set that satisfies the following conditions:

f [L] = (ϕ, ins)⇒ L ∈ reachAnnotf
f [L] = return r ⇒ L ∈ reachAnnotf
(∀L′ ∈ succf (L), L′ ∈ reachAnnotf )⇒ L ∈ reachAnnotf

• A function f is well annotated if it is closed and every reachable point
from the starting point Lsp reaches annotated labels. A program p is well
annotated if all its functions are well annotated.

From the definition above, if every loop in the code graph of the function
f is annotated, then f is well-annotated. It also follows from the definition
above that, from a well-annotated program, one can compute an assertion
for every label, i.e., the application of the function wp terminates for every
program loop.

A fully-annotated function is computed from a partially annotated func-
tion f , using the wpf transformer, using the preconditions and postconditions
of functions called by f . The definition of wpf (L) proceeds by case analysis:
if L points to an instruction that carries an assertion φ, then wpf (L) is set to
φ; otherwise, wpf (L) is computed by the function wpidf .

wpf (L) = ϕ if Gf (L) = (ϕ, ins)

wpf (L) = wpid
f (ins) if Gf (L) = ins

wpid
f (rd := op, L) = wpf (L)[〈op〉/rd ]

wpid
f (rd := g(~r), L) = pre(g)[~r/~rg ]

∧(∀res. post(g)[~r/~r∗g ]⇒ wpf (L)[res/rd ])

wpid
f (cmp ? Lt : Lf ) = (〈cmp〉 ⇒ wpf (Lt)) ∧ (¬〈cmp〉 ⇒ wpf (Lf ))

wpid
f (return r) = post(f)[r/res]

wpid
f (nop, L) = wpf (f [L])

Fig. 2.4. Verification condition generator

The formal definitions of wpf and wpidf are given in Figure 2.4, where the
expression φ[e/r] stands for the substitution in the assertion φ of all occur-
rences of register r by the expression e. The definition of wpidf is standard for
assignment and conditional jumps, where 〈op〉 and 〈cmp〉 is the obvious inter-
pretation of operators in RTL into expressions in the language of assertions.
For a function invocation, wpidf (rd := g(~r), L) is defined as a conjunction
of the precondition of g, where formal parameters are replaced by actual pa-
rameters, and of the assertion ∀res. post(g)[~r/~r∗g ] ⇒ wpf (L)[res/rd ]. The second
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conjunct permits that information in wpf (L) about registers different from
rd be propagated to other preconditions. In the remainder of the chapter, we
shall abuse notation and write wpidf (L) instead of wpidf (ins) if f [L] = ins.

2.1.4 Certified Programs

Certificates provide a formal representation of proofs, and are used to ver-
ify that the proof obligations generated by the VCgen hold. For the purpose
of certificate translation, we do not need to commit to a specific format for
certificates. Instead, we assume that certificates are closed under specific op-
erations on certificates, which are captured by an abstract notion of proof
algebra.

Recall that a judgment is a pair consisting of a list of assertions, called con-
text, and of an assertion, called goal. A proof algebra is given by a set-valued
function C over judgments, and by a set of operations, all implicitly quantified
in the usual way. The operations are standard (given in Figure 2.5), to the
exception perhaps of the substitution operator that allows one to substitute
a subexpression e by e′ from the hypothesis e = e′, and of the operator ring,
which establishes all ring equalities that will be used to justify the optimiza-
tions.

introtrue : C(Γ ` true)
axiom A : C(Γ ` A) if A ∈ Γ
ring : C(Γ ` n1 = n2) if n1 = n2 is a ring equality

intro∧ : C(Γ ` A)→ C(Γ ` B)→ C(Γ ` A ∧B)

eliml
∧ : C(Γ ` A ∧B)→ C(Γ ` A)

elimr
∧ : C(Γ ` A ∧B)→ C(Γ ` B)

intro⇒ : C(Γ ;A ` B)→ C(Γ ` A⇒ B)
elim⇒ : C(Γ ` A⇒ B)→ C(Γ ` A)→ C(Γ ` B)

elim= : C(Γ ` e1 = e2)→ C(Γ ` A[e1/r])→ C(Γ ` A[e2/r])

subst r e : C(Γ ` A)→ C(Γ [e/r] ` A[e/r])

weak ∆ : C(Γ ` A)→ C(Γ ;∆ ` A)

intro∀ : C(Γ ` A)→ C(Γ ` ∀r.A) if r is not in Γ

elim∀ : C(Γ ` ∀r.A)→ C(Γ ` A)

Fig. 2.5. Proof Algebra

In order to remain at an abstract level, we do not provide an algorithm
for checking certificates. Instead, we take C(Γ ` ϕ) to be the set of valid
certificates of the judgment Γ ` ϕ. In the sequel, we write λ : Γ ` ϕ to
express that λ is a valid certificate for Γ ` ϕ, and use proof as a synonym of
valid certificate. Furthermore, we require the certificate infrastructure to be
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sound, i.e., if C(Γ ` φ) 6= ∅ then for all maps ρ, ρ∗, if for every ψ ∈ Γ , JψKρ
∗

ρ

is valid, then JφKρ
∗

ρ is valid.
Finally, we define a certified program as one whose functions are certified,

i.e., carry valid certificates for the proof obligations attached to them.

Definition 2.2.

• A function f with declaration {~r; ϕ; G; ψ; λ; ~Λ} is certified if:
– λ is a proof of ` ϕ⇒ wpf (Lsp)[~r/~r∗ ],
– ~Λ(L) is a proof of ` ϕ⇒ wpidf (ins) for all reachable labels L in f such

that f [L] = (ϕ, ins).
• A program is certified if all its functions are.

2.1.5 Soundness of PCC Infrastructure

The verification condition generator is sound, in the sense that if a certified
program p is called with registers set to values that verify the precondition of
the function main, and it terminates normally, then the final state will verify
the postcondition of main.

When considering mutually-recursive functions, special care must be taken
to ensure soundness of the VCgen. In this case it is not hard to achieve since
we are only interested in verifying the partial correctness of the program w.r.t.
its specification, i.e., we only consider finite executions.

Lemma 2.3. Let p be a certified program. Then, for every function f with dec-
laration {~r; ϕ; G; ψ; λ; ~Λ}, any initial mapping ρ∗ with domain {r∗1 , . . . , r∗k},
any label L in the domain of Gf and any state ρ, if Jwpf (L)Kρ

∗

ρ and 〈f [L], ρ〉 f
n then JψKρ

∗

[res7→n].

Proof. Since wp and wpins are defined each one in terms of the other, we prove
the goal of the lemma above simultaneously with a similar goal but under the
hypothesis Jwpins

f (L)Kρ
∗

ρ . The proof proceeds by rule induction on the derivation
of 〈f [L], ρ〉  f n. For simplicity, we rely on the following standard results
(where FV (ϕ) stands for the set of unbound variables in ϕ):

i) (Coincidence Lemma). For all states ρ1, ρ2, ρ
∗
1, ρ
∗
2 and assertion ϕ, if

for all x in FV (ϕ) ∩ R and y in FV (ϕ) ∩ R∗ we have ρ1x = ρ2x and
ρ∗1y = ρ∗2y then JϕKρ

∗
1
ρ1 = JϕKρ

∗
2
ρ2 .

ii) (Substitution Lemma). For all x, c, ϕ and ρ, ρ∗, Jφ[e/x]Kρ
∗

ρ = JφKρ
∗

[ρ|x7→JeKρ
∗
ρ ]

and Jφ[e/x∗ ]Kρ
∗

ρ = JφK
[ρ∗|x∗ 7→JeKρ

∗
ρ ]

ρ .

• Consider the case s.t. the last rule applied is

〈ins, ρ〉 f n
〈(ϕ, ins), ρ〉 f n

then wpf (L) = φ and since f is certified, and the certificate infrastructure
is sound, we have that Jφ⇒ wpins

f (L)Kρ
∗

ρ is valid. Hence, from the hypoth-
esis Jwpf (L)Kρ

∗

ρ and definition of J.K, we have that Jwpins
f (L)Kρ

∗

ρ is valid.



2.2. Preservation of Proof Obligations 23

By I.H. and the latter condition we get Jψf K
ρ∗

[res7→n]. Notice that this is the
only case where we need to distinguish the hypothesis Jwpins(L)Kρ

∗

ρ from
Jwp(L)Kρ

∗

ρ ; in any other case wp(L) = wpins(L).
• Assume the last rule applied is

〈f [L′], [ρ | rd 7→ JopKρ
∗

ρ ]〉 f n
〈rd := op, L′, ρ〉 f n

.

By hypothesis and definition of wpf , we have Jwpf (L′)[op/rd ]Kρ
∗

ρ . Equiva-
lently, by substitution lemma Jwpf (L′)Kρ

∗

[ρ|rd 7→JopKρ
∗
ρ ]

• Assume the last rule applied involves a function call, i.e., there is a func-
tion g s.t. f [L] = ret := g(~r), L′ and the last rule applied is

〈g[Lsp], [~rg 7→ ρ~r]〉 g m 〈f [L′], [ρ | ret 7→ m]〉 f n
〈ret := g(~r), L′, ρ〉 f n

for some value m. Let ϕg and ψg stand for the preconditions and post-
condition of g respectively. From Jwpf (L)Kρ

∗

ρ and definition of J.K, we

have Jϕg[~r/~rg ]Kρ
∗

ρ . By coincidence lemma we have then Jϕg[~r/~rg ]K
[r∗g 7→ρr]
[r 7→ρr] ,

and by substitution lemma JϕgK
[r∗g 7→ρr]
[rg 7→ρr]. Since g is certified, we have

a proof for ϕg ⇒ wpg(Lsp)[~rg/~r∗g ] and therefore Jwpg(Lsp)[~rg/~r∗g ]K
[r∗g 7→ρr]
[rg 7→ρr].

Again by substitution lemma, Jwpg(Lsp)K
[r∗g 7→ρr]
[rg 7→ρr]. Therefore, by applica-

tion of I.H., we know that JψgK
[r∗g 7→ρr]
[res7→m], and then by substitution lemma

Jψg[m/res]K
[r∗g 7→ρr]
ρ . From the hypothesis Jwpf (L)Kρ

∗

ρ and definition of J.K,
we have that Jψg[~r/~r∗g ]Kρ

∗

[ρ|res7→m] ⇒ Jwpf (L′)[res/ret]K
ρ∗

[ρ|res7→m]. Equivalently

by substitution lemma, Jψg[m/res]K
[r∗g 7→ρr]
ρ ⇒ Jwpf (L′)Kρ

∗

[ρ|ret7→m], and hence

Jwpf (L′)Kρ
∗

[ρ|ret7→m]. From the latter condition and I.H., we get the desired
result.

As a corollary, we obtain the following theorem:

Theorem 2.4 (Soundness of VCgen). Suppose that

a) P is a certified program containing a function main, with precondition Φ
and postcondition Ψ ,

b) ρ is such that JΦKρ, and
c) 〈main[Lsp], ρ〉 n,

then the interpretation JΨK[ ~r∗ 7→ρ~r]
[res 7→n] is valid.

2.2 Preservation of Proof Obligations

The purpose of this section is to establish preservation of proof obligations
for a nonoptimizing compiler from an imperative language with procedures
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to RTL. This result is inspired from earlier work by Barthe, Rezk, and
Saabas [14].

In this section, we define a simple and structured high-level language, a
standard verification condition generator for this language, and a nonoptimiz-
ing compiler to the RTL language defined before. Then, we show that given
the same program specification, proof obligations for the source program and
for its compiled RTL version coincide.

2.2.1 Source Language

? ::= < | ≤ |= | ≥ |>| ∧ | ∨
e ::= x | n | −e | e + e | e − e | e ∗ e
c ::= skip | x := e | c; c | while {φ} e ? e do c |

if e ? e then c else c | y := call f(~x) |
return e

Fig. 2.6. Syntax of source language

A program p in the source language is defined as a function from function
identifiers to function declarations. We assume that every program comes
equipped with a special function identifier, namely main, and its declara-
tion. The declaration of a function f in the source language has the form:
{ ~xf ; ϕ; c; ψ; λ; ~Λ}, where c is a command whose syntax is shown in Fig-
ure 2.6. Every function returns integer values.

As in RTL programs, a function declaration includes its formal parameters
~x, a precondition ϕ, a postcondition ψ, a certificate λ, and a set of certifi-
cates ~Λ. The source language features the same annotation language as RTL.
However, the only command that has an annotation is the while command.
Notice that all while commands hold annotations. The definition of the VC-
gen is made in terms of the function wp, which is overloaded to denote as
well a predicate transformer for the source code, and is given in Figure 2.7.
Certificates for source level and RTL programs are represented by the same
proof algebra.

Definition 2.5.

• A function f with declaration {~x; ϕ; c; ψ; λ; ~Λ} is certified if:
– λ is a proof of ` ϕ⇒ wp(c, ψ)[~x/~x∗ ]
– ~Λ contains a proof of ` ϕ for every proof obligation ϕ in PO(c, ψ),

where PO is defined in Figure 2.8.
• A program is certified if all its functions are.

The semantics of the source language is standard and, thus, omitted.
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wp(skip, ψ) = ψ
wp(x := e, ψ) = ψ[e/x]
wp(c1; c2, ψ) = wp(c1,wp(c2, ψ))
wp(while {ϕ} e1 ? e2 do c1, ψ) = ϕ
wp(if e1 ? e2 then c1 else c2, ψ) = (〈e1 ? e2〉 ⇒ wp(c1, ψ))∧

(¬〈e1 ? e2〉 ⇒ wp(c2, ψ))

wp(y := call g(~x), ψ) = pre(g)[~x/~xg ]∧
∀res.(post(g)[~x/~x∗g ]⇒ ψ[res/y])

wp(return e, ψ) = ψ[e/res]

Fig. 2.7. wp for the source language

PO(skip, ψ) = ∅
PO(x := e, ψ) = ∅
PO(c1; c2, ψ) = PO(c2, ψ) ∪ PO(c1,wp(c2, ψ))
PO(while {φ} e1 ? e2 do c1, ψ) =

PO(c1, φ) ∪ {φ⇒ (e1 ? e2 ⇒ wp(c1, φ)) ∧ (¬(e1 ? e2)⇒ ψ)}
PO(if e1 ? e2 then c1 else c2, ψ) = PO(c1, ψ) ∪ PO(c2, ψ)
PO(y := call g(~x), ψ) = ∅
PO(return e, ψ) = ∅

Fig. 2.8. Proof obligations for the source language

2.2.2 Compilation

The compilation function to RTL is standard, except for the while command,
and sketched in Figure 2.9. Note that the compilation function T.U takes, in
addition to the command to compile, two additional parameters. Both are
labels and respectively correspond to the label of the first instruction in the
compilation and the label of the successor of the last instruction. For clarity,
Figure 2.9 is just a scheme of the compiler because the compiler for expressions
T.U is using a unique instruction LB : r1 := Te1U, L, while compilation of
the expression e1 might need more than one RTL instruction, and r1 will
be assigned with the result of the last register assigned to in the compiled
instructions for e1.

2.2.3 Preservation of Proof Obligations

The wp of a source code function is syntactically equivalent to the wp of its
compilation, provided the variables of the source language and the registers of
RTL are equivalent. For notational convenience, in the following proofs we let
the expression f [L,L′] stand for the subgraph of nodes reachable from label
L without traversing (and not including) the node at label L′.
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Twhile {ϕ} e1 ? e2 do cULH ,LE = LH : (ϕ, nop, LB)
LB : r2 := Te2U, L′B
L′B : r1 := Te1U, L
L : r1 ? r2 ? LT : LE
TcULT ,LH

TskipUL,L′ = L : nop, L′

Tx := eUL,L′ = L : x := TeU, L′

Tc1; c2UL,L′ = Tc1UL,L′′
Tc2UL′′,L′

Tif e ? e then c1 else c2UL,L′ = L : r1 := Te1U, L1

L1 : r2 := Te2U, L2

L2 : r1 ? r2 ? LT : LF
Tc1ULT ,L′
Tc2ULF ,L′

Ty := call f(~x)UL,L′ = L : y := f(~x), L′

Fig. 2.9. Compiler definition

Lemma 2.6. Let f [L,L′] be a subgraph code of the RTL function f given
by compilation TcUL,L′ of a command c. Then, wp(c, ψ) = wpf (L), where
ψ = wpf (L′).

Proof. The proof proceeds by structural induction on the command c. For sim-
plicity, we assume the following result about the compilation of expressions:

if f [l, l′] = r := TeUL,L′ then wpf (l) = wpf (l′)[e/r] (2.1)

• case c = while {ϕ} e1 ? e2 do c. In this case wp(c, ψ) is equal to φ, as
well as wpf (L) by definition of T.U.
• case c = x := e. We have that wp(c, ψ) is equal to ψ[e/x], and thus, to

wpf (L′)[e/x] by hypothesis. From definition of T.U, f [L,L′] = r := TeUL,L′ ,
and property (2.1), we have that wp(c, ψ) is equal to wpf (L).
• case c = c1; c2. By definition of wp, wp(c, ψ) = wp(c1,wp(c2, ψ)). By defi-

nition of TcUL,L′ we have f [L,L′′] = Tc1UL,L′′ and f [L′′, L′] = Tc2UL′′,L′ ,
then, by I.H. wp(c2, ψ) = wpf (L′′). Hence, wp(c, ψ) = wp(c1, ψ′) where
ψ′ = wpf (L′′) and, since again by I.H. we have wp(c1, ψ′) = wpf (L), we
get wp(c, ψ) = wpf (L).

Hence, one can prove that proof obligations and certificates are preserved2

along nonoptimizing compilation.

Lemma 2.7. Let f with declaration {~x; ϕ; c; ψ; λ; ~Λ} be a certified source
function. Then f declared as {~x; ϕ; TcU; ψ; λ; ~Λ} is a certified RTL function.

Proof. The proof consists on verifying that f and f contain exactly the same
proof obligations. To this end, consider a subprogram c s.t. f [l, l′] = TcUl,l′

2 Strictly speaking, the first ~Λ in the source program is a set, whereas the second ~Λ
in the compiled program is a map, but it is immediate to turn one into the other.
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and ψ = wpf (l′). Then, we show by structural induction on c, that the proof
obligations induced by assertions in f [l, l′] correspond to the proof obligations
in PO(c, ψ). We only consider the case c = while {φ} e1 ? e2 do c′. The proof
obligations in c w.r.t. ψ are the proof obligations in PO(c′, φ) plus

φ⇒ (e1 ? e2 ⇒ wp(c′, φ)) ∧ (¬(e1 ? e2)⇒ ψ) .

By definition of T.U we have

f [l, l′] = l : (φ, nop, lb)
lb : r2 := Te2U, l′b
l′b : r1 := Te1U, l′′
l′′ : r1 ? r2 ? lT : l′

TcUlT ,l

Annotations in f [l, l′] are φ plus the annotations in c′. By I.H., proof obliga-
tions in f [lT , L] are exactly the proof obligations in PO(c′, φ). The annotation
φ in l induces the proof obligation φ⇒ wpins

f (lB), that after unfolding of wpf
and wpins

f can be shown equal to

φ⇒ (e1 ? e2 ⇒ wpf (lT )) ∧ (¬(e1 ? e2)⇒ wpf (l′))

which, by Lemma 2.6, is equal to

φ⇒ (e1 ? e2 ⇒ wp(c′, φ)) ∧ (¬(e1 ? e2)⇒ ψ) .

We have seen in this section that the first phase of a compiler, that trans-
lates a high-level structured program into an RTL representation, preserves
verification conditions if no optimization is applied. In the next section we
extend this simple compiler with standard optimization phases and for each
of them we propose a transformation of the certificate.

2.3 Certificate Translation for Common Optimizations

This section provides instances of certificate translation for common RTL op-
timizations. The order of optimizations is chosen for the clarity of exposition
and does not necessarily reflect the order in which the optimizations are per-
formed by a compiler.

2.3.1 Overview

In a classical compiler, transformations operate on unannotated programs,
and are performed in two phases: first, a data flow analysis gathers informa-
tion about the program. Then, on the basis of this information, (blocks of)
instructions are rewritten. Consider for example the following annotated piece
of code:
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{true}
r1 := n

L : {r1 ≥ n}, L′
L′ : r2 := r1

{r1 = r2}
An analysis may detect, ignoring annotations, that the register r1 always
stores the value n at program points L and L′. Later, a transformation phase
optimizes the code replacing the assignment r2 := r1 by the more efficient
r2 := n.

{true}
r1 := n

L : {r1 ≥ n}, L′
L′ : r2 := n
{r1 = r2}

According to Definition 2.2, a certificate for an optimized function f̄ must
include a proof that the precondition of f̄ implies the precondition of its
first instruction, and a proof, for each label L of f̄ , that the assertion at L
implies the precondition of instruction L. In the example, the proof obligations
corresponding to the original fragment of code are true ⇒ n ≥ n and r1 ≥
n ⇒ r1 = r1. After the transformation we have that proof obligations are
true⇒ n ≥ n and r1 ≥ n⇒ n = r1. Not only does one of the proof obligations
not coincide with the original one (and hence the original certificate cannot
be reused), but it also becomes unprovable.
Remark. The difficulty shown in the example above does not apply to more
complex VCgens that propagates proof obligations backwards. In the exam-
ple, such VCgen computes the wp of the statement r1 := n over the proof
obligations r1 ≥ n⇒ r1 = r1 and r1 ≥ n⇒ n = r1, returning n ≥ n⇒ n = n
and n ≥ n⇒ n = n, respectively. However, the following example

r1 := 1
Lo : {true}

r1 < n ? L : L′

L : n := n+ 1, Lo
L′ : r2 := r1

{r1 = r2}

shows that a more complex VCgen does not remove the problem explained
above since, indeed, the program becomes unprovable when the assignment
r2 := r1 is substituted by r2 := n. Hence, since we do not have a fundamental
reason to prefer one VCgen to the other one, we opt for a basic VCgen to
simplify the description of certificate translators. End of Remark.

The above example illustrates that the validity of annotations is not nec-
essarily preserved by program transformations. In order to maintain their
validity, many optimizations require strengthening the original annotations
by assertions that capture in a logical form the results of the analysis that un-
derlies the optimization. Intuitively, the need to strengthen assertions stems
from the fact that semantic preservation of program transformations must
eventually be justified by the conditions returned by the analysis.
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Therefore, optimized programs are defined by augmenting annotations
with the information returned by the analysis, expressed as an assertion and
denoted RESA(L) below.

Definition 2.8. The optimized graph code of a function f is defined as fol-
lows:

Gf̄ (L) =
{

(ϕ ∧ RESA(L), TinsU) if Gf (L) = (ϕ, ins)
TinsU if Gf (L) = ins

where TinsU is the optimized version of instruction ins. In the sequel, we write
ϕ̄L for ϕL ∧ RESA(L).

(Note that the above definition is restricted to optimizations that do not mod-
ify the graph topology, such as constant propagation, common subexpression
elimination or induction variable strength reduction).

Augmenting an assertion φ into φ ∧ RESA(L) has two immediate effects.
On the negative side, the inserted condition RESA(L) requires certificates
for the new proof obligations involving the results of the analysis. To solve
this issue, an automatic procedure for certification of the analysis, namely a
certifying analyzer, is applied as a first step, producing the certified program

fA = {~rf ; true; GA; true; λA; ~ΛA}

where GA is a new version of Gf annotated with the results of the analysis,
i.e., Gf such that GA(L) = (RESA(L), ins) for all labels L in f .

On the positive side, strengthening the antecedent enables us to build
a proof for the transformed proof obligations. We illustrate the benefits of
strengthening assertions on the example above, and then elaborate on the
transformation of certificates.

Considering the example again, let us add the assertion r1 = n, used
to justify the transformation, at program point L. Then, the transformed
program is suitably annotated as:

{true}
r1 := n

L : {r1 ≥ n ∧ r1 = n}, L′
L′ : r2 := n
{r1 = r2}

In this case the proof obligation r1 ≥ n∧r1 = n⇒ n = r1 is provable, but still
does not coincide with the original. In such a simple case, one could generate a
certificate for the proof obligation without using the certificate of the original
proof obligation, but in the general case we will need to build a new certificate
from the certificate of the original proof obligation (here r1 ≥ n⇒ r1 = r1).

A systematic approach to generate certificates for f̄ is to define two func-
tions that transform the certificates for f :

T0 : C(` pre(f)⇒ wpf (Lsp)[~r/~r∗ ])→ C(` pre(f̄)⇒ wpf̄ (Lsp)[~r/~r∗ ])

Tλ : ∀L, C(` ϕL ⇒ wpidf (L))→ C(` ϕ̄L ⇒ wpid
f̄

(L))
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where ϕL is the original assertion at label L, and ϕ̄L is the augmented assertion
at label L. Here the function T0 transforms the proof that the precondition
implies the assertion at program point Lsp for f into a proof of the same fact
for f̄ , and likewise, the function Tλ transforms for each reachable annotated
label L the proof that its annotation implies the precondition at program
point L for f into a proof of the same fact for f̄ .

The functions T0 and Tλ can be constructed, independently of the opti-
mization considered, from a function

T ins
L : C(` wpidf (L)⇒ RESA(L)⇒ wpid

f
(L))

that associates to every program point L in f , a proof of the following fact:
the original annotation of f (i.e., wpidf (L)) and the hypothesis obtained from
the results of the analysis (i.e., RESA(L)) imply the annotation of f (i.e.,
wpid

f
(L)).

The function Tλ is defined using the function T ins
L and the certificate of

the analysis as shown in Figure 2.10. To define T0, i.e., to generate λ from

Let Γ = [wpf (L)] in:

p1:=axiom(wpf (L)) : Γ ` wpf (L)

p2:=eliml
∧(p1) : Γ ` wpf (L)

p3:=elimr
∧(p1) : Γ ` wpfA(L)

p4:=weak Γ ( ~Λ(L)) : Γ ` wpf (L)⇒ wpid
f (L)

p5:=elim⇒(p2, p4) : Γ ` wpid
f (L)

p6:=weak Γ (T ins
L (L)) : Γ ` wpid

f (L)⇒ wpfA(L)⇒ wpid

f
(L)

p7:=elim⇒(p5, p6) : Γ ` wpfA(L)⇒ wpid

f
(L)

p8:=elim⇒(p3, p7) : Γ ` wpid

f
(L)

p9:=intro⇒(p8) :` wpf (L)⇒ wpid

f
(L)

Fig. 2.10. Definition of Tλ( ~Λ(L)) from T ins
L

λ (recall that λ is a proof of pre(f̄) ⇒ wpf (Lsp)[ ~rg/~r∗g ]), we reuse λ (i.e., a

proof of pre(f) ⇒ wpf (Lsp)[ ~rg/~r∗g ]), since pre(f) implies wpf (Lsp)[ ~rg/~r∗g ], and

instantiating T ins
L to Lsp we get a predicate equivalent to wpf (Lsp)⇒ wpf (Lsp)

(assuming that the analysis is computed from the trivial precondition true).
Whereas the definition of T0 and Tλ are generic, the function T ins

L must be
defined for each program optimization. It turns out that for many program
optimizations it is possible to inductively define T ins

L using the definition of
T ins
L1

, . . . , T ins
Lk

, where {L1, . . . , Lk} are the successor program points for L.
Due to the presence of loops, T ins

L may be not well defined in the general
case. However, we only consider well-annotated programs, and the definition
of well-annotated programs induces an induction principle with annotated
program labels as the base case.

In summary, the definition of a certificate translator for a program opti-
mization requires one to define a certifying analyzer, and a function T ins

L with
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suitable characteristics. In the rest of this section, we show how to define these
for many common program optimizations.

2.3.2 Constant Propagation

Description

Constant propagation aims at minimizing run-time evaluation of expressions
and access to registers with constant values. It relies on a data flow analysis
that returns a function A with type PP × R → Z⊥ (PP denoting the set
of program points) such that A(L, r) = n indicates that r holds the value n
every time execution reaches the label L. If the analysis cannot infer that a
register r holds a constant value at label L then we write A(L, r) = ⊥.

The definition of constant propagation over a function f can be found
in Figure 2.11. Exploiting the information provided by A, the optimization
consists of replacing instructions that read registers by equivalent instructions
that read constants. Furthermore, in the case of a conditional instruction, if
the truth value of an integer comparison can be statically determined, it is
replaced by a jump instruction to the corresponding branching point.

T(ϕ, ins)UL = (ϕ ∧ RESA(L), TinsUid
L )

TinsUL = TinsUid
L

Trd := op, L′Uid
L = rd := TopUop

L , L
′

Tcmp ? Lt : LfUid
L =

8><>:
nop, Lt when TcmpUcmp

L = true

nop, Lf when TcmpUcmp
L = false

TcmpUcmp
L ? Lt : Lf otherwise

TinsUid
L = ins in any other cases

TrUop
L =

(
n if A(L, r) = n

r otherwise

Tr1 + r2Uop
L =

8>>>>>>>>><>>>>>>>>>:

n if A(L, ri) = ni
and n = n1 + n2

r2 if A(L, r1) = 0

r1 if A(L, r2) = 0

n1 + r2 if A(L, r1) = n1

n2 + r1 if A(L, r2) = n2

r1 + r2 in any other cases

Tr1 / r2Ucmp
L =

8><>:
true if A(L, ri) = ni and n1 / n2

false if A(L, r) = ni and ¬(n1 / n2)

r1 / r2 otherwise

Fig. 2.11. Constant Propagation
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For example, if both arguments of an addition operation are known to be
equal to n1 and n2, the operation is directly replaced by an immediate load
of the integer n s.t. n = n1 + n2. If only one register is known to be equal
to 0 the compiler replaces the addition operation by a move instruction. If
one register is known but not equal to 0 then the compiler uses an immediate
addition operation. Similar kind of optimizations are done for other arithmetic
operations, but are not shown in Figure 2.11.

The optimized function f will be such that f [L] = Tf [L]UL for every label
L in the domain of Gf . The transformation of an annotated instruction is
defined as a transformation of the annotation and the transformation of the
instruction descriptor.

Certifying analyzer

In this paragraph, we describe a certifying analyzer for constant propagation
as an extension of the standard analysis algorithm. First, we attach to each
reachable label L the assertion RESA(L):

RESA(L) ≡
∧

A(L,r)6=⊥

r = A(L, r)

To derive a certificate for the analysis we must, for each reachable label L,
generate a proof for the judgment

` RESA(L)⇒ wpidfA(L)

After applying elim⇒ (i.e., moving hypothesis to the context), and rewriting
equalities from the context in the goal, one is left to prove closed equalities of
the form n = n′ (i.e., n, n′ are constants and do not contain variables). If the
assertions are correct, then the certificate is obtained by applying reflexivity
of equality (an instance of the ring rule).

Certificate translation

Suppose we have a certified function f with declaration {~rg; ϕ; G; ψ; λ; ~Λ}.
After applying constant propagation we get a function f and we are interested
on building its corresponding certificates λ and ~Λ.

To build ~Λ (the set proof obligations generated by the intermediate asser-
tions), for each instruction of the form f [L] = (ϕ ∧ RESA(L), ins) we have
to find a proof for ` ϕ ∧ RESA(L) ⇒ wpid

f
(L). To this end, we rely on an

auxiliary function T ins
L of type

T ins
L : C(` wpidf (L)⇒ RESA(L)⇒ wpid

f
(L))

for every label L, and on the function Tλ defined in Section 2.3.1 to construct
a certificate for ` ϕ ∧ RESA(L) ⇒ wpid

f
(L). Furthermore, for every local

substitution of op by TopUop
L performed by the optimization, we require a

certificate Top(op, L) for ` RESA(L)⇒ 〈op〉 = 〈TopUop
L 〉.
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The certificate T ins
L represents the fact that under the hypothesis that the

result of the analysis is correct, if a program state satisfies wpidf (L) then it
will also satisfy wpid

f
(L). The definition of the constructor T ins

L is detailed in
Fig. 2.12 for the assignment case. In the figure, the auxiliary function TL of
type C(` wpf (L) ⇒ RESA(L) ⇒ wpf (L)) is defined equal to T ins

L when f [L]
does not contain an assertion. Otherwise, TL has type C(` φ ⇒ RESA(L) ⇒
φ ∧ RESA(L)) for some φ and, thus, it is trivially defined.

Let

f [L] = r := op, L′

Γ = [φ1; RESA(L)]
φ1 = wpf (L′)[op/rd ]
φ2 = RESA(L′)[op/rd ]
φ3 = wpf̄ (L′)[op/rd ]

in:
p1:=TL(L′) :` wpf (L′)⇒ RESA(L′)⇒ wpf (L′)

p2:=weak Γ (subst rd 〈op〉(p1)) : Γ ` φ1 ⇒ φ2 ⇒ φ3

p3:=axiom(φ1) : Γ ` φ1

p4:=weak Γ ( ~ΛA(L))Γ ` RESA(L)⇒ φ2

p5:=axiom(RESA(L)) : Γ ` RESA(L)
p6:=elim⇒(p5, p4) : Γ ` φ2

p7:=elim⇒(p6, elim⇒(p3, p2)) : Γ ` φ3

p8:=weak Γ (Top(L, op)) : Γ ` RESA(L)⇒ 〈op〉 = interpTopUop
L

p9:=elim⇒(p5, p8) : Γ ` 〈op〉 = interpTopUop
L

p10:=elim=(p9, p7) : Γ ` wpf (L′)[〈TopUop
L
〉/rd ]

p11:=intro⇒(intro⇒(p10)) :` wpid
f (L)⇒ RESA(L)⇒ wpid

f
(L)

Fig. 2.12. Definition of T ins
L for assignment case

Example 2.9. Consider as an example the following program transformation:

L1 : {r2 ≥ 1}
L2 : r1 := 1
L3 : {r2 ≥ r1 ∧ r1 ≥ 0}
L4 : r3 := r1

L5 : {r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0}
L6 : r2 := r2 + r3

L7 : nop, L3

−→

L1 : {r2 ≥ 1}
L2 : r1 := 1
L3 : {r2 ≥ r1 ∧ r1 ≥ 0}
L4 : r3 := 1
L5 : {r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0}
L6 : r2 := r2 + 1
L7 : nop, L3

We have originally a proof obligation generated at L3:

r2 ≥ r1 ∧ r1 ≥ 0⇒ r2 ≥ r1 ∧ r1 = r1 ∧ r1 ≥ 0

and a proof obligation at L5:

r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0⇒ r2 + r3 ≥ r1 ∧ r1 ≥ 0 .



34 Chapter 2. Certificate Translation for RTL Optimizations

The first proof obligation becomes r2 ≥ r1 ∧ r1 ≥ 0 ⇒ r2 ≥ 1 ∧ 1 =
r1 ∧ r1 ≥ 0 after the program transformation. Clearly, in order to obtain a
proof of it, it is necessary to introduce the condition r1 = 1 in the antecedent.
This motivates the need for the hypothesis about the result of the analysis,
in this case r1 = 1.

However, this introduction is not always needed. For example, the second
condition becomes r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0 ⇒ r2 + 1 ≥ r1 ∧ r1 ≥ 0 in the
optimized code, and the assertion r1 = 1 is not necessary at L5 in order to
prove the verification condition (unless it is also introduced at L3).

2.3.3 Loop Induction Variable Strength Reduction

Description

Loop induction strength reduction aims at reducing the number of multiplica-
tion operations inside a loop, which are commonly more costly than addition
operations. An induction register is a register that is incremented (or decre-
mented) in each iteration of the loop by a fixed constant value. An induction
register is defined in the loop by an instruction of the form ri := ri + c, where
c is a constant value. A derived induction register is a register that is assigned
in each iteration of the loop the value of a linear function on the induction
register. A derived induction register is defined in the loop by an instruction
of the form rd := b ∗ ri, where b is a constant value. The optimization consists
of replacing any instruction updating a derived induction register rd, made in
terms of the basic induction register ri, by an increment made only in terms
of the previous value of rd. For example, in

Loop : ri := ri + c
rd := b ∗ ri
nop, Loop

ri is a basic induction register with an increment of c, and rd is an induc-
tion register with coefficient b derived from ri. The optimization replaces the
assignment rd := b ∗ ri by the less costly assignment rd := rd + b ∗ c and in-
troduces the initialization rd := b ∗ ri just before the head of the loop. In
addition to reducing the cost of the instruction, the live range of the register
ri is reduced, enabling further optimizations.

In the sequel, we follow the simplifying assumption that the loop body con-
tains a single assignment for each register ri and rd. We assume also that the
compiler has the ability to detect loops and returns a set of labels {L1, . . . , Ln}
determining the loop body, from which the header label LH is the unique entry
point.

Let {~x; ϕ; G; ψ; λ; ~Λ} be the declaration for function f . Strength reduc-
tion proceeds in two steps. In the first step, an analysis detects inside the loop
an induction register ri and a derived induction register rd. More precisely,
the analysis takes as input a set of labels {L1, . . . , Ln} (we assume that this
set of labels corresponds to the output of a loop analysis, and that the header
label is LH) and provides the following information: an induction register ri
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and the label Li in which it is updated, a derived induction register rd and
the label Ld in which its definition appears, a fresh register name r′d, two new
labels L′′i and L′′H not in the domain of Gf and two constant values b, c that
correspond to the coefficient of rd and the increment of ri, respectively. The
first transformation step consists in introducing two assignments to a fresh
register r′d, one immediately before the loop header and the other one imme-
diately after the assignment f [Li] = ri := ri + c, L′i. The output function
at this transformation step is named f ′ and is defined in Figure 2.13. The
motivation for this transformation phase is to ensure the invariance of the
condition r′d = b ∗ ri in the loop body. In the figure, labels L′, L′H , L′i, and L′d
are the successor labels for the instructions at L, LH , Li and Ld, respectively.
To ensure that the instruction at L′′H is always executed before entering the
loop, we update the labels outside the loop replacing LH with L′′H .

f ′[L′′H ] = r′d := b ∗ ri, LH
f ′[LH ] = f [LH ]
f ′[Li] = ri := ri + c, L′′i
f ′[L′′i ] = r′d := r′d + b ∗ c, L′i

f ′[L] =


f [L] if L is any other label inside the loop

f [L][L
′′
H/LH ] if L is a label outside the loop

Fig. 2.13. Loop Induction: First Transformation Step

In a second step, an analysis determines the invariance of the condition
r′d = b ∗ ri and consequently an optimization replaces the assignment to the
derived induction register rd := b ∗ ri by the less costly assignment rd := r′d.
We define the optimized function f as f [Ld] = rd := r′d, L

′
d and f [L] =

f ′[L] for every L 6= Ld. In addition, every annotation inside the loop body is
augmented with the condition r′d = b ∗ ri. The annotations for labels outside
the loop are not modified.

Certifying analyzer

Since the first transformation step just adds an assignment to a fresh register,
only the analysis of the second step must be certified. To annotate f ′ with the
result of the analysis, we define RESA(L) as r′d = b∗ri if L is in {L1, . . . , Ln},
as r′d = b∗(ri−c) for L = L′′i , and RESA(L) ≡ true in any other case (i.e., when
L is a label outside the loop). Then, we need to create a certificate that the
analysis is correct. The definition of f ′A is given by f ′A[L] = (RESA(L), ins),
where f [L] = ins or f [L] = (φ, ins). Since RESA(L) refers only to registers
r′d and ri, the only interesting proof obligations are those corresponding to
program labels L′′H , Li, and L′′i .
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Certificate translation

Certificate translation from a certificate for f into a certificate for f is also
performed in two steps. In the first one, we build a certificate for f ′ from a
certificate for f . Then we build a certificate for f from the certificate for f ′.

The first translation step is trivial due to preservation of proof obligations.
More precisely, we can show that since r′d is a fresh register and, hence, does
not appear in the code nor in assertions, the introduction of assignments
targeting register r′d does not affect the computation of the function wpidf .
Formally, we can prove by the induction principle induced by the definition of
well-annotated programs, that for every L 6∈ {L′′H , L′′i }, wpidf ′(L) = wpidf (L).
Then, since no proof obligations are introduced at L′′H or L′′i , the set of proof
obligation {φ ⇒ wpidf ′(L) | f ′[L] = (φ, ins)} corresponds to the original set
of proof obligations {φ ⇒ wpidf (L) | f [L] = (φ, ins)}. Therefore, the original
certificate can be reused without modifications.

Certificate translation for the transformation from f ′ to f proceeds as with
constant propagation or any certificate translation that requires a certifying
analyzer. That is, we need to give explicitly a proof of wpf (L)⇒ wpid

f
(L)

for each instruction of the form f [L] = (ϕ ∧ RESA(L), ins). We can avoid
repeating the main process since it is the same that was specified in the
previous section (constant propagation). However it remains to define T ins

L .
Intuitively, the function T ins

L expresses a correspondance between the weakest
precondition function applied inside the loop of functions f ′ and f , provided
the hypothesis r′d = b ∗ ri is valid.

T ins
L : C(` wpidf ′(L)⇒ RESA(L)⇒ wpid

f
(L))

This function T ins
L is constructed using the induction principle attached

to the definition of well-annotated programs, and then this result is merged
with the original certificate and the certificate of the analysis, to produce a
certificate for f . In Figure 2.14, we show the definition of T ins

L for the case
L = Ld.

Example 2.10. Consider the following program, where n ∈ N:

r := 0
ri := 0

Loop : {r = b ∗ ri ∧ ri ≤ n}
ri ≥ n ? Lout
ri := ri + 1
rd := b ∗ ri
r := rd
nop, Loop

Lout : {r = b ∗ n}

One can apply the optimization of this section to reduce the strength of the
instruction updating the derived induction register rd. Focusing on the proof
obligation corresponding to the preservation of the loop invariant, we can
extract the interesting fragment
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Let Γ = [wpid
f ′(Ld),RESA(Ld)] in

p1:=TL(L′d) :` wpf ′(L
′
d)⇒ wpf ′A

(L′d)⇒ wpf (L′d)

p2:=subst rd b∗ri(p1) :` wpid
f ′(Ld)⇒ wpid

f ′A
(Ld)⇒ wpf (L′d)[

b∗ri/rd ]

p3:=axiom(wpid
f ′(Ld)) : Γ ` wpid

f ′(Ld)
p4:=axiom(RESA(Ld)) : Γ ` RESA(Ld)

p5:=weak Γ ( ~ΛA(Ld)) : Γ ` RESA(Ld)⇒ wpid
f ′A

(Ld)

p6:=elim⇒(p4, p5) : Γ ` wpid
f ′A

(Ld)

p7:=elim⇒(p3,weak Γ (p2)) : Γ ` wpid
f ′A

(Ld)⇒ wpf (L′d)[
b∗ri/rd ]

p8:=elim⇒(p6, p7) : Γ ` wpf (L′d)[
b∗ri/rd ]

p9:=elim=(p4, p8) : Γ ` wpid

f
(Ld)

T ins
L (Ld):=intro⇒(intro⇒(p9)) :` wpid

f ′(Ld)⇒ RESA(Ld)⇒ wpid

f
(Ld)

Fig. 2.14. Definition of T ins
L for the case L = Ld

r = b ∗ ri ∧ ri ≤ n ∧ ri < n⇒ b ∗ (ri + 1) = b ∗ (ri + 1) .

If the program is transformed as follows (strength reduction)

r := 0
ri := 0
r′d := 0

Loop : {r = b ∗ ri ∧ ri ≤ n}
ri ≥ n ? Lout
ri := ri + 1
r′d := r′d + b
r := r′d
nop, Loop

Lout : {r = b ∗ n}

the fragment of the proof obligation becomes

r = b ∗ ri ∧ ri ≤ n ∧ ri < n⇒ r′d + b = b ∗ (ri + 1) .

The condition r′d = b ∗ ri is missing in the antecedent, and adding it
in is mandatory to verify the code. At the same time, this extension of the
invariant must be verified, a task that corresponds to the proof obligations
automatically generated by the certifying analyzer.

2.3.4 Common Subexpression Elimination

Description

Common subexpression elimination (CSE) aims at reducing the number of
duplicated computations by reusing previously defined and still available non-
trivial expressions: if the same expression is computed at two different program
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points, CSE eliminates one of the computations, by replacing the second oper-
ation by an access to the register containing the result of the first evaluation.

CSE is similar to constant propagation, in the sense that the transforma-
tion is triggered by conditions represented by an equality between a register
and an expression. In constant propagation, this expression corresponds to a
constant value, whereas in CSE it may be a more complex expression (com-
monly involving arithmetic operators). Therefore, the principle behind certifi-
cate translation for CSE is very similar to the one for certificate translation
for CP. In the following example

r1 := r2 + r3

r4 := r2 + r3

r1 := r1 + 1
r5 := r2 + r3

−→

r1 := r2 + r3

r4 := r1

r1 := r1 + 1
r5 := r4

the assignment updating the register r4 could be optimized, but after the
second assignment over r1, the availability of the expression r2 + r3 through
r1 is lost, and then the assignment to r5 has to be optimized with r4.

We begin by discussing the certifying analyzer for CSE. The function A
with type PP × R → op⊥ associates to a label L and a register r an RTL
expression. Similarly to constant propagation, the assertion RESA is defined
as:

RESA(L) ≡
∧

A(L,r)6=⊥

r = 〈A(L, r)〉

where 〈A(L, r)〉 is the interpretation into the language of assertions of the
information returned by the analysis.

The certifying analyzer generates automatically a certificate for fA, where
for every label L, the corresponding annotation will be RESA(L).

We briefly describe the transformation for CSE. For each f [L] of the form
r := e, if there is a register r′ such that r′ 6= r and A(L, r′) = e, we replace
the instruction f [L] by r := r′.

Finally, certificate translation proceeds exactly as with constant propaga-
tion, with the definition of two mutually recursive transfer functions using the
induction principle attached to the definition of reachAnnotf :

T ins
L : ∀L, C(` wpidf (L)⇒ RESA(L)⇒ wpid

f
(L))

TL : ∀L, C(` wpf (L)⇒ RESA(L)⇒ wpf (L))

Then, these two functions are used to merge the original certificate with the
certificate of the analysis to build a certificate for f .

Example 2.11. Consider the previous example with intermediate assertions:

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3

{0 ≤ r2 ∧ 0 ≤ r3}
r4 := r2 + r3

{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3}
r1 := r1 + 1
r5 := r2 + r3

{0 ≤ r5}

→

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3

{0 ≤ r2 ∧ 0 ≤ r3}
r4 := r1

{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3}
r1 := r1 + 1
r5 := r4

{0 ≤ r5}
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If the instruction r4 := r2 + r3 is replaced with r4 := r1, the lack of informa-
tion about register r1 on assertions prevents proving the condition 0 ≤ r4 of
the third assertion. Then, we need to propagate r1 = r2 + r3 to the second
assertion. Finally, although there is enough information about register r4 on
the second assertion to prove that 0 ≤ r5 is valid after the assignment, the
original proof is done in terms of r2 and r3. Hence, the need for a general and
automatic technique forces us to introduce the condition r4 = r2 + r3.

The fA and f functions are respectively:

{true}
r1 := r2 + r3

{r1 = r2 + r3}
r4 := r2 + r3

{r4 = r2 + r3}
r1 := r1 + 1
r5 := r2 + r3

{true}

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3

{0 ≤ r2 ∧ 0 ≤ r3 ∧ r1 = r2 + r3}
r4 := r1

{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3 ∧ r4 = r2 + r3}
r1 := r1 + 1
r5 := r4

{0 ≤ r5}

2.3.5 Copy Propagation

Description

Copy propagation aims at reducing the live range of variables defined by
move operations, simplifying register allocation at the code generation phase.
It is intended to remove the number of auxiliary register copies that may be
introduced by other optimizations.

Copy propagation searches for occurrences of instructions of the form r1 :=
r2, and replaces every occurrence of r1 by r2 (along its successors’ path) until
either r1 or r2 are modified. The original assignment r1 := r2 can be moved
forward (down) in the code until the condition r1 = r2 gets invalidated.

Example 2.12. Consider the original program

r1 := r2

S(r1, r2)
r3 := r1 + r2

r2 := r1 op r2

T (r1, r2)

where S and T represent sequences of instructions and neither r1 or r2 are
modified in S. Copy propagation of the variable r2 results in the following
program:

r1 := r2

S(r2, r2)
r3 := r2 + r2

r2 := r2 op r2

T (r1, r2)

The transformation is advantageous in terms on availability of register r1,
since its live range can be reduced considerably, and in consequence one may
move the first assignment forward to get:
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S(r2, r2)
r3 := r2 + r2

r1 := r2

r2 := r2 op r2

T (r1, r2)

Certificate translation

As with constant propagation, common subexpression elimination, and many
other optimizations, the translation of the certificate can be made by using
a certifying analyzer. First, a special purpose function fA is generated, fully
annotated with the results of the dataflow analysis (e.g., r1 = r2), and a new
certificate is automatically generated validating these auxiliary assertions. We
formallize the result of the analysis as a function A : PP × R → R⊥, such
that, for any r1, r2 ∈ R, A(L, r1) = r2 only if r1 holds a copy of the value at
r2 at program point L. The result of the analysis A is used to define

RESA(L) ≡
∧

r∈{r|A(L,r)6=⊥}

r = A(L, r)

and to generate a certificate for the analysis, defining for each reachable label
L the certificate

` RESA(L)⇒ wpidfA(L)

that is later integrated with the certificate of the original program. The func-
tion T ins

L is defined by case analysis. The proof for T ins
L does not represent

any further difficulty with respect to that of constant propagation or common
subexpression elimination.

2.3.6 Dead Register Elimination

Description

Dead register elimination aims at removing assignments to registers that will
not be needed in the future. As mentioned in the introduction, we propose a
transformation that removes dead assignments while simultaneously modify-
ing the assertions. Regarding certificate translation, this program transforma-
tion is atypical since it does not follow the scheme consisting on a certifying
analyzer and a definition of the function T ins

L .
Intuitively, a register is live at some execution point if it stores a value

that interferes with the subsequent execution steps. The classical definition is
intentional and overapproximating: a register r is live at label L if r is read
at label L or there is a path from L that reaches a label L′ where r is read
and does not go through an instruction that defines r (including L, but not
L′). A register r is read at label L if it appears as a parameter of a function
call, in a conditional jump, in a return instruction, or on the right side of an
assignment to a live register r′.

In the following, we represent with the function L the result of the analysis
and write L(L, r) = > when a register is live at L.
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A live range of a register r is a set of sequences of consecutive input or
output edges such that r is live.

The problem with certificate translation for removal of dead registers is
that intermediate assertions can specify conditions over local variables that
will never be used, and hence are dead in the program. Arguably, we may
assume that original assertions only refer to live variables. However, some
optimizations can reduce the live range of variables and, therefore, the occur-
rence of some registers may become redundant after previous optimizations
steps. For example in the following optimization

{true}
r1 := 1
{r1 = 1}
r2 := r1

{r2 = 1}

−→

{true}
r1 := 1
{r1 = 1}
r2 := 1
{r2 = 1}

the register r1 becomes dead, but the assignment r1 := 1 cannot be removed
since we have to ensure that r1 = 1 is a valid intermediate assertion.

In order to deal with assertions, we extend the definition of liveness.

Definition 2.13 (Live in assertions). A register r is live in an assertion
at label L, denoted by L(L, r) = >φ, if it is not live at label L but there is a
path from L that reaches a label L′ such that r appears in an assertion at L′

or where r is used to define a register which is live in an assertion at label L′.

By abuse of notation, we write L(L, r) = ⊥ if r is dead in the code and in
assertions.

In order to deal with registers that are dead in the code but live in as-
sertions, we rely on the introduction of ghost variables. Ghost variables are
expressions in our language of assertions (we assume that the set of ghost
variables names and the set of register names R are disjoint). We introduce,
as part of the set of RTL instructions, ghost assignments, i.e., instructions
of the form set v̂ := op, L, where v̂ is a ghost variable. Ghost assignments
do not affect the semantics of RTL, but they affect the calculus of wp in the
same way as normal assignments. At the end of this section we discuss the
soundness of the verification infrastructure in presence of ghost variables.

In the following, if σ is a function mapping expressions to registers, we
denote φσ the result of substituting every free register r in φ by σr.

We propose a transformation, defined by the following equations:

ghostL((ϕ, ins)) = (ϕσL, ghostidL (ins))
ghostL(ins) = ghostidL (ins)

where the substitution σL maps r to r̂ if L(L, r) = >φ and deadc(L,L′) = {r |
L(L, r) = > ∧ L(L′, r) = >φ} and the transformation function ghostidL (ins) is
defined in Figure 2.15. We use set ~̂r := ~r as syntactic sugar for a sequence of
assignments set r̂i := ri where for each register ri in the sequence ~r, r̂i in ~̂r is
its corresponding ghost variable. Each instruction of f is transformed into a
sequence of instructions for f . Intuitively, it introduces for every instruction
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ins (with successor L′) at label L, a ghost assignment set r̂ := r, L′ imme-
diately after L (at a new label L′′) if the register r is live at L but not live
at the immediate successor L′ of L. In addition, every instruction of the form
rd := op is removed if the register rd is not live at L.

Example 2.14. Taking as input the short piece of code from the introduction,
the result of the transformation is:

{true}
set r̂1 := 1
{r̂1 = 1}
r2 := 1
{r2 = 1}

Certificate translation

Certificate translation for dead register elimination falls in the IPO category,
i.e., the certificate of the optimized program is an instance of the certificate of
the source program. This is shown by proving that ghost variable introduction
preserves annotations up to substitution of dead variables.

Lemma 2.15. After applying ghost variable introduction, the transformed
function f satisfies the following property:

∀L,wpf (L) = wpf (L)σL

where σ is the substitution defined above.

Proof. The proof is by the induction principle attached to the definition of
reachAnnot. We only consider some representative cases:

— Case f [L] = (ϕ, ins). In this case wpf (L) is equal to ϕσL by definition
of wp and ghost variable introduction. But, since ϕ is equal to wpf (L), the
lemma is satisfied.

— Case f [L] = nop, L′. By definition of wp, we have that wpf (L) is equal
to wpf (L′), which in turn is equal to wpf (L′)σL′ by inductive hypothesis. Since
wpf (L′) = wpf (L), it remains to prove that σL′ is in fact equal to σL, but this
is the case since the condition of liveness or liveness in assertion is the same
for L and L′ for any register. For example, if L(L′, r) = >, that means that
r is read at label L′ or there is a path π that reaches label L′′ such that r is
never assigned. In the first case, we can propose L → L′ as a path from L
that reaches L′ where r is read. And in the second case we can construct the
desired path appending L→ L′ to π.

— Case f [L] = rd := op, L′ and L(L′, rd) = >φ. By definition of wp and
the transformation performed we have that wpf (L) is equal to wpf (L′)[opσL/r̂d ],
and by I.H., to wpf (L′)σL′ [opσL/r̂d ]. Now we have to see that

[opσL/r̂d ] ◦ σL′ = σL ◦ [op/rd ] .

To prove this equation we proceed by case analysis. First, consider the ap-
plication of the substitutions to register rd, in this case we can see that both
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expressions are equivalent to opσL. Now suppose that we apply them to a reg-
ister r 6= rd. In this case, if r is in wpf (L′) then it is live or live in assertion
on label L′, in which case, it will also be live or live in assertion, respectively,
on label L. If r is live in assertion on label L, and r occurs free in wpf (L′),
then it must also be the case that r is live in assertion on label L′, because if
it is not the case, and r occurs in wpf (L′), then r must be live on label L′,
which implies that is is also live on label L, and that is a contradiction.

A consequence of this lemma is that if the function f is certified, then
it is possible to reuse the certificate of f to certify f . More precisely, for
every label L s.t. f [L] is of the form (φL, ins) we can obtain a proof of
` φLσL ⇒ wpidf (L)σL (i.e., of ` wpf (L) ⇒ wpid

f(L)
) by applying subst rule of

Figure 2.5 to the original proof for ` φL ⇒ wpidf (L).
After ghost variable introduction has been applied, every register that

occurs free in wpf (L) is live at L.

ghostidL (return r) = return r
ghostidL (rd := f(~r), L′) = L : rd := f(~r), L′′

L′′ : set ~̂t := ~t, L′

ghostidL (nop, L′) = nop, L′

ghostidL (cmp ? L1 : L2) = L : cmp ? L′1 : L′2

L′1 : set ~̂t1 := ~t1, L1

L′2 : set ~̂t2 := ~t2, L2

ghostidL (rd := op, L′) =

8>>><>>>:
nop, L′ if L(L′, rd) = ⊥
set r̂d := opσL, L

′ if L(L′, rd) = >φ˛̨̨̨
˛L : rd := op, L′′

L′′ : set ~̂t := ~t, L′
if L(L′, rd) = >

where ~t, ~t1 and ~t2 stand respectively for variables in
the sets deadc(L,L

′), deadc(L,L1) and deadc(L,L2)

Fig. 2.15. Ghost Variable Introduction-Dead Register Elimination

Soundness of Ghost Variable Introduction.

To consider the proposed transformation as an optimizing one, the execution
environment must be capable of safely ignoring ghost assignments. Intuitively,
the set of ghost variables do not affect the state of any other variable nor the
control flow (that is because ghost variables do not appear on ordinary assign-
ments or conditional jumps).xs If we define an equivalence relation between
steps that only takes into consideration the coincidence on live variables, it
should be clear that two executions starting from different but equivalent
states always reach equivalent intermediate states. Stated in other words, the
domain of ghost variables does not interfere with the domain of standard vari-
ables and, hence, it is safe to slice them out of the standard RTL programs.
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Discussion.

We can avoid introducing ghost variables if we are able to remove dead vari-
ables from assertions. However, it is not trivial to determine whether a sub-
assertion can be removed from an invariant. Consider for instance the following
example:

y := 3
x := y

Loop : {φ}
b ? Lout
x := x+ 1
y := 3, Loop

Lout : {x ≥ 0}

where φ is x ≥ 3 ∧ y ≥ 3. Clearly, the assignment y := 3 within the loop and
the subassertion y ≥ 3 may be sliced out from the program. However, in other
examples, it may be the case that the subassertion refers both to dead and
live variables, and hence cannot be removed. Consider the example above but
suppose now that φ is defined as x ≥ y ∧ y ≥ 3. In this case, the condition
y ≥ 3 appearing in the invariant is necessary to prove the invariance of x ≥ y.
Thus, φ may not be simplified.

An alternative approach, shown in Chapter 3, is to existentially quantify
each assertion over its corresponding dead variables. Even though this is a
simpler approach that does not require the existence of ghost variables in the
verification framework, the result of transformation is a weaker program speci-
fication. Consider the following example and both alternative transformations
(in that order):

{x = y}
c

{x = y}

{x = ŷ}
c

{x = ŷ}

{∃y. x = y}
c

{∃y. x = y}

where c is a sequence of instructions in which y does not occur, and y is
considered a dead variable. On the left, in which ghost variable introduction
has been applied, the final contract specifies that the value of x is the same
after the execution of c. On the right, the relation between the original and
final value of x is lost.

2.3.7 Unreachable Code Elimination

Description

Unreachable code elimination aims at removing instructions that are never
executed.

The optimization described here simply identifies the connected graph of
nodes that can be reached starting from the initial node pointed by Lsp, and
removes the remaining nodes. The existence of unreachable program points
may be originated, for instance, by application of other program optimiza-
tions.
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We are not considering in this section the detection and removal of redun-
dant conditional branches. Removing redundant conditional branches can be
performed in a previous phase, in which the analysis is required to detect the
validity of the branching condition. For example in

r1 := r2

r1 = r2 ? Lt
[S]

Lt : ...

r1 := r2

nop, Lt
[S]

Lt : ...

the analysis may infer that the fact r1 = r2 is valid immediately before the
conditional branch and, in addition, in order to translate the certificate, this
condition must be proved correct. Next, as is common with several optimiza-
tions, the function T ins

L is defined and the proof of the analysis is merged
with the original proof to translate the certificate. Notice that the fragment
of code [S] is not removed since it may be reachable by some other instruc-
tions, this transformation is left to a different transformation: unreachable
code elimination.

The selection of reachable nodes is a straightforward process and translat-
ing the certificate does not represent any difficulty.

Certificate translation

Our definition of VCgen is such that proof obligations are totally independent
from unreachable nodes.

Its clear that for any label L reachable from Lsp, wpf (L) = wpf|R(L),
where f|R is f with its graph code restricted to the set R of reachable la-
bels. Notice that for the preservation of certificates we require the VCgen to
consider only assertions on reachable labels, as is the case in this chapter.
Otherwise, if the VCgen considers also annotations on unreachable labels, the
set of proof obligations of the transformed program is a subset of the proof
obligations of the initial program.

2.3.8 Register Allocation

Description

Register allocation is a code generation phase that intends to minimize register
usage by storing in a single real machine register two or more temporary
registers. That is possible, for instance, for those registers whose live ranges
are disjoint (namely nonoverlapping registers). For simplicity, we abstract
from the complexity of determining the mapping between pseudo-registers
and final registers. We also refrain from considering cases in which the lack of
available registers forces one to temporarily store them in a secondary memory
(memory spills).

The result of the analysis is represented as a mapping σ with type R 7→ R.
The code transformation rewrites each instruction and assertion by applying
the substitution σ given by the analysis, that maps temporary registers of
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the intermediate RTL language to a potentially shared register in the object
language.

To ensure correctness of the analysis, we require that applying the transfor-
mation induced by this substitution σ is semantics preserving. More precisely,
the following property is desired over the result of the analysis: for any reg-
isters r1 and r2, if σr1 = σr2 then the live ranges of r1 and r2 are disjoint.
In addition, we require that there are no assignments to dead registers. This
condition can be fulfilled by applying ghost variable introduction in a previous
phase.

Certificate translation

If the substitution σ returned by the analysis is correct, i.e., two overlapping
registers r1 and r2 are not mapped to the same register, then the proof obliga-
tions of the original and optimized program coincide up to variable renaming.

Lemma 2.16. Suppose we have a function f , such that for any register r and
any label L, L(L, r) 6= >φ (all registers in assertions are live). Assume also
that there are no assignments to dead variables. If f is the result of applying
register allocation, then for any label L

wpf (L) = wpf (L)σ

where σ represents the mapping that joins pairs of nonoverlapping registers.

Proof. We prove the validity of the condition wpf (L) = wpf (L)σ, using the
induction principle induced by the definition of well-annotated program.

— base case f [L] = (ϕ, ins)
By definition of wp and the register replacement, wpf (L) is equal to ϕσ, which
is equal to wpf (L)σ

— base case f [L] = return r
wpf (L) is post(f)[σr/res] by definition, but it is clear that this is also equal to
post(f)[r/res]σ. Which by definition is wpf (L)σ.

— case f [L] = nop, L′

In this case wpf (L) is equal to wpf (L′), and by inductive hypothesis is equal
to wpf (L′)σ, and then to wpf (L)σ.

— case f [L] = rd := g(~r), L′

By definition of wp, we have that wpf (L) is equal to

pre(f)[σ~r/~rg ] ∧ (∀res, post(f)[σ~r/~r∗g ]⇒ wpf (L′)[res/σrd ])

Since σ is the identity for variables occurring in pre(f) or post(f) we have

(pre(f)[~r/~rg ])σ ∧ (∀res, (post(f)[~r/~r∗g ])σ ⇒ wpf (L′)[res/σrd ])

and applying inductive hypothesis on wpf (L′) we get

(pre(f)[~r/~rg ])σ ∧ (∀res, (post(f)[~r/~r∗g ])σ ⇒ wpf (L′)σ[res/σrd ])
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finally, since σres = res, it is clear that the last expression is equal to

(pre(f)[~r/~rg ])σ ∧ (∀res, (post(f)[~r/~r∗g ])σ ⇒ (wpf (L′)[res/rd ])σ)

that is exactly wpf (L)σ
— case f [L] = cmp ? Lt : Lf

In this case wpf (L) is cmpσ ⇒ wpf (Lt)∧¬cmpσ ⇒ wpf (Lf ) which by induc-
tive hypothesis is equal to cmpσ ⇒ wpf (Lt)σ ∧ ¬cmpσ ⇒ wpf (Lf )σ. But this
is in fact wpf (L)σ by definition of wp.

— case f [L] = rd := op, L′

wpf (L) is by definition of wp and the transformation, wpf (L′)[opσ/σrd ]. By in-
ductive hypothesis, this is also equal to wpf (L′)σ[opσ/σrd ]. If we show that for
any variable r in wpf (L′), [opσ/σrd ](σr) is equal to σ([op/rd ]r) then wpf (L′)σ[opσ/σrd ]
is equal to wpf (L′)[op/rd ]σ, and that is what we want to prove. To prove the
equality between the two mappings, suppose first that r = rd, in this case
[opσ/σrd ](σr) is opσ and is clearly the same for σ([op/rd ]r). In case r 6= rd, σr
must be clearly different to σrd, as rd is live in L′ and if r ∈ FV (wpf )(L)
then r is also live in L′. Under this assumption, both sides of the equation are
equal to σr.

Conclusion

As with dead register elimination, the proof transformation is just a renam-
ing using the operator subst to the original certificates, as specified by the
substitution function σ.

2.3.9 Function Inlining

Description

An immediate motivation of function inlining is reducing the overhead of
the function call. However, its main purpose is to generate new optimization
opportunities.

We do not consider here profitability issues, since it is not the purpose
of this presentation. Indeed, even when the transformation reduces the call
overhead and gives rise to new optimization opportunities, it is possibly un-
desirable since it may increase the code size and the number of registers in
use. The analysis that follows is restricted to translating the certificate and
does not focus on its profitability.

Suppose we have a function call rd := g(~x), Lret as the instruction f [Lcall].
The transformation consists of replacing this statement with an assignment
to function g’s formal parameters, followed by the body of the function g
where every return instruction is replaced by a corresponding assignment
to the register rd. In this section, we assume for simplicity that the set of
registers used by g is disjoint from those of the function where it will be
inlined. Similarly, for notational convenience, we assume that the functions
under consideration do not share program labels, and that the function g has
a unique parameter y.
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f [Lcall] , y := x, Lcall′

f [Lcall′ ] , (pre(g) ∧Q, nop, Lspg )

f [L] , Tg[L]U if L is in Gg domain

f [Lret′ ] , post(g)[rd/res] ∧Q, nop, Lret
where:

T(φ, ins)U , (φ ∧Q, TinsU)

Treturn rU , rd := r, Lret′

TinsU , ins if ins 6= return

Fig. 2.16. Function inlining transformation

The transformation is depicted in Figure 2.16, where Q stands for the
assertion ∀res. post(g)[x/y∗ ] ⇒ wpf (Lret)[res/rd ]. The graph Gg for function
g is inserted, with small changes, in replacement of the function call, and
appropriate assignments are inserted before the function call. Notice that not
only the return instructions are modified, but also the assertions, which are
augmented with conditions (Q) that must be propagated through the complete
set of instructions until the end, at label Lret.

Certificate translation

The wp function is defined for the function call case propagating the conditions
that must be satisfied when the function returns. The problem with function
inlining is that this propagation is lost, when inserting an arbitrarily big piece
of code that may contain assertions. For this reason and for the purpose of
certificate generation, assertions are reinforced with the condition that we
want to propagate (Q).

The assertion Q has the desired property that it cannot be modified by
any instruction in the body of function g, assuming the disjointness of the set
of local registers. In consequence, it is not difficult to prove in this case that
the following property is satisfied:

∀L ∈ domain of Gg. wpidg (L) ∧Q⇒ wpid
f

(L)

Notice that this property is similar to those we get when using an auxiliary
function fA to prove the results of the analysis, but in this case a certifying an-
alyzer is not necessary since Q is always trivially preserved. Another property
that is satisfied is

∀L ∈ domain of Gf . wpf (L) = wpf (L)

From these two results and the definition of the transformation, we can
reconstruct a new proof for the modified function f . For every label L in the
domain of Gf such that f [L] = (φ, ins), we have that f [L] = (φ, ins) and also
that wpid

f
(L) = wpidf (L), so certificates are simply preserved in this range.

For labels in the domain of Gg, if g[L] = (φ, ins) then f [L] is defined as
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(φ ∧Q, ins), and using the proof for wpidg (L)∧Q⇒ wpid
f

(L), and the original
proof for φ⇒ wpidg (L) we get a certificate for φ ∧Q⇒ wpid

f
(L).

It remains to see the cases for the assertions introduced at labels Lret′
and Lcall′ . In the latter, the certificate corresponding to the proof obligation
related to the precondition of g is used. The former proof obligation is clearly
provable as well.

Proof of auxiliary property.

Proof. We sketch here a proof for the properties stated above. The proof is
performed by simultaneous induction with the order relation induced by the
definition of well-annotated programs, for the following goals:

∀L ∈ domain of Gg. wpg(L) ∧Q⇒ wpf (L)

and
∀L ∈ domain of Gg. wpidg (L) ∧Q⇒ wpid

f
(L) .

— In case g[L] = (φ, ins) the first property is satisfied by definition and
the second one can be proved by case analysis in ins.

— If g[L] = r1 := r2, L
′ then, under the hypothesis that r1 is not a free

variable in Q, we get from the inductive hypothesis wpg(L′) ∧Q ⇒ wpf (L′),
a proof for wpidg (L) ∧Q⇒ wpid

f
(L) and wpg(L) ∧Q⇒ wpf (L).

— If g[L] = b ? Lt : Lf then we have to prove wpf (L) with the hypothesis
(b⇒ wpg(Lt)∧¬b⇒ wpg(Lf )) and Q. By inductive hypothesis we have that
wpg(Lt) ∧ Q ⇒ wpf (Lt) and that wpg(Lf ) ∧ Q ⇒ wpf (Lf ). Hence, we can
construct a proof for b⇒ wpf (Lt) and ¬b⇒ wpf (Lf ).

— In case g[L] = return r then wpf (L) is equal to post(g)[r/res] ∧Q. And,
since wpg(L) = post(g)[r/res], the consequence is clearly satisfied.

— Since any other instruction is similar and does not represent interesting
difficulties, a special treatment is not deserved.

2.3.10 Summary

In Section 2.2, we have showed that compiling programs from a high-level
language to an RTL representation preserves proof obligations as long as no
optimization is performed.

In this section, we have studied several standard compiler optimizations,
and under each particular case, we have showed that proof obligations may be
modified and, thus, that original certificates may not be reused. To solve this
difficulty, we have proposed a variety of techniques, some of them based on
the existence of a certifying analyzer and some others solved by ad-hoc tech-
niques. Optimizations that rely on a certifying analyzer range from constant
propagation or copy propagation, to common subexpression elimination, or a
loop optimization like induction variable strength reduction.

When dealing with dead register elimination we have showed a difficulty
that arises when dead registers occur on invariants and we have proposed a
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transformation on both the program and the specifications called ghost vari-
able introduction. Finally, we prove that, after applying this transformation,
certificate translation for the modified proof obligations is quite simple.

We have shown that unreachable code elimination is trivial, and we have
also proposed particular techniques to deal with function inlining and register
allocation. The latter is in fact a simplified version of the standard phase of
code generation, and relies on the simplifying assumption that dead variable
elimination has already been performed.



3

An Abstract Interpretation Model of
Certificate Translation

This article formalizes in the setting of abstract interpretation a method to
transform certificates of program correctness along semantically justified pro-
gram transformations.

3.1 Introduction

In this chapter, we take a more general approach and study certificate trans-
lation under the setting of abstract interpretation [26, 27]. The existence of
certificate translators in Chapter 2 is studied with a tight integration to a
particular program representation and verification environment. The lack of
a framework in which to formulate the basic concepts of certificate transla-
tion was a clear limitation of our earlier work, and made it difficult to assess
the generality of certificate translation. Therefore, the choice of an abstract
framework provides a substantial leverage with respect to previous results.
In particular, the abstract interpretation framework is a common model for
the two key components of a certificate translation procedure: the verification
environment in which the original certificate is produced and the static anal-
ysis that justifies a program optimization. A unifying theory to describe these
components allows a more precise study of their interaction in a certificate
translation process.

A common means to verify program properties is to consider (pre or post)
fixpoints of the transfer functions of an abstract interpretation. On the other
hand, to provide evidence to a code consumer that a program follows a speci-
fied policy, the code producer binds the program with a (partial) precomputed
solution. The code client just needs to check that a labeling satisfies a set of
inequalities to gain confidence about the program correctness. However, for
some abstract domains, checking the constraints required for the solution of
the analysis is too costly or even undecidable. That is the case, for instance,
with the domain of polyhedra or the domain of logical formulae in which our
PCC is based. To solve this difficulty, a notion of certificate must be intro-
duced to allow one to efficiently check that a constraint is satisfied. To model
this scenario, we have provided a mild extension of the abstract interpreta-
tion model to incorporate a certificate infrastructure. We do not commit to a



52 Chapter 3. Certificate Translation in Abstract Interpretation

particular representation of certificates; instead, we have defined an abstract
notion of proof algebra, that includes a set of functions, closed in the domain
of certificates, that are used to define a certificate translator for each program
transformation. One can see the VCgen framework defined in the previous
chapter as particular instance of the extended abstract interpretation frame-
work. As stated in Chapter 2, a certifying analyzer is a main component in the
definition of a certificate translator. It is standard to state the soundness of
an abstract interpretation with respect to the concrete semantics by means of
a consistency relation between the concrete and abstract transfer functions.
This notion of consistency extends not only to the concrete semantics but
between abstract interpretations at different levels of abstractions. After ex-
tending an abstract interpretation framework with a certificate infrastructure,
it is possible to certify the consistency between two abstract interpretations.
We show in this chapter that proving the existence of (and defining) a certify-
ing analyzer boils down to discharging the verification conditions required to
prove consistency of the analysis with respect to the verification environment.

In this chapter we do not consider particular program optimizations, but
arbitrary program transformations without assuming any advantage in terms
of performance, code size, or resource consumption. We have studied cer-
tificate translation in the presence of basic transformations that, combined,
can represent a wide range of program optimizations such as those presented
in Chapter 2. This approach is relevant not only because it enables us to
analyze arbitrary program optimizations, extending the range of certificate
translation, but because it decomposes certificate translation into less com-
plex tasks, and hence simpler proof obligations. To translate the certificate
in the presence of these basic transformations, we require a relation between
the transformed and the original programs. This relation is not expressed in
the concrete semantics domain, as is the case in Certified Compilation, but
as proof obligations on the abstract certificate infrastructure. This set of re-
quirements can then be opportunely instantiated to a particular analysis and
verification domain (and a particular transformation) to yield the proof obli-
gations to be discharged in order to complete the definition of the certificate
translator.

In Chapter 2, for an extensive class of program optimizations, we have
proposed to strengthen annotations with the result of the analysis in order
to reuse the original certificates. This is the case clearly for many common
program optimizations, which rely on a safety analysis to justify semantics
preserving local transformations. In the abstract lattice domain, strengthen-
ing annotations is defined via a corresponding meet operator. This technique
cannot be applied, for instance with optimizations based on a liveness anal-
ysis, as is the case for dead variable elimination. In this situation, an ad-hoc
solution is proposed in Chapter 2 to define a certificate translator to deal with
this transformation. The approach consists on the introduction of ghost vari-
ables and ghost assignments, a facility without computational role that assists
specification and verification. Instead, in this chapter we provide a mild gen-
eralization of the technique based on invariant strengthening. It consists on
merging the result of the analysis with the original specification by means of an
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abstract composition operator. The approach is general enough to model cer-
tificate translation for dead variable elimination, which entails (existentially)
quantifying out dead variables from the intermediate assertions.

3.2 Program, Semantics, Abstract Interpretation

In this section, we formally introduce the abstract framework in which we
study the existence of certificate translators. First, an abstract representation
of programs is given with the associated semantics. Then, a general abstract
interpretation framework is presented, to unify the main components of cer-
tificate translation: the analysis environment results that justifies program
transformations and the verification infrastructure in which the original cer-
tificates are defined. Given a labeling from program points to abstract values,
we provide a set of constraints whose solutions are a sound description of the
reachable execution states, as long as the abstract interpretation is consistent
with the semantics. A formal definition of this notion of consistency is also
provided. To capture the existence of certificates in a Proof Carrying Code set-
ting, an abstract algebra of certificates is given, and certificate infrastructures
are defined as a mild extension of abstract interpretation frameworks.

3.2.1 Program, Semantics

The definition of programs is general enough to cover several syntactic pro-
gram representations, including labeled structured languages, low level byte-
code, and concurrent programming languages.

We represent programs as flow graphs. Thus, programs are directed
pointed graphs with a distinguished set of output nodes, from which exe-
cution may not flow. The representation of programs as a graph includes also
the representation of programs composed of several methods, allowing us to
consider also interprocedural analyses in our framework.

We do not need to commit to a particular definition of execution states.
Instead, we remain at an abstract level and let Env represent a set of envi-
ronments. One instance of the domain Env for imperative languages is that of
mappings from a domain of program variables (or memory locations) to prim-
itive values. We define the domain of execution states as State = N × Env.

Definition 3.1 (Programs). A program is a pointed directed graph P rep-
resented by the tuple 〈N, E , , linit〉, where N is a set of nodes, linit ∈ N is a
distinguished initial node, E ⊆ N ×N a finitely branching relation (elements
of E are called edges), and  is a relation on N × Env. We let O ⊆ N be
the set of nodes without successors, i.e., l ∈ O iff for all l′ ∈ N , 〈l, l′〉 6∈ E.
The semantics of program is defined from the relation  ⊆ State× State as a
nondeterministic state transition

We say that the program P terminates execution in an environment η′, start-
ing from an environment η, if 〈linit, η〉 ? 〈lo, η′〉 for some lo ∈ O ( ? repre-
sents the reflexive and transitive closure of the relation  ).
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Throughout this section, we let P = 〈N , E , , linit〉 be a program.
Consider for instance the RTL language syntax of Figure 2.2. Given a

sequence of instructions, we can associate a program node for each position on
the code graph. Alternatively, a coarser grained representation may associate
a node to the entry point of each basic block. For instance, the execution of the
assignment rd := op, L′ at a program node L reaches exactly one successor
point, i.e., L′, then a reliable program representation must contain the edge
〈L,L′〉. In the case of a branch instruction cmp ? Lt : Lf at node L, the
edges 〈L,Lt〉 and 〈L,Lf 〉 indicate that execution may follow the two distinct
branches pointed by Lt and Lf .

Example 3.2.1 Consider as a running example the fast exponentiation al-
gorithm shown in Figure 3.1. Its representation as a (labeled) graph is given
in Figure 3.2; edges represent either assignments of the form x:=e, in which
case the node has exactly one successor, or branches of conditional statements
of the form b?, in which case the node has exactly two successor nodes, corre-
sponding to the true and false branch of the condition, respectively.

l1 : c := 1

x′ := x

y′ := y

l2 : while (y′ 6= 1) do

l3 : if (y′ mod 2 = 1) then

l4 : c := c× x′

fi

l5 : x′, y′ := x′2, y
′

2

done

l6 : x′ = x′ × c

Fig. 3.1. Fast exponentiation algorithm.

3.2.2 Abstract Interpretations of Program Semantics

In contrast to standard abstract interpretation, we consider domains with a
preorder relation, rather than partial orders. Recall that a binary relation
v on a set A is a preorder if it is reflexive and transitive; a preorder is a
partial order if it is also antisymmetric. The reason for this distinction, is that
the natural domain for the verification infrastructure is that of propositions.
We do not want to view it as a partial order since it would later imply (in
Definition 3.8) that any formulas φ1 and φ2, if logically equivalent (i.e., if
φ1 v φ2 and φ2 v φ1), they are identical by antisymmetry. Then, they may
have the same certificates (since φ1 = φ2), which is not necessarily the case
for any pair of equivalent formulas.

Definition 3.2 (Abstract interpretation). Let P = 〈N , E , , linit〉 be a
program. An abstract interpretation of P is a triple I = 〈A, {Te}e∈E , f〉, where
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l1

l2

c, x′, y′ := 1, x, y

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

l7

x′ := c× x′

Fig. 3.2. Original Program Representation

• A is a lattice 〈A,vA,tA,uA,>A,⊥A〉 of abstract states, with vA a pre-
order in A. By abuse of notation we may omit the subscript A;
• f is the flow sense, either forward (f =↓), or backward (f =↑);
• {Te}e∈E : A→ A is a family of monotone transfer functions.

Thus, an abstraction of the program consists of an abstract domain, e.g., as-
sertions or types, and a set of transfer functions, e.g., weakest precondition
transformers. Although it is sufficient to consider meet or join semi-lattices,
depending on the flow of the interpretation, we find it more convenient to
require our domains to be lattices, since we deal both with forward and back-
wards analyses.

One particular abstract interpretation that describes the program seman-
tics is 〈P(Env), exece, ↓〉, where the forward transfer functions {exece}e∈E are
defined for every 〈l, l′〉 ∈ E and X ⊆ Env as exec〈l,l′〉(X) = {η′ ∈ Env | ∃η ∈
X. 〈l, η〉  〈l′, η′〉}.Another instance of the abstract interpretation model is
the verification framework defined in Chapter 2, where the abstract domain is
the lattice of logic formulae and the backward transfer functions are defined
as weakest-precondition transformers.

Consider the lattice domains A = 〈A,v,u,t,>,⊥〉 and A] = 〈A],v]
,u],t],>],⊥]〉. From the standard definition of Galois connection, we only
require the existence of a monotone function γ : A] → A. We refer to A
and A] as the concrete and abstract domain, respectively, and to γ as the
concretization function.

Definition 3.3 (Consistency). Let I] = 〈A], T ]e , f
]〉 and I = 〈A, Te, f〉

be abstract interpretations and γ : A] → A a concretization function. The
abstract interpretation I] = 〈A], T ]e , f

]〉 is consistent with I = 〈A, Te, f〉 iff
for all a ∈ A]:

• if f = f ] =↓ then Te(γ(a)) v γ(T ]e (a));
• if f = f =↑ then Te(γ(a)) w γ(T ]e (a));
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• if f =↓ and f ] =↑ then Te(γ(T ]e (a))) v γ(a);
• if f =↑ and f ] =↓ then Te(γ(T ]e (a))) w γ(a);

The requirements above express the fact that I] is a safe approximation of
the abstract interpretation I. Consider, for instance, when both {Te}e∈E and
{T ]e}e∈E are sets of forward transfer functions, i.e, f = f ] =↓. Then, the well-
known consistency requirement Te(γ(a)) v γ(T ]e (a)) states that the execution
step T ]e from the abstract value a returns a value that is less precise than
doing the same with the more concrete transition represented by Te. Another
common example is the consistency required between a weakest precondition-
based analysis and the concrete semantics, expressing precisely the soundness
of the verification environment.

In the rest of the chapter, we view both the analysis performed by the
compiler and the verification framework as abstract interpretations that are
consistent with 〈P(Env), exece, ↓〉. Furthermore, in the following sections we
require the analysis performed by a compiler to be a consistent abstraction of
the verification framework.

Given an abstract lattice A, and a concretization function γ : A→ P(Env),
we define a satisfaction relation |=A⊆ Env ×A as

|=A η : a def= η ∈ γ(a) .

Intuitively, we interpret |=A η : a as the fact that the environment η satisfies
the property a. The relation vA is an approximation order, since by the
monotonicity of γ, if |=A η : a and a vA a′ then |=A η : a′. In the following,
we simply write |= omitting the subscript A.

In the context of proof carrying code, one such underlying lattice is that
of logical assertions with logical implication ⇒ as preorder, and the transfer
functions are the predicate transformers (based on weakest precondition or
strongest postcondition) induced by instructions at any given program point.

Consider the wpidf function used to define the VCgen for RTL code in
Chapter 2 (Figure 2.4). One can see the wpidf function as an instance of a set
of transfer functions {wpe}e∈E over the domain of logical formulae, and given
in terms of the instructions located at the program points designated by the
edge e. As is standard, the backward transfer function wp〈l,l+1〉(φ) is defined
as the substitution of the expression e for x (φ[e/x]) when the instruction at
the edge 〈l, l + 1〉 is an assignment of the form x := e (i.e., wpidf (x := e, L) =
wpf (L)[e/x]). When considering a conditional jump instruction cmp ? lt : lf ,
we define wp〈l,lt〉(φ) and wp〈l,lf 〉(ψ) as cmp⇒ φ and ¬cmp⇒ ψ, respectively.
In Figure 2.4 the function wpidf (cmp ? lt : lf ) merges both results with the
corresponding meet operator, i.e., the logical ∧. From Definition 3.3, to show
that the verification environment is consistent with the program semantics we
must prove for every e ∈ E and any assertion φ, that exece(γ(wpe(φ))) ⊆ γ(φ).
In the case of the assignment x := e, this corresponds to showing that for any
η in Env s.t. η |= φ[e/x] we have [η | x 7→ n] |= φ, where n is the value of the
expression e in η and for any function f , [f | x 7→ n] denotes the function that
maps x to n and y to fy if y 6= x.
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Solutions

A common means to verify program properties is to consider (pre or post)
fixpoints of the transfer functions of an abstract interpretation.

Definition 3.4 (Solution). A labeling S : N → A is a solution of the
abstract interpretation I if

• f =↑ and for every l in N , S(l) v
d
〈l,l′〉∈E T〈l,l′〉(S(l′));

• f =↓ and for every node l in N , S(l) w
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)).

Notice that
d
e∈E represents a finite number of applications of the operation

u. Alternatively, we may require for every edge 〈l, l′〉 that S(l) v T〈l,l′〉(S(l′))
or T〈l,l′〉(S(l)) v S(l′) for f =↑ or f =↓, respectively.

Since we are interested in describing the set of states that may reach each
program point, we consider a labeling S : N → P(Env) that associates a set
of environments with every program node. The labeling S is a solution of
〈P(Env), exece, ↓〉 if for every 〈l, l′〉 ∈ E , exec〈l,l′〉(S(l)) ⊆ S(l′). The following
result states that if S is a solution of 〈P(Env), {exece}e∈E , ↓〉, every execution
starting with an environment in S(linit) only reaches states 〈l, η〉 with η ∈ S(l).

Proposition 3.5. Let P = 〈N , E , , linit〉 and S : N → P(Env) a solution of
〈P(Env), exece, ↓〉. For every l, l′ ∈ N , η, η′ ∈ Env such that 〈l, η〉  ? 〈l′, η′〉,
if η ∈ S(l) then η′ ∈ S(l′) (where  ? denotes the reflexive and transitive
closure of  ).

Proof. The proof assumes as hypothesis that 〈l, η〉  k 〈l′, η′〉 and proceeds by
natural induction on k.

The following two results state the soundness of an abstract interpretation
with respect to the concrete semantics of a program.

Proposition 3.6. Let I = 〈A, {Te}e∈E , f〉 and I] = 〈A], {T ]e}e∈E , f ]〉 be ab-
stract interpretations of program P , such that I] is consistent with I. If the
labeling S] : N → A] is a solution of I], then the labeling S : N → A defined
as S(l) = γ(S](l)) is a solution of I.

Proof. Consider for instance the case f =↑ and f ] =↓ (the other cases are
symmetric). Since S] is a solution of I] we have for any l′ ∈ N :

S](l′) w
⊔
〈l,l′〉∈E

T ]〈l,l′〉(S
](l))

or, equivalently, for every edge 〈l, l′〉 ∈ E:

S](l′) w T ]〈l,l′〉(S
](l)) .

From the monotony of γ and T〈l,l′〉 we have then

T〈l,l′〉(γ(S](l′))) w T〈l,l′〉(γ(T ]〈l,l′〉(S
](l))))

which together with the consistency of I] w.r.t. I (i.e., γ(a) v Te(γ(T ]e (a)))
for any a ∈ A and e ∈ E) implies the condition we want to prove:

T〈l,l′〉(γ(S](l′))) w γ(S](l)) .
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Lemma 3.7. Let S be a solution of the abstract interpretation I = 〈A, {Te}, f〉
and assume I consistent with 〈P(Env), exece, ↓〉. Then, if 〈l, η〉 ? 〈l′, η′〉 and
|= η : S(l) then |= η′ : S(l′).

Proof. This lemma follows by application of Propositions 3.5 and 3.6.

3.2.3 Certified Solutions

A common means to provide evidence to a code consumer that a program
follows a specified policy is to bind the program with a (partial) precomputed
solution. The code client just needs to check that a labeling satisfies a set
of inequalities to gain confidence about the program correctness. Abstraction
Carrying Code (ACC) is an instance of PCC where programs come with a
solution in an abstract interpretation that can be used to specify the consumer
policy [1].

However, for some abstract domains, checking that the relation v holds
may be undecidable or too costly. One may view our notion of certified solution
as a natural extension of ACC to settings where the preorder relation is either
undecidable, or expensive to compute, and where the use of certificates is
required in order to check solutions. That is the case for instance of the lattice
of logical formulae or for polyhedron analysis. Besson et al. [19] have recently
developed a program analysis framework in which certificates are used to
verify inclusions between elements of the abstract domain of polyhedra. Their
analysis is also an instance of a certified solution.

This section extends the basic framework of abstract interpretation with
certificate infrastructures, in order to introduce formally the notion of certified
solution.

Definition 3.9 provides a general definition of certified solution that is of
independent interest from certificate transformation, and provides a unifying
framework for existing ad hoc definitions, such as a weakest precondition based
VCgens, and certified Abstraction Carrying Code [18]. For our purposes, one
can think about certified solutions as:

• programs annotated with logical assertions, and bundled with a certificate
of the correctness of the verification conditions, or

• programs annotated with abstract values (or types), and bundled with a
certificate that the program is correct with respect to the interpretation
of the abstract values.

In order to capture the notion of certified solution at an appropriate level
of abstraction, we rely on a general notion of certificate infrastructure.

Definition 3.8 (Certificate infrastructure). A certificate infrastructure
for P consists of an abstract interpretation I = 〈A, {Te}e∈E , f〉 for P , and a
proof algebra C that assigns to every a, a′ ∈ A a set of certificates C(` a v a′)
s.t.:

• C is closed under the operations of Figure 3.3, where a, b, c ∈ A;
• C is sound, i.e., for every a, a′ ∈ A, if a 6v a′, then C(` a v a′) = ∅.
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In the sequel, we write c :` a v a′ or c :` a′ w a instead of c ∈ C(` a v a′).
For notational convenience, in the proofs we use the function

trans : C(` a v b)→ C(` b v c)→ C(` a v c)

defined by composition of the algebra operations weaku and elimu.

In the context of proof carrying code, with the underlying lattice of logical
assertions, it may be helpful for the reader to think about certificates in terms
of the Curry-Howard isomorphism and consider that C is given by the typing
judgment in a dependently typed λ-calculus, i.e., C(φ) = {e ∈ E | 〈〉 ` e : φ},
where E is the set of expressions of the type theory. Under such assumptions,
one can provide an obvious type-theoretical interpretation to the functions of
Figure 3.3; for example, introu is given by the λ-term λf. λg. λa. 〈fa, ga〉.

In the sequel, we let I = 〈A, {Te}, f〉 be a certificate infrastructure for P .

Definition 3.9 (Certified solution). A certified solution for I is a pair
〈S,~c〉, where S : N → A is a labeling and ~c = (cl)l∈N is a family of certificates
s.t. for every l ∈ N ,

• if f =↑ then cl :` S(l) v
d
〈l,l′〉∈E T〈l,l′〉(S(l′));

• if f =↓ then cl :`
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)) v S(l).

It follows from the soundness of the proof algebra that S is a solution for I.
Many techniques, including lightweight bytecode verification and abstraction

axiom : C(` a v a)
weaku : C(` a v b)→ C(` a u c v b)
weakt : C(` a v b)→ C(` a v b t c)
elimu : C(` c u a v b)→ C(` c v a)→ C(` c v b)
introt : C(` a v c)→ C(` b v c)→ C(` a t b v c)
introu : C(` a v b)→ C(` a v c)→ C(` a v b u c)

Fig. 3.3. Proof Algebra

carrying code, do not bundle code with a full (certified) solution, but with a
partial labeling (and some certificates) from which a full (certified) solution
can be reconstructed. The remaining of this section explains the construction
of a (certified) solution from a (certified) partial labeling.

Definition 3.10 (Labeling). A partial labeling is a partial function S : N ⇀
A s.t. entry and output nodes are annotated, i.e., O ∪ {linit} ⊆ dom(S), and
such that the program is sufficiently annotated, i.e., the restriction PN\dom(S)

of P to nodes that are not annotated is acyclic. A labeling S is total if
dom(S) = N .

In a partial labeling annot, annotations on entry and output nodes serve as
specification, whereas we need sufficient annotations on loops to reconstruct
a total labeling annot from the partial one.
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Definition 3.11 (Annotation propagation, verification condition). Let
annot be a partial labeling. The labeling annot is defined by the clause:

• if f =↑, annot(l) =
{

annot(l) if l ∈ dom(annot)d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) otherwise

• if f =↓, annot(l) =
{

annot(l) if l ∈ dom(annot)⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) otherwise

For every l ∈ dom(annot), the verification condition vc(l) is defined by the
clause

• vc(l) := annot(l) v
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) if f =↑;

• vc(l) :=
⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) v annot(l) if f =↓.

Given a partial labeling annot, one can build a certificate for annot from
certificates for the verification conditions on dom(annot).

Lemma 3.12. Let annot be a partial labeling for I and assume we have a cer-
tificate cl :` vc(l) for every l ∈ dom(annot). Then there exists ~c′ s.t. 〈annot, ~c′〉
is a certified solution.

Proof. By definition of annot, one sees that ~c′ defined as

~c′(l) =
{
~c(l) if l ∈ dom(~c)
axiom(annot(l)) otherwise

is such that 〈annot, ~c′〉 is a certified solution.

In the sequel, we shall abuse language and speak about certified solutions of
the form 〈annot,~c〉 where annot is a partial labeling and ~c is an indexed family
of certificates that establish all verification conditions of annot.

Corollary 3.13. Let 〈annot,~c〉 be a certified partial labeling of 〈I, C〉 and as-
sume I consistent with the semantics of P . Then, if 〈linit, η〉  ∗ 〈lo, η′〉 with
lo ∈ O and |= η : annot(linit) then |= η′ : annot(lo).

Proof. This result follows from Lemma 3.7, Lemma 3.12, and soundness of
the certificate infrastructure.

Example 3.2.2 The verification infrastructure to certify the running exam-
ple is built from a weakest precondition calculus over first-order formulae.
That is, the backward transfer functions are defined, for any assertion φ, as
T〈l,l′〉(φ) = φ[e/x] in case the node l contains the assignment x:=e, and as
b ⇒ φ or ¬b ⇒ φ respectively for the positive and negative branch of a jump
statement conditioned by the Boolean expression b. We as specification a par-
tial labeling s.t. annot(l1) = true, the invariant annot(l2) is c× x′y′ = xy and
the postcondition annot(l7) is x′=xy (as shown in Figure 3.7). We assume
also that the functional specification annot is certified, i.e., the existence of a
certified solution 〈annot,~c〉 of I = 〈A, {Te}, ↑〉.
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3.3 Certifying Analyzers

Commonly, program optimizations are performed in two steps. First an anal-
ysis detects static information from the program representation. Then, in the
basis of this information, a semantic preserving transformation optimizes the
code. Let the labeling S : N ⇀ D represent verification annotations, for in-
stance, a mapping from program nodes to the domain of logical formulae, and
let the labeling S] : N ⇀ D] represent the result of the analysis that justifies
a transformation. Consider the programs P and P ′, where P ′ is the result of
optimizing P based on the information provided by the labeling S]. Assume
that S is a solution for the program P . Even if the validity of S] indicates that
the transformation does not alter the program semantics, we cannot conclude
that the labeling S is a solution for the program P ′. Indeed, several examples
in the previous chapter show that invariants are not preserved alongside sim-
ple optimizations such as constant propagation and common subexpression
elimination.

As explained in the next section, to translate certificates, we must integrate
the original labeling S with the interpretation of S] in the domain D. To that
end, we assume the existence of a concretization function γ : D] → D. In
addition, one must incorporate a certificate of the labeling γ ◦ S] with the
original certificate of the labeling S.

In this section, we provide sufficient conditions to produce a certified la-
beling 〈γ ◦ S], cert′〉 in the domain of the verification environment from any
labeling S] in the domain of the analysis. In the next section, we explain
how to integrate this certified analysis result to achieve a transformation of
the original certified solution 〈S, cert〉 in the presence of program transforma-
tions.

Proposition 3.14 below generalizes a previous result of Chaieb [24], who
only considered the case where f =↑ and f ] =↓.

In the rest of this chapter, let P be a program, I] = 〈A], {T ]e}, f ]〉 be an
abstract interpretation for P , I = 〈A, {Te}, f〉 a certificate infrastructure of
program P , and γ : A] → A a concretization function.

The following result is essential for a significant set of certificate transla-
tors. Suppose I] represents a analysis framework over a decidable domain A]

and I a verification environment with a notion of certificates. The proposition
below states that not only a result S of the analysis I can be represented as
a program annotation γ ◦ S in the domain of the verification framework, but
that, under certain requirements, there is a procedure to generate a certificate
for the labelling γ ◦ S.

Proposition 3.14 (Existence of certifying analyzers). For every solu-
tion S of I], one can compute ~c s.t. 〈γ ◦ S,~c〉 is a certified solution for I,
provided there exist:

• for every a, a′ ∈ A] s.t. a v] a′, the certificates monotγ(a, a′) :` γ(a) v
γ(a′) and monotT (a, a′) :` T (a) v T (a′);
• for every x ∈ A], a certificate cons(x), where cons(x) is defined in Fig-

ure 3.4 according to the flows of the abstract interpretations.
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f = f ] =↓ cons(x) :` Te(γ(x)) v γ(T ]e (x))

f = f ] =↑ cons(x) :` Te(γ(x)) w γ(T ]e (x))

f =↑, f ] =↓ cons(x) :` Te(γ(T ]e (x))) w γ(x)

f =↓, f ] =↑ cons(x) :` Te(γ(T ]e (x))) v γ(x)

Fig. 3.4. Definition of cons(x)

Proof.
The proof proceeds by showing a step-by-step construction of the certificates

for γ◦S from the certificates assumed by hypothesis and applying the functions
of the proof algebra.
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f = f ] =↓

hyp:=T ]〈l′,l〉(S(l′)) v S(l)
p1:=monotγ(hyp) :` γ(T ]〈l′,l〉(S(l′))) v γ(S(l))
p2:=cons(S(l′)) :` T〈l′,l〉(γ(S(l′))) v γ(T ]〈l′,l〉(S(l′)))
p3:=weaku(−, p1) :` γ(T ]〈l′,l〉(S(l′))) u T〈l′,l〉(γ(S(l′))) v γ(S(l))
p4:=elimu(p3, p2) :` T〈l′,l〉(γ(S(l′))) v γ(S(l))
~cl:=introt({p4}〈l′,l〉∈E) :`

⊔
〈l′,l〉∈E T〈l′,l〉(γ(S(l′))) v γ(S(l))

f = f ] =↑

hyp:=S(l) v] T ]〈l,l′〉(S(l′))
p1:=monotγ(hyp) :` γ(S(l)) v γ(T ]〈l,l′〉(S(l′)))
p2:=cons(S(l′)) :` γ(T ]〈l,l′〉(S(l′))) v T〈l,l′〉(γ(S(l′)))
p3:=trans(p1, p2) :` γ(S(l)) v T〈l,l′〉(γ(S(l′)))
~cl:=introu({p4}〈l,l′〉∈E) :` γ(S(l)) v

d
〈l,l′〉∈E T〈l,l′〉(γ(S(l′)))

f =↑ and f ] =↓

hyp:=T ]〈l′,l〉(S(l′)) v] S(l)
p1:=monotγ(hyp) :` γ(T ]〈l′,l〉(S(l′))) v γ(S(l))
p2:=monotT :` T〈l′,l〉(γ(T ]〈l′,l〉(S(l′)))) v T〈l′,l〉((γ(S(l)))
p3:=cons(S(l′)) :` γ(S(l′)) v T〈l′,l〉(γ(T ]〈l′,l〉(S(l′))))
p4:=trans(p3, p2) :` γ(S(l′)) v T〈l′,l〉(γ(S(l)))
~cl′ :=introu({p4}〈l′,l〉∈E) :` γ(S(l′)) v

d
〈l′,l〉∈E T〈l′,l〉(γ(S(l)))

f =↓ and f ] =↑

hyp:=S(l) v] T ]〈l,l′〉(S(l′))
p1:=monotγ(hyp) :` γ(S(l)) v γ(T ]〈l,l′〉(S(l′)))
p2:=monotT :` T〈l,l′〉(γ(S(l))) v T〈l,l′〉(γ(T ]〈l,l′〉(S(l′))))
p3:=cons(S(l′)) :` T〈l,l′〉(γ(T ]〈l,l′〉(S(l′)))) v γ(S(l′))
p4:=trans(p3, p2) :` T〈l′,l〉(γ(S(l))) v γ(S(l′))
~cl′ :=introt({p4}〈l,l′〉∈E) :`

⊔
〈l,l′〉∈E T〈l,l′〉(γ(S(l))) v γ(S(l′))

While Proposition 3.14 provides a means to construct certifying analyzers, it
is sometimes of interest to rely on more direct methods to generate certificates:
in [7], we show how to construct compact certificates for constant propagation
and common sub-expression elimination in an intermediate language.

3.4 Certificate Translation

In this section, we provide sufficient conditions for the existence for certificate
translators that map certificates of a program P into certificates of another
program P ′, derived from P by a program transformation. Rather than at-
tempting to prove a general result where P and P ′ are related in some complex
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manner, we establish three results for basic transformations that can be used
in combination to cover many cases of interest.

In a first instance, Section 3.4.1 considers a program transformation that
consists in duplicating fragments of the graph representation of P , as is the
case for transformations such as loop peeling and function inlining. In a second
instance, certificate transformation as defined in Section 3.4.2 requires that
the transformed program P ′ is a subgraph of the original program P . This is
the case, for example, when P ′ is derived from P by applying optimizations
such as constant propagation or common sub-expression elimination. In a
third instance, in Section 3.4.3, we abstract away some of the structure of
the program to deal, in combination with other basic transformations, with
optimizations that do not preserve so tightly the structure of programs, such
as code motion. Finally, in Section 3.4.4, we generalize certificate translation,
covering optimizations such as dead variable elimination.

3.4.1 Code Duplication

In this section, we consider the case where some subgraphs of the initial pro-
gram are duplicated in the transformed program, mainly with the aim to
enable further program optimizations. Typical cases of code duplication are
loop peeling (unrolling) and function inlining. Consider for instance the case
of loop peeling, in which one or more iterations of the loop body are executed
separately before entering the loop. In the piece of code on the left, we dupli-
cate one iteration of the statement c representing the loop body. It is executed
under the condition b in order to preserve the original program semantics.

x := 0;
while b do c

x := 0;
if b then
c;
while b do c

fi

After the transformation, the first occurrence of c can benefit from the fact
that x is equal to 0, a condition that may be invalidated by the successive loop
iterations. To represent this program transformation in our abstract setting,
consider the Figure 3.5. The graph on the left shows the original program,
where node l2 represents the head of a loop, and the edge 〈l2, l2〉 the execution
of the loop body. The graph on right left shows the result of peeling the first
execution of the loop body. When execution reaches node l′2, the transition
〈l′2, l2〉 (representing one execution of the loop body) is taken if the loop guard
is satisfied. Otherwise execution continues to node l3.

In the rest of this section, we formalize code duplication in terms of our
abstract program representation, and we show how to transform certificates
after applying this program representation transformation.

Definition 3.15 (Node replication). A program P+ = 〈N ∪ N+, E+, +

, linit〉 is the result of replicating nodes of program P = 〈N , E , , linit〉 if

• N+ ⊆ {l+ | l ∈ N};
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l1 l2 l3
l1 l′2 l2 l3

Fig. 3.5. Loop Peeling Example

• for every l1, l2 ∈ N , if 〈l+1 , l2〉, 〈l1, l
+
2 〉, or 〈l+1 , l

+
2 〉 is in E+ then 〈l1, l2〉 is

in E, i.e., subgraph duplication preserves the structure; and
• the semantics relation  + is such that for every 〈l, l′〉 ∈ (E+ ∩ ({l1, l+1 }×
{l2, l+2 })), 〈l, η〉 + 〈l′, η′〉 iff 〈l1, η〉 〈l2, η′〉.

From the definition, a sequence 〈l̄1, l̄2〉, 〈l̄2, l̄3〉, . . . , 〈 ¯lk−1, l̄k〉 with li ∈
{li, l+i } is a path in P+ only if 〈l1, l2〉, 〈l2, l3〉, . . . , 〈lk−1, lk〉 is a sequence in P .

Let 〈I, C〉 be a certificate infrastructure with I = 〈A, {Te}e∈E , f〉. Then,
we define an extended certificate infrastructure I+ = 〈A, {Te}e∈E+ , f〉 for
program P+, the transfer functions Te for e ∈ E+ \ E being such that for all
〈l1, l2〉 ∈ E+, with li ∈ {li, l+i }, T〈l1,l2〉 = T〈l1,l2〉.

Proposition 3.16. Assume the certificates of Fig. 3.6 exist for every a1, a2, b1, b2 ∈
A. Then every certified solution 〈S,~c〉 for P can be transformed into a certified
solution 〈S+,~c′〉 for P+, s.t. S+(l+) = S+(l) = S(l) for all l ∈ dom(S).

Proof. We proceed by induction, using the principle derived from the fact that
annot is a sufficient annotation. More concretely, one can attach to every node
a weight that corresponds to the length of the longest path to an annotated
node, i.e., a node l ∈ dom(annot).

For all l ∈ N and l ∈ N ∪N+ s.t. l ∈ {l, l+} we provide the certificates

• goal(l, l) :` annot(l) v annot
+(l), if f =↑, or

• goal(l, l) :` annot
+(l) v annot(l), if f =↓.

For l, l s.t. l ∈ dom(annot), the certificate goal is trivial by definition of annot
+,

i.e., an application of the axiom operation of the proof algebra. A sketch of
the inductive step for the backward case follows, where we implicitly use the
condition T〈l,l′〉 = T〈l,l′〉. From the inductive hypotheses goal(l′, l̄′) for every
〈l, l′〉 ∈ E and 〈l̄, l̄′〉 ∈ E with l̄ ∈ {l, l+} and l̄′ ∈ {l′, l′+} we define goal(l, l̄)
as follows:

p(l′, l̄′):=goal(l′, l′) :` annot(l′) v annot
+(l′)

q(l′, l̄′):=monotT (p(l′,l̄′)) :` T〈l,l′〉(annot(l′)) v T〈l,l′〉(annot
+(l′))

r(l̄′):=weaku({q(l′, l̄′)}〈l,l′〉∈E)
`

d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T〈l,l′〉(annot

+(l′))
goal(l, l̄):=introu({r(l̄′)}〈l̄,l̄′〉∈E+) :

`
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v

d
〈l,l′〉∈E+ T〈l,l′〉(annot

+(l′))

where, for any sequence S = {c1, c2, . . . , ck}, the expression weaku(S) stands
for weaku(c1,weaku({c2, . . . , ck})), and similarly with introu(S). The induc-
tive step for the forwards case is similar.
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monotT : C(` a1 v a2)→ C(` T (a1) v T (a2))
distr←(T,u) :` T (a1) u T (a2) v T (a1 u a2)

distr→(T,u) :` T (a1 u a2) v T (a1) u T (a2)

assoc←u : C(` a1 u (b1 u b2) v (a1 u b1) u b2)
assoc→u : C(` (a1 u b1) u b2 v a1 u (b1 u b2))
commutu : C(` a1 u a2 v a2 u a1)

Fig. 3.6. Requirements for certificate translation.

Example 3.4.1 Figure 3.8 shows the result of applying loop peeling. In the
graph, nodes l2, l3, l4 and l5 are duplicated into the nodes l′2, l′3, l′4, and l′5,
respectively, and a new subset of edges is defined accordingly. A certified label-
ing 〈annot+,~c+〉, where annot+(l′2) = annot(l2), is generated for the program
in Figure 3.8, by application of Proposition 3.16.

l1

l2

c, x′, y′ := 1, x, y

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

l7

x′ := c× x′

{y ≥ 1}

{y ≥ 1 ∧ c× x′y
′

= xy}

{x′ = xy}

Fig. 3.7. Annotated Program

3.4.2 Edge Transformation

In this section, we consider a basic, but essential, program transformation
that represents the effect of replacing statements when the result of the anal-
ysis ensures that the semantics is preserved. This is the case, for instance,
for constant propagation, in which the analysis infers whether some variable
invariably holds a constant value in certain program points. In a second step,
constant propagation optimizes statements assuming the validity of the anal-
ysis results. Consider the following fragment of code:
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l1

l′2

c, x′, y′ := 1, x, y

l′3

y′ 6= 1

l′4

y′mod 2 = 1

l′5

y′mod 2 6= 1

c := c× x′

l2

x′, y′ := x′2, y
′

2

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

y′ = 1

l7

x′ := c× x′

{y ≥ 1}

{y ≥ 1 ∧ c× x′y
′

= xy}

{y ≥ 1 ∧ c× x′y
′

= xy}

{x′ = xy}

Fig. 3.8. Original Program after Loop Peeling

l1 : x := 0;
l2 : if b then y := y + x;x := x+ 1;
l3 : while b do y := y + x;x := x+ 1 .

Assume a static analysis infers that, for every program execution, x holds
the value 0 at the program point l2. Assuming this, the first occurrence of
the statement y := y + x;x := x + 1 can be replaced by the semantically
equivalent statement skip;x := 1. This program transformation is reflected
in the abstract program representation by a transformation on the relation
associated to each edge. Since the semantics relation is modified, we must also
assume that the corresponding abstract interpretation transfer functions are
modified in accordance. Furthermore, we also consider the case in which some
of the original edges are removed.

In the rest of this section, we formally describe the program transformation
under consideration, and we explain and define when a labeling representing
an analysis result justifies a program transformation. Then, we state the exis-
tence of certificate translators based on the certifiability of the labeling that
justifies the transformation.
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Let P be a program 〈N , E , , linit〉, the program P ′ = 〈N ′, E ′, ′, linit〉
is transformed from P if P ′ is a subgraph of P such that N ′ ⊆ N and
E ′ ⊆ E . Consider the two abstract interpretations I = 〈A, {Te}e∈E , f〉 and
I ′ = 〈A, {T ′e}e∈E′ , f〉 for P and P ′, respectively. Note that the abstract inter-
pretations only differ in the set of transfer functions.

We say that the transformation is justified by the result of the analysis if
its validity implies an equivalence between the original and transformed se-
mantics relation. That is, for every edge 〈l, l′〉, and η, η′ ∈ Env s.t. η |= S(l),
we have that 〈l, η〉  〈l′, η′〉 iff 〈l, η〉  ′ 〈l′, η′〉. However, for the purpose of
certificate translation we need a stronger property than semantics preserva-
tion. The following result states that it is possible to translate the certificates
as long as there exists a certificate justif stating the equivalence of the corre-
sponding transfer functions.We assume that the analyzer phase is certifying,
i.e., we require the analysis result to be represented and certified in the veri-
fication environment. From Proposition 3.14, the existence of such a certified
solution follows from the certified consistency (i.e., from the existence of the
certificate cons defined in Section 3.3) of the abstract interpretation represent-
ing the analysis w.r.t. the more concrete abstract interpretation representing
the verification environment.

Proposition 3.17 (Existence of certificate translators). Let 〈S,~cS〉 be
a certified solution for I such that for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

• if f =↑ then justif(l1, l2) :` S(l1) u T〈l1,l2〉(a) v T ′〈l1,l2〉(a);
• if f =↓ then justif(l1, l2) :` T ′〈l1,l2〉(a) v S(l2) u T〈l1,l2〉(a)

Then, provided the certificates in Figure 3.6 are given for every a1, a2, b1, b2 ∈
A, one can transform every certified labeling 〈annot,~c〉 for P into a certified
labeling 〈annot′,~c′〉 for P ′, where annot′(l) is defined as annot(l) u S(l) for
every node l in dom(annot′) = dom(annot) ∩N ′.

Proof. We build for every l in N ′ the certificate

• goal(l) :` S(l) u annot(l) v annot
′(l) if f =↑, or

• goal(l) :` annot
′(l) v S(l) u annot(l) if f =↓,

from which the existence of a certificate for annot′ follows.
We proceed by induction, using the principle derived from the fact that

annot is a sufficient annotation. More concretely, one can attach to every
node a weight that corresponds to the length of the longest path to an annotated
node, i.e., a node l ∈ dom(annot). In the base case, where l ∈ dom(annot′),
the certificate goal(l) is defined trivially, since annot

′(l) = S(l) u annot(l).
For the inductive step, where l 6∈ dom(annot′), the proof is given in Fig-
ures 3.9 and 3.10 for the backward and forward case, respectively, where the
application of certificates assoc←u , assoc→u , and commutu is omitted for read-
ability.

Using the results of Proposition 3.14, Proposition 3.17 can be instantiated
to prove the existence of certificate transformers for many common optimiza-
tions, including constant propagation and common sub-expression elimina-
tion. In a nutshell, one first runs the certifying analyzer, which provides the
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Let a = S(l), a′ = S(l′), T = T〈l,l′〉 and T ′ = T ′〈l,l′〉 in:

hyp1:=monotT : C(` b1 v b2)→ C(` T (b1) v T (b2))
hyp2:=distribT : C(` T (b1) u T (b2) v T (b1 u b2))
p1:=goal(l′) :` a′ u annot(l′) v annot

′
(l′)

p2:=hyp1(p1) :` T ′(a′ u annot(l′)) v T ′(annot
′
(l′))

p3:=justif(l, l′) :` a u T (a′ u annot(l′)) v T ′(a′ u annot(l′))
p5:=elimu(weaku(−, p2), p3) :` a u T (a′ u annot(l′)) v T ′(annot

′
(l′))

p6:=hyp2 :` T (a′) u T (annot(l′)) v T (a′ u annot(l′))
p7:=axiom :` a v a
p8:=weaku(p7) :` a u T (a′) u T (annot(l′)) v a
p9:=weaku(p6) :` a u T (a′) u T (annot(l′)) v T (a′ u annot(l′))
p10:=introu(p8, p9) :` a u T (a′) u T (annot(l′)) v a u T (a′ u annot(l′))
p11:=elimu(weaku(p5), p10) :` a u T (a′) u T (annot(l′)) v T ′(annot

′
(l′))

p12:=~cSl :` a v T (a′)
p13:=elimu(p11, p12) :` a u T (annot(l′)) v T ′(annot

′
(l′))

p14:=weaku(p13) :` a u
d
〈l,l′〉∈E T (annot(l′)) v T ′(annot

′
(l′))

goal(l):=introu({p12}〈l,l′〉∈E) :

` a u
d
〈l,l′〉∈E T (annot(l′)) v

d
〈l,l′〉∈E T

′(annot
′
(l′))

Fig. 3.9. Definition of goal(l) for certificate translation (case f =↑)

Let a = S(l), a′ = S(l′), T = T〈l′,l〉 and T ′ = T ′〈l′,l〉 in:

p1:=goal′(l′) :` annot
′
(l′) v a′ u annot(l′)

p2:=monotT ′ :` T ′(annot
′
(l′)) v T ′(a′ u annot(l′))

p3:=justif :` T ′(a′ u annot(l′)) v a u T (a′ u annot(l′))
p4:=distribT :` T (a′ u annot(l′)) v T (a′) u T (annot(l′))
p5:=weaku(p4) :` a u T (a′ u annot(l′)) v T (a′) u T (annot(l′))
p6:=~cS〈l′,l〉 :` T (a′) v a
p7:=weaku(p6) :` T (a′) u T (annot

′
(l′)) v a

p8:=weaku(axiom) :` T (a′) u T (annot
′
(l′)) v T (annot

′
(l′))

p9:=introu(p7, p8) :` T (a′) u T (annot(l′)) v a u T (annot(l′))
p10:=trans(p2, trans(p3, trans(p5, ))) :

T ′(annot
′
(l′))a u T (annot(l′))

p11:=weakt(axiom) :` T (annot(l′)) v
F
〈l,l′〉∈E T (annot(l′))

p12:=introu(weaku(axiom),weaku(p11)) :
` a u T (annot(l′)) v a u

F
〈l,l′〉∈E T (annot(l′))

p13:=trans(p10, p12) :` T ′(annot
′
(l′)) v a u

F
〈l′,l〉∈E T (annot(l′))

goal(l):=introt({p13}〈l′,l〉∈E′) :

`
F
〈l′,l〉∈E T

′
〈l′,l〉(annot

′
(l′)) v a

F
〈l′,l〉∈E T (annot(l′))

Fig. 3.10. Definition of goal(l) for certificate translation (case f =↓)
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solution S, then performs the optimization, and finally one provides a justifi-
cation justif(l1, l2) for each edge (instruction) that has been modified by the
optimization. This process is further illustrated in the following example.

Example 3.4.2 Suppose that we know (e.g., from the execution context) that
the program is called with an even y; such knowledge is formalized by a pre-
condition y = 2× p. Then, one can consider a forward abstract interpretation
that analyses parity of variables and which variables are modified. A certi-
fying analyzer for such an abstract interpretation exists by Proposition 3.14
and will produce a certified solution 〈S,~cS〉 such that S associates the asser-
tion y = 2 × p to the node l1, the assertion y′ = 2 × p ∧ x = x′ to the nodes
{l′2, l′3, l′5}, and true to any other node. Figure 3.11 shows a partial labeling
with the information computed by the analysis.

Figure 3.12 contains an optimized version of the program of Figure 3.11,
where jump statements whose conditions can be determined statically have been
eliminated (nodes l′2 and l′3) and unreachable nodes have been removed (node
l′4), and where assignments have been simplified by propagating the results of
the analysis (node l′5). By Proposition 3.17, one can build a certificate for
the optimized program, with labeling annot′(l) = annot(l) u S(l) for all nodes
l ∈ dom(annot), provided there exists, for every a ∈ A and for every modified
edge, i.e., for every 〈l, l′〉 ∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉}, a certificate:

justif〈l,l′〉 :` y′ = 2× p ∧ x = x′ u T〈l,l′〉(a) v T ′〈l,l′〉(a)

The remaining certificates justif(l, l′) for 〈l, l′〉 6∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉} are
trivially generated since T ′〈l,l′〉 = T〈l,l′〉.

3.4.3 Program Representation Abstraction

Proposition 3.17 requires that the transformation is justified for each edge
of the program; this rules out several well known optimizations such as in-
struction swapping or code motion, whose justification involves more than one
instruction. Consider for example the sequential composition c1; c2, where c1
and c2 are atomic statements. Assume that the statement c1; c2 is represented
as a three node graph structure, with N = {l1, l2, l3} and E = {〈l1, l2〉, 〈l2, l3〉}
such that the edge 〈l1, l2〉 represents the execution of c1 and 〈l2, l3〉 represents
the execution of c2. Suppose that c1 and c2 are independent, that is, that the
order in which they are executed does not alter the final state. If each edge
represents one instruction, and if we model the transformation as described in
Section 3.4.2, we have that transfer functions T〈l1,l2〉 and T〈l2,l3〉 are replaced
by T〈l2,l3〉 and T〈l1,l2〉, respectively. Then, to prove the existence of a certificate
translator, from Proposition 3.17, since we assume the labeling S representing
the analysis is s.t. S(l) = > for l ∈ N , we must show that T〈l1,l2〉 = T〈l2,l3〉,
which does not necessarily hold. To overcome this limitation, one must aban-
don the intuitive representation of programs, where each edge represents one
instruction, and cluster several instructions into a single edge.

In this section, we formally capture this idea of clustering, and use it to ex-
tend the applicability of the results of Section 3.4.2. First we define an abstrac-
tion of the program model, by selecting a set of distinguished nodes N0 ⊆ N .
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l1

l′2

c, x′, y′ := 1, x, y

l′3

y′ 6= 1

l′4

y′mod 2 = 1

l′5

y′mod 2 6= 1

c := c× x′

l2

x′, y′ := x′2, y
′

2

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

y′ = 1

l7

x′ := c× x′

{y ≥ 1}

{y ≥ 1 ∧ c× x′y
′

= xy}

{y ≥ 1 ∧ c× x′y
′

= xy}

{x′ = xy}

y = 2× p

y′ = 2× p ∧ x = x′

Fig. 3.11. Program Analysis after Loop Peeling

The new representation preserves the program structure, but abstracts away
the program points represented by the nodes N1 = N \ N0. Consequently,
a coarser grained semantics relation must be defined in replacement of the
original one. That is done later in this section by taking the transitive closure
over the execution states with nodes in N1.

Let P = 〈N , E , , linit〉 be a program and N0 ∪ N1 = N a partition of
nodes such that E ∩ (N1×N1) does not contain infinite chains (i.e., there are
no loops in E ∩ (N1 × N1)). The set of edges relating nodes in the frontier
between N0 and N1 are defined by the relations E0×1 = E ∩ (N0 × N1) and
E1×0 = E ∩ (N1 ×N0). The relation E1×1 denotes the restriction of E on the
domain N1, i.e., E1×1 = E ∩ (N1×N1) (and similarly with E0×0). Finally, the
relation Ê is defined as E0×0 ∪ (E0×1 ◦ (E1×1)? ◦ E1×0), where R? denotes the
reflexive and transitive closure of a relation R, and x(R1 ◦R2)y is defined as
∃z. (xR1z) ∧ (zR2y), for any relations R1 and R2.

Assume that linit ∈ N0. Let  ̂ be defined as  0×0 ∪( 0×1 ◦( 1×1

)?◦  1×0), where  i×j is defined as  ∩((Ni × Env) × (Nj × Env)). Then
P̂ = 〈N0, Ê ,  ̂, linit〉 is a program s.t. for every l, l′ ∈ N0, 〈l, η〉 ̂?〈l′, η′〉 iff
〈l, η〉 ? 〈l′, η′〉.
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l1

l′2

c, x′, y′ := 1, x, y

l′3

skip

l′5

skip

l2

x′, y′ := x2, p

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

l7

x′ := c× x′

{y ≥ 1 ∧ y = 2× p}

{y ≥ 1 ∧ c× x′y
′

= xy ∧ y′ = 2× p ∧ x = x′}

{y ≥ 1 ∧ c× x′y
′

= xy}

{x′ = xy}

Fig. 3.12. Program after Optimizing Transformations

Let ~N denote the set of program paths, i.e., the sequences ~ls of elements
in N such that for every consecutive elements li, lj in ~l, 〈li, lj〉 ∈ E .

For ~ls ∈ ~N , we define Ť~ls inductively on the length of the program path
~ls as a composition of the transfer functions corresponding to the edges in ~ls:

Ť〈l,l′〉 = T〈l,l′〉

Ť〈l1,...,lk,l〉 =
{
T〈lk,l〉 ◦ Ť〈l1,...,lk〉 if f =↓
Ť〈l1,...,lk〉 ◦ T〈lk,l〉 if f =↑

Finally, we define T̂〈l,l′〉(a) as

•
⊔
{Ť〈l,~ls,l′〉(a) | ~ls ∈ (N0 ×N ?

1 ×N0) ∩ ~N} ∪ {T〈l,l′〉 | 〈l, l′〉 ∈ E} if f =↓;
and

•
d
{Ť〈l,~ls,l′〉(a) | ~ls ∈ (N0 ×N ?

1 ×N0) ∩ ~N} ∪ {T〈l,l′〉 | 〈l, l′〉 ∈ E} if f =↑.

It follows from the definition of Î, that if I is consistent with the semantics
of P then Î is consistent with the semantics of P̂ .

Lemma 3.18. Let S s.t. dom(S) ⊆ N0. Then 〈S,~c〉 is a certified solution for
I iff 〈S,~c〉 is a certified solution of Î = 〈A, T̂e, f〉.
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The results of Section 3.4.2 are immediately extended to a broader set of
proof transformations:

Corollary 3.19. Let 〈S,~c〉 be a certified solution of I, with dom(S) ⊆ N0.
Suppose that N ′0 ⊆ N0 and Ê ′ ⊆ Ê and for every 〈l1, l2〉 ∈ Ê ′ and a ∈ A:

• if f =↑ then justif(l1, l2) :` S(l1) u T̂〈l1,l2〉(a) v T̂ ′〈l1,l2〉(a);
• if f =↓ then justif(l1, l2) :` T̂ ′〈l1,l2〉(a) v S(l2) u T̂〈l1,l2〉(a)

Then every certified labeling 〈annot,~c〉 for P such that dom(annot) ⊆ N0 can
be transformed into a certified labeling 〈annot′,~c′〉 for P ′, where annot′(l) is
defined as annot(l) u S(l) for all l ∈ dom(annot′) = dom(annot) ∩N ′.
Proof. Notice that P̂ is a program as defined in Definition 3.1. From Proposi-
tion 3.18), 〈S,~c〉 is a certified solution of Î and 〈annot,~c〉 is a certified label-
ing for P̂ . The corollary follows from the existence of the certificate justif and
Lemma 3.17.

Corollary 3.19 restates the result of Proposition 3.17, but requiring the
certificate justif to be defined for every edge in Ê instead of every edge in E .
Therefore, it is a generalization that covers a wider range of program transfor-
mations. Consider for instance the case of instruction swapping, represented
in the program graph

l1 l2 l3. . . . . .

by swapping the semantics of the edges 〈l1, l2〉 and 〈l2, l3〉. In this case, the
structure of the graph is preserved by the transformation, i.e., N ′ = N and
E ′ = E , but transfer functions are such that T ′〈l1,l2〉 = T〈l2,l3〉 and T〈l2,l3〉 =
T〈l1,l2〉. In the previous scenario, we cannot a priori show a correspondence
between Te and T ′e for any e ∈ {〈l1, l2〉, 〈l2, l3〉}. However, by clustering nodes,
we are in a position to analyze whether T ′〈l1,l2〉 ◦T

′
〈l2,l3〉 = T〈l1,l2〉 ◦T〈l2,l3〉, i.e.,

T̂ ′〈l1,l3〉 = T̂〈l1,l3〉.

Example 3.4.3 We illustrate how to apply the result of this section to the
program of Figure 3.12 to obtain the program of Figure 3.13. The program in
the figure shows that, after a program optimization, the edges 〈l′2, l′3〉 and 〈l′3, l′5〉
represent program transitions that do not modify the execution state. That is
modeled in the analysis domain by defining the transfer functions T〈l′2,l′3〉 and
T〈l′3,l′5〉 as the identity function in A. Let P ′ be the result of removing the nodes
l′3 and l′5, and replacing the edges 〈l′2, l′3〉, 〈l′3, l′5〉 and 〈l′5, l2〉 by a single edge
〈l′2, l2〉. The abstract interpretation I ′ for program P ′ is s.t. T〈l′2,l2〉 is defined
as T〈l′2,l′3〉 ◦ T〈l′3,l′5〉 ◦ T〈l′5,l2〉 if f =↑ and T〈l′5,l2〉 ◦ T〈l′3,l′5〉 ◦ T〈l′2,l′3〉 if f =↓.

However, this transformation is not considered a certificate translation as
defined in Section 3.4.2, since it is not a single-edge by single-edge replace-
ment.

If we define the set N1 as {l′3, l′5} , we have that Ê = Ê ′ and T̂e = T̂ ′e for
every e ∈ Ê. Therefore, it is straightforward to apply the results of Corol-
lary 3.19, with S defined as true for every annotated program node (i.e.,
{l1, l′2, l2, l7}). However, for notational simplicity, we define S′(l) = S(l) in-
stead of S′(l) = S(l) ∧ true (l ∈ dom(S)).
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l1

l′2

c, x′, y′ := 1, x, y

l2

x′, y′ := x2, p

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

l7

x′ := c× x′

{y ≥ 1 ∧ y = 2× p}

{y ≥ 1 ∧ c× x′y
′

= xy ∧ y′ = 2× p ∧ x = x′}{y ≥ 1 ∧ c× x′y
′

= xy}

{x′ = xy}

Fig. 3.13. Program after Node Coalescing

Proof Preserving Compilation

Proposition 3.19 can be specialized to prove preservation of proof obliga-
tions for non-optimizing compilers [14, 8]. Indeed, non-optimizing compilation
transforms a graph representation of a program by splitting each node into
a subgraph of more basic nodes, preserving the overall program structure.
Thus, one can coalesce back the generated subgraphs into a skeleton struc-
ture similar to the source program. In this case the transformation from P to
P ′ needs not be justified by the result of an analysis (formally one chooses
S s.t. S(l) = > for every l ∈ N ′). If we assume that transfer functions of
the skeleton representation are equal to those of the source program (it is
not sufficient that the functions are equivalent w.r.t. v; equality is essential),
then proof obligations are preserved and certificates can be reused without
modification.

Instruction Insertion

Consider an imperative language as the one shown in Figure 3.1. A variable
is fresh with respect to a program and a specification (i.e., a labeling) if it
does not belong to the program nor to the specification. Consider a program
transformation consisting in the insertion of instructions that only affect fresh
variables. In our abstract model, given a particular abstract domain, the inser-
tion of such instructions is represented as a new edge with a transfer function
defined as the identity in such a domain (although there may be a wider
abstract domain in which the transfer function is not the identity function).

The following statement together with Corollary 3.19 enables us to con-
sider this simple program transformation.
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Proposition 3.20. Let I = 〈A, Te, f〉 and I ′ = 〈A′, Te, f〉 such that A′ is a
sublattice of A and A′ is closed under Te. Then, 〈S,~c〉 s.t. for every l ∈ N
S(l) ∈ A′, is a certified solution of I iff it is a certified solution of I ′.

Consider for example the abstract interpretation I = 〈A, {Te}, ↑〉 where A
is the lattice of logical formulae and {Te}e∈E are defined as weakest precon-
dition transformers. Consider a program P = 〈N , E , , linit〉 with 〈l1, l2〉 ∈ E
and 〈S,~c〉 a certified solution of I. Let P ′ be the result of inserting between
nodes l1 and l2 an extra program point to represent an affectation to a fresh
variable x, occurring neither in the program nor in the specification (i.e., label-
ing S). More precisely, N ′ = N ∪{l}, E ′ = (E \ {〈l1, l2〉})∪{〈l1, l〉, 〈l, l2〉} and
T ′〈l1,l〉 = T〈l1,l2〉 and T ′〈l1,l〉 defined as an affectation on x. Let N1 be the single-

ton {l}, we still cannot apply Corollary 3.19 since T̂ ′〈l1,l2〉 is not necessarily
equal to T̂〈l1,l2〉. Consider instead the abstract interpretations Ix = 〈Ax, Te, ↑〉
and I ′x = 〈Ax, T

′
e, ↑〉, s.t. Ax is the sublattice of logical formulae that does not

contain the variable x. Since x is a fresh variable, it does not appear in S(l) for
any l, and the transfer functions {Te}e∈E and {Te}e∈E are closed on Ax. Then
〈S,~c〉 is a certified solution of Ix by Proposition 3.20. Since for every ϕ ∈ Ax,
T̂ ′〈l1,l2〉(ϕ) = T̂ ′〈l1,l2〉(ϕ), 〈S,~c〉 is a certified solution of I ′x by Corollary 3.19.
And again by Proposition 3.20 it is also a certified solution of I ′.

3.4.4 Second-Order Analysis-Based Optimizations

Our definition of abstract interpretations targets the analyses of safety prop-
erties, and is not general enough to model liveness analysis. In consequence,
certificate transformation for transformations such as dead variable elimina-
tion is not covered by previous results. In addition, we have only considered in
previous sections the cases in which it is sufficient to strengthen annotations to
enable certificate translation. In this section, we provide a mild generalization
of previous results, in which the result of the analysis is merged with the orig-
inal annotations with a generic composition operator. As we illustrate with a
dead variable elimination example at the end of this section, the composition
operator may be instantiated as a weakening of the original annotations.

The following results, generalizes Proposition 3.17 in terms of an arbitrary
composition operator � : A×A→ A.

Proposition 3.21. Let � : A×A→ A be a composition operator s.t. for every
a1, a2, b1, b2 ∈ A there exists a certificate

monot� : C(` a1 v a2)→ C(` b1 v b2)→ C(` a1 � b1 v a2 � b2)

Let 〈S,~cS〉 be a certified solution for I s.t. for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

• if f =↑ then justif(l1, l2) :` S(l1) � T〈l1,l2〉(a) v T ′〈l1,l2〉(a � S(l2));
• if f =↓ then justif(l1, l2) :` T ′〈l1,l2〉(a � S(l1)) v S(l2) � T〈l1,l2〉(a)

Then, provided the certificate monotT defined in Figure 3.6 exists for all
a1, a2 ∈ A, every certified labeling 〈annot,~c〉 for P can be transformed into
a certified labeling 〈annot′,~c′〉 for P ′, where annot′(l) = annot(l) � S(l) for
every node l in dom(annot′) = dom(annot) ∩N ′.
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Proof. The proof is similar to that of Proposition 3.17. The definition of the
certificate goal, defined such that

goal(l) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v

d
〈l,l′〉∈E T

′
〈l,l′〉(annot

′(l′)) if f =↑
goal(l) :`

⊔
〈l′,l〉∈E T

′
〈l′,l〉(annot

′(l′)) v a �
⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) if f =↓

and from which the existence of ~c′ follows, is sketched in Figures 3.14 and 3.15.

Let a = γ(S(l)), a′ = γ(S(l′)), T = T〈l,l′〉 and T ′ = T ′〈l,l′〉 in:

p1:=goal(l′) :` a′ � annot(l′) v annot
′
(l′)

p2:=monotT ′(p1) :` T ′(a′ � annot(l′)) v T ′(annot
′
(l′))

p3:=justif :` a � T (annot(l′)) v T ′(a′ � annot(l′))
p4:=trans(p3, p2) :` a � T (annot(l′)) v T ′(annot

′
(l′))

p5:=axiom :` T (annot(l′)) v T (annot(l′))
p6:=axiom :` a v a
p7:=weaku(p5) :`

d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T (annot(l′))

p8:=monot�(p6, p7) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v a � T (annot(l′))

p9:=trans(p8, p4) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T ′(annot

′
(l′))

goal(l):=introu({p9}〈l,l′〉∈E) :

a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′))

d
〈l,l′〉∈E T

′
〈l,l′〉(annot

′
(l′))

Fig. 3.14. Definition of goal for relational certificate translation (case f =↑)

Let a = γ(S(l)), a′ = γ(S(l′)), T = T〈l′,l〉 and T ′ = T ′〈l′,l〉 in:

p1:=goal(l′) :` annot
′
(l′) v a′ � annot(l′)

p2:=monotT ′(p1) :` T ′(annot
′
(l′)) v T ′(a′ � annot(l′))

p3:=justif :` T ′(a′ � annot(l′)) v a � T (annot(l′))
p4:=trans(p2, p3) :` T ′(annot

′
(l′)) v a � T (annot(l′))

p5:=axiom :` T (annot(l′)) v T (annot(l′))
p6:=axiom :` a v a
p7:=weakt(p5) :` T (annot(l′)) v

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

p8:=monot�(p6, p7) :` a � T (annot(l′)) v a �
F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

p9:=trans(p4, p8) :` T ′(annot
′
(l′)) v a �

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

goal(l):=introt({p9}〈l′,l〉∈E) :F
〈l′,l〉∈E T

′
〈l′,l〉(annot

′
(l′))a �

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

Fig. 3.15. Definition of goal for relational certificate translation (case f =↓)

Example 3.4.4 We perform liveness analysis on the variables of the program
in Figure 3.13, obtained from the one in Figure 3.12 by node and edge cluster-
ing. The intention of the analysis is to provide sufficient information in order
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to remove assignments to dead variables. The transformed program is given
in Figure 3.16. The rest of this subsection is devoted to an explanation of the
analysis, and to a justification of the transformation.

l1

l′2

c := 1

l2

x′, y′ := x2, p

l3

y′ 6= 1

l4

y′mod 2 = 1

l5

y′mod 2 6= 1

c := c× x′

x′, y′ := x′2, y
′

2
l6

y′ = 1

l7

x′ := c× x′

{y ≥ 1 ∧ y = 2× p}

{∃x′, y′. (y ≥ 1 ∧ c× x′y
′

= xy

∧y′ = 2× p ∧ x = x′)}
{y ≥ 1 ∧ c× x′y

′
= xy}

{x′ = xy}

Fig. 3.16. Program after Dead Variable Elimination

Assuming a standard program semantics, we say that a variable is live at
a certain program point if its value will be needed in the future. We refrain
from using the classical intensional definition of variable liveness: a variable
x is live at a program node l if there is a path from l that reaches an expres-
sion referring to x, without traversing an assignment to x. Instead, we prefer
to use a more extensional interpretation of liveness, inspired by Benton’s Re-
lational Hoare Logic [16], identifying a declaration of a set of live variables
as a relational proposition. To this end, we generalize the abstract domain A
of the certificate infrastructure to include relational propositions. An abstract
domain A is relational if the associated satisfaction relation |=A is a subset
of (Env × Env) × A. Hence, a relational proposition will be interpreted as a
relation on execution environments. Formally, the extension consists in parti-
tioning the domain of variables by attaching to each of them an index 〈1〉 or
〈2〉. The set of transfer functions is also modified accordingly. For instance,

instead of defining the transfer function for the assignment x:=e at node l
as the substitution φ[e/x], we define it as φ[e〈1〉/x〈1〉 ][

e〈2〉/x〈2〉 ], where e〈i〉 is the
result of indexing every variable occurring at e with 〈i〉.

Then, we define γ(X) =
∧
v∈X v〈1〉 = v〈2〉 as an interpretation of the

fact that all variables in X are live. In order to generate a certificate for the
optimized program, we apply Proposition 3.21, using as composition operator
over relational propositions the function � defined as
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φ � ψ = ∃x1, . . . , xk. φ[x
1
〈2〉/x] . . . [x

k
〈2〉/x] ∧ ψ[x

1
〈1〉/x] . . . [x

k
〈1〉/x]

where {x1, . . . , xk} are the set of variables in φ or ψ. The interpretation of
the composition operator is that if X declares the set of live variables, then
γ(X) � φ is the result of existentially quantifying away from φ the variables
that are not live.

By Proposition 3.14, we know that a certified solution 〈γ ◦ live,~c′′〉 ex-
ists s.t. live(l1) = {x, y}, live(l′2) = {x, y, c} and live(l) = {x, y, c, x′, y′} for
l 6∈ {l1, l′2}. Since node l1 contains an assignment to variables x′ and y′ and
these variables are not live in node l′2, we may safely simplify the statement
by removing such assignments. From Proposition 3.21 we can transform the
current certified solution by assuming the certificate

justif(l1, l′2) :` γ(live(l1)) � T〈l1,l′2〉(φ) v T ′〈l1,l′2〉(γ(live(l′2)) � φ) .

For readability, if φ is a non-relational proposition, γ(X) � φ is equivalently
denoted ∃y1, . . . , ym. φ where {y1, . . . , ym} = Var −X. Then, the goal of the
certificate justif(l1, l′2) can be interpreted as ` φ[1/c][x/x′ ][y/y′ ] v (∃x′, y′. φ)[1/c].

3.4.5 Concurrency

This section extends the results on certificate transformation obtained for
sequential programs in Section 3.3 and Section 3.4 to a concurrent setting. We
adopt a verification infrastructure similar to Owicki-Gries logic [56], without
proposing criteria to reduce the number of proof obligations. Verification is
split in two independent tasks: verifying that a concurrent component satisfies
its specification in isolation and verifying that other concurrent components do
not invalidate this specification. Since the number of verification conditions
is exponential in the size of parallel components, practical applications of
Owicki-Gries logic aim to reduce the number of verification conditions. This
is done in general by grouping code fragments that are known to be atomically
executed or by omitting proof obligations that are trivially provable. However,
we do not consider this issue here.

A concurrent program is defined as the parallel composition of a set of
sequential programs, i.e., programs as defined in Definition 3.1.

Definition 3.22 (Concurrent Program). Let {Pi = 〈Ni, Ei, i, liniti〉}1≤i≤k
be a set of sequential programs. We define the concurrent program P1 ‖ . . . ‖
Pk, i.e., the parallel composition of {Pi}1≤i≤k, as the tuple 〈Π1≤i≤kNi, E , 
, linit〉, where:

• E = {〈(l1, ..., lj , ..., lk), (l1, ..., l′j , ..., lk)〉 | (∀i ∈ [1, k]. li ∈ Ni) ∧ 〈lj , l′j〉 ∈
Ej}
• 〈(l1, . . . , lj , . . . , lk), η〉 〈(l1, . . . , l′j , . . . , lk), η′〉 iff 〈lj , η〉 j 〈l′j , η′〉
• linit = (linit1, . . . , linitk)

From the definition, an execution point in the concurrent program P1 ‖
. . . ‖ Pk will be determined by the current execution point in each of its
components (N = N1 × . . . × Nk). An execution step in any of the pro-
gram components is considered an execution step of the whole program, i.e.,
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〈(l1, ..., lj , ..., lk), (l1, ..., l′j , ..., lk)〉 ∈ E for every 〈lj , l′j〉 ∈ Ej , for any 1 ≤ j ≤ k.
Finally, the entry point of the composed program is set as the execution point
in which each component is at its initial node.

In the sequel, for readability, we consider the parallel composition of two
sequential programs Pa and Pb. From the definition, the semantics of a con-
current program Pa ‖ Pb is modeled by interleaving the sequential semantics
of its components Pa and Pb.

Here we assume that the semantics of Pa and Pb are modeled with the finest
level granularity possible in order to capture with the parallel composition
every possible semantics interleaving. For instance, if a program is defined as
a sequence of atomic instructions, the program representation shall distinguish
every interleaving program point as a distinct node. That is, there is exactly
one program representation since we cannot merge adjacent nodes.

A standard means to reduce the exponential number of proof obligations
is to cluster a set of executable edges into a single one. Clustering nodes l1
and l2 into a single node is only possible if l1 and l2 are explicitly identified for
atomic execution. For instance, when the language features lock and unlock
statements, and nodes l1 and l2 are located inside an atomically executable
region.

Consider Ia = 〈A, {Te}e∈Ea , f〉 and Ib = 〈A, {Te}e∈Eb
, f〉 the abstract

interpretations for the sequential programs Pa and Pb, respectively, where A
is the lattice 〈A,v,u,t,>,⊥〉. Let Sa be a labeling for program Pa, such that
Sa is a solution of the analysis Ia.

Suppose an execution of Pa in a concurrent environment from the initial
label linita to a final label lo ∈ Na, i.e., 〈(linita, l), η〉  ? 〈(lo, l′), η′〉 for some
η, η′ ∈ Env. From the definition of  (Def. 3.22), the execution may traverse
an arbitrary number of edges in Eb, affecting the execution of Pa. In that
situation, the soundness of the abstract interpretation Ia w.r.t. the semantics
of Pa does not hold anymore, i.e., we cannot ensure that |= η : Sa(linita) implies
|= η′ : Sa(lo).

We extend then the notion of solution of an abstract interpretation to re-
quire not only the validity of the labeling with respect to a sequential program
execution, but also whether a labeling is stable with respect to the execution
of the other components.

For a labeling Sa, in addition to be a solution of an abstract interpretation
Ia (Def. 3.4), namely a local solution of Ia, we require Sa to be stable w.r.t.
(i.e., to be preserved by) the execution of the program Pb. We say that a
condition a at node l ∈ Na is stable w.r.t. Pb and labeling Sb if the concurrent
execution of Pb does not invalidate a as long as Pb satisfies Sb. More precisely,
for every node l ∈ Na and edge 〈lb, l′b〉 ∈ Eb, we require, assuming the validity
of Sb(l1), that Sa(l) is preserved by the application of the transfer function
T〈lb,l′b〉.

We formalize when a local solution for one component is stable with respect
to the behavior of the other components.

Definition 3.23 (globally-stable solution). A labeling Sa for program Pa,
is a stable solution of Ia, w.r.t. program Pb with labeling Sb, if it is a solution
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of Ia and for every edge 〈lb, l′b〉 ∈ Eb and node l ∈ Na the following condition
holds:

• f =↑ and Sb(lb) u Sa(l) v T〈lb,l′b〉(Sa(l)) or,
• f =↓ and T〈l′b,lb〉(Sb(l′b) u Sa(l)) v Sa(l).

Notice that in contrast to previous section we require labelings Sa and Sb

to be total. To give an intuition of this definition, consider the short code
fragment on the left, containing a statement y:=2×x at node l with successor
node l′.

. . .
l : {x ≥ 0}

y := 2x
l′ : {y ≥ 0}

. . .

. . .
lb : {even(y)}

x = zy

. . .

A labeling Sa such that Sa(l) = x ≥ 0 and Sa(l′) = y ≥ 0, is a solution
of a weakest precondition calculus at node l. That is proved by showing the
validity of the verification condition Sa(l) v wp〈l,l′〉(Sa(l′)), that is proving
x ≥ 0 ⇒ (y ≥ 0)[2x/y]. In a concurrent environment, we must also verify that
the conditions x ≥ 0 and y ≥ 0 are not invalidated by any other statement.
For instance, for the fragment of code of Pb shown on the right, node lb
contains the statement x:=zy, then we must ensure that it does not invalidate
x ≥ 0 or y ≥ 0, assuming as hypothesis the validity of Sb(lb). Showing that
x ≥ 0 is preserved by the execution of x = zy, i.e., proving the condition
Sb(lb) u Sa(l′a) v T〈lb,l′b〉(Sa(l′a)), is feasible if for instance Sb(lb) is defined as
even(y). The case for the preservation of y ≥ 0 is straightforward. Similarly,
Sb(l2) must also be proved stable with respect to the assignment at edge 〈l, l′〉
of program Pa.

We define a labeling for a concurrent program as a tuple of labelings, one
for each of the parallel components. Consider the family of sequential pro-
grams {Pi}1≤i≤k and

{
Ii = 〈A, {T ie}e∈Ei , f〉

}
1≤i≤k the corresponding family

of abstract interpretations. Let the tuple (Si)0≤i≤k be a labeling for the con-
current program P1 ‖ . . . ‖ Pk. We define when this labeling is a solution for
the tuple of abstract interpretations (Ii)0≤i≤k.

Definition 3.24 (Solution for a Concurrent Program). We say that a
labeling 〈S1, . . . , Sk〉 is a solution of the abstract interpretation (Ii)0≤i≤k for
the concurrent program P1 ‖ · · · ‖ Pk , if for every j ∈ [1, k] the labeling Sj
is a solution of Ij (Def. 3.4) and for every i ∈ [1, n], i 6= j, Sj is stable with
respect to the program Pi and the labeling Si.

Suppose that Ia and Ib are consistent with the semantics of Pa and Pb

respectively. It follows from Definition 3.24 that, if (Sa, Sb) is a solution for
(Ia, Ib), and that 〈(linita, linitb), η〉 ? 〈(loa , lob

), η′〉 and that |= η : Sa(linita) and
|= η : Sb(linitb) then |= η′ : Sa(loa) and |= η′ : Sb(lob

).
Motivated by the reasons explained in Section 3.2.3 and assuming the

existence of of certificate infrastructures (Def. 3.8), we extend the definition
of globally-stable solution with a notion of certificates.
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Definition 3.25 (Certified Globally-Stable Solution). A certified globally-
stable solution for Ia, w.r.t. program Pb with labeling Sb, is a triple 〈Sa,~c, ~c′〉
where 〈Sa,~c〉 is a certified solution of Ia (Def. 3.9), and for all 〈lb, l′b〉 ∈ Eb

and l ∈ Na:

• f =↑ and ~c′(lb, l′b, l) :` Sb(lb) u Sa(l) v T〈lb,l′b〉(Sa(l)) or,
• f =↓ and ~c′(lb, l′b, l) :` T〈lb,l′b〉(Sb(l′b) u Sa(l)) v Sa(l).

Certifying analyzers can be extended to a concurrent setting.

Lemma 3.26 (Certifying Analyzers for Globally Stable Solutions).
Consider a solution Sa for the abstract interpretation I]a = 〈A], {Te}e∈Ea , f〉,
where A] is a lattice 〈A],v],u],t],>],⊥]〉. Assume for every a, a′ ∈ A] s.t.
a v] a′, the certificates monotγ(a, a′) and cons defined in Proposition 3.14,
and the certificate distrib(γ,u) defined in Fig. 3.6. Then, one can compute ~c′

s.t. 〈γ ◦ S,~c, ~c′〉 is a certified globally stable solution for Ia w.r.t. program Pb

and labeling γ ◦ Sb : Nb → A, provided Sa is stable w.r.t. Pb and Sb.

Proof. In Figure 3.17 we show the definition of ~c′(l, l′, l1) in terms of monotT
and distr(γ,u) (defined in Figure 3.6), and monotγ and cons (defined in
Prop. 3.14). The definition of the certificate ~c follows from Proposition 3.14.

Definition 3.27 (Certified Solution for a Concurrent Program). Let
(Ii)1≤i≤k be certificate infrastructures for the programs (Pi)1≤i≤k. A certified
solution for the program P1 ‖ . . . ‖ Pk is a tuple (〈Si,~ci, ~c′i〉)1≤i≤k such that
for each j ∈ [1, k], 〈Sj ,~cj , ~c′j〉 is a certified globally stable solution of Pj w.r.t.
Pi and Si for any other i 6= j.

The existence of certifying analyzers for concurrent programs follows di-
rectly from Definition 3.27 and Lemma 3.26.

Transformation of Certificates

In the rest of this section, we extend certificate translation for the transfor-
mations characterized in Section 3.4.2, i.e., a program P ′j = 〈N ′j , E ′j , ′j , linit〉
is a transformation of a program Pj = 〈Nj , Ej , j , linit〉 if N ′j ⊆ Nj and
E ′j ⊆ Ej . For readability, we consider the case in which only one of the par-
allel components is transformed, i.e., P1 ‖ . . . ‖ Pj ‖ . . . ‖ Pk is transformed
into P1 ‖ . . . ‖ P ′j ‖ . . . ‖ Pk. The generalization of the following results to
transformations that operate simultaneously (but still independently) in every
program component is straightforward.

The following proposition extends certificate transformation (as Proposi-
tion 3.17) to a concurrent setting.

Proposition 3.28 (Existence of certificate transformers). Let I ′j be the
certificate infrastructure I ′j = 〈A, {T ′e}e∈Ej , f〉 associated to P ′j. Assume the
existence of the certificates assocu, commutu and distr(T,u) defined in Fig. 3.6.
Let 〈R,~cR, ~c′R〉 be a certified globally stable solution of Ij s.t. for every 〈l, l′〉 ∈
Ej and a ∈ A



82 Chapter 3. Certificate Translation in Abstract Interpretation

f = f ] =↑:

hyp:=Sb(l) u Sa(l1) v] T ]〈l,l′〉(Sa(l1))

p1:=monotγ :` γ(Sb(l) u Sa(l1)) v γ(T ]〈l,l′〉(Sa(l1)))

p2:=distr(γ,u) :` γ(Sb(l)) u γ(Sa(l1)) v γ(Sb(l) u Sa(l1))

p3:=trans(p2, p1) :` γ(Sb(l)) u γ(Sa(l1)) v γ(T ]〈l,l′〉(Sa(l1)))

p4:=cons :` γ(T ]〈l,l′〉(Sa(l1))) v T〈l,l′〉(γ ◦ Sa(l1))
~c′(l, l′, l1):=trans(p3, p4) :` γ ◦ Sb(l) u γ ◦ Sa(l1) v T〈l,l′〉(γ ◦ Sa(l1))

f =↓, f ] =↑

hyp:=Sb(l) u Sa(l1) v] T ]〈l,l′〉(Sa(l1))

p1:=monotγ :` γ(Sb(l) u Sa(l1)) v γ(T ]〈l,l′〉(Sa(l1)))

p2:=distr(γ,u) :` γ(Sb(l)) u γ(Sa(l1)) v γ(Sb(l) u Sa(l1))

p3:=trans(p2, p1) :` γ(Sb(l)) u γ(Sa(l1)) v γ(T ]〈l,l′〉(Sa(l1)))

p4:=monotT (p3) :`T〈l,l′〉(γ(Sb(l)) u γ(Sa(l1))) vT〈l,l′〉(γ(T ]〈l,l′〉(Sa(l1))))

p5:=cons :` T〈l,l′〉(γ(T ]〈l,l′〉(Sa(l1)))) v γ ◦ Sa(l1)
~c′(l, l′, l1):=trans(p4, p5) :` T〈l,l′〉(γ(Sb(l)) u γ(Sa(l1))) v γ ◦ Sa(l1)

f = f ] =↓

hyp:=T ]〈l,l′〉(Sb(l) u Sa(l1)) v] Sa(l1)

p1:=monotγ :` γ(T ]〈l,l′〉(Sb(l) u Sa(l1))) v γ(Sa(l1))

p2:=cons :` T〈l,l′〉(γ(Sb(l) u Sa(l1))) v γ(T ]〈l,l′〉(Sb(l) u Sa(l1)))

p3:=trans(p2, p1) :` T〈l,l′〉(γ(Sb(l) u Sa(l1))) v γ(Sa(l1))
p4:=distr(γ,u) :` γ(Sb(l)) u γ(Sa(l1)) v γ(Sb(l) u Sa(l1))
p5:=monotT (p4) :`T〈l,l′〉(γ(Sb(l)) u γ(Sa(l1)))vT〈l,l′〉(γ(Sb(l) u Sa(l1)))

~c′(l, l′, l1):=trans(p5, p3) :` T〈l,l′〉(γ(Sb(l)) u γ(Sa(l1))) v γ(Sa(l1))

f =↑, f ] =↓

hyp:=T ]〈l,l′〉(Sb(l) u Sa(l1)) v] Sa(l1)

p1:=monotγ :` γ(T ]〈l,l′〉(Sb(l) u Sa(l1))) v γ(Sa(l1))

p2:=monotT (p1) :` T〈l,l′〉(γ(T ]〈l,l′〉(Sb(l) u Sa(l1)))) v T〈l,l′〉(γ(Sa(l1)))

p3:=cons :` γ((Sb(l) u Sa(l1))) v T〈l,l′〉(γ(T ]〈l,l′〉(Sb(l) u Sa(l1))))

p4:=distr(γ,u) :` γ ◦ Sb(l) u γ ◦ Sa(l1) v γ(Sb(l) u Sa(l1))
~c′(l, l′, l1):=trans(p4, trans(p3, p2)) :` γ ◦ Sb(l) u γ ◦ Sa(l1) v T〈l,l′〉(γ(Sa(l1)))

Fig. 3.17. Certifying Analyzers for parallel program composition.
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• justif(l, l′) :` T ′〈l,l′〉(a) v R(l′) u T〈l,l′〉(a), if f =↓; or
• justif(l, l′) :` R(l) u T〈l,l′〉(a) v T ′〈l,l′〉(a) if f =↑.

Then one can transform every certified solution (〈Si, ~ci, ~c′i〉)1≤i≤k for the anal-
ysis (Ii)1≤i≤k of the program P1 ‖ . . . ‖ Pj ‖ . . . ‖ Pk into a certified solution
(〈S1, ~d1, ~d′1〉, . . . , 〈S′j , ~dj , ~d′j〉, . . . , 〈Sk, ~dk, ~d′k〉) for (I1, . . . , I ′j , . . . , Ik).

Proof. We show that for any i 6= j one can transform every certified globally
stable labelings 〈Si,~ci, ~c′i〉 for Pi and 〈Sj ,~cj , ~c′j〉 for Pj into the certified label-
ings 〈Si, ~di, ~d′i〉 for Pi and 〈S′j , ~dj , ~d′j〉 for P ′j, where for all l ∈ N ′j , S′j(l) is
defined as Sj(l) uR(l).

First of all, notice that for i 6= j we can let ~di = ~ci and that it is not hard
to define ~d′j from ~c′j and ~c′R, since {Te}e∈Ei have not changed for i 6= j.

Building the certificates ~dj that ensures that S′j is a local solution is exactly
the same procedure as in Section 3.4. The case for the certificates ~d′i for i 6= j
can be found in Figures 3.18 and 3.19, for the cases f =↑ and f =↓, respec-
tively. Notice that the certification of the solution 〈R,~cR, ~c′R〉 is only required
to define the certificates ~dj and ~d′j.

Let T = T〈lj ,l′j〉 and T ′ = T ′〈lj ,l′j〉
in:

p1:=~c′i :` Sj(lj) u Si(l) v T (Si(l))
p2:=justif(lj , l

′
j) :` R(lj) u T (Si(l)) v T ′(Si(l))

p3:=weaku(p1) :` Sj(lj) u Si(l) uR(lj) v T (Si(l))
p4:=weaku(axiom) :` Sj(lj) u Si(l) uR(lj) v R(lj)
p5:=introu(p3, p4) :` Sj(lj) u Si(l) uR(lj) v T (Si(l)) uR(lj)

~d′i(lj , l
′
j , l):=trans(p5, p2) :` S′j(lj) u Si(l) v T ′(Si(l))

Fig. 3.18. Definition of ~d′i(l1, l
′
1, l2). Case f =↑

Let T = T〈lj ,l′j〉 and T ′ = T ′〈lj ,l′j〉
in:

p1:=axiom :` Sj(lj) u Si(l) v Sj(lj) u Si(l)
p2:=weaku(p1) :` S′j(lj) u Si(l) v Sj(lj) u Si(l)
p3:=monotT (p2) :` T (S′j(lj) u Si(l)) v T (Sj(lj) u Si(l))
p4:=~c′i :` T (Sj(lj) u Si(l)) v Si(l)
p5:=trans(p3, p4) :` T (S′j(lj) u Si(l)) v Si(l)
p6:=weaku(p5) :` R(l′j) u T (S′j(lj) u Si(l)) v Si(l)
p7:=justif :` T ′(S′j(lj) u Si(l)) v R(l′j) u T (S′j(lj) u Si(l))

~d′i(lj , l
′
j l):=trans(p7, p6) :` T ′(S′j(lj) u Si(l)) v Si(l)

Fig. 3.19. Definition of ~d′i(lj , l
′
j l). Case f =↓
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3.4.6 Example

Consider the simple imperative syntax to define program components:

c ::= skip | x:=e | c; c
| await b then c
| while b do c od
| if b then c else c fi

p ::= c ‖ c

Statements x:=e are executed atomically and statements await b then c are
such that c does not contain while nor await commands. The command
await b then c suspends its execution until b is satisfied, then it executes c
atomically. The statement wait b is a shorthand for await b do skip.

Consider as example the verification of the producer-consumer program
shown in Figure 3.20. We assume the variables in and out are initially equal
to 0. We represent the producer component as the graph in Figure 3.21.

Producer :
l1 : while in < M {Inv ∧ in ≤M} do
l2 : {Inv ∧ in < M}

wait (in− out < N)
l3 : {Inv ∧ in < M ∧ in− out < N}

buffer[in mod N ] := a[in]
l4 : {Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N ] = a[in]}

in := in + 1
od

lf : {Inv ∧ in = M}

Consumer :
while out < M {Inv2 ∧ out ≤M} do
{Inv2 ∧ out < M}
wait (out < in)
{Inv2 ∧ out < M ∧ out < in}
b[out] := buffer[out mod N ]
{Inv2 ∧ out < M ∧ out < in ∧ b[out] := a[out mod N ]}
out := out + 1

od

{Inv2 ∧ out = M}
where

Inv
def
= ∀k. out ≤ k < in⇒ a[k] = buffer[k mod N ]

Inv2 = Inv ∧ ∀j. 0 ≤ j < out⇒ a[j] = b[j]

Fig. 3.20. Producer-Consumer Program

The labeling S for the graph of Figure 3.21 representing intermediate
program annotations is defined as:
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l1 l2in < M?

l3

in− out < N?

l4

buffer[in mod N] := a[in]

l5

skip

in := in + 1

lf

in ≥ M?

Fig. 3.21. Graph representing the Producer component

S(l1) = Inv ∧ in ≤M
S(l2) = Inv ∧ in < M
S(l3) = Inv ∧ in < M ∧ in− out < N
S(l4) = Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N ] = a[in]
S(l5) = S(l4)
S(lf ) = Inv ∧ in = M

Among the verification condition to prove the local validity of the annotations,
i.e., that S is a solution, we have:

• S(l2) v T〈l2,l3〉(S(l3)), and
• S(l5) v T〈l5,l1〉(S(l1));

that is,

• Inv ∧ in < M ⇒ in− out < N ⇒ Inv ∧ in < M ∧ in− out < N , and
• Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N ] = a[in]
⇒ ∀k. out ≥ k < in + 1⇒ a[k] = buffer[k mod N ] ∧ in + 1 = M

Among the verification condition to prove the stability of the annotations
for the consumer w.r.t. the producer, we have to prove for instance

Inv2 ∧ in− out < N ∧ buffer[in mod N ] = a[in] u S(l1)
⇒ wp(out := out + 1, S(l1))

that is

Inv2 ∧ in− out < N ∧ buffer[in mod N ] = a[in] ∧ Inv ∧ in ≥M
⇒ ∀k. out + 1 ≥ k < in⇒ a[k] = buffer[k mod N ]

A first simple transformation consists in inserting extra statements that
affect a fresh variable r, as shown in Figure 3.22. The motivation of this
transformation is to ensure the validity of the condition r = in mod N
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enabling, thus, a further transformation. In the graph, the transformation
consists in introducing the nodes l, l6, and l7, together with the edges
{〈l, l1〉, 〈l5, l6〉, 〈l5, l7〉}. Translating the certificate in this step is straightfor-
ward since r is a fresh variable and hence does not appear in the program an-
notations. The freshness of r is formalized by the fact that transfer functions
Te for e ∈ {〈l, l1〉, 〈l4, l5〉, 〈l5, l6〉, 〈l5, l7〉} are defined as the identity function
on the original specification. As a result, the labeling S is extended to l as
S(l) = S(l1) and to l6, l7 as S(l6) = S(l7) = S(l5).

l l1r := 0 l2in < M?

l3

in− out < N?

l4

buffer[in mod N] := a[in]

l5

r := r + 1

l6 r ≥ N?

l7

r < N?r := 0

in := in + 1

lf

in ≥ M?

Fig. 3.22. Producer component after node insertion

We proceed then by explaining in detail the application of loop induction
variable strength reduction on the expression in mod N with the variable r.
We assume an analysis is able to compute a solution R such that R(l) is
defined as r = in mod N for l in {l1, l2, l3, l4}. It is not hard to verify that
this labeling can be certified, since local verification conditions are valid and
is stable with respect to transfer functions on the consumer side (since r is a
fresh variable and in is local to the producer side).

As shown in Figure 3.23, the transformation consists on replacing the
assignment buffer[in mod N ] := a[in] by buffer[r] := a[in].

In a backward certificate infrastructure, by Lemma 3.28, it is sufficient to
provide for all a ∈ A and every edge e a certificate justif s.t.:

justif :` R(l3) u Te(a) v T ′e(a)

In a weakest precondition calculus, since 〈l3, l4〉 is the only edge that is mod-
ified, it is sufficient to provide the certificate for the goal

` R(l3) ∧ φ[[a|in mod N 7→a[in]]/a] v φ[[a|r7→a[in]]/a]

which is valid since R(l3)⇒ r = in mod N .
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l l1r := 0 l2in < M?

l3

in− out < N?

l4

buffer[r] := a[in]

l5

r := r + 1

l6 r ≥ N?

l7

r < N?r := 0

in := in + 1

lf

in ≥ M?

Fig. 3.23. Producer component after induction variable strength reduction
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Introduction

Proof compilation as explored in Section 2 targets imperative programs and
does not provide support for advanced programming idioms. This part studies
the extension of certificate transformation to less typical verification scenarios.

• In a first instance, we consider the case of a simple aspect-oriented
paradigm. The main interest of Aspect Oriented Programming (AOP)
in a producer-consumer scenario relies on the potential to separate basic
functionality from crosscutting concerns. AOP supports an incremental
development process, in which the basic functionality is provided by a
baseline program, that is successively refined, possible by third parties,
with components (namely advices) that deal with non-functional concerns,
such as efficiency or security. This incremental development mechanism
is an interesting setting for Proof Carrying Code scenarios, since it con-
siders not only the code producer and the code consumer, but untrusted
intermediaries that may modify the original code functionality.
First, a special purpose verification condition generator is proposed for a
subclass of advices that preserves the specification of the baseline program.
We then define a weaving mechanism that compiles an AOP program to
a low-level stack-based language, merging the baseline program with the
advices. In the basis of this transformation, we translate the certificates
of the baseline program and the certificates of the specification-preserving
advices to a certificate for a standard VCgen for the low-level language.
• In a second instance, we consider hybrid verification methods that com-

bine static analyses and verification condition generators. State-of-the-art
verification tools are increasingly relying on hybrid approaches to reduce
the number and size of verification conditions. In a PCC scenario, this is
interesting because it reduces not only the certificate generation effort, but
the size of certificates that are sent along with the code. However, since
such verification environments operate on source programs, it is necessary
to translate the verification results to executable code. In this situation,
there are two alternative paths to follow. One can translate the result
of the analysis and the certificates for the source program to a hybrid
VCgen for executable code. To that end, we show that the result of the
analysis is preserved by compilation, and that proof obligations are pre-
served along non-optimizing compilation, following the ideas of [14, 8].
Alternatively, one can relate hybrid verification to standard verification,
transforming the certificates of the hybrid verification environment to a
non-hybrid setting. To this end, the result of the analysis is represented as
logical formulae and incorporated to the original verification invariants.
The first approach is advantageous in the sense that certificates are re-
duced in size. The second approach can be applied when the client side
does not feature a hybrid verification setting, with the cost of increasing
the size of certificates. However, the soundness of the hybrid framework
follows from the soundness of the standard VCgen and the existence of a
transformation procedure.
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• In Chapter 6 we consider a parallel programming language that exploits
the capabilities of hierarchical memory architectures. There is an increas-
ing need to provide analysis and verification methods to help developers
write, maintain and optimize their high-performance applications. How-
ever, verification methods are seldom considered in the context of high-
performance computing. Sequoia [30, 37, 35] is a programming language
that abandons the traditionally memory model, for a hierarchical, tree-
structured, and explicitly managed memory [2, 28, 36]. We first propose,
using abstract interpretation [26, 27], a compositional proof system to an-
alyze Sequoia programs and reason about them. The proof system differs
from standard frameworks for concurrent programs since it is geared to-
wards the verification of divide-and-conquer applications, in which compu-
tations are repeatedly fragmented into smaller tasks that will be executed
at lower (and disjoint) levels of the memory hierarchy. Finally, for com-
mon program optimizations [37], we show that provably correct Sequoia
programs are transformed into provably correct Sequoia programs.



4

Specification Preserving Advice Weaving

4.1 Introduction

In order to study proof compilation for a very simple AOP language, we
introduce the notion of specification-preserving advice. Informally, an advice
a is specification-preserving for an annotated piece of code {Φ}c{Ψ}, where
Φ and Ψ denote the pre and postcondition for c, respectively, if the advised
code a . c satisfies the same specification, i.e., {Φ}a . c{Ψ}. Specification-
preserving advices are natural in the context of PCC with intermediaries,
since many aspects related to security (resource management, logging, etc.)
and efficiency (e.g., cached functions, optimized code, etc.) fall in this category.
Moreover, specification-preserving advices support “separate verification” (as
coined by [38]) and allow intermediaries to treat correctness proofs of the
baseline code as black-boxes. Concretely, intermediaries will only be required
to prove that advices are specification-preserving w.r.t. the code they advise,
and an appropriate certificate translator will produce certificates of the weaved
code.

We provide a definition of the class of specification-preserving advices that
support modular reasoning and a simple static analysis that ensures that
advices are specification-preserving. In addition, we propose an algorithm that
takes as input an AOP program p and a certificate c of its correctness, and
returns a certificate for the compiled program TpU.

4.2 A basic motivating example

Consider the program p with a procedure main and another procedure twice
advised unconditionally by a:

main(x) = y := twice(x); z := y + x; return z
twice(x) = return (x+ x)

a(x) = x := 0; z := proceed(x); return z

Consider a table Γ that associates with each procedure a triple consisting
of a precondition, a postcondition, and a modifies clause that states which
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variables are modified. We choose the obvious specifications for main and
twice, i.e.,

Γ (main) = (true, res = x? + x? + x?, ∅)
Γ (twice) = (true, res = x? + x?, ∅)

(We consider that the variables x, y and z are local variables, and thus are
not declared in the modified clauses).

One can generate for each procedure a verification condition that guaran-
tees that the procedure meets its specification. Both verification conditions
hold obviously.

Nevertheless, when the advice code

a(x) = x := 0; z := proceed(x); return z

is declared to be executed around twice, every call of the function twice starts
instead the execution of the advice a. The special statement proceed in the
body of a starts the execution of the code under advice, i.e., function twice in
this example.

Therefore, when the advice a executes around the function twice, all ter-
minating executions of the program main will simply return the value given
as input, and thus the postcondition will not be satisfied if main is called with
an input distinct from 0. In this case, the problem is caused by the fact that a
forces twice to be executed with input 0. In other words, a is not parameter-
preserving, i.e., causes twice to be called with an input different from the one
that is declared in the program.

A similar problem shall occur if an advice modifies a global variable that
is otherwise unmodified by the procedures it advises. More generally, advices
should, in addition to be parameter-preserving, preserve specifications.

Now consider instead the correct advice a(x):

(if x 6= 0 then z := proceed(x) else z := 0); return z

The function â(x) derived from a(x) by replacing the proceed statement by a
call to f :

(if x 6= 0 then z := twice(x) else z := 0); return z

is specification-preserving, since the proof obligation for â with with the same
pre and postcondition as twice is logically equivalent to

x 6= 0⇒ x+ x = x+ x ∧ x = 0⇒ 0 = x+ x

and it is thus valid. Note that the proof obligations for â relies on the speci-
fication of twice, but not on its code.

4.3 A simple AOP language

This section introduces SAL, a simple procedural language with aspects, i.e.,
with modules implementing concerns different from the basic functionality.
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Commands c ::= v:=e | c; c | v:=f(e)
| v:= proceed(e)
| if b then c else c
| while b do c
| skip | return e

Procedures proc ::= f arg∗ cb
Point-cut descriptors ptd ::= if b around f

Advices advice ::= ptd+ a arg∗ ca
Programs Prog ::= proc∗ advice∗

Fig. 4.1. Syntax of SAL programs

Each aspect is implemented as a collection of code units, namely advices,
that are weaved before, after or around the baseline code at syntactic pro-
gram points as specified by the point-cut descriptors. For simplicity, SAL is
restricted to around advices, to point-cuts at procedure calls, and to point-cut
descriptors that do not refer to the control-flow graph.

4.3.1 Syntax

The syntax of commands can be found in Figure 4.1, where v ranges over
the sets V of local variables and X of global variables, arg ranges over local
variables, f ranges over the set F of procedure names, and a ranges over
the set A of advice names. A baseline command is a command that does
not contain any proceed command. We let cb and ca range respectively over
baseline and advice commands.

Point-cut descriptors are of the form if b around f , where b is a boolean
condition and f is a procedure name. Then, each procedure is composed of an
identifier, its formal parameters and a command that represents its body. Each
advice is composed of an identifier from a set A of advice names, a non-empty
set of point-cut descriptors, its formal parameters, and an extended command
that represents its body. A program is a given by a set of procedures with a
distinguished main procedure and a set of advices.

4.3.2 Semantics

Advice weaving, which enables aspects to influence the execution of programs
at designated program points and under certain conditions, is the fundamental
mechanism that determines the semantics of AOP programs. Thus, the essence
of SAL programs is captured by the transition rules for the commands call and
proceed, which are described informally below.

Upon reaching a call statement of the form v:=f(e), one checks in the
order prescribed by the declaration of advices whether the guard of a point-
cut descriptor for f is satisfied. If there is no point-cut descriptor for f such
that the guard is satisfied, then one executes f ; otherwise, if a is the first
advice for f whose guard is satisfied, then one executes the body of a.
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Upon reaching a statement of the form v:= proceed(e), one must exam-
ine the call stack to determine the current procedure, say f , and the current
advice, say a. Then one checks for all advices that occur after a in the decla-
ration of advices whether the guard of a point-cut descriptor for f is satisfied.
If there is no point-cut descriptor for f such that the guard is satisfied, then
one executes the body of f ; otherwise, if a′ is the first advice for f whose
guard is satisfied, then one executes the body of a′.

Notice that under such a semantics, the body of f will not be executed
whenever a procedure call to f triggers an advice that does not contain any
proceed statement.

Formally, the semantics of advice weaving is defined by compilation to an
intermediate language SBL, defined in Section 4.6. For the purpose of the next
sections, it is sufficient to know that the semantics of SAL programs can be
modeled by judgments of the form p, µ ⇓ v, ν which read: the execution of
program p with initial memory µ terminates with final memory ν and returns
value v.

vcg(skip, ϕ) = (ϕ, ∅) vcg(x:=e, ϕ) = (ϕ[e/x], ∅)

(ϕ2, S2) = vcg(c2, ϕ) (ϕ1, S1) = vcg(c1, ϕ2)

vcg(c1;c2, ϕ) = (ϕ1, S1 ∪ S2)

vcg(return e, ϕ) = (ϕ[e/res], ∅)

(ϕ1, S1) = vcg(c1, ϕ) (ϕ2, S2) = vcg(c2, ϕ)

vcg(if b then c1 else c2, ϕ) = (b⇒ ϕ1 ∧ ¬b⇒ ϕ2, S1 ∪ S2)

(ϕ′, S) = vcg(c, Inv)

vcg(while b {Inv} do c, ϕ) = (Inv, {Inv ⇒ (b⇒ ϕ′ ∧ ¬b⇒ ϕ)} ∪ S)

Γ (f)=(Φ, Ψ,W)

vcg(x:=f(e), ϕ) = Φ[e/inf ] ∧ (∀W′,res.Ψ [e/inf ][W
′
/W ][W/W? ]⇒ ϕ[res/x][W

′
/W ], ∅)

vcg(x:=f(e), ϕ) = (φ′, S)

vcgf (x:= proceed(e), ϕ) = (φ′, S)

Fig. 4.2. Weakest Precondition Function

4.4 Verification of baseline code

In this section, we briefly introduce a verification method for baseline pro-
grams. Each procedure is specified in terms of a pre and postcondition and a
frame condition that specifies which variables are modified during the execu-
tion of f .
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Preconditions are propositions that refer to the functions’ formal param-
eters and to the global variables. Loop invariants and postconditions refer to
the initial and current state of global variables (respectively with starred and
standard variables). Postconditions may also refer to the function result (with
the special variable res).

Each precondition Φ yields a predicate over states, denoted µ |= Φ for a
state µ, whereas a postcondition Ψ yields a ternary relation over an initial
state, a final state, and a result, denoted µ, ν, v |= Ψ for the states µ and ν
and the value v. Likewise, loop invariants yield binary relations over an initial
and a current state.

In order to reason effectively about programs, we assume that all while
loops carry an invariant (we use whileI(b){s} to denote the while loop an-
notated with invariant I), and that we dispose of a specification table Γ that
associates to each procedure f a triple (Φ, Ψ,W) where Φ is a precondition, Ψ
is a postcondition, and W is a modifies clause that declares all variables that
are modified during the execution of f . Furthermore, we let VΓ be the set of
variables that appear in the specification of baseline procedures.

From specification table Γ and an annotated procedure f , one can com-
pute a set POΓ (f) of verification conditions, using an extended predicate
transformer vcg. Formally, the set POΓ (f) is defined as ∆f ∪ {Φ ⇒ Φ′[y/y? ]},
where ϕ[e/x] stands for the substitution of the expression e for the free occur-
rences of variable x in the logic formula ϕ, Γ (f) = (Φ, Ψ,W), y stands for
every variable in VΓ and (Φ′, ∆f ) = vcg(c, Ψ), where c is the body of f . The
formal definition of vcg is given in Figure 4.2.

For the verification method to be sound, we must also check the correctness
of the modifies clause. We assume a sound but incomplete automatic analysis
that checks its correctness.

The weakest precondition calculus is sound in the sense that if a program
p is valid w.r.t. a specification table Γ with a main procedure specified by
(Φ, Ψ), then all executions of p initiated with a memory µ satisfying Φ will
terminate with a final memory ν and value v such that (µ, ν, v) satisfy Ψ .

Lemma 4.1 (Soundness). Let p be a baseline program over a set F of proce-
dures. Let Γ be a specification table for p and let Γ (main) = (Φ, Ψ,W). Assume
that p is valid w.r.t. Γ . Then, if p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ .

In the setting of PCC, we require that proof obligations come equipped with
independently checkable certificates of their validity. For simplicity, we rely
on an abstract notion of certificate. Let p be an annotated baseline program
and Γ be a specification table. Then, a certificate for the program p w.r.t. Γ
is an indexed set of certificates (cδ)δ∈POΓ (f),f∈F such that cδ :` δ for all δ
belonging to POΓ (f) and for all procedures f . If such a certificate exists, we
say that p is certified w.r.t. Γ .

If a program p is certified w.r.t. a specification table Γ , then it is obviously
valid w.r.t. Γ .
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4.5 Verifying AOP programs

The purpose of this section is to define a method to verify specification-
preserving advices.

Throughout this section, we consider a program p in which all procedures
are annotated, i.e., have loop invariants, and specified in a table Γ .

4.5.1 Specification-preserving advices

We extend the verification condition generator to proceed statements, inter-
preting the proceed statement as a call to the advised function; see Figure 4.2.

Definition 4.2. An advice a with guard b preserves the specification of method
f w.r.t. Γ if it satisfies the specification (b∧Φ, Ψ,W ′) where Γ (f)=(Φ, Ψ,W),
and W ′ ∩ VΓ ⊆W.

The condition W ′ ∩ VΓ ⊆ W states that the advice a only modifies variables
in W, unless they do not appear on the specification of the baseline pro-
gram. Let POΓ,f (a) stand for the proof obligations required to prove that a is
specification-preserving w.r.t. f and Γ . If Γ (f) = (Φ, Ψ,W) and c is the body
of a, the set POΓ,f is defined as ∆a,f∪{Φ⇒ φ[y/y? ]} where (φ, δa,f ) = vcg(c, Ψ)
and y? stands for every starred variable in φ.

We say that an advice a is valid if for all procedures f that it advises, the
set of proof obligations POΓ,f (a) is valid. Then, we say that the program p is
valid if all its procedures and all its advices are valid.

We now state soundness of the verification method in the presence of advice
weaving.

Lemma 4.3 (Soundness). Let (p, Γ ) be a valid annotated program. Then, if
p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ .

We require that certified programs come equipped with a certificate that ad-
vices are specification-preserving.

Remark. We can extend the language under consideration with a richer
set of point-cut descriptors, for instance to point-cut descriptors that refer
to the control-flow graph. To this end, as an alternative to reasoning about
the control-flow graph or the call-stack in our logic, we propose a stronger
definition of specification preserving advices. An advice a is specification-
preserving w.r.t. f and Γ if it satisfies the specification (Φ, Ψ,W ′) where
Γ (f) = (Φ, Ψ,W), and W ′ ∩ VΓ ⊆ W. Notice that, in contrast to previous
definition, the guard b does not appear in the precondition of a.

4.5.2 Example

In this section, we consider an extended program syntax. Let the procedure
g
.= slowRetrieve of a SAL program p be such that, when given as parameter

the integer address i, returns the value mem[i], where mem is a global array
variable representing a slow access memory.
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Consider the auxiliary global array variables available and cache and the
SAL procedures f1

.= updateCache and f2
.= isAvailable. Let φ stand for

the consistency of the cache variable with respect to the array availability,
i.e., φ .= ∀i.(available[i] ⇒ cache[i] = mem[i]) . For simplicity, assume that
the variables available and cache are only accessible by these procedures.

Assume that Γ (g) = (Φ, Ψ,W) where Φ .= 0 ≤ i < N ∧ φ, Ψ .= res =
mem[i] ∧ φ and W = ∅.

Procedures f1 and f2 are specified with their respective pre and postcon-
ditions:

Φ1
.= Φ

Ψ1
.= cache = cache?[i 7→ v] ∧ φ

Φ2
.= 0 ≤ i < N

Ψ2
.= res = available[i]

Introducing the advice a .= fastRetrieve improves the store access time
by taking advantage of the array variables available and cache and the
procedures f1 and f2. This advice receives as parameter the address i and
returns the cached value if available or, otherwise, allows the function g to
proceed:

around slowRetrieve(Address i) fastRetrieve {
b:= isAvailable(i);
if b

return cache[i]
else

v:=proceed(i);
updateCache(i, v);
return v

}

One can prove that a is specification preserving by showing that the propo-
sition

Φ2 ∧ ∀b.(Ψ2[b/res]⇒
(b⇒ Ψ [cache[i]/res] ∧ φ)∧
(¬b⇒ Φ ∧ ∀res.(Ψ ⇒

(Φ1 ∧ ∀cache′ .(Ψ1[cache
′
/cache][cache/cache? ]⇒ (Ψ ∧ φ)[cache

′
/cache]))))))

is implied by Φ.

4.5.3 Harmless advices

In general, it is not decidable whether an advice a preserves the specification
of a procedure f w.r.t. a specification table Γ . Therefore, it is of interest to
develop automated approximate methods to detect specification-preserving
advices. A natural condition is to require that the advice does not modify the
variables in VΓ and always executes a proceed statement. Since such require-
ments are closely related to the notion of Harmless Advice [29], we call such
advices specification-harmless.
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The set of SAL commands is extended with assertions assert(φ) and ghost
assignments set z′ := z, where φ is a proposition and z′ is a ghost variable
not appearing in the original program. The definition of vcg is extended ac-
cordingly:

vcg(assert(φ), ϕ) = (φ, {φ⇒ ϕ})
vcg(set z′ := e, ϕ) = (φ[e/z′ ], ∅)

Formally, an advice a with parameters ~y and guard b is specification-
harmless w.r.t. f and Γ if the procedure â whose body is obtained from the
body of a by substituting x:= proceed(~e) by

assert( ~z? = ~z);x:=f(~e); set x′, ~z′ := x, ~z

satisfies the specification

(b ∧ Φ, x′ = res ∧ ~z′ = ~z,W ′)

where Γ (f) = (Φ, Ψ,W), and W ′ ∩ VΓ = ∅, and where x′, ~z′ are fresh ghost
variables, and where ~z is an enumeration of VΓ . We classify an advice as
control flow preserving if every path in its control flow contains exactly one
proceed statement. We assume the existence of an automated approximate
static analysis to check this condition.

Lemma 4.4. Assume a is control-flow preserving advice. Then, if a is speci-
fication harmless with respect to f and Γ , then it is specification-preserving.

Dantas and Walker [29] propose a mechanism to check that the execution
of an advice does not interfere with the final value produced by the computa-
tion of the baseline procedure. It consists on a type-effect system inspired on
information flow type systems that does not consider timing nor termination
behavior. One can use this type system as a static analysis to detect whether
an advice is specification-harmless.

4.5.4 Beyond harmless advices

There are many natural examples of advices that do not necessarily trigger
a proceed statement. For example, advices that seek to improve efficiency
by replacing a procedure call by a semantically equivalent but more efficient
computation will not call a proceed statement. For such examples of advices, it
is still possible to use the property of specification-harmless to ensure that the
advice is specification-preserving for those paths in which a proceed statement
is effectively called, and generate a proof obligation for all paths that do not
call to proceed.

Recall the advice of the basic example shown in Section 4.2:

a(x) = (if x 6= 0 then z := proceed(x) else z := 0);
return z

Clearly, we have two possible execution paths depending on whether the input
value is equal to 0. To verify that a preserves the specification of f , i.e.,
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(true, res = x? + x?), we consider each possible path separately. In case that
the parameter x is not equal to 0 we know that exactly one proceed statement
will be executed, that no variable is modified and that the expression returned
by the proceed statement is passed unchanged by the advice. Thus, we can use
a simple static analysis to detect whether this path is specification-harmless.
However, the path corresponding to an input equal to 0 does not execute
a proceed statement, so we need to generate proof obligations that ensures
that the specification is still preserved. In this case, it corresponds to the valid
proposition x = 0⇒ 0 = x+ x.

4.6 Compiling advices

From an applicative perspective, AOP is transparent and compilers target
typical back-ends: indeed, it is the role of the compiler to integrate these
concerns into a single executable object, through a weaving mechanism that
modifies the code of each procedure depending on the advices that operate
over it. In this section, we define the compilation of SAL programs to a stack-
based language.

4.6.1 Target language

The target language is a simple stack-based language (SBL). The syntax of
SBL instructions is given in Figure 4.3, where v and l ranges over integers, x
ranges over program variables, cmp over relations between integer values, and
g ranges over function names. A SBL program consists of a set of function

instr ::= nop | push v | load x | store x
| jmp l | jmpif cmp l
| invoke | return

Fig. 4.3. Instruction set for SBL

names, and for each function g a declaration of the form g args∗ = instr∗.
The operational semantics of SBL programs is standard, and defined by a
small-step relation  between states. A state is either final, in which case
it consists of a global memory µ and a result value v, or intermediary, in
which case it consists of a global memory µ and a list of frames lf , each frame
consisting of the name of the function being called, of a program counter, of a
local memory with a distinguished variable par that stores the parameter of
the function being called, and of an operand stack. Figure 4.4 gives the rules
for invoke and return instructions, where [par 7→ v] denotes the local memory
that only assigns v to par.
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pf [i] = invoke f

〈µ, 〈f ′, pc, lm, v : os〉 :: lf〉 〈µ, 〈f, 1, [par 7→ v], ε〉 :: 〈f ′, pc+ 1, lm, os〉 :: lf〉
pf [i] = return

〈µ, 〈f, pc, lm, v : os〉 :: 〈f ′, pc′, lm′, os′〉 :: lf〉 〈µ, 〈f ′, pc′, lm′, v :: os′〉 :: lf〉

Fig. 4.4. Operational semantics of SBL

4.6.2 Compiler

The compiler for SAL programs is defined in Figure 4.5 as a function TU that
takes a command and returns a list of labeled instructions. The compiler func-
tion TUe takes an integer expression e and returns a sequence of instructions
whose effect is to push on top of the stack the evaluation of the expression
e. The compiler function TUb takes, in addition to a boolean expression b, a
label l and outputs a sequence a instructions that forces the program execu-
tion to jump to the program point labeled l if the condition b evaluates to
true. The compiler for commands is standard, to the exception of the function
call and the proceed statement, whose compilation involves advice weaving.
Since SBL does not feature a dedicated mechanism for advice weaving, each
advice is compiled multiple times, exactly once per procedure it advises, and
the procedure call x:=f(e) is compiled into

TeUe :: invoke âf :: store x

where a is the first advice for f , and âf is its specific compilation for f . The
code of âf is of the form

Tb, lUb :: load par :: invoke â′f :: return :: [l : af ]

where af is obtained by compilation from a by translating any proceed state-
ment of the form x:= proceed(e) by

TeU :: invoke a′f :: store x

where a′ is the next advice for f . In other words, the code of âf tests if the
guard for a holds, and if so proceeds to execute the body of the advice, or lets
â′f proceed otherwise.

In order to achieve the desired effect, the compiler is thus parametrized by
a procedure (used in the clause for procedure calls to trigger the appropriate
advice), or by a procedure and an advice (used in the clause for proceed to
trigger the appropriate advice). For readability, we use superscripts to indicate
the parameter and omit the superscript in all cases where it is not used.
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TskipU = [l :nop]
Tx:=eU = let inse=TeUe in

inse :: store x
Tc1;c2U = let ins1=Tc1U in

let ins2=Tc2U in
ins1 :: ins2

Tif b then c1 else c2U =
let ins1=Tc1U in
let ins2=Tc2U in
let insb=Tb, l1Ub in
insb :: ins2 :: jmp l :: [l1 : ins1] :: [l :nop]

Twhile b do cU =
let insc=TcU in
let insb=Tb, lcUb in
jmp l :: [lc : insc] :: [l : insb]

Tx:=h(e)Uf = let inse=TeUe in
inse :: invoke af :: store x

Treturn eU = let ins=TeUe in
ins :: return

Tx:= proceed(e)Uaf = let inse=TeUe in
inse :: invoke a′f :: store x

Fig. 4.5. Compiler for SAL programs

4.7 Certificate translation

In this section, we show that a valid SAL program is compiled into a valid SBL
program. To this end, we first define a verification method for SBL programs.
The method is strongly inspired from earlier work, and in particular [14].

4.7.1 Verification of SBL programs

stack expressions ōs ::= s | ē :: ōs |↑k ōs
logical expressions ē ::= res | x? | x | c | ē op ē | ōs[k]

Fig. 4.6. Logical SBL expressions

The extended set of logical expressions is defined in Figure 4.6. In the defi-
nition, s is a special variable representing the current operand stack and ↑k ōs
denotes the stack ōs minus its k-first elements. An annotation is a propo-
sition that does not contain stack sub-expressions. An annotated bytecode
instruction is either a bytecode instruction or a proposition and a bytecode
instruction: ī ::= i | (φ, i) An annotated program is a pair (p, Γ ), where p is a



104 Chapter 4. Specification Preserving Advice Weaving

bytecode program in which some instructions are annotated and Γ is a speci-
fication table that associates to each procedure f a triple (Φ, Ψ,W) where Φ is
a precondition, Ψ is a postcondition, and W is a modifies clause that declares
all variables that may be modified during the execution of f .

Verification of SBL programs is defined in terms of a weakest precondi-
tion function wp that operates on annotated programs. In order for the wp
function to be well-defined, we must restrict our attention to well-annotated
programs [7, 14, 57], i.e., programs in which all cycles in the control-flow graph
must pass through an annotated instruction. We characterize such programs
by an inductive definition.

An annotated program p is well-annotated if every procedure is well an-
notated. A formal definition of well annotated programs can be found in Def-
inition 2.1.

Given a well-annotated procedure, one generates an assertion for each
label, using the assertions that were given or previously computed for its
successors. This assertion represents the precondition that an initial state
should satisfy for the procedure to terminate only in a state satisfying its
postcondition.

let Γ (f)=(Φ, Ψ,W) and y represent every variable in W:

wpi(k) = wpL(k + 1)[c::s/s] if g[k] = push c

wpi(k) = wpL(k + 1)[(s[0] op s[1])::↑2s/s] if g[k] = binop op
wpi(k) = wpL(k + 1)[x::s/s] if g[k] = load x

wpi(k) = wpL(k + 1)[↑s,s[0]/s,x] if g[k] = store x
wpi(k) = wpL(l) if g[k] = jmp l

wpi(k) = (s[0] 6= 0⇒ wpL(k + 1)[↑
1s/s])∧ if g[k] = jmpif l

s[0] = 0⇒ wpL(l)[↑
1s/s])

wpi(k) = Ψ [s[0]/res] if g[k] = return

wpi(k) = Φ[s[0]/in] ∧ (∀res, y′.Ψ [s[0]/in][
y/y? ][y

′
/y] if g[k] = invoke f

⇒ wpL(k + 1)[res::s/s][
y′/y])

wpL(k) = φ if g[k] = φ : i
wpL(k) = wpi(k) otherwise

Fig. 4.7. Weakest precondition for SBL programs

Let (p, Γ ) be a well-annotated program.

• The weakest precondition calculus over (p, Γ ) is defined in Figure 4.7.
• The set PO(f) of verification conditions of the procedure f is sucht that:

Φ⇒ wpL(0)[ ~x?/~x] ∈ POΓ (f)

f [k] = (φ, i)
φ⇒ wpi(k) ∈ POΓ (f)

An annotated SBL program is valid w.r.t. Γ if for very procedure f the proof
obligations POΓ (f) are valid.
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4.7.2 Preservation of validity

The purpose of this section is to prove that valid SAL programs are compiled
into valid SBL programs. To this end, we first extend the compiler of Sec-
tion 4.6 so that compiled programs are well-annotated. This is achieved by
modifying the compiler clause for loops:

TwhileI(b){c}U = let insc = TcU and insb = Tb, lcU in
jmp l :: [lc : insc] :: [l : (I, insb)]

where we denote (I, insb) the sequence of instructions obtained by annotating
the first instruction of insb with I. In the rest of this section, for any SBL
function g, we denote g[l, l′] the sequence of instructions g[l] :: g[l+1] :: . . . ::
g[l′−1].

Lemma 4.5. Assuming the axioms (v :: s)[0] = v and ↑ (v :: s) = s for
stacks, the auxiliary compilers TUe and T.Ub satisfy the following properties:

i) for every integer expression e and function g such that g[l, l′] = TeUe,
wpL(l) is equivalent to wpL(l′)[e::s/s];

ii) for every boolean expression b and function f such that g[l, l′′] = Tb, l′Ub,
wpL(l) is equivalent to

b⇒ wpL(l′) ∧ ¬b⇒ wpL(l′′)

Given a specification table Γ for SAL programs, Γ ′ is a specification table
for SBL programs extending Γ if for every advice a and procedure f ad-
vised by a, Γ ′(âf ) = (Φf , Ψf ,Wf ) and Γ ′(af ) = (Φf ∧ b, Ψf ,Wf ), where
Γ (f) = (Φf , Ψf ,Wf ). In the following paragraphs, we implicitly consider the
specification tables Γ and Γ ′ respectively for the verification of SAL and SBL
programs.

Lemma 4.6. Let g be an SBL function such that g[l, l′] = TcU, and let
(φ, S) = vcg(c,wpL(l′)). Then, φ′ ≡ wpL(l) and the proof obligations in S
are equivalent to the proof obligations corresponding to the annotated instruc-
tions in g[l, l′].

Consider an SBL program p′ compiled from an annotated SAL program p.
The following result states that if p is a valid SAL program w.r.t. Γ , then p′

is a valid SBL program w.r.t. Γ ′.

Theorem 4.7. Suppose that (p, Γ ) is a valid annotated program. That is, for
every procedure f and for every advice a, the sets of proof obligations ∆f and
POΓ,f (a) are valid. Then, for every function f , af , and âf , the sets POΓ ′(f),
POΓ ′(af ) and POΓ ′(âf ) contain valid proof obligations.

Furthermore, we can prove that a SAL programs certified with respect to Γ
is compiled into a SBL program certified with respect to Γ ′. More precisely,
using the rules of the proof algebra extended with the axioms (v ::s)[0] = v and
↑(v ::s) = s, for every equivalent proof obligations δ and δ′, we can transform
a certificate cδ for δ to a certificate cδ′ for δ′. Therefore, if for every procedure
f ∈ F , (cδ)δ∈POΓ (f) and (cδ)δ∈POΓ,f (a) are indexed sets of certificates for a
SAL program p, then for every function g of p′ we can generate a certificate
for the proof obligation δ ∈ POΓ ′(g).



106 Chapter 4. Specification Preserving Advice Weaving

4.8 Increasing the Power of Verification

Consider the following trivial example:

a1(x) = z := proceed(x+ 1); return z
a2(x) = z := proceed(x− 1); return z

When executed in isolation around a function f , it is clear that neither a1 nor
a2 preserves the behavior of f . However, when both are executed around f
they collaborate, and the effect of a1 is neutralized by the effect of a2.

Then, since it may seem a bit restrictive to require that every advice in
its own is specification-preserving, we propose a more general proof system to
study instead whether a sequence of advices is specification preserving.

When verifying the behavior of a sequence of advices ~a executing around
a function f , we are interested in verifying a specification for the sequence ~a
around f (denoted ~a . f), in addition to verifying each advice in isolation. As
with functions and advices, the specification for sequences of advices executing
around a function f consists of a precondition, a postcondition, and a set
of modifiable variables. This specification is inferred and proved from the
specification of its components. For notational convenience, ~a may also stand
for an empty sequence of advices.

For each nonempty sequence of advices ~a1a ~a2 executing around a function
f , we call the sequence ~a2.f , i.e., the advices remaining to be executed around
f when a executes a proceed statement, an execution context of a.

Verification proceeds in two steps. First, each advice a is verified in isola-
tion, i.e., without considering the set of contexts in which the advice a may be
executed. To this end, we must rely on a single specification for the expected
behavior of the execution invoked by a proceed statement. In a second phase,
for each context in which the advice may be executed, we check the consis-
tency of the specification for the proceed statement w.r.t. the specification
derived for the remaining context.

Verification of advices in isolation.

We extend the specification of advices such that for every advice a we have,
in addition to the tuple (Φ, Ψ,W), a specification for the code that may be
invoked by a proceed statement. That enables to reason about the correctness
of an advice abstracting from the possible contexts in which this advice may
be invoked. The specification extension for an advice a consists on an extra
and distinct tuple (Φ′, Ψ ′,W ′), in addition to the tuple (Φ, Ψ,W). The tuple
(Φ′, Ψ ′,W ′) is such thatW ′ specifies the set of variables that the code invoked
by a proceed statement is allowed to modify, and Φ′ and Ψ ′ are the pre and
postconditions of such invocation, respectively. The propositions Φ′ and Ψ ′

may refer, in addition to the input and output arguments of a (in and res),
to the input and output arguments of the invoked code, represented with the
new variables in′ and res′, respectively. It is the goal of the second phase to
check, for every context in which the advice a may be executed, that the code
allowed to proceed satisfies the specification (Φ′, Ψ ′,W ′).
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The predicate transformer wp is extended to deal with proceed state-
ments, s.t. wpa(x:= proceed(e), φ) is defined as

(Φ′a[e/in′a ] ∧ ∀y′,res′ .Ψ
′
a[e/in′a ][y

′
/y][y/y?′ ]⇒ φ[res

′
/x][y

′
/y][e/in′a ], S)

where (Φ′, Ψ ′,W ′) correspond to the specification extension for the proceed
statement and y ∈ W ′.

By using this modified wp function we can prove that the body of an advice
satisfies its specification as long as the code invoked by a proceed statement
satisfies the specification (Φ′, Ψ ′,W ′).

Verifying weaved code.

After statically determining the sequence of advices ~af executing around f ,
we are interested in identifying a set of sufficient proof obligations that ensures
that the sequence ~af is specification-preserving.

The collection of proof obligations is defined by induction on the length
of the sequence of advices ~af executing around the procedure f . Since we do
not require that every subsequence ~af

′ of advices preserves the specification,
we generalize and accept the inference of pre and postconditions Φ and Ψ
for ~af

′ . f without requiring Φ and Ψ to be compatible with the pre and
postcondition of f . The goal of the verification for each subsequence ~a of ~af
is a judgment of the form Γ, Γa`{Φ}~a . f{Ψ}. For such a judgment, we do
not require Φ and Ψ to be compatible with the pre and postcondition of f ,
i.e., the subsequence ~a is not necessarily specification-preserving.

To verify a judgment Γ, Γa`{Φ}~a . f{Ψ}, we proceed by induction on the
length of the sequence ~a to identify the set of proof obligations ∆~a(Φ, Ψ).

In the base case, i.e., when no advice is executed around the function f ,
we have the judgment Γ, Γa`{Φ}f{Ψ} without premises, where Φ and Ψ are
the pre and postconditions of f .

Given a non-trivial sequence ~a = a~a′, we consider two alternative sets of
verification conditions, depending on whether we can statically ensure that
the code of the advice a is control flow preserving. We assume an automated
static mechanism to check this condition.

In case that it cannot be checked whether a is control-flow preserving we
apply the following rule:

Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ
′
a,W ′a)〉

Γ, Γa`{Φ′}~a′ . f{Ψ ′}
Φ′a ⇒ Φ′[in

′
a/inθ ] Ψ ′[in

′
a/inθ ][

res′/res]⇒ Ψ ′a Wf ∪W~a′ ⊆ W ′a
Γ, Γa`{Φa}a~a′ . f{Ψa}

For simplicity, we are not considering the boolean condition specified in the
point-cut descriptor.

Unfortunately, the rule above makes hard to propagate the information
carried by the specification (Φ′, Ψ ′), unless it is explicitly stated in the speci-
fication (Φa, Ψa) of a. However, under the hypothesis that a is a control flow
preserving advice we can apply the following alternative rule:
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Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ
′
a,W ′a)〉

Γ, Γa`{Φ′}~a′ . f{Ψ ′}
Φ⇒ Φa ∧ ∀x′.(Φ′a[x

′
/x]⇒ Φ′[in

′
a/inθ ][

x′/x]) Wf ∪W~a′ ⊆ W ′a
Ψ ′[in

′
a/inθ ][

res′/res][y
?′
/y? ]⇒ Ψ ′a ∧ ∀x′.(Ψa[in/ina ][x

′
/x]⇒ Ψ [x

′
/x])

Γ, Γa`{Φ}a~a′ . f{Ψ}

where x′ represents the global variables potentially modified by a, and W ′a
specifies the variables that may be modified by the execution triggered by the
proceed statement.

For every procedure f advised by ~af , we define∆~af (Φ, Ψ) as the set of proof
obligations required to derive the judgment Γ, Γa`{Φ}~af . f{Ψ}. Assume the
specification table Γ is such that Γ (f) = (Φf , Ψf ,W). Then, we say that the
sequence ~af is specification preserving with respect to f , Γ and Γa, if Φf ⇒ Φ,
Ψ ⇒ Ψf and the proof obligations in ∆~af (Φ, Ψ) are valid.

Lemma 4.8. Let p be a SAL program over a set F of procedures and a set A
of advices. Let Γ be a specification table for F and Γa be a specification table
for A. Assume that for every procedure f that is advised by ~af , the sequence
~af is specification preserving with respect to f , Γ and Γa. Then, if f, µ ⇓ v, ν
and µ |= Φ, then µ, ν, v |= Ψ , where Φ and Ψ are the pre and postconditions
of f .

The dynamic nature of some point-cut descriptors can make static ver-
ification a difficult task. Consider for example a cflow point-cut descriptor,
for which program semantics must refer to a collecting call stack to decide
whether a cflow condition is valid.

Although possible, it is cumbersome to reason explicitly about the call
stack in the program logic. We propose, thus, the following simple derivation
rule to reason in the presence of cflow point-cut descriptors:

Γ, Γa`{Φ}a~a′ . f{Ψ} Γ, Γa`{Φ}~a′ . f{Ψ}

Γ, Γa`{Φ}a
cflow
. (~a′ . f){Ψ}

where a
cflow
. (~a′.f) denotes that the execution of the advice a is conditional on a

cflow statement. The rule can be interpreted as the fact that the specification

(Φ, Ψ) is still verifiable with respect to the sequence a
cflow
. (~a′ . f), regardless of

whether the cflow condition is valid. Although incomplete, this rule may prove
to be useful as long as the advice a is specification preserving with respect to
(Φ, Ψ).

We have formally proved the soundness of the proof system proposed in
this section. In addition, we have shown how to extended the compiler with
a mechanism to translate a certificate of correctness of a SAL program to a
certificate for the compiled code.
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Preservation of Proof Obligations in Hybrid
Verification Environments

In this section, we consider a small imperative language with arrays, and
we focus on a hybrid method based on a generic numerical analysis, inspired
by [47, 19], and that can be instantiated to several numeric domains, including
polyhedra.

The VCgen exploits the information of the analysis in two useful ways:
on the one hand, verification conditions that originate from spurious edges in
the control-flow graph are discarded: more precisely, the VCgen ignores the
case of out-of-bound accesses whenever the analysis ensures that accesses are
within bounds. This leads to fewer, smaller verification conditions. Further-
more, the VCgen adds the results of the analysis as additional assumptions to
help the user prove the verification conditions. This is particularly useful for
the relational analyses considered as they can provide part of the invariants
required to prove programs correct.

Then, we prove preservation of proof obligations using the techniques
of [14, 8]. The proof relies on knowing that the solutions of the analysis are
preserved by compilation. Although analyzing compiled programs is known to
be less precise than analyzing source programs, see e.g. [45], we achieve preser-
vation of solutions by defining at bytecode level an analysis that performs a
symbolic execution of stacks, as in [70, 69, 19].

Finally, to relate hybrid verification to standard verification, we show that
programs that are provably correct using our hybrid method, remain provably
correct using standard verification condition generation. To this end, the com-
piler translates a hybrid specification (combing logical assertions and analysis
results) into a logical one, by giving a logical interpretation of the analysis
results.

5.1 Setting

This section introduces the source language (an imperative language with
arrays of integers), the target language (a stack-based language with jumps),
and the compiler.

We assume two disjoint sets Vs of scalar variables and Va of array vari-
ables, and let V denote Vs + Va. Each variable in Va has an associated size.
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Furthermore, we assume two sets V olds and V olda in 1-1 correspondence with
Vs and Va, which are used to store initial values. We also consider a special
variable res, which is used to represent the value of the program result. Finally,
we assume a set Lab ⊂ N of labels.

Source Language

Programs are defined as commands, and are decorated with labels in order to
express analysis results:

e ::= e op e | n | x | a[e]
c ::= Skip | [x:=e]k | [a[e]:=e]k | c; c | [return e]k

| if [e on e]k then c else c
| while [e on e]k do c

where x, a, n, and k range over Vs, Va, Z, and Lab, respectively, op ranges
over (binary) arithmetic operations, and on over arithmetic comparisons. We
assume that labels occur at most once in commands.

The semantics of source programs is formalized by a small-step transition
relation between states. States may be intermediate, in which case they consist
of a statement and of a memory, or final, in which case they consist of a
memory, and possibly a tag to denote abnormal termination. Memories are
modeled as pairs of mappings from variables to values and from arrays to
indices to values, respectively. We assume that each array a comes equipped
with its size |a| and define the semantic domains of the source language as
follows:

VMem = Vs → Z
AMem = Πa ∈ Va. {i | 1 ≤ i ≤ |a|} → Z
Mem = VMem×AMem
StatesI = Stmt× VMem×AMem
StatesF = VMem×AMem× (Z + {AOB})
States = StatesI + StatesF

The operational semantics of programs is standard and, thus, omitted. (See
the next subsection for the semantics of instructions that manipulate arrays).

Bytecode Language

A bytecode program is defined as a list of instructions. Instructions either
manipulate the memory that stores the values of variables and the contents of
arrays, or manipulate the operand stack, or perform a conditional or uncon-
ditional jump. The set of instructions is defined by the following grammar:

ins ::= prim op | push v | load x | store x | return
| aload a | astore a | cjmpon l | jmp l | nop

We denote by ṗ[l] the instruction at position l of a bytecode program ṗ. The
semantics of bytecode programs is formalized using a transition relation be-
tween states. States may either be intermediate or final; intermediate states
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consist of a program counter, an operand stack that stores the results of inter-
mediate computations, and a memory. The semantic domains of the bytecode
language are defined as follows, where we implicitly assume that the program
counter is within the bounds of programs.

Stack = Z?
StatebI = N× VMem×AMem× Stack
StatebF = VMem×AMem× (Z + {AOB})
Stateb = StatebI + StatebF

The operational semantics of programs is standard. We only provide the op-
erational semantics of the instructions aload and astore; these instructions
may cause abrupt termination if array accesses are out-of-bound. The rules
are given in Figure 5.1, where we use the notation [f | r → s] to refer the
function that is identical to f everywhere except in r that returns s, for any
sets R and S and any function f : R→ S.

P [i] = aload a 0 ≤ n < |a|
〈i, ρv, ρa, n :: s〉 〈i+ 1, ρv, ρa, ρa a n :: s〉

P [i] = aload a ¬ 0 ≤ n < |a|
〈i, ρv, ρa, n :: s〉 EX 〈ρ, v, ρa,AOB〉

P [i] = astore a 0 ≤ n < |a|
〈i, ρv, ρa, n :: v :: s〉 〈i+1, ρv, [ρa | a→ [ρa a | n→ v]], s〉

P [i] = astore a ¬ 0 ≤ n < |a|
〈i, ρv, ρa, n :: v :: s〉 EX 〈ρv, ρa,AOB〉

P [i] = return

〈i, ρv, ρa, n : s〉 〈ρv, ρa, n〉

Fig. 5.1. Semantics of bytecode (excerpts)

Compiler

The compiler is standard, and defined in Figure 5.2; we use the function
init : Stm→ Lab to associate to each statement its initial label. We assume
label compatibility, i.e., that the label of a source statement is the same as the
label of the program point for its compilation.

Throughout the rest of the chapter, we let P be a source program, and
the bytecode program ṗ the result of the compilation of program P .

5.2 Preservation of solutions

It is folklore that compilation potentially yields a loss of precision for rela-
tional analyses. The purpose of this section is to show that solutions of abstract
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JnKe = push n
JxKe = load x
Jx[e]Ke = JeKe; aload x
Je1 op e2Ke = Je2Ke; Je1Ke; prim op

J[x:=e]kK = k : JeKe; store x

J[a[e1]:=e2]kK = k : Je2Ke; Je1Ke; astore a
Js1; s2K = Js1K; Js2K
J[return e]kK = k : JeKe; return

J[Skip]kK = k : nop

Jif [e1 on e2]k then s1 else s2K =
k : Je2Ke; Je1Ke; cjmpon k1; k2 : Js2K; jmp l; k1 : Js1K

where k1 = init(s1) = k2 + |Js2K|+ 1
k2 = init(s2) = k + |Je2Ke; Je1Ke|+ 1
l= k1 + |Js1K|

Jwhile [e1 on e2]k do sK =
k : Je2Ke; Je1Ke; cjmpon k1; jmp l; k1 : JsK; jmp k

where k1 = k + |Je2Ke|+ |Je1Ke|+ 2
l= k1 + |JsK|+ 1

Fig. 5.2. Compiler

interpretations are preserved by compilation, provided one uses symbolic ex-
pressions, as done in [70, 69, 19], to mitigate the presence of the operand stack
and to recover the loss of precision incurred by compilation.

Symbolic Expressions

Expressions and guards serve as the interface with the numerical relational
domain in the analysis for bytecode. Below we let x range over V .

Expr 3 e ::=n |x |x[e] | ? | ?[e] | e op e x ∈ V
Guard 3 t ::=e on e

The expression ? represents an unknown value; therefore, expressions are in-
terpreted as sets of possible values. Formally, the semantics JeKρ and JtKρ of
expressions with respect to an environment ρ = 〈ρv, ρa〉 are defined by the
clauses:

JnKρ = {n} JxKρ = ρv x J?Kρ = Z J?[e]Kρ = Z
Jx[e]Kρ = {ρa x v | v ∈ JeKρ}

Je1 op e2Kρ = {n1 op n2 | n1 ∈ Je1Kρ, n2 ∈ Je2Kρ}
Je1 on e2Kρ⇐⇒ ∃ n1 ∈ Je1Kρ, n2 ∈ Je2Kρ. n1 on n2

As one can see later from the symbolic execution of stack expressions, the
expression ? is not required for analyzing bytecode programs that are obtained
by compilation of source programs. That is because the stack representation
is empty after storing a value in an array.
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Abstract domain

Following Miné [47], we assume an abstract numerical domain interface, which
can be instantiated with standard relational abstract domains. The interface
consists of a domain D equipped with a partial order v ⊆ D × D, meet and
join operators u,t : D×D→ D, a least element ⊥ and a greatest element >.
We also assume abstract assignment functions Jx:=eK], Jx[e1]:=e2K] : D→ D,
and a function assume] that maps guards to abstract elements.

Finally, we assume a monotone concretization function γ : D→ P(VMem×
AMem) mapping abstract elements to sets of environments in VMem ×
AMem, and satisfying the properties shown in Figure 5.3.

γ(d1 u d2) ⊇ γ(d1) ∩ γ(d2)
γ(d1 t d2) ⊇ γ(d1) ∪ γ(d2)

γ(Jx:=eK](d)) ⊇
{〈ρv[x 7→ v], ρa〉 | 〈ρv, ρa〉 ∈ γ(d)

∧ v ∈ JeK〈ρv,ρa〉}
γ(Jx[e1]:=e2K](d)) ⊇

{[ρv, [ρa | x→ [ρa a | v1 → v2]] 7→|]ρ = 〈ρv, ρa〉 ∈ γ(d)
∧ v1 ∈ Je1Kρ ∧ v2 ∈ Je2Kρ}

γ(assume](t)) ⊇ {ρ | JtKρ}

Fig. 5.3. Requirements over concretization function γ

We define the abstract test JtK] : D→ D of a guard t ∈ Guard by JtK](l]) =
assume](t) u l].

Source Code Analysis

The source code analysis is specified by abstract transfer functions that map
elements of the abstract domain into elements of the abstract domain.

Definition 5.1 (Abstract Domain for High-Level). A result of the anal-
ysis for the source program P is described by a mapping Loc in the lattice

State] = Lab→ D .

Definition 5.2 (Solution). A mapping Loc for the source program P is a
solution of the analysis if it verifies the constraint system defined in Figure 5.4,
i.e., Loc ` P holds.

Bytecode Analysis

As for the source code analysis, the bytecode analysis is defined by abstract
transfer functions that map abstract states into abstract states. In this case,
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Loc ` {Loc(i)} [Skip]i {Loc(i)} Loc ` {Loc(i)} [return e]i {⊥}

Loc ` {Loc(i)} [x:=e]i {Jx:=eK](Loc(i))}

Loc ` {Loc(i)} [a[x]:=y]i {Ja[x]:=yK](Loc(i))}

Loc ` {JtK](Loc(i))} s1 {l]1} Loc ` {J¬tK](Loc(i))} s2 {l]2}
Loc ` {Loc(i)} if [t]i then s1 else s2 {l]1 t l

]
2}

Loc ` {JtK](Loc(i))} s {l]} l] v Loc(i)
Loc ` {Loc(i)} while [t]i do s {J¬tK](Loc(i))}

Loc ` {l]} s1 {l]1} Loc ` {l]1} s2 {l]2}
Loc ` {l]} s1 ; s2 {l]2}

Loc ` {>} P {l]}
Loc ` P

Fig. 5.4. Definition of the constraint system for the source code analysis.

the abstract states are pairs of the form (s], l]) where l] is an element of the
abstract domain, and the list of symbolic expressions s] abstracts the operand
stack. The symbolic abstract domain for stacks is Expr?, where for any set
A, A? denotes the domain of lists with elements in A. The set of variables
considered by the bytecode analysis is the same as in the source code analysis.

Definition 5.3 (Bytecode Abstract Domain). A result of the analysis for
ṗ is described by a mapping lȯc in the lattice

˙state
] = Lab→ (Expr?L × D) .

An analysis result is a solution of the analysis if it satisfies the constraint sys-
tem associated to each program. The constraint system is defined in Figure 5.5.
For instructions other than branching or return instructions, the constraint is
defined by partial transfer functions in Expr? × D ⇀ (Expr? × D), most of
them defined as a symbolic execution affecting the abstract representation of
the operand stack.

Definition 5.4 (Solution). A mapping lȯc for the bytecode program ṗ is a
solution of the analysis if it satisfies the constraint system of Figure 5.5, i.e.,
if lȯc ` ṗ holds.

Preservation of Solutions

We define first the compilation of a source code analysis solution and then
show that it is a solution for the bytecode analysis. For notational convenience,



5.2. Preservation of solutions 115

instr ḟinstr
prim op (e1 :: e2 :: s], l])→ (xe1 op e2y :: s], l])

push n (s], l])→ (n :: s], l])

load r (s], l])→ (xry :: s], l])

store r (e :: s], l])→ (s][?/r], Jr:=eK](l]))
aload a (e :: s], l])→ (xa[e]y :: s], l])

astore a (e1 :: e2 :: s], l])→ (s][?/a], Ja[e1]:=e2K](l]))
nop (s], l])→ (s], l])

Instr 6∈ { jmp i′, cjmpon i′, return} ḟinstr(lȯc(i)) v lȯc(i+ 1)

lȯc ` i : Instr

lȯc ` i : return

lȯc(i) v lȯc(j)
lȯc ` i : jmp j

lȯc(i) = (e1 :: e2 :: s], l])

(s], J¬(e1 on e2)K](l])) v lȯc(i+ 1) (s], Je1 on e2K](l])) v lȯc(j)
lȯc ` i : cjmpon j

> v lȯc(0) ∀i ∈ dom(ṗ). lȯc ` i : ṗ[i]

lȯc ` ṗ

Fig. 5.5. Definition of the constraint system for the bytecode analysis.

we denote by ḟs1;···;sn(s], l]) the composition ḟsn(· · · (ḟs1(s], l])) · · · ), where
s1; · · · ; sn is a sequence of bytecode instructions. Let succ(l) denote the set
of successors of a label l, e.g., succ(l) = ∅ and succ(l) = {l + 1, l′} for ṗ[l] =
return and ṗ[l] = cjmpon l′, respectively. The set pred(l) is defined as {l′ | l ∈
succ(l′)}.

Remark 5.5. For each bytecode program ṗ, we can extract from the previous
constraint system a set of transfer functions (ġi,j)(i,j)∈Lab2 s.t. lȯc ` ṗ if and
only if

⊔
k′∈pred(k) ġk′,k(lȯc(k′)) v lȯc(k) for all k ∈ dom(ṗ).

We can extend a partial function ˙locpartial ∈ ˙state
] to a total function lȯc

on dom(ṗ) if we set lȯc(k) equal to:

if k ∈ dom( ˙locpartial) then ˙locpartial(k)
else if k ∈ dom(ṗ) then

⊔
k′∈pred(k) ġk′,k(lȯc(k′))

else undef

This definition only makes sense if, by considering the control flow graph of ṗ
whose edges are {(i, j)|i ∈ dom(ṗ) ∧ j ∈ succ(i)}, every loop contains a label
in dom( ˙locpartial). We refer to the function lȯc as the completion of ˙locpartial.

Definition 5.6 (Compiled analysis results). Given an analysis result Loc
for the program P , an analysis result compiled from Loc is the completion
of the function ˙locpartial defined on each k ∈ dom(Loc) by ˙locpartial(k) =
([ ], Loc(k)).
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This definition can be shown to be well defined from the facts that Loc an-
notates every loop in P and that each loop in the control flow graph of ṗ
contains a label of a loop in P .

Lemma 5.7. Let ṗ1, ṗ2 and e such that ṗ = ṗ1; l : TeUe; l′ : ṗ2. Then, lȯc(l′) =
fi1;...;ik(s], l]) = (e :: s], l]) where (s], l]) = lȯc(l) and [i1; . . . ; ik] = TeUe.

Proof. We prove the lemma by structural induction over the expression e.

Lemma 5.8. Let ṗ1, ṗ2 and e such that ṗ = ṗ1; k1 : JeKe; k2 : ṗ2. Then

∀k ∈ [k1, k2), lȯc ` k : ṗ[k].

Proof. We shall prove it by induction over expression e. From the definition
of the compiler one sees that k2 6∈ dom(Loc).

Case e = n. In this case JeKe = push n, [k1, k2) = {k1} and since pred(k1 +
1) = {k1}, lȯc(k1+1) = ḟpush n(lȯc(k1)), which implies that lȯc ` k1 : push n.

Case e = x. We have JeKe = load x, [k1, k2) = {k1} and since pred(k1 + 1) =
{k1}, lȯc(k1 + 1) = ḟload x(lȯc(k1)), which implies that lȯc ` k1 : load x.

Case e = a[e′]. Here JeKe = Je′Ke; aload a. Let k′ = k1 + |Je′Ke|. By induction
hypothesis we have that ∀k ∈ [k1, k

′), lȯc ` k : ṗ[k] and since pred(k′ + 1) =
{k′} then ḟaload a(lȯc(k′)) = lȯc(k′+1) which implies that lȯc ` k′ : aload a.

Case e = e1op e2. This give JeKe = Je2Ke; Je1Ke; prim op. Let k′′ = k1+|Je′′Ke|
and k′ = k′′+ |Je′Ke|. By induction hypothesis, ∀k ∈ [k1, k

′′) ∪ [k′′, k′), lȯc `
k : ṗ[k] and since the only predecessor of k1 + 1 is k, lȯc(k′ + 1) =
ḟprim op(lȯc(k′)), which means that lȯc ` k′ : prim op.

The following lemma states the main result of this section: compilation
preserves analysis solutions.

Lemma 5.9. If Loc is s.t. Loc ` P , then the analysis result lȯc compiled from
Loc is s.t. lȯc ` ṗ, i.e., it is a solution of the bytecode analysis.

Proof. Suppose that ṗ = ṗ1; k1 : JsK; k2 : ṗ2 and that there exists l] such
that Loc ` {Loc(k1)} s {l]} and ([], l]) v lȯc(k2). We shall prove that ∀k ∈
[k1, k2), lȯc ` k : ṗ[k]. In order to do that, we proceed by induction over
statement s. In this proof we omit the calculus of the primed labels.

Case s = [Skip]k1 . We have JsK = nop. Since

ḟnop(lȯc(k1)) = lȯc(k1)
= ([], Loc(k1))
= ([], FSkip(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1 + 1),

then lȯc ` k1 : nop.
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Case s = [x:=e]k1 . Here JsK = JeKe; k1
′ : store x. By Lemma 5.8, ∀k ∈

[k1, k1
′), lȯc ` k : ṗ[k] and since

ḟstore x(lȯc(k1
′)) = ḟstore x(([e], Loc(k1

′)))

= ([], Jx:=eK](Loc(k1)))
= ([], Fx:=e(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1

′ + 1),

also lȯc ` k1
′ : store x.

Case s = [a[e1]:=e2]k1 . JsK = Je2Ke; Je1Ke; k1
′ :astore a.

By Lemma 5.8, ∀k ∈ [k1, k1
′), lȯc ` k : ṗ[k] and since

ḟastore a(lȯc(k1
′)) = ḟastore a(([e1, e2], Loc(k1

′)))

= ([], Ja[e1]:=e2K](Loc(k1)))
= ([], Fa[e1]:=e2(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1

′ + 1),

also lȯc ` k1
′ : astore a.

Case s = s1; s2. In this case JsK = Js1K; k1
′ : Js2K. By inductive hypothesis we

know that ∀k ∈ [k1, k1
′) ∪ [k1

′, k2), lȯc ` k : ṗ[k].
Case s = [return e]k1 . Here JsK = JeKe; k1

′ : return. By Lemma 5.8, ∀k ∈
[k1, k1

′), lȯc ` k : ṗ[k]. Also, lȯc ` k1
′ : return is always true.

Case s = if [e1 on e2]k1 then s1 else s2. We have JsK = Je2Ke; Je1Ke; k1
′ :

cjmpon k4
′; k2
′ : Js2K; k3

′ : jmp k2; k4
′ : Js1Ke. By Lemma 5.8 and inductive hy-

pothesis we know that ∀k ∈ [k1, k1
′) ∪ [k2

′, k3
′) ∪ [k4

′, k2), lȯc ` k : ṗ[k]
By hypothesis we have

Loc ` {Je1 on e2K](Loc(k1))} s1 {l]1}
and Loc ` {J¬(e1 on e2)K](Loc(k1))} s2 {l]2}

and l] = l]1 t l
]
2.

It can be proved that for every judgment of the form Loc ` {d#
1 } s {d

#
2 }

we have d#
1 = Loc(init(s)). Therefore, lȯc(k4

′) = ([], Loc(k4
′)) = ([], Je1 on

e2K](Loc(k1))) and lȯc(k2
′) = ([], Loc(k2

′)) = ([], J¬(e1 on e2)K](Loc(k1))).
Additionally, Loc(k1

′) = ([e1, e2], Loc(k1)) by Lemma 5.7. Thus, lȯc ` k1
′ :

cjmpon k4
′.

One can show that for all s s.t. ṗ = ṗ1; k : JsK; k′ : ṗ2 and k′ 6∈ dom(Loc)
and Loc ` {Loc(init(s))} s {l]}, lȯc(k′) v ([], l]). Since k3

′ 6∈ dom(Loc),
lȯc(k3

′) v ([], l]2). Also, ([], l]2) v ([], l]) v lȯc(k2). Then, lȯc(k3
′) v lȯc(k2)

implies lȯc ` k3
′ : jmp k2, which completes the proof for this case.
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Case s = while [e1 on e2]k1 do s′. JsK = Je2Ke; Je1Ke; k1
′ : cjmpon k3

′; k2
′ :

jmp k2; k3
′ : Js′K; k4

′ : jmp k1. By Lemma 5.8 and Induction Hypothesis we
know that ∀k ∈ [k1, k1

′) ∪ [k3
′, k4
′), lȯc ` k : ṗ[k].

Using Lemma 5.7,
lȯc(k1

′) = ([e1, e2], Loc(k1)) (5.1)

Since k2
′ 6∈ Loc and pred(k2

′) = {k1
′},

lȯc(k2
′) = ġk1′,k2′(lȯc(k1

′))

= ([], J¬(e1 on e2)K](Loc(k1)))
(5.2)

Given that Loc ` {Je1 on e2K](Loc(k1))} s′ {l]s′} holds assuming our hypoth-
esis and k3

′ = init(s′), we have that

lȯc(k3
′) = ([], Je1 on e2K](Loc(k1))) (5.3)

As we said, lȯc(k4
′) v l]s′ because k4

′ 6∈ Loc. This gives us

lȯc(k4
′) v lȯc(k2) (5.4)

Also, by hypothesis,

J¬(e1 on e2)K](Loc(k1)) v lȯc(k2) (5.5)

Then, (5.1), (5.2) and (5.3) implies lȯc ` k1
′ : cjmpon k3

′. (5.2) and (5.5)
implies lȯc ` k2

′ : jmp k2, and (5.4) implies lȯc ` k4
′ : jmp k1, which complete

the proof for this last case.

5.3 Preservation of proof obligations

In this section, we define two verification frameworks, for source programs
and for unstructured bytecode of the previous sections, respectively. As a
specification language we consider first order formulae, namely the domain
of assertions A. The validity of an assertion in a particular execution state
η ∈ States is standard. In particular, an assertion that contains the expression
a[e] is invalid in those execution states in which e is out of the bounds of the
array a.

We consider as a program specification a tuple (ϕ, annot, ψ, χ), where the
assertion ϕ is a precondition, ψ and χ are normal and abnormal postcondi-
tions, respectively, and the partial function annot : Lab ⇀ A maps program
labels to assertions. The special variable res may only occur in ψ, and ϕ only
refers to variables from V . When specifying a bytecode program, assertions
may refer to the special variable s representing the operand stack.

We say that a program satisfies the specification (ϕ, annot, ψ, χ), if ev-
ery execution starting in a state that satisfies ϕ only reaches normal final
states satisfying ψ or abnormal states satisfying χ, and only reaches inter-
mediate l-labeled points satisfying annot(l). Given a program specification
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(ϕ, annot, ψ, χ), a verification condition generator (VCgen) framework pro-
vides a set of sufficient proof obligations that ensures that the program satis-
fies the specification.

The VCgen defined in this section is hybrid in the sense that it takes
advantage of a previously computed analysis to reduce the size of proof obli-
gations. We assume that the result of a relational analysis (Loc and lȯc for
source and bytecode programs, respectively) is given as input to the VCgen.
For the abstract domain D, we consider a relation |= ⊆ D × A such that for
any guard b and any d ∈ D, d |= b indicates that the interpretation of the
abstract element d ensures the validity of the condition b. For example, when
accessing an array in the expression a[x] we shall check that the value of the
variable x is within the bounds of the array a. If we instantiate D with the
domain of convex polyhedra, each element d ∈ D represents a set of linear
constraints from which we can discover whether the condition 0 ≤ x < |a| is
satisfied.

A further improvement over standard VCgen consists of reusing the result
of the analysis to strengthen loop invariants. This technique helps reducing
the size of annotations and the burden of interactive specification. To that
end, we assume a concretization function γa : D → A to interpret abstract
elements d ∈ D as assertions.

VCgen for Source Programs

Consider a specification (ϕ, annot, ψ, χ) for the source program P . Throughout
this section, we assume that annot sufficiently annotates the program P , that
is, for every subprogram while [t]l do c of P , we have that l ∈ dom(annot).

A VCgen for source programs is defined by the set of proof obligations:

PO = {ϕ⇒ φ[~V/~V old ]} ∪ θ

where 〈φ, θ〉 = WP(P,ψ), φ[~V/~V old ] represents the result of substituting in φ
any array or scalar variable xold in V olds + V olda by x, and the function WP is
defined in Figure 5.6. In the figure, the assertion inB(e) stands for the condition
that must satisfy an execution state to ensure that every array access in e is
within bounds. For instance, if e does not contain array expressions, inB(e)
is defined as true and inB(a[e]) as 0 ≤ e < |a|. We follow the simplifying
assumption that expressions contain no more than one array access. For any
array variable a and expressions e1 and e2, upd(a, e1, e2) is interpreted as the
array a′ such that a′[e] is evaluated to e2 if e1 = e and to a[e] otherwise. To
simplify the presentation of examples, proof obligations for while statements
are split into two assertions corresponding to the true and false branches.

The function WP considers the result of the analysis Loc to reduce the
size of proof obligations. That is, if the abstract value Loc(l) associated to
the program point under consideration indicates that any array access in the
statement is within bounds, the returned predicate is simplified by omitting
the exceptional postcondition. Consider the program of Figure 5.7. If the
analysis is able to compute at label k1 an abstract value d such that d |=
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0 ≤ i < |A|, the WP function will return the assertion upd(A, i, A[0])[i + 1−
1] = A[0], which together with the loop invariant at label k yields the proof
obligation

A[i− 1] = 0 ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒ upd(A, i, A[0])[i+ 1− 1] = A[0]

where the boxed assertion 0 ≤ i ≤ |A| represents the interpretation of the
result of the analysis at the loop entry point.

In contrast, if we do not take advantage of the result of the analysis we
are due to prove the equivalent but bigger formula:

A[i− 1] = 0 ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒
(0 ≤ i < |A| ⇒ upd(A, i, A[0])[i+ 1− 1] = A[0] ∧ ¬(0 ≤ i < |A|)⇒ false) .

WP([x:=e]l, φ) = 〈ckB(e, φ[e/x]), ∅〉 WP([return e]l, φ) = 〈ckB(e, ψ[e/res]), ∅〉

WP(Skip, φ) = 〈φ, ∅〉
WP(c1, φ2) = 〈φ1, θ1〉 WP(c2, φ) = 〈φ2, θ2〉

WP(c1; c2, φ) = 〈φ1, θ1 ∪ θ2〉

WP([a[e1]:=e2]l, φ) = 〈ckB(e2, ckB(a[e1], φ[upd(a,e1,e2)/a])), ∅〉

WP(c1, φ) = φ1, θ1 WP(c2, φ) = φ2, θ2

WP(if [t]l then c1 else c2, φ) = 〈ckB(t, t⇒ φ1 ∧ ¬t⇒ φ2), θ1 ∪ θ2〉

WP(c, φ) = 〈φ1, θ〉 Φ = (t⇒ φ1) ∧ (¬t⇒ φ)

WP(while [t]l do c, φ) = 〈annot(l), {annot(l) ∧ γa(Loc(l))⇒ ckB(t, Φ)} ∪ θ1〉

where the expression ckB(e, ϕ) stands for ϕ if Loc(l) |= inB(e) and for the formula
(inB(e)⇒ ϕ) ∧ (¬inB(e)⇒ χ) otherwise.

Fig. 5.6. Definition of WP function

As can be seen from the definition of WP, proof obligations computed by
the hybrid VCGen are of the form φ1 ∧ γa(d) ⇒ φ2, whereas a standard
VCgen would output the stronger proof obligation φ1 ⇒ φ2. In consequence,
one can provide the code with a weaker invariant φ1 as long as the analyzer
is able to eventually infer the missing information γa(d). For instance, for the
simple program of Figure 5.7, a standard VCgen will return the invalid proof
obligation

A[i− 1] = A[0]⇒ ¬(i < |A|)⇒ A[|A| − 1] = A[0]
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//ϕ : true, χ : false
[i := 1]k0 ;
//A[i− 1] = A[0]

while [i < |A|]k do {
[A[i] := A[0]]k1 ;

[i := i+ 1]k2

}
//A[|A| − 1] = A[0]
. . .

Fig. 5.7. Program example

for the path that does not enter the loop. It is sufficient to provide a stronger
invariant, i.e., to join it to the condition i ≤ |A|, to prove the program correct.
However, as an alternative to increasing the size of the program annotations,
assuming the condition i ≤ |A| is inferred by the analysis, the hybrid VCgen
generates the weaker (and valid) proof obligation

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒ ¬(i < |A|)⇒ A[|A| − 1] = A[0] .

VCgen for Bytecode Programs

Let (ϕ, annot, ψ, χ) be a specification for the bytecode program ṗ. As with the
VCgen for source programs defined above, the precondition ϕ and the internal
annotations annot(l) are strengthened with the result of the analysis. To that
end, we interpret the result of the analysis with the aid of the concretization
functions γa : D → A and γ̄a : (Expr? × D) → A. A VCgen for bytecode is
defined by extracting the set of proof obligations:

po = {ϕ⇒ wpi(0)[V/ ~V old
]} ∪ {annot(l) ∧ γ̄a(lȯc(l))⇒ wpi(l) | l ∈ dom(annot)}

where the predicate transformer wpL is shown in Figure 5.8. If the program
point is annotated, the function wpL returns annot(l). Otherwise it applies
the weakest precondition transformer wpi, defined in terms of the instruction
at program point l, taking as parameters the annotations computed for the
successor program points. The definition of wpL and wpi is done by induction
along the control flow paths of the program. We say that a program ṗ is suffi-
ciently annotated if the control flow graph of the program ṗ does not contain
unannotated loops. The induction principle following from the definition of
sufficiently annotated programs is sufficient to ensure that wpL and wpi are
well defined For a list s, s[0] and s[1] represent the first and second element
of s, and ↑s denotes the result of removing the first element from s.

Preservation of Proof Obligations

Consider the specification (ϕ, annot, ψ, χ) for source program P , and assume
that annot is a sufficient annotation for P , i.e., every loop is annotated. Let
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wpi(l) = wpL(l + 1)[s[0] op s[1]::↑2s/s] ṗ[l] = prim op
wpi(l) = wpL(l + 1)[v::s/s] ṗ[l] = push v

wpi(l) = wpL(l + 1)[s[0],↑s/x,s] ṗ[l] = store x
wpi(l) = wpL(l + 1)[x::s/s] ṗ[l] = load x

wpi(l) = ckB(wpL(l + 1)[upd(a,s[0],s[1]),↑2s/a,s]) ṗ[l] = astore a

wpi(l) = ckB(wpL(l + 1)[a[s[0]]::↑s/s]) ṗ[l] = aload a

wpi(l) = s[0] on s[1]⇒ wpL(l′)[↑
2s/s] ṗ[l] = cjmpon l′

∧¬(s[0] on s[1])⇒ wpL(l + 1)[↑
2s/s]

wpi(l) = wpL(l′) ṗ[l] = jmp l′

wpi(l) = wpL(l + 1) ṗ[l] = nop

wpi(l) = ψ[s[0]/res] ṗ[l] = return

where ckB(ψ) stands for ψ if lȯc(l) |= inB(x[s[0]]) and inB(x[s[0]]) ⇒ ψ ∧
¬inB(x[s[0]])⇒ χ otherwise.

wpL(l) =


annot(l) if l ∈ dom(annot)
wpi(l) otherwise

Fig. 5.8. VCgen for bytecode programs

k0 :push 1
store i
k :jmp k′

k1 :push 0
aload A
load i
astore A

k2 :push 1

load i
prim +
store i

k′ :push |A|
load i
cjmp<k1

k′′ :. . .

Fig. 5.9. Program example

(ϕ, annot, ψ, χ) define as well the specification for the bytecode program ṗ.
From previous results [14], we know that if annot is a sufficient annotation for
P then it is also a sufficient annotation for the result of the compilation ṗ. Let
Loc be a solution of the analysis for the source program P , and lȯc a solution
of the analysis for the bytecode program ṗ, compiled from Loc as described
in Section 5.2.

We assume that the concretization functions satisfy the property γ̄a([], d) =
γa(d), so that the interpretation of abstract analysis results for the source and
bytecode side coincide (recall that by definition lȯc(l) = ([ ], Loc(l)) for every
l in dom(Loc)). In addition, for any expression e and any d ∈ D, if e does not
contain array expressions, i.e., inB(e) = true, then d |= inB(e).

The following auxiliary result about the compilation of expressions is help-
ful to prove the preservation of proof obligations:
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Lemma 5.10. Assume that ṗ is of the form ṗ1 :: l1 : TeUe :: l2 : ṗ2. Then
wpi(l1) is equal to wpi(l2)[e::s/s] if lȯc(l1) |= inB(e) and equal to inB(e) ⇒
wpi(l2)[e::s/s] ∧ ¬inB(e)⇒ χ otherwise.

Proof. The result holds under the assumption stated before that the expression
e contains at most one variable access. Otherwise, the syntactic equality of
predicates does not hold, but it is straightforward to show a logical equivalence.
The proof proceeds by structural induction on the expression e.

The coincidence of the sets of proof obligations PO and po is stated in the
following lemma, from the fact that the bytecode program ṗ is the result of
compiling the source program P .

Proposition 5.11. For every subprogram c of P , proof obligations corre-
sponding to the subprogram c are equal to the proof obligations in ṗ that cor-
respond to the subsequence TcU.

Proof. Assume ṗ is of the form ṗ1 :: l:TcUe :: l′:ṗ2. Let 〈φ, θ〉 = WP(c,wp(l′))
then one can prove by structural induction on c that wp(l) = φ and that θ is
equal to

{annot(k) ∧ γ̄a(lȯc(k))⇒wpi(k) |k∈dom(annot) ∩ Labc},

where Labc denotes the set of labels in the statement c.

Consider, the bytecode program of Figure 5.9 compiled from the example in
Figure 5.7. One can see that the proof obligation at label k is

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒
(i < |A| ⇒ (A[i− 1] = A[0])[upd(A,i,A[0]),i+1/A,i]) ∧
(¬(i < |A|)⇒ A[|A| − 1] = A[0])

which is equal to the proof obligation at label k for the source program of
Figure 5.7.

5.4 From hybrid VCgen to VCgen

In this section, we show a correspondence between the hybrid VCgen for byte-
code of previous section with a standard VCgen that does not take advantage
of the result of the analysis. More precisely, interpreting the abstract result
as logical formulae, we show an equivalence between the proof obligations of
both VCgen’s. Assuming that the relation |= satisfies a correctness condition,
soundness of the hybrid VCgen follows from soundness of the standard VC-
gen. In addition, soundness of the VCgen for source programs follows if the
compiler is semantics preserving.

Given a specification (ϕ, ˆannot, ψ, χ) for the bytecode program ṗ, a non-
hybrid VCgen extracts the set of proof obligations:

p̂o ∪ {ϕ⇒ ŵpi(0)[V/V old ]}
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ŵpi(l) = ckB( ˆwpL(l + 1)[upd(x,s[0],s[1]),↑2s/x,s]) ṗ[l] = astore x

ŵpi(l) = ckB( ˆwpL(l + 1)[x[s[0]]::↑s/s]) ṗ[l] = aload x
ŵpi(l) = wpi(l) otherwise

where ckB(ψ) stands for

inB(x[s[0]])⇒ ψ ∧ ¬inB(x[s[0]])⇒ χ

regardless of whether lȯc(l) |= inB(x[s[0]]) is satisfied.

ˆwpL(l) =


annot(l) if l ∈ dom(annot)
ŵpi(l) otherwise

p̂o = { ˆannot(l)⇒ ŵpi(l) | l ∈ dom( ˆannot)}

Fig. 5.10. Non-hybrid bytecode VCgen

where ŵpi and p̂o are defined in Figure 5.10. To avoid ambiguity, in the sequel
we make explicit some parameters needed in the definition of wpi, wpL, ŵpi
and ˆwpL. We write for instance ŵpi(l, ˆannot, ψ, χ) instead of simply ŵpi(l).

Let lȯc be a result of the analysis for the bytecode program ṗ. Consider
the specifications (ϕ, annot, ψ, χ) and (ϕ, ˆannot, ψ, χ) for program ṗ, such that
for all l in dom(annot), ˆannot(l) is defined as annot(l)∧ γ̄a(lȯc(l)). We say that
the relation |= ⊆ D×Guard is valid if for every abstract element d ∈ D and
b ∈ Guard we have that d |= b implies the universal validity of γa(d) ⇒ b.
The result of the analysis lȯc is said verifiable if the set of proof obligations
po(true, γ̄a ◦ lȯc, true, true) are provable.

Lemma 5.12. For every label l in the program ṗ:

wpi(l, annot, ψ, χ) ∧ γ̄a(lȯc(l))⇒ ŵpi(l, ˆannot, ψ, χ)

provided the relation |= ⊆ D×Guard is valid, and the analysis lȯc is verifiable.

Proof. Following the induction principle induced by the definition of suffi-
ciently annotated programs, for every label l we prove the goal above simulta-
neously with:

wpL(l, annot, ψ, χ) ∧ γ̄a(lȯc(l))⇒ ˆwpL(l, ˆannot, ψ, χ)

The soundness of the VCgen po follows from the following result and the
hypothesis that the standard VCgen p̂o is sound:

Proposition 5.13. The provability of the set of verification conditions in
the set p̂o(ϕ, ˆannot, ψ, χ) follows from the provability of those in the set
po(ϕ, annot, ψ, χ).

Consider for instance the sequence of bytecode in Figure 5.9. Recall that
annot is defined as A[i− 1] = A[0] and A[|A| − 1] = A[0] in k and k′′, respec-
tively. Let ˆannot be defined by strengthening annot with the result of the analy-
sis, i.e., ˆannot(k) = annot(k)∧0 ≤ i ≤ |A| (we can let ˆannot(k′′) = annot(k′′)).
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Let Ψ be the weakest precondition computed by the non hybrid VCgen at
label k1:

0 ≤ i < |A| ⇒ (upd(A, i, A[0])[i+ 1− 1] = A[0] ∧ 0 ≤ i+ 1 ≤ |A|)
∧¬(0 ≤ i < |A|)⇒ false

which, from Lemma 5.12 is implied by the hybrid wp and the result of the
analysis, i.e., by

upd(A, i, A[0])[i+ 1− 1] = A[0] ∧ 0 ≤ i < |A| .

As stated in Proposition 5.13, if the proof obligations returned by the hybrid
VCgen are valid, and assuming the analysis is verifiable, we have that

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒ upd(A, i, A[0])[i+ 1− 1] = A[0]

and
0 ≤ i ≤ |A| ⇒ i < |A| ⇒ 0 ≤ i < |A|

are provable. Then, it follows that the verification condition returned by the
standard VCgen

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒ Ψ

is provable.
The above results state that hybrid verification methods can be mapped

to standard verification methods. In the context of Proof Carrying Code, one
would like to establish the stronger result that hybrid certificates can be com-
piled into standard certificates. It is in fact possible to prove such a result,
using the framework of [10]. However, the compilation of hybrid certificates
into standard certificates requires using a certifying analyzer, that generates
automatically logical proofs of correctness of the results of the analysis. While
it is possible to avoid hybrid methods altogether, e.g., to rely on standard
Proof Carrying Code architectures, hybrid methods are beneficial both for
the code producer because they reduce significantly the number of proof obli-
gations required to certify code, and for the code consumer, because they
yield certificates that are more compact and more efficient to check. Trans-
lating certificates of proof obligations from a hybrid to a standard VCgen is
interesting to complete a certificate translation process [7] in which original
proof obligations are generated by a hybrid VCgen, but in which the targeted
Trusted Computed Base has no support for hybrid certificates.
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Certified Analysis in Hierarchical Memory
Models

Parallel programming languages are gradually abandoning the traditional
memory model, in which memory is viewed as a flat and uniform structure,
in favor of a hierarchical memory model [2, 28, 36], which considers a tree
of memories with different bandwidth and latency characteristics. Thus, pro-
gramming languages for hierarchical memories are designed to exploit the
memory hierarchy and are used for programs that require intensive compu-
tations on large amounts of data. Languages for hierarchical memories differ
from general-purpose concurrent languages in their intent, and in their realiza-
tion; in particular, such languages are geared towards deterministic programs
and do not include explicit primitives for synchronization (typically programs
will proceed by dividing computations between a number of cooperating sub-
tasks, that operate on disjoints subsets of the memory).

The purpose of this chapter is to show for a specific example that exist-
ing analysis and verification methods can be adapted to hierarchical languages
and are tractable. We focus on the Sequoia programming language [30, 37, 35].
Our methods encompass the usual automated and interactive verification tech-
niques (static analyses and program logics) as well as methods to transform
correctness proofs along program optimizations, which are of interest in the
context of Proof Carrying Code [49]. In summary, the main technical contri-
butions are: i) a generic, sound, compositional proof system to reason about
Sequoia programs (Sect. 6.2.1); ii) a sound program logic derived as an in-
stance of the generic proof system (Sect. 6.2.3); iii) algorithms that transform
proofs of correctness along with program optimizations such as SPMD distri-
bution or grouping of tasks [37] (Sect. 6.3).

6.1 A primer on Sequoia

Sequoia [30, 37, 35] is a language for developing portable and efficient parallel
programs for hierarchical memories. It is based on a small set of constructs
that control essential aspects of programming over a hierarchical memory,
such as communication, memory movement, and computation. Computations
are organized into self-contained units, called tasks. Tasks can be executed
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in parallel at the same level of the memory hierarchy, on a dedicated address
space, and may rely on subtasks for performing computations; in this case,
each subtask can operate on a lower level (and in practice smaller and faster)
fragment of the hierarchical memory (i.e., a subtree).

Hierarchical memory.

A hierarchical memory is a tree of memory modules, i.e., of partial functions
from a set L of locations to a set V of values. In our setting, values are either
integers (Z) or booleans (B). Besides, locations are either scalar variables, or
arrays elements of the form A[i] where A is an array and i is an index. The set
of scalar variables is denoted by NS and the set of array variables is denoted
by NA. The set of variable names is N = NS ∪NA.

Definition 6.1 (States). The setM = L⇀ V of memory modules is defined
as the set of partial functions from locations to values. A memory hierarchy
representing the machine structure is a memory tree defined as:

T ::= 〈µ, T1, . . . , Tk〉 k ≥ 0, µ ∈M .

Intuitively, 〈µ, ~τ〉 ∈ T represents a memory tree with root memory µ and a
possible empty sequence ~τ of child subtrees. The semantics of programs is
given using an operator, +µ :M×M→M, indexed by a memory µ ∈ M,
such that:

(µ1 +µ µ2)x =


µ1x if µ2x = µx, else
µ2x if µ1x = µx

undefined otherwise .

Note that the operator +µ is partial, and the result is undefined if both µ1

and µ2 modify the same variable.
The operator +µ is generalized over memory hierarchies in T and se-

quences ~µ ∈M?, where
∑µ

1≤i≤n µi = (((µ1 +µ µ2) +µ µ3) +µ . . .+µ µn).
To give an intuition on the operator +, consider a memory µ where a

task G is to be executed, and assume that G is divided in parallel subtasks
G0, . . . , Gn that operates on the memory µ. Each subtask Gi executes in its
own local copy of the initial memory µ, returning µi as final memory. After
every subtask Gi has finished execution, the memory state after the execution
of G must reflect the changes of the local memory µi. Then, the resulting
memory after executing G is defined as

∑µ
0≤i≤n µi. En general, subtasks that

execute in parallel are intended to operate on pairwise disjoint fragments of
the memory µ. For this reason, from the definition of the operator +, one can
notice that, upon termination of the parallel subtasks, the result

∑µ
0≤i≤n µi

is well defined.

Syntax.

Sequoia features the usual constructions as well as specific constructs for par-
allel execution, for spawning new subtasks, and for grouping computations.
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Definition 6.2 (Sequoia Programs). The set of programs is defined by the
following grammar:

G ::= Copy↑( ~A, ~B) | Copy↓( ~A, ~B) | Copy( ~A, ~B)
| Kernel〈A = f(B1, . . . , Bn)〉 | Scalar〈a = f(b1, . . . , bn)〉
| Forall i = m : n do G | Group(H) | Execi(G)
| If cond then G1 else G2

where a, b are scalar variables, m,n are scalar constants, A,B are array vari-
ables, cond is a boolean expression, and H is a dependence graph of programs.
We use the operators ‖ and ; as a syntactic representation (respectively par-
allel and sequential composition) of the dependence graph composing a Group
task.

Copy, Kernel, and Scalar statements are consider atomic operations. The con-
structors Forall and Group start the parallel execution of a set subtasks, and
the statement Execi(G) pushes the execution of the subtask G down to the ith

memory subtree. A more complete explanation of the semantics of a Sequoia
program is given below.

Atomic statements, i.e., Copy, Kernel, and Scalar operations, are given a
specific treatment in the proof system; we let atomStmt denote the set of
atomic statements. A program G in the dependence graph H is maximal if G
is not specified by H to depend on any other program in H.

Semantics.

We now turn to the syntax-directed semantics of programs.
The semantics of a program G is defined by a judgment σ`G→ σ′ where

σ, σ′ ∈ H, and H = M× T . Every σ ∈ H is a pair 〈µp, τ〉 where µp is the
parent memory and τ is a child memory hierarchy. Abusing nomenclature,
we refer to elements of H as memories. The meaning of such a judgment is
that the evaluation of G with initial memory σ terminates with final memory
σ′. Note that for a specific architecture, the shape of the memory hierarchy
(that is, the shape of the tree structure) is fixed and does not change with the
execution of a program.

To manipulate elements in H, we define two functions: πi :H→H that
returns the i-th child of a memory, and ⊕i : H × H → H that, given two
memories σ1 and σ2, replaces the i-th child of σ1 with σ2. Formally, they are
defined as πi(µp, 〈µ, ~τ〉) = (µ, τi) and (µp, 〈µ, ~τ〉) ⊕i (µ′, τ ′) = (µp, 〈µ′, ~τ1〉),
where τ1i = τ ′ and τ1j = τj for j 6= i.

Definition 6.3 (Program semantics). The semantics of a program G is
defined by the rules given in Fig. 6.1.

We briefly comment on the semantics—the omitted rules are either the usual
ones (conditionals) or similar to other rules (copy).

The constructs Copy↓( ~A, ~B) and Copy↑( ~A, ~B) are primitives that enable
data to migrate along the tree structure, from the parent memory to the root
of the child memory hierarchy and conversely; and Copy( ~A, ~B) represents an
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intra-memory copy in the root of the child memory hierarchy. Only the rule
for Copy↑ is shown in Fig. 6.1, since the others are similar.

The constructs Kernel〈A = f(B1, . . . , Bn)〉 and Scalar〈a = f(b1, . . . , bn)〉
execute bulk and scalar computations. We implicitly assume in the rules that
array accesses are in-bound. If this condition is not met then there is no
applicable rule, and the program is stuck. The same happens if, in the rules
for Group and Forall, the addition of memories is not defined; that is, the
program gets stuck.

The construct Forall i = m : n do G executes in parallel n−m+1 instances
of G with a different value of i, and merges the result. Progress is made only if
the instances manipulate pairwise distinct parts of the memory, otherwise the
memory after executing the Forall construct is undefined. The rule in Fig. 6.1
considers exclusively the case where m ≤ n, otherwise the memory hierarchy
remains unchanged. The construct Execi(G) spawns a new computation on
the i-th subtree of the current memory.

µp, 〈µ, ~τ〉`Copy↑( ~A, ~B)→ µp[B 7→ µ(A)], 〈µ, ~τ〉

µp, 〈µ, ~τ〉`Kernel〈A = f(B1, . . . , Bn)〉 → µp, 〈µ[A 7→ f(B1, . . . , Bn)], ~τ〉

µp, 〈µ, ~τ〉`Scalar〈a = f(b1, . . . , bn)〉 → µp, 〈µ[a 7→ f(b1, . . . , bn)], ~τ〉

X the subset of maximal elements of H and H ′ = H \X
∀g ∈ X, µ, τ `g → µg, τgPµ,τ

g∈X(µg, τg)`Group(H ′)→ µ′, τ ′

µ, τ `Group(H)→ µ′, τ ′

∀j ∈ [m,n] 6= ∅. µp, 〈µ[i 7→ j], ~τ〉`G→ µjp, 〈µj , ~τ j〉

µp, 〈µ, ~τ〉`Forall i = m : n do G→
Pµp,〈µ,τ〉
m≤j≤n (µjp, 〈µj [i 7→ µ(i)], ~τ j〉)

πi(µp, 〈µ, τ〉)`G→ µ′, τ ′

µp, 〈µ, ~τ〉`Execi(G)→ (µp, 〈µ, τ〉)⊕i (µ′, τ ′)

Fig. 6.1. Sequoia program semantics (excerpt)

Finally, the construct Group(H) executes the set X of maximal elements of
the dependence graph in parallel, and then merges the result before recursively
executing Group(H \X). A rule not shown in Fig. 6.1 states that if H = ∅ the
state is left unchanged.

6.2 Analyzing and reasoning about Sequoia programs

This section presents a proof system for reasoning about Sequoia programs.
We start by generalizing the basics of abstract interpretation to our setting,
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using a sound, compositional proof system. Then, we define a program logic
as an instance of our proof system, and show its soundness.

6.2.1 Program Analysis

We develop our work using a mild generalization of the framework of abstract
interpretation, in which abstract elements form a prelattice.

We also have specific operators over the abstract domain for each type of
program, as shown below.

Definition 6.4. An abstract interpretation framework is defined as a tuple
I = 〈A, T,+A,weak, π,⊕, ρ〉 where:

• A = 〈A,v,w,t,u,>,⊥〉 is a prelattice of abstract states;
• for each s ∈ atomStmt, a relation Ts ⊆ A×A;
• +A : A×A→ A;
• for each i ∈ NS , weaki : A→ A;
• for each i ∈ N, πAi : A→ A and ⊕Ai : A×A→ A;
• ρ : A×A → A, where A is the set of boolean expressions.

Intuitively, for each rule of the semantics, we have a corresponding operator
that reflects the changes of the memory on the abstract domain. For each
atomic statement s, the relation Ts characterizes the effect of the atomic
semantic operation on the abstract domain. A particular instance of T that
we usually consider is when s is a scalar assignment, i.e., Ti:=j , where i ∈ NS
and j ∈ Z. Note that we don’t use the common transfer functions to define
the abstract operators regarding atomic statements. Instead, we use relations,
which encompasses the use of the more typical backward or forward functions.
We can consider backward transfer functions by defining a Ts b as a = fs(b)
for a suitable fs, and forward transfer functions by defining a Ts b as b = gs(a)
for a suitable gs (an example of this is the safety analysis of Appendix 6.2.2).
Also, atomic statements include Kernel and Scalar operations that can be
arbitrarily complex and whose behavior can be better abstracted in a relation.
For instance, in the case of verification, we will require that these atomic
statements be specified with pre and postconditions that define the relation.

The operator +A abstracts the operator + for memories (we omit the
reference to the domain when it is clear from the context).

Given an i ∈ NS and a ∈ A, the function weaki(a) removes any condition
on the scalar variable i from a. It is used when processing a Forall task, with
i being the iteration variable, to show that after execution, the value of the
iteration variable is not relevant. To give more intuition about this operator,
consider, for instance, that A is the lattice of first-order formulae (as is the
case of the verification framework of Sect. 6.2.3), then weaki(a) is defined as
∃i.a. If A has the form NS → D, where D is a lattice, then weaki(a) can be
defined as a t {i→ >}, effectively removing any condition on i.

For each i ∈ N, the operators {πAi }i∈N and {⊕Ai }i∈N abstract the opera-
tions πi and ⊕i for memories (we omit the reference to the domain when it is
clear from the context).
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Finally, the function ρ : A × A → A is a transfer function used in an If
task to update an abstract value depending on the test condition. It can be
simply defined as ρ(a, b) = a, but this definition does not take advantage of
knowing that b is true. If we have an expressive domain we can find a value
that express this; for instance, in the lattice of logic formulae, we can define
ρ(a, b) = a ∧ b.

To formalize the connection between the memory states and the abstract
states, we assume a satisfaction relation |= ⊆ H×A that is an approximation
order, i.e., for all σ ∈ H and a1, a2 ∈ A, if σ |= a1 and a1 v a2 then σ |= a2.
The next definition formalizes the intuition given about the relation between
the operators of an abstract interpretation and the semantics of programs. Ba-
sically, it states that satisfiability is preserved for each operator of the abstract
interpretation. Note that we can also restate these lemmas and definitions in
terms of Galois connections, since we can define a Galois connection from the
relation |= by defining γ : A→ H as γ(a) = {σ ∈ H : σ |= a}.

X the set of maximal elements of H and H ′ = H \X:
∀g ∈ X, 〈a〉`g 〈ag〉 〈

P
g∈X ag〉`Group(H ′) 〈a′〉

〈a〉`Group(H) 〈a′〉
[G]

〈a〉`Group(∅) 〈a〉
[G∅]

s ∈ atomStmt a Ts a
′

〈a〉`s 〈a′〉
[A]

∀j, m ≤ j ≤ n a Ti:=j aj 〈aj〉`G 〈a′j〉
〈a〉`Forall i = m : n do G 〈

Pn
j=m weaki(a

′
j)〉

[F]

〈ρ(a, cond)〉`G1 〈a′〉 〈ρ(a,¬cond)〉`G2 〈a′〉
〈a〉` If cond then G1 else G2 〈a′〉

[I]

b v a 〈a〉`G 〈a′〉 a′ v b′

〈b〉`G 〈b′〉
[SS]

〈πi(a)〉`G 〈a′〉
〈a〉`Execi(G) 〈a⊕i a′〉

[E]

Fig. 6.2. Program analysis rules

Definition 6.5. The abstract interpretation I = 〈A, T,+,weak, π,⊕, ρ〉 is
consistent if the following holds for every σ, σ′ ∈ H, a, a1, a2 ∈ A, µ, µp ∈M,
τ ∈ T and cond ∈ A:

• for every s ∈ atomStmt, if σ`s→ σ′, σ |= a and a Ts a′, then σ′ |= a′;
• if σ1 |= a1 and σ2 |= a2 then σ1 +σ σ2 |= a1 + a2;
• if µp, 〈µ, τ〉 |= a, then for all k ∈ Z µp, 〈µ[i 7→ k], τ〉 |= weaki(a);
• if σ |= a then πi(σ) |= πi(a);
• if σ |= a and σ′ |= a′, then σ ⊕i σ′ |= a⊕i a′;
• if σ |= a and σ |=A cond, then σ |= ρ(a, cond). 1

1 Given a memory σ and a boolean condition cond , the judgment σ |=A cond states
that the condition is valid in σ. The definition is standard so we omit it.



6.2. Analyzing and reasoning about Sequoia programs 133

Given an abstract interpretation I, a judgment is a tuple 〈a〉 `I G 〈a′〉,
where G is a program and a, a′ ∈ A. We will omit the reference to I when it
is clear from the context. A judgment is valid if it is the root of a derivation
tree built using the rules in Fig. 6.2. The interpretation of a valid judgment
〈a〉 `G 〈a′〉 is that executing G in a memory that satisfies a, we end up in a
memory satisfying a′. The following lemma claims that this is case, provided
I is consistent.

Lemma 6.6 (Analysis Soundness). Let G be a Sequoia program and as-
sume that I = 〈A, T,+,weak, π,⊕, ρ〉 is a consistent abstract interpretation.
For every a, a′ ∈ A and σ, σ′ ∈ H, if the judgment 〈a〉 `G 〈a′〉 is valid and
σ`G→ σ′ and σ |= a then σ′ |= a′.

6.2.2 Program Safety

In this section we formalize a notion of program safety, i.e., a notion of parallel
subtasks independence that ensures that written portions of the memory do
not overlap. Then, when analyzing a safe program, one is discharged from
considering every interleaving order in which its subtasks may be executed.
The compiler for Sequoia described in [37] assumes that programs are safe,
but does not check it. For our purposes of verification, checking this property
is essential.

We assume every program G is provided with annotations R and W spec-
ifying respectively the regions of the memory that it may read and modify.
The domains of the specification are the same for both R and W , indicating
the set of scalar variables or array intervals that may be read or written:

R,W ∈ (NA+ → Interval)× P(NS+) ;

the domain Interval being defined as

Interval = {(a, b) : a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}⊥ .

Given a region R, and memories σ, σ′ ∈ H, we write σ ≈R σ′ if σ and σ′

coincide in R. Given two memories σ, σ′ ∈ H, we denote Modified(σ, σ′) the
set of extended locations that have different values in σ and σ′. We require
the program annotations to be sound with respect to the program semantics.
Let R, W be an annotation for program G. We say that R, W is sound with
respect to the semantics of G if:

• for every σ1, σ2 ∈ H such that σ1 ≈R σ2, if σ1 ` G→ σ′1 and σ2 ` G→ σ′2,
then σ′1 ≈W σ′2.
• for every σ, σ′ ∈ H, if σ ` G→ σ′ then Modified(σ, σ′) ⊆W .

From the soundness of programs annotations it follows that the order of
parallel program execution is irrelevant when tasks modify disjoint regions of
the memory.

Lemma 6.7. Assume programs G1 and G2, annotated respectively with the
regions R1,W1 and R2,W2 s.t. W1 ∩ (R2 ∪W2) = ∅ and W2 ∩ (R1 ∪W1) = ∅.
If σ, σ1, σ2, σ12, σ21 ∈ H are memories s.t.
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σ`G1 → σ1 σ1`G2 → σ12

σ`G2 → σ2 σ2`G1 → σ21,

then σ12 = σ21.

Proof. Using soundness of IR and IW .

Using the region specification described above, we can determine whether
a program is safe, using the safety judgment, `Safe G, defined by the rules
shown in Fig. 6.3. The interesting rules are the rules for Group and Forall.
We check that subtasks that can be executed in parallel have non-overlapping
regions. More specifically, the writing region of one task cannot overlap with
neither the reading nor the writing region of another independent task. This
ensures that the final memory does not depend on the order in which tasks
are executed. In the case of Forall, there is an overlap between the variables
written by each subtask, namely the iteration variable (since this variable is
written at the beginning of the execution). We allow this overlap, because we
consider it as a local variable, that is not to be used after executing the Forall,
since its value is not defined. Hence, the final memory does not depend on the
order of execution of parallel subtasks.

G ∈ atomStmt

`Safe G

πi(s) `Safe G

s `Safe Execi(G)

s `Safe G1 s `Safe G2

s `Safe If b then G1 else G2

∀G,G′ ∈ H with G and G′ unrelated in H R,W sound annotation for G
R′,W ′ sound annotation for G′ (R ∪W ) ∩W ′ = ∅ (R′ ∪W ′) ∩W = ∅

`Safe Group(H)

∀k, Rk,Wk sound annotation for G ∀k, k′, (Rk ∪Wk) ∩Wk′ = {j}
`Safe Forall j = s : e do G

Fig. 6.3. Program Safety

We conclude this section with a brief discussion of the difference between
our semantics (defined in Fig. 6.1) and the original semantics for Sequoia
defined in [37]. The difference lies in the rule for Group(H): whereas we re-
quire that X is the complete set of maximal elements, and is thus uniquely
determined from the program syntax, the original semantics does not require
X to be the complete set of maximal elements, but only a subset of it. This
means that, in the original semantics, the order of execution of parallel sub-
tasks is not deterministic, and therefore, our semantics is a restriction of the
original one. However, Proposition 6.8 justifies the change we made to the
Sequoia semantics, since they are equivalent in the sense that our semantics
can simulate any run of the unrestricted semantics—provided the program
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is safe, i.e., parallel subtasks are independent, as intended in Sequoia2. The
following proposition formalizes the relation between the original semantics
and the semantics defined in Fig. 6.1. To differentiate the semantics, we use
→O to denote the original semantics relation.

Proposition 6.8. Assume a program G s.t. `Safe G, and a memory hierarchy
σ ∈ H. If σ ` G→ σ1 and σ ` G→O σ2, then σ1 = σ2.

Proof (Proposition 6.8). We want to prove that the order of execution of inde-
pendent subtasks does not matter for safe programs. While the original seman-
tics seems to be non-deterministic because of the choice we can make in the
Group rule, for safe programs, this choice does not matter as the final result
will always be the same.

We consider yet another rule for Group, where we execute all subtasks in
sequential order (we use the symbol→1 to differentiate from other semantics):

{g1, g2, . . . , gn} = H σ = σ1

∀i ∈ {1, . . . , n}, σi`gi →1 σi+1

σ`Group(H)→1 σn+1

The condition in the previous rule is that the order g1, . . . , gn respects the
dependencies of the graph H. Note that this order is not unique.

Given a safe program G s.t. σ`G→ σ′ we can show by induction on the
semantics that σ`G→1 σ′. In fact, we can show, using the previous lemma,
that the order in which we execute the subtasks of a Group does not affect the
final memory.

Using a similar reasoning, we can show that if σ ` G →O σ′′, then σ `
G→1 σ′′. Combining both results, we infer that σ′ = σ′′.

6.2.3 Program Verification

We now define a verification framework I = 〈C, T,+C ,weak, π,⊕, ρ〉 as an
instance of the abstract interpretation, where C is the prelattice of first-order
formulae. Before defining I, we need some preliminary definitions.

The extended set of scalar names, NS+, is defined as

NS+ = NS ∪ {x↑ : x ∈ NS} ∪ {x↓
i1 ...↓ik : x ∈ NS ∧ k ∈ N ∧ i1, . . . , ik ∈ N} .

We define, in a similar way, the sets NA+, N+, and L+ of extended locations.
These sets allow us to refer to variables at all levels of a memory hierarchy,
as is shown by the following definition. Given σ ∈ H, with σ = µp, 〈µ, τ〉, and
l ∈ L+, we define σ(l) with the following rules:

σ(l) =


µp(x) if l = x↑

µ(x) if l = x

(µ, τi1)(x↓
i2 ...↓ik ) if l = x↓

i1↓i2 ...↓ik .

2 This notion of safety is similar to the notion of strict and-parallelism of logic
programming [34].
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We also define the functions ↑i, ↓i : NS+ → NS+ with the following rules:

↓i(x) = x↓
i

↓i(x↓j1 ...↓jn ) = x↓
i↓j1 ...↓jn

↓i(x↑) = x .

↑i(x) = x↑

↑i(x↓i↓j1 ...↓jk ) = x↓
j1 ...↓jk

Note that ↓i is a total function, while ↑i is undefined in x↑ and x↓
j↓j1 ...↓jk if

j 6= i. These functions are defined likewise for NA+, N+, and L+.
Given a formula φ, we obtain ↓iφ by substituting every free variable v ∈

N+ of φ with ↓iv. In the same way, the formula ↑iφ is obtained by substituting
every free variable v ∈ N+ of φ by ↑iv; if ↑iv is not defined, we substitute
v by a fresh variable, and quantify existentially over all the introduced fresh
variables.

Definition of +.

To define the operator + we require that each subprogram comes annotated
with the sets SW and AW specifying, respectively, the scalar variables and the
array ranges that it may modify. Given two programs G1 and G2 annotated,
respectively, with the modifiable regions SW1, AW1 and SW2, AW2, and the
postconditions Q1 and Q2, we define Q1 + Q2 as Q′1 ∧ Q′2, where Q′1 is the
result of existentially quantifying in Q1 the variables that may be modified
by G2. More precisely, Q′1 = ∃X ′. Q1[X

′
/X ]∧

∧
A[m,n]∈AW1

A′[m,n] = A[m,n],
X representing the set of scalar and array variables in SW2 ∪AW2 and X ′ a
set of fresh variables (and similarly with Q2).

To explain the intuition behind this definition, assume two tasks G1 and
G2 that execute in parallel with postconditions Q1 and Q2. After verifying
that each Gi satisfies the postcondition Qi, one may be tempted to conclude
that after executing both tasks, the resulting state satisfies Q1 ∧ Q2. The
reason for which we do not define Q1 + Q2 simply as Q1 ∧ Q2 is that while
Q1 may be true after executing G1, Q1 may state conditions over variables
that are not modified by G1 but are modified by G2. Then, since from the
definition of the operator + in the semantic domain the value of a variable
not modified by G1 is overwritten with a new value if modified by G2, Q1

may be false in the final memory state after executing G1 and G2 in parallel.
For the definition of Q1 +Q2 to be sound we require the annotations SW1,

AW1 and SW2, AW2 to be correct. For this, we can use a static analysis
or generate additional proof obligations to validate the program annotations.
However, for space constraints and since such analysis can be applied earlier
and independently of the verification framework, we do not consider this issue.

We generalize the operator + for a set of postconditions {φi}i∈I and a set
of specifications of modified variables {SWi}i∈I and {AWi}i∈I , by defining∑
i∈I φi as

∧
i∈I φ

′
i where φ′i = ∃X ′. φi[X

′
/X ]∧

∧
A[m,n]∈AWi

A[m,n] = A′[m,n],
s.t. X represents every scalar or array variable in {SWj}j 6=i∈I or {AWj}j 6=i∈I ,
and X ′ a set of fresh variables. If an assertion φi refers only to scalar and array
variables that are not declared as modifiable by other member j 6= i, we have
φ′i ⇒ φi.
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Definition of the weakest precondition.

The weakest precondition for a copy operation Copy↑(A[m,n], B[k]) to the
parent memory is defined w.r.t. postcondition Q as Q[B

↑⊕[k,k+n−m] 7→A[m]/B↑ ].
Given two arrays A and B and scalars m, n and k, we write B⊕ [m,n] 7→ A[k]
to mean the array obtained from B by replacing the range [m,n] with values
from A[k, k+ n−m]. The weakest precondition for other types of copy (from
the parent memory, and intra-memory) are treated similarly.

The case of Kernel and Scalar are similar, so we will only consider the
former. For each function appearing in a Kernel or Scalar statement, we assume
that we have a pre and a postcondition. To illustrate, let us consider a function
f with one parameter of array-type, and also returning and array. The pre and
postcondition of f are first order formulae. Also, the precondition can refer
to the input variable (with arg), to the range of indices read of the argument
(with argstart and argend), and to the range of indices written of the result
array (with resstart and resend). The postcondition can also refer to the result
variable (with res).

Lets assume that f doubles each value of the input array, so the pre and
postcondition could be written as follows:

Pre = (resend − resstart = argend − argstart)
Post = ∀x, resstart ≤ x ≤ resend ⇒ res[x] = 2 · arg[x− resstart + argstart]

The precondition states that the input and output array must have the same
length, and the postcondition states that all values of the result array are the
double of the values of the argument, for the corresponding ranges.

The weakest precondition for a function f with precondition ϕ and post-
condition ψ is the following:

{P}`Kernel〈A[k, l] = f(B[m,n])〉 {Q} ,

where

P = P ′ ∧ ∀res, Q′ ⇒ Q[res/A]

P ′ = ϕ[B/arg][m/argstart
][n/argend

][k/resstart ][
l/resend

]

Q′ = ψ[B/arg][m/argstart
][n/argend

][k/resstart ][
l/resend

]

Definition of other components of I.

They are defined as follows:

• for each s ∈ atomStmt, the relation Ts is defined from the weakest precon-
dition transformer wps, as φ Ts φ′ if φ⇒ wps(φ′) for every logic formulae
φ and φ′. For Kernel and Scalar statements, we assume that we have a pre
and postcondition specifying their behavior;
• weaki(φ) = ∃i, φ, where i ∈ NS+;
• πi(φ) = ↑iφ, where i ∈ N;
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• φ1⊕iφ2 = φ1
i∧↓iφ2, where i ∈ N, and φ1

i
is obtained from φ1 by replacing

every variable of the form x or x↓
i↓j1 ...↓jk with a fresh variable and then

quantifying existentially all the introduced fresh variables;
• ρ(φ, cond) = φ ∧ cond .

The satisfaction relation σ |= φ is defined as the validity of JφKσ, the
interpretation of the formula φ in the memory state σ. To appropriately adapt
a standard semantics J.K to a hierarchy of memories, it suffices to extend
the interpretation for the extended set of variables N+, as JnKσ = σ(n) for
n ∈ N+.

In the rest of the section, we denote as {P}`G {Q} the judgments in the
domain of logical formulae, and P and Q are said to be pre and postconditions
of G respectively. If the judgment {P}`G {Q} is valid, and the program starts
in a memory σ that satisfies P and finishes in a memory σ′, then σ′ satisfies
Q. The proposition below formalizes this result.

Proposition 6.9 (Verification Soundness). Assume that {P}`G {Q} is
a valid judgment and that σ ` G → σ′, where G is a program, P , Q are
assertions, and σ, σ′ ∈ H. If σ |= P then σ′ |= Q.

6.2.4 Example Program

We illustrate the verification with an example. Consider a program, GAdd,
that add two input arrays (A and B) producing on output array C. The code
of the program is given by the following definitions:

GAdd := Exec0(Forall i = 0 : n− 1 do Add)
Add := Group((CopyAX ‖ CopyBY); AddP; CopyZC)
CopyAX := Copy↓(A[i.S, (i+ 1)S], X[i.S, (i+ 1)S])
CopyBY := Copy↓(B[i.S, (i+ 1)S], Y [i.S, (i+ 1)S])
AddP := Kernel〈Z[i.S, (i+ 1)S] = VectAdd(X[i.S, (i+ 1)S], Y [i.S, (i+ 1)S])〉
CopyZC := Copy↑(Z[i.S, (i+ 1)S], C[i.S, (i+ 1)S])

Assume that the arrays have size n.S, and note that the program is divided
in n parallel subtasks, each operating on different array fragments, of size S.
The best value for S may depend on the underlying architecture.

It is easy to see that this program is safe, since each subtask writes on a
different fragment of the arrays.

We show, using the verification framework, how to derive the judgment
{true}`GAdd {Post} , where Post = ∀k, 0 ≤ k < n.S ⇒ C[k] = A[k] + B[k].
Using the rules [A], [G] and [SS] we derive, for each j ∈ [0 . . . n−1], the
following:

{true}`Add {Qi} , (6.1)

where Qi = ∀k, i.S ≤ k < (i + 1)S ⇒ C↑[k] = A↑[k] + B↑[k]. Applying the
rule [F] on (6.1) we obtain

{true}`Forall i = 0 : n− 1 do Add
{∑

0≤j<nQj

}
. (6.2)
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It is not difficult to see that
∑

0≤j<nQj ⇒
∧

0≤j<nQj , since each Qj does
not refer to variables that are modified by Add, for i 6= j. Applying the
subsumption rule to (6.2), we obtain

{true}`Forall i = 0 : n− 1 do Add {Q} (6.3)

where Q = ∀k, 0 ≤ k < n.S ⇒ C↑[k] = A↑[k] + B↑[k]. Finally, applying rule
[E] to (6.3), we obtain the desired result, since Post = ↓0Q.

6.3 Certificate translation

In this section, we focus on the interplay between program optimization and
program verification. To maximize the performance of applications, the Se-
quoia compiler performs program optimizations such as code hoisting, instruc-
tion scheduling, and SPMD distribution. We show, for common optimizations
described in [37], that program optimizations transform provably correct pro-
grams into provably correct programs. More precisely, we provide an algo-
rithm to transform a derivation for the original program into a derivation
for the transformed program. The problem of transforming provably correct
programs into provably correct programs is motivated by research in Proof
Carrying Code (PCC) [50, 49], and in particular by our earlier work on cer-
tificate translation [7, 10].

We start by extending the analysis setting described in previous sections
with a notion of certificates, to make it suitable for a PCC architecture.
Then, we describe certificate translation in the presence of three optimiza-
tions: SPMD distribution, Exec Grouping, and Copy grouping.

Certified setting.

In a PCC setting, a program is distributed with a checkable certificate that the
code complies with the specified policy. To extend the verification framework
defined in Section 6.2.3 with a certificate infrastructure, we capture the notion
of checkable proof with an abstract proof algebra.

Definition 6.10 (Certificate infrastructure). A certificate infrastructure
consists on a proof algebra C that assigns to every φ ∈ C a set of certificates
C(` φ). We assume that C is sound, i.e., for every φ ∈ C, if φ is not valid,
then C(φ) = ∅. In the sequel, we write c :` φ instead of c ∈ C(φ).

As in previous chapters, we do not commit to an specific representation of
certificates. However, to give an intuition, we can define them, for example,
in terms of the Curry-Howard isomorphism by considering C(φ) = {e ∈ E |
〈〉 ` e : φ}, where E is the set of expressions and ` e : φ a typing judgment in
some λ-calculus.

The operations of the proof algebra are standard, to the exception of the
operator subst that allows to substitute selected instances of equals by equals,
and of the operator ring, which establishes ring equalities that will be used
to justify the optimizations.
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introtrue : C(Γ ` true)
axiom : C(Γ ;A;∆ ` A)
ring : C(Γ ` n1 = n2) if n1 = n2 is a ring equality

intro∧ : C(Γ ` A)→ C(Γ ` B)→ C(Γ ` A ∧B)

eliml
∧ : C(Γ ` A ∧B)→ C(Γ ` A)

elimr
∧ : C(Γ ` A ∧B)→ C(Γ ` B)

intro⇒ : C(Γ ;A ` B)→ C(Γ ` A⇒ B)
elim⇒ : C(Γ ` A⇒ B)→ C(Γ ` A)→ C(Γ ` B)

elim= : C(Γ ` e1 = e2)→ C(Γ ` A[e1/r])→ C(Γ ` A[e2/r])

subst : C(Γ ` A)→ C(Γ [e/r] ` A[e/r])

weaku : C(Γ ` A)→ C(Γ ;∆ ` A)

intro∀ : C(Γ ` A)→ C(Γ ` ∀r.A) if r is not in Γ

elim∀ : C(Γ ` ∀r.A)→ C(Γ ` A)

Fig. 6.4. Proof Algebra (excerpt)

In addition, we refine the notion of certified analysis judgment, to enable
code consumers to check whether a judgment is a valid judgment. To this
end, the rule definitions are extended to incorporate certificates attesting the
validity of the required (a priori undecidable) logical formulae.

Definition 6.11 (Certified Verification Judgment). We say that the ver-
ification judgment {Φ}`G {Ψ} is certified if it is the root of a derivation tree,
built from the rules in Fig. 6.2, such that every application of the subsumption
rule

φ⇒ φ′ {φ′}`G {ψ′} ψ′ ⇒ ψ

{φ}`G {ψ}
[SS]

is accompanied with certificates c and c′ s.t. c :` φ ⇒ φ′ and c′ :` ψ′ ⇒ ψ.
Furthermore, every application of the relation φ Ts φ

′ is accompanied with a
certificate c :` φ⇒ wps(φ′).

6.4 General framework

In this section, we consider the translation of certified verification judgments
when a program G′ is derived from the original program G by a structure
preserving transformation. To this end, we require that the analysis that mo-
tivates the transformation ensures that the semantics is preserved. The latter
condition is formulated in terms of the underlying verification framework as
explained later in this section. This category of transformations covers several
optimizations that improve the efficiency of an atomic sub-program exploit-
ing conditions ensured by previously executed statements, including standard
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optimizations such as constant propagation or common sub-expression elimi-
nation (which are not treated here, but refer to [7, 10]). We will illustrate the
transformation with copy propagation.

6.4.1 Certifying analyzers

Certificate translation along a program transformation may require that the
analysis that justifies the transformation is certified. That is, that the re-
sult of the analysis can be specified in the domain of a logical formulae, and
that the validity of this specification can be ensured by the existence of an
automatically generated certificate.

In this section, we provide sufficient conditions to augment analyzers to au-
tomatically generate certificates for the result of the analysis. In the following,
these extended analyzers are called certifying analyzers.

Consider an abstract interpretation I = 〈A, f, T,+,weak, π,⊕, ρ〉 repre-
senting a static analysis, performed before the program transformation, and
assume that 〈a〉`G 〈a′〉 is a valid analysis judgment. To formalize the repre-
sentation of elements of the abstract domain A, we assume that A is related
to the domain of logic formulae by a concretization function γ : A→ C. That
is, a function that for any a ∈ A, returns an interpretation of a as a logic
formula.

We provide sufficient conditions to generate a certified verification judg-
ment {γ(a)}`G {γ(a′)} from the valid analysis judgment 〈a〉`G 〈a′〉.

Definition 6.12. An abstract interpretation I = 〈A, f, T,+,weak, π,⊕, ρ〉 is
consistent with the verification framework if we have

• for every a1, a2 ∈ A s.t. a1 v a2, a certificate monotγ : γ(a1)⇒ γ(a2)
• for every a1, a2 ∈ D, s ∈ atomStmt s.t. a1 Ts a2, a certificate conss(a) :
γ(a1)⇒ wps(γ(a2));
• for every a, a′ ∈ A, the certificates distrib+,γ :` γ(a) + γ(a′) ⇒ γ(a + a′)

and distribu,γ :` γ(a u a′)⇒ γ(a) ∧ γ(a′);
• for every a ∈ A, i ∈ NS , cweak :` weaki(γ(a))⇒ γ(weaki(a));
• for every i ∈ Z a, a′ ∈ A, the certificates cπi :` πi(γ(a)) ⇒ γ(πi(a)) and

c⊕i :` γ(a)⊕i γ(a′)⇒ γ(a⊕i a′); and
• for every a ∈ A and b ∈ A, a certificate cρ : γ(a) ∧ b⇒ γ(ρ(a, b)).

The following result states that a valid analysis judgment that motivates
a program transformation is certifiable, as long as the analysis I is consistent
with the verification framework.

Lemma 6.13. Let 〈a〉`G 〈a′〉 be a valid analysis judgment. Then, provided I
is consistent with the verification framework, {γ(a)}`G {γ(a′)} is a certified
verification judgment

Proof. The proof is by induction on the derivation of 〈a〉`G 〈a′〉. We consider
only some representative cases.
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• Base case. Last rule applied is [A]. Then a Ts a
′, with s = G. By consis-

tency of the analysis I, we have a certificate cons :` γ(a) ⇒ wps(γ(a′))
Then we have a certified application of the rule [A] in the domain of the
verification environment, to get the judgment {γ(a)}`s {γ(a′)}.
• Last rule applied is [SS]. Then we have a sub-derivation tree for the judg-

ment 〈b〉 ` G 〈b′〉 and a v b and b′ v a′. We know, by I.H., that the
judgment {γ(b)} ` G {γ(b′)} is certified. By monotonicity of γ we have
certificates for γ(a) ⇒ γ(b) and γ(b′) ⇒ γ(a′) and then, by subsumption,
a certified judgment {γ(a)}`G {γ(a′)}
• Last rule applied is [F]. Then G has the form Forall i = m : n do G′, a is

such that aTi:=jaj for every j ∈ [m,n] and a′ is equal to
∑n
j=m weaki(a′j),

where for every j ∈ [m,n] there is a sub-derivation tree for the judgment
〈aj〉 `G′ 〈a′j〉. By I.H., we know the judgments {γ(aj)} `G′

{
γ(a′j)

}
are

certified. From the existence of cons we have a certificate for γ(a) ⇒
wpi:=j(γ(aj)), to certify the relation γ(a)Ti=jγ(aj) in the domain of the
verification environment, for every j ∈ [m,n].
To apply a certified subsumption rule, it remains to show that we have a
certificate for

∑n
j=m weaki(γ(a′j)) ⇒ γ(

∑n
j=m weaki(a′j)). The existence

of this certificate follows from the application of distrib+,γ and cweak.
• Last rule applied is [E]. We know that G is of the form Execi(G′), a′

is equal to a ⊕i a′′ for some a′′ ∈ A, and that there sub-derivation
tree for the judgment 〈πi(a)〉 ` G′ 〈a′′〉. Then, by I.H., the judgment
〈γ(πi(a))〉 ` G′ 〈γ(a′′)〉 is certified. By application of cπi , we get a cer-
tificate for πi(γ(a)) ⇒ γ(πi(a)) and then, by subsumption, a certified
judgment 〈πi(γ(a))〉 `G′ 〈γ(a′′)〉. Applying the rule [E], we get 〈γ(a)〉 `
G′ 〈γ(a) ⊕i γ(a′′)〉. Finally, from c⊕i and application of the subsumption
rule [CSS] we have the certified judgment 〈γ(a)〉`G′ 〈γ(a⊕i a′′)〉.

The existence of certifying analyzers is central to certificate translation,
since given an original verification judgment, we often need to refine its deriva-
tion by strengthening the annotations with the result of the analysis.

6.4.2 Certificate translation.

Let G′ be a program derived from G by a structure preserving transformation,
i.e., G and G′ have the same structure but differ on the leaves of the abstract
syntax tree.

Definition 6.14 (Justified transformation). Let s and s′ be atomic state-
ments and R a logic formula. The substitution of s by s′ is justified by R if for
every assertion φ, we have a certificate justif :` R ∧ wps(φ) ⇒ wps′(φ). We
say that a derivation tree for the judgment {P}`G {Q} justifies a structure
preserving transformation from G to G′, if the substitution of every atomic
subprogram g in G by g′ is justified by a precondition R s.t. {R} ` g {R′} is
the corresponding derivation sub-tree of {P}`G {Q}.

The following result, in combination with Lemma 6.13, states that certifi-
cate translation from G to G′ is feasible if G′ is derived from G by a structure
preserving transformation that is justified by a valid analysis judgment.
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Lemma 6.15. Let G′ by a program derived from G by a structure preserving
transformation. Assume that the transformation is justified by the certified
judgment {R} ` G {R′}, and consider an original certified judgment {P} `
G {Q}. Then, we can build a derivation tree for the judgment {P ∧R} `
G′ {Q ∧R′} for the transformed program.

In the following paragraphs we consider a common Sequoia optimiza-
tion [37] as an instance of the general characterization above.

6.4.3 Copy propagation for arrays

In sequential programming languages, copy propagation is an optimization
that replaces the occurrence of a variable by another variable if they are
known to contain the same value. In that case, the transformation is intended
to reduce the live range of the replaced variable, cleaning the effect of other
optimizations and enabling further transformations.

Since array operations are frequent in programs targeting data intensive
applications, it is of interest to extend traditional copy propagation to consider
copy operations between arrays. In this case, removing copy operations is
motivated mainly by the reduction of the bulk data transfer involved in each
copy operation.

Naturally, this transformation requires a richer analysis domain than that
of classical copy propagation, since we need to relate not simply arrays but
array regions.

Consider an abstract interpretation I = 〈A, ↓,+,weak, π,⊕, ρ〉 with do-
main A = P(NA × Interval ×NA × Interval), where

Interval = {(a, b) : a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}⊥,

is the lattice for interval analysis. An element (A, [m,n], A′, [m′, n′]) in NA ×
Interval ×NA × Interval , denoted A[m,n] = A′[m′, n′] for readability, is sat-
isfied by a memory hierarchy σ ∈ H if the intervals [m,n] and [m′, n′] are
equally sized and the arrays A and A′ coincide on that ranges. An element a
of the abstract domain A is satisfied by a memory hierarchy σ ∈ H if for all
A[m,n] ∈ S, σ satisfies A[m,n].

Definition 6.16. Let a be an abstract element such that A[m,n] = A′[m′, n′] ∈
a. Consider an atomic statement s that reads an array range A[x, y] such that
[x, y] ⊆ [m,n]. Then, the judgment 〈a〉 ` s 〈a′〉 induces a transformation of s
into s′ if s′ is the result of substituting every access of A[i] in s by A′[i−m+m′].

For instance, let s be the statement Kernel〈Z = V ectAdd(B[0, k], C[0, k])〉
and a ∈ A such that B[0, k] = A[m,m + k] ∈ a. Then, for any a′ ∈ A the
judgment 〈a〉 ` s 〈a′〉 induces the substitution of the atomic statement s by
the statement Kernel〈Z = V ectAdd(A[m,m+ k], C[0, k])〉.

Consider the certified judgment {Φ}`G {Ψ}. A first requirement to trans-
late the judgment along array copy propagation is a certificate of the analysis
judgment 〈a〉`G 〈a′〉. To this end, we interpret the result of the analysis with
a concretization function γ : A→ C defined as
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γ(A[m,n] = A′[m′, n′]) .= (n−m = n′−m′)∧ (∀m≤i≤n. A[i] = A′[i+m′−m])

Lemma 6.17. Consider a program G and a valid analysis judgment 〈a〉 `
G 〈a′〉. Assume that the abstract interpretation I is consistent with the ver-
ification framework, and that the judgment {γ(a)} ` G {γ(a′)} justifies a
copy propagation transformation from G to a program G′. Then, for every
certified judgment {Φ} ` G {Ψ} we have a certified judgment {γ(a) ∧ Φ} `
G′ {γ(a′) ∧ Ψ}.

Consider again the substitution of Kernel〈Z = V ectAdd(B[0, k], C[0, k]〉 by
the statement Kernel〈Z = V ectAdd(A[m,m+k], C[0, k]〉 induced by 〈a〉`s 〈a′〉
such that B[0, k] = A[m,m + k] ∈ a. The interpretation γ(a) is such that
γ(a)⇒ γ(B[0, k] = A[m,m+k]). Hence, to show that this atomic substitution
is justified by the analysis consists on requiring the validity of the following
proposition:

γ(B[0, k] = A[m,m+ k]) ∧ φ[B[0,k],C[0,k]/Z ]⇒ φ[A[m,m+k],C[0,k]/Z ]

6.5 Sequoia Specific Optimizations

A common characteristic of the optimizations considered in the following sec-
tions is that they are defined as a substitution of a subprogram g by another
subprogram g′ in a bigger program G. We denote with G[•] the fact that G is
a program with a hole. Given a program g, we denote with G[g] the program
obtained by replacing the hole • with g. Then, optimizations are character-
ized by subprograms g and g′, defining a transformation from a program G[g]
into a program G[g′]. The following general lemma complements the following
results on certificate translators explained in the rest of this section.

Lemma 6.18. Let G[•] be a program with a hole, g, g′ programs and Φ, Ψ
logic formulae. If the judgment {Φ}`G[g] {Ψ} is certified, then the derivation
of the latter contains a certificate for the judgment {φ} ` g {ψ}, for some φ
and ψ. If there is a certificate for the judgment {φ} ` g′ {ψ}, then we can
construct a certificate for the judgment {Φ}`G[g′] {Ψ}.

6.5.1 SPMD Distribution

Consider a program that executes multiple times a single piece of code repre-
sented by a subprogram g. If every execution of g involves and independent
portion of data, the tasks can be performed in any sequential order or in par-
allel. SPMD distribution is a common parallelization technique that exploits
this condition distributing the tasks among the available processing units.

Programs of the form Forall j = 0 : k.n− 1 do g are candidates for SPMD
distribution, since k.n instances of the single subprogram g are executed in
parallel along the range of the iteration variable j. Furthermore, for each
value of the iteration value j, the subprogram g operates over an independent
partition of the data, as assumed for every program subject to verification.
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G′ is transformed from G by applying SPMD distribution if G′ is the
result of substituting every subprogram Execi(Forall j = 0 : k.n − 1 do g)
by the equivalent subprogram Group(G1 || . . . || Gk), with Gi defined as the
program Execi(Forall j = i.n : (i+ 1)n− 1 do g) for all i ∈ [0, k − 1].

Normally, a real compiler will also consider whether it is convenient to
span the computation of g over other child nodes. However, since orthogonal
to the transformation of the verification judgment, we do not consider this
issue.

Lemma 6.18 in combination with the following lemma that states that the
local substitutions defining SPMD distribution preserve certified judgments,
implies the feasibility of certificate translation.

Lemma 6.19. Given a certified judgment {Φ} ` Execi(Forall j = 0 : k.n −
1 do g) {Ψ} it is possible to generate a certified judgment {Φ} `Group(G1 ||
. . . || Gk) {Ψ}, where Gi is defined as Execi(Forall j = i.n : (i+ 1)n− 1 do g)
for any i ∈ [0, k − 1].

Proof. To prove this lemma, we show that a certificate of the judgment
{P}`G {Q} corresponding to a subprogram of the form G = Execi(Forall j =
0 : k.n − 1 do g) can be transformed into a certificate of the judgment
{P}`G′ {Q}, where G′ = Group(G1 || . . . || Gk), with Gi = Execi(Forall j =
i.n : (i + 1)n − 1 do G) for each i ∈ [0, k − 1]. For simplicity, we refrain
from considering the application of the subsumption rule [CSS]. Then, by
application of rule [E], Q is equal to ↓i(Q′) for some Q′, and the judg-
ment

{
↑i(P )

}
` Forall j = 0 : k.n − 1 do G {Q′} is certified. We know

then that, by application of the rule [F], Q′ =
∑k.n−1
j′=0 weakj(Qj′), that

↑i(P ) =
∧k.n−1
j′=0 wpj:=j′(Pj′) and that for each j′ ∈ [0, k.n − 1] we have a

certified judgment {Pj′} ` G {Qj′}. For each i ∈ [0, k − 1] we construct a
derivation for the judgment

{
↑i(P )

}
`Forall j = i.n : (i+ 1)n− 1 do G {Q′i}

where Q′i =
∑(i+1)n−1
j′=i.n weakj(Qj′), by application of the rule [F] and [CSS]

with a certificate of ↑i(P )⇒
∧(i+1)n−1
j′=i.n wpj:=j′(Pj′). By application of rule [E]

we have a derivation for {P}`Execi(Forall j = i.n : (i+1)n−1 do G)
{
↓i(Q′i)

}
.

Finally, by a simple application of the rule [G] we get the certified judgment
{P} ` Group(G1 || . . . || Gk)

{∑k
i=1(↓i(Q′i))

}
. To complete the proof no-

tice that by definition of
∑

and ↓i,
∑k−1
i=0 (↓i(

∑(i+1)n−1
j′=i.n weakj(Qj′))) implies

↓i(
∑k.n−1
j′=0 weakj(Qj′)).

Example:

Consider again the program GAdd of Section 6.2.4. Assume that at the level
of the memory hierarchy at which GAdd is executed there are k available child
processing units, and that n = k.m for some m. Then, we are interested in
distributing the independent computations along the iteration range [0, n−1]
splitting them in k subsets of independent computations in ranges of length
m. We obtain then, after applying SPMD distribution to program GAdd, the
following transformed program:
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G′Add := Exec0(Forall i = 0 : m− 1 do Add)
‖ Exec1(Forall i = m : 2m− 1 do Add)
. . .

‖ Execk−1(Forall i = (k − 1)m : k.m− 1 do Add)

Applying the result stated above, we can transform the derivation of the
judgment {true} ` GAdd {Post} into a derivation of {true} ` G′Add {Post},
proving that the verification judgment is preserved. Recall that we can derive
the judgment

{true}`Execr(Forall i = r.m : (r + 1)m− 1 do Add)

↑r( ∑
r.m≤j<(r+1)m

Qj)


for every 0 ≤ r < k. One more application of rule [G] allows us to derive the
judgment {true}`G′Add

{∑
0≤r<k ↑

r(
∑
r.m≤j<(r+1)mQj)

}
. Finally, requiring

a certificate of the distributivity of ↑r over the operator +, and a certificate
for
∑

0≤r<k
∑
r.m≤j<(r+1)mQj ⇒

∑
0≤j<k.mQj we get by rule [SS]

{true}`G′Add

{
(
∑

0≤j<k.m ↑
rQj)

}
.

By the reasoning in Section 6.2.4 we have
∑

0≤j<k.m ↑
rQj ⇒

∧
0≤j<n ↑

rQj ,
and finally by subsumption rule we get {true}`G′Add {Post}.

6.5.2 Exec Grouping

An Exec operation pushes the execution of a piece of code down to one of the
memory subtrees. Since the cost of transferring code and data between differ-
ent levels of the hierarchy is not negligible, there is an unnecessary overhead
when several Exec operations contain code with short execution time. Hence,
there is a motivation to reduce the cost of invoking code in child nodes, by
grouping the computation defined inside a set of Exec operations into a single
Exec operation.

We say that a program G′ is the result of applying Exec grouping, if it is the
result of replacing a set of Exec operations targeting the same child node, by an
single and semantically equivalent Exec operation. More precisely, every sub-
program Group({Execi(G1), . . . ,Execi(Gk)}∪H) such that (Execi(Gj))

k
j=1 are

maximal in the dependence graph and mutually independent, is substituted by
the equivalent subprogram Group({Execi(Group({G1, . . . , Gk}))} ∪H). Then,
the dependence relation that defines the graph {Execi(Group({G1, . . . , Gk}))}∪
H must be accordingly updated. More precisely, if the subprogram g ∈ H orig-
inally depends on Gi for some i ∈ [1, k] then g depends on the subprogram
Execi(Group({G1, . . . , Gk})) in the modified dependence graph.

The following result expresses that a certified judgment corresponding to
set of independent Exec operations can be translated to a certified judgment
for the result of merging the Exec operations into a single one. This result,
together with Lemma 6.18, implies the existence of a certificate translator for
Exec grouping.
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Lemma 6.20. Consider a set of mutually independent tasks G1, . . . , Gk and
a dependence graph {Execi(G1), . . . ,Execi(Gk)}∪H s.t. (Execi(Gj))1≤j≤k are
maximal elements. Assume that {Φ} ` Group({Execi(G1), . . . ,Execi(Gk)} ∪
H) {Ψ} is a certified judgment. Then, it is possible to generate a certified
judgment {Φ}`Group({Execi(Group({G1, . . . , Gk}))} ∪H) {Ψ}.

Proof. To prove this lemma we show that for a subprogram G of the form

Group({Execi(G1), . . . ,Execi(Gk)} ∪H)

with Gj maximal elements, and certified judgment {P}`G {Q}, the judgment
{P}`G′ {Q} is also certified, with G′ equal to

Group({Execi(Group({G1, . . . , Gk}))} ∪H) .

For simplicity, we do not consider the application of the subsumption rule
[CSS], and we assume the existence of the certificate distrib+,⊕i :` φ ⊕i
(ψ + ϕ) ⇒ (φ ⊕i ψ) + (φ ⊕i ϕ), built by application of the operators of the
proof algebra, and by definition of ⊕i. If we consider the last application
of rule [G], we know there are sets X and H ′ such that X ∪ {Execi(Gj) |
j ∈ [1, k]} are the maximal elements in H, H ′ = H \ (X ∪ {Gi}), and we
have the certified judgments {P} ` Gj {Qj} for j ∈ [1, k], {P} ` G {Qg}
for g ∈ X, and

{∑
j∈[1,k]Qj +

∑
g∈X Qg

}
` Group(H ′) {Q}. It can be seen

that if X ∪ {Execi(Gj) | j ∈ [1, k]} is the set of maximal elements in H,
then X ∪ {Execi(Group({Gj) | j ∈ [1, k]}))} are also the maximal elements
in H ′ ∪ X ∪ {Execi(Group({Gj) | j ∈ [1, k]}))}. Hence, if we show that the

judgment {P}`Execi(Group({Gj) | j ∈ [1, k]}))
{∑

j∈[1,k]Qj

}
is certified, by

definition of
∑

, and application of the rule [G] we get the desired result. To
show that {P} `Execi(Group({Gj) | j ∈ [1, k]}))

{∑
j∈[1,k]Qj

}
is a certified

judgment, we analyze the derivation of {P} ` Execi(Gj) {Qj} for each j ∈
[1, k]. We have then that Qj = P⊕iQ′j for some Q′j , and the certified judgment{
↑i(P )

}
` Gj

{
Q′j
}

. Since Gj are independent subprograms, by application
of the rule [G] we get the certified judgment

{
↑i(P )

}
` Group({Gj | j ∈

[1, k]})
{∑

j∈[1,k]Q
′
j

}
, and by application of [E], the certified judgment {P}`

Execi(Group({Gj | j ∈ [1, k]}))
{
P ⊕i

∑
j∈[1,k]Q

′
j

}
. Finally, from distrib+,⊕i

we have a certificate for P ⊕i
∑
j∈[1,k]Q

′
j ⇒

∑
j∈[1,k](P ⊕iQ′j), which together

with an application of rule [CSS] enables us to certify the judgment {P} `
Execi(Group({Gj | j ∈ [1, k]}))

{∑
j∈[1,k]Qj

}
.

6.5.3 Copy Grouping

Commonly, for the execution environments targeted by Sequoia programs,
transferring several fragments of data to a different level of the memory hier-
archy in a single copy operation is more efficient that transferring each frag-
ment of data in a separate operation. For this reason, and since array copy
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operations are frequent in programs targeting data intensive applications, it is
of interest to cluster a set of copy operations involving small and independent
regions of the memory into a single transfer operation.

Naturally, this transformation may require an analysis to detect whether
two copy operations referring to regions of the same array are indeed inde-
pendent. However, for simplicity, we consider the case in which the original
set of small copy operations are performed over different array variables.

Consider a subprogram g = Group(H ∪{g1, g2}), where g1 = Copy(A1, B1)
and g2 = Copy(A2, B2) are mutually independent and maximal in H. Copy
propagation consists on substituting g by the equivalent program g′ defined as
Group(H∪{g1,2}), where g1,2 is a copy operation that merges atomic programs
g1 and g2 into a single transfer operation. In addition, the dependence relation
on Group(H∪{g1,2}) must be updated accordingly, such that g′′ ∈ H depends
on g1,2 iff g′′ depended on g1 or g2 in the original dependence graph.

Lemma 6.21. Consider the programs g and g′ as defined above. Then, from
a certified judgment {Φ} ` g {Ψ} we can construct a certified derivation for
the judgment {Φ}`g′ {Ψ}.

Proof. To prove this lemma we show that for every subprogram G of the form
Group(H ∪ {g1, g2}) transformed into the program G′ = Group(H ∪ {g1,2}),
we can certify the judgment {P}`G′ {Q} from a certificate of the judgment
{P}`G {Q}. For simplicity, we refrain ourselves from considering applications
of the subsumption rule [CSS]. If we do not consider [CSS], the last rule
applied for the derivation of {P} ` G {Q} is [G]. Then, for some sets X
and H ′, X ∪ {g1, g2} is the set of maximal elements in H ∪ {g1, g2}, and
H ′ = H\X. In addition, we have the judgments {P}`g1 {Q1}, {P}`g2 {Q2},
and

{
Q1 +Q2 +

∑
g∈X Qg

}
`Group(H ′) {Q} and a judgment {P} ` g {Qg}

for every g in X. It can be seen that the dependence conditions do not change
when merging the copy operations g1 and g2. Hence, X ∪ {g1,2} is the set of
maximal elements in H ∪{g1,2}. Based on this conditions, and by application
of rule [G] and by associativity of +, it sufficient to show that we can certify
the judgment {P}`Tg1,2 {Q1 +Q2}. To this end, since we have certificates for
P ⇒ Tg1(Q1) and P ⇒ Tg2(Q2) (the only applicable rules are [A] and [CSS])
and the certificate c, we can construct a certificate for P ⇒ Tg1,2(Q1 +Q2) to
certify the judgment {P}`g1,2 {Q1 +Q2}.

The program G′ is the result of applying copy grouping to program G, if
every subprogram of the form g in G is replaced by g′, where g and g′ are
as characterized above. The existence of certificate translators follows from
Lemma 6.18.

Example:

Consider again the program GAdd of Section 6.2.4, that adds two arrays.
From the definition of the subprogram Add, we can see that it is a candidate
for a copy grouping transformation, since it can be replaced by the equiva-
lent subprogram Add′ defined as Group(CopyAXBY; AddP; CopyZC), where
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CopyAXBY is defined as Copy↓(A[i.S, (i + 1)S], B[i.S, (i + 1)S], X[i.S, (i +
1)S], Y [i.S, (i + 1)S]). Assume that judgment of for the example in Sec-
tion 6.2.4 is certified. To translate this result after applying the transforma-
tion above, we must certify the judgment {true}`CopyAXBY {QAX +QBY }.
To this end, we reuse the certified judgments {true} ` CopyAX {QAX} and
{true}`CopyBY {QBY } that are included in the certificate for the judgment
{true}`GAdd {Post}, where QAX and QBY are respectively defined as(

∀k, 0 ≤ k < S ⇒ X[k] = A↑[k + i.S]
)

and (
∀k, 0 ≤ k < S ⇒ Y [k] = B↑[k + i.S]

)
.

The fact that makes the translation through, is the validity of the formula
wpCopyAX(φ) ∧ wpCopyBY(ψ)⇒ wpCopyAXBY(φ+ ψ).
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Related Work

Certifying Compilation.

Certifying compilation is an extension of a standard compiler that automati-
cally generates a proof that the compiled code satisfies some specific proper-
ties. A certifying compiler is built from three main components: A preliminary
step consists in propagating basic information, such as the result of type in-
ference, from the source level to the compiled program. This is in some way
convenient since a higher level of abstraction is more adequate for the infer-
ence of particular properties. However, this can be disadvantageous if the goal
is to reason about low-level properties, such as resource consumption of the
concrete execution environment.

Another step consists in inferring loop invariants, possible reusing informa-
tion inferred about the source program if preserved by the compilation. Notice
that requiring automaticity on loop invariance inference is a significant obsta-
cle that restricts the complexity of properties that can be considered. Finally
a special purpose VCgen is applied to the result of the compilation to gener-
ate a set of proof obligations, the proof of which ensure that the executable
code adheres to some safety policies. To complete the process, these proof
obligations are discharged by an automatic theorem prover.

Automatic generation of certificates comes at a cost. As said before, re-
quired properties must be restricted to sufficiently simple safety policies. But
in addition, a certifying analyzer may fail to generate a certificate for the
output code. However, it does not affect the soundness of the approach.

In addition to generate a certificate ensuring the correctness of the out-
put code, certifying compilers may rely on a static analysis phase to remove
unnecessary runtime checks and, thus, improving performance.

The Touchstone compiler [51] is a notable example of certifying compiler,
which generates type-safety certificates for a fragment of C. In Chapter 6 of his
thesis [52], Necula studies the impact of a particular set of standard program
optimizations on certifying compilation, including some of the optimizations
considered in this thesis. For each optimization, an informal analysis is made,
indicating whether the transformation requires reinforcing the program in-
variants, or whether the transformation does not change proof obligations.
For a particular set of sufficiently simple proof obligations, Necula shows that
if the VCgen propagates proof obligations backwards, then the verification
conditions are preserved. However, he shows that it is not the case with some
more sophisticated transformations like induction variable strength reduction
and redundant conditional elimination. The former optimization is a clear ex-
ample where it becomes necessary to strengthen invariants in order to keep
proof obligations provable. Furthermore, Necula shows that in both optimiza-
tions the associated program certificate must be modified. While we perform
a systematic and implicitly defined transformation of the certificate, Necula
relies on the capability of a theorem prover, possibly modulo user-provided
hints, to discharge the modified proof obligation. Even if delegating this task
to a powerful theorem prover may be feasible for sufficiently simple safety
properties, it is not clear how it scales up to arbitrarily functional properties.



154

There are many commonalities between his work and ours, but also some
notable differences. First, the VCgen used by Necula propagates invariants
backwards, whereas ours generates a proof obligation for each invariant. Sec-
ond, we assume that the program comes with its annotations and certificate,
and we have not only to strengthen the annotations, but also to transform the
certificate. This is the main difficulty with respect to Necula’s work: when he
observes that the transformation produces a logically equivalent proof obli-
gation, we have to define a function that maps proofs of the original proof
obligation into proofs of the new proof obligation after optimization.

Certified Compilers.

Compiler correctness [32] aims at showing that a compiler preserves the se-
mantics of programs. Traditionally, semantics preservation is understood as
the preservation of the input/output behavior of programs; thus most compiler
correctness statements are of the form: if running a program p on an initial
configuration c returns some final result v, then running the corresponding
compiled program TpU on the corresponding initial configuration c′ shall also
return the same final result v.

Because compilers are complex programs, the task of compiler verification
can be daunting; in order to tame the complexity of verification and bring
stronger guarantees on the validity of compiler correctness proofs, certified
compilation, see e.g. [17, 44, 21, 65], advocates the use of a proof assistant
for machine-checking compiler correctness results. Certified compilation in-
volves modeling formally the source and target languages, their semantics,
and providing an executable definition T.U of the compiler. Then the correct-
ness statement is expressed in the language of the proof assistant, and proved
using the logic of the proof assistant. In proof assistants that support the no-
tion of proof object, the task of turning T.U into a certified compiler amounts
to build a term H of type:

∀p : Program,∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

Certified compilation is not motivated by mobile code, and has not been ex-
ploited in the context of PCC architectures. In fact, certified compilation is
particularly relevant for the critical software industry, where the code produc-
ers and the code consumers belong to the same entity, or trust each other.
Nevertheless, it is possible to construct certificate translators from certified
compilers, as explained below and suggested independently by Leroy [44].

Under suitable conditions (evaluation is deterministic, compilation pre-
serves nontermination, and programs do not get stuck), one can prove from
H that the compiler reflects semantics, i.e., one can build a proof object H ′

that establishes the dual of preservation of semantics:

∀p : Program,∀c : Config,∀v : Res, 〈TpU, c〉 ⇓ v ⇒ 〈p, c〉 ⇓ v

This proof object may be exploited to transfer evidence from source code
programs to compiled programs. Indeed, assume that we want to prove the
following property for some program p:
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∀c : Config,∀v : Res, 〈TpU, c〉 ⇓ v ⇒ R(c, v)

where R(c, v) establishes a formal relation between input configurations
and results. Then, if we have constructed the proof object certp for

∀c : Config,∀v : Res, 〈p, c〉 ⇓ v ⇒ R(c, v)

one can build the proof object certTpU for

λc : Config.λv : Res.λHeval : (〈TpU, c〉 ⇓ v). certp(H ′ p c Heval)
: ∀c : Config,∀v : Res, (〈TpU, c〉 ⇓ v)⇒ R(c, v)

Thus it is in principle possible to build certificate translators from certified
compilers. There are however some drawbacks:

— the certificate certTpU of the compiled program TpU encapsulates the
definition and correctness proof of the compiler, as well as the source code and
its certificate. Hence, the certificate certTpU is very large, and costly to check.
Leroy [44] has suggested that partial evaluation could be used to eliminate
much of the proof of correctness of the compiler from the certificate, but the
applicability of the method has not been demonstrated;

— traditionally, certified compilers are shown to preserve the input/output
behavior of programs, thus the approach rules out properties that are ex-
pressed with intermediate assertions or ghost variables. Unfortunately, many
interesting properties of programs must be specified using assertions or ghost
variables. Thus the approach is restrictive. Leroy [43] has explored means to
extend the scope of compiler correctness results beyond input/output behav-
iors, but his work does not cover yet preservation of intermediate assertions.

Compcert [44, 21] is a notable example of a certified moderately optimizing
compiler. The Compcert compiler generates PowerPC code for a significant
subset of the C language, and performs several standard optimizations such
as constant propagation, common subexpression elimination, register alloca-
tion and branch tunneling. The compiler is almost completely specified in the
Coq proof assistant, and is accompanied with a proof, in Coq, of a set of
lemmas stating that the generated assembly code is semantically equivalent
to the input source program. The compiler is executable and can be trans-
lated to Ocaml with the extraction mechanism provided by the Coq tool; the
performance of the extracted compiler is very reasonable.

Translation Validation.

Translation validation is an approach to verify program transformation by
checking, for each individual translation, a correspondence between the out-
put and input programs. It consists mainly of a common model to abstract
the semantics of the input and output programs, and an automatic verifica-
tion procedure that checks whether the semantics of the generated program
simulates the semantics of the source program. Since the validation phase is
independent of the compiler, i.e., there is no need to specify and verify the
compiler, it does not constrain the evolution of the compiler.
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Verifying correctness of the compilation consists in giving, for each in-
put program, a proof that the compiled code preserves the semantics of the
original one. The difference with verifying the compiler is that instead of es-
tablishing once and for all that every output code will be equivalent to the
source program, the compiler provides a proof of this equivalence for each
compilation result.

Initial work on translation validation [58] proposed a tool to verify the
correctness for a small set of proof obligations on a restricted subset of tar-
get programs. Necula [53] extended this work by implementing a translation
validation infrastructure in the context of a GNU C compiler. It handles the
intermediate phases of a realistic compiler, but the set of optimizations under
consideration are reduced to structure preserving transformations. Further
results on translation validation have presented a more comprehensive set of
program optimizations [6, 71]. These include simple structure preserving op-
timizations as well as non structure-preserving transformations such as loop
inversion, loop unrolling, loop fusion and strength reduction. A recent publi-
cation [67] presents the development of a formally verified translation valida-
tor for instruction scheduling optimizations, specified and verified in the Coq
proof assistant.

As discussed in Section III, it is also possible to construct certificate trans-
lators from translation validation. Again, assuming we have a notion of proof
object, instead of a proof term H such that for any program p:

H : ∀p : Program,∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

we will have, for every successfully compiled program p, a proof term Hp such
that

Hp : ∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

The same reasoning explained above with respect to certified compilers per-
mits to build certificate translators from translation validation. This approach
has the advantage that a certificate does not encapsulate a definition of the
compiler. However, since the output program is not verified independently
of the source program, the latter must be delivered as a component of the
certificate.

Provable Optimizations through Sound Local Rules.

Rhodium [42] is a special purpose framework aimed at specifying and proving
the correctness of program analyses and optimizations. To this end, Rhodium
relies on a domain-specific language for specifying the analysis and transfor-
mation by means of local rules. A set of statements define the abstract domain
of the analysis, called dataflow facts, and specifies its meaning as a predicate
on the execution state. Transfer functions of the analysis are specified by
the so called propagation rules, that declare the generation or propagation of
dataflow facts through single edges. They are specified for a generic instan-
tiation of variables and are local in the sense that they relate only adjacent
program nodes. Analyzing the correctness of each local rule consists in verify-
ing it with respect to a single execution step. Rhodium generates, for each local
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propagation rule, a proof obligation in terms of its semantic interpretation,
and then submits them to an automatic prover that attempts to discharge
them. Given the validity of every local elementary rule, the validity of the
entire analysis follows by a common property of the framework (proved once,
by hand, and instantiated for any analysis).

Finally, a set of transformation rules specifies how this inferred data-flow
facts are used to trigger program transformations. In the same spirit, giving a
formal proof for each elementary transformation rule is sufficient to guarantee
the correctness of the whole transformation.

Proof Transforming Compilation.

The Spec# project [5, 41, 40] defines an extension of C# with annotations,
and a compiler from annotated programs to annotated .NET files, which can
be run using the .NET platform, and checked against their specifications at
run-time or verified statically with an automatic prover. The Spec# project
implicitly assumes some relation between source and bytecode levels, but does
not attempt to formalize this relation. There is no notion of certificate, and
thus no need to transform them. Pavlova and Burdy have followed a simi-
lar line of work [23] to define a Bytecode Modeling Language (BML), and
a VCgen for annotated bytecode programs. Annotations of the Java Model-
ing Language are translated into BML, and the generated proof obligations
are sent to an automatic theorem prover. They present a partial formaliza-
tion of the relation of verification conditions at source and bytecode levels,
but they do not consider proof transformations. Similar results are detailed
by Pavlova [57], for a significant subset of Java Bytecode. In a recent work,
Barthe, Gregoire and Pavlova [8] establish the preservation of proof obliga-
tions from source Java programs to compiled code, obtained by nonoptimizing
compilation.

In a similar spirit, Bannwart and Müller [3], provide Hoare-like logics for
significant sequential fragments of Java source code and bytecode, and illus-
trate how derivations of correctness can be mapped from source programs to
bytecode programs obtained by nonoptimizing compilation. Müller and Nor-
dio [48] have developed a proof transforming procedure for a Java to Java
Bytecode compiler, in particular, dealing with abrupt termination. They have
explained the complications of including a subset of Java with try-catch,
try-finally and break statements, and showed how they may be handled.
More recently, Nordio, Müeller, and Meyer have formalized [55, 54], using the
Isabelle proof assistant, a proof transforming procedure from a subset of the
Eiffel programming language to Microsoft’s Common Intermediate Language.

Furthermore, there are relevant results on transferring evidence from
source programs to compiled programs in scenarios that use alternative tech-
nologies for establishing program correctness. These results include type-
preserving compilation [13, 66], and Rival’s method [59] to translate program
invariants generated at source level using abstract interpretation techniques
in order to verify safety properties.

Developing further the approach of describing data-flow analysis as type
judgments [39], Saabas and Uustalu [62, 61, 60] propose to extend these



158

type-based methods to describe also program transformations. They illustrate
the feasibility of the method by explaining in detail two particular transfor-
mations: Common subexpression elimination and Dead Variable elimination.
They have demonstrated the correctness of both transformations, by deriv-
ability of Hoare logic proofs, but also showed a constructive mechanism to
transform a Hoare proof of the original program to a Hoare proof of the
transformed program.

Another instance of proof preserving compilation is the work of Shao et
al. [64]. They define a framework to reason and certify programs beyond sim-
ple safety policies but still maintaining properties at a decidable level. In
addition, they show that certificates are preserved after applying CPS and
closure conversion.

Proof Producing Analysis.

One key component of a certificate translator is the certifying analyzer. In
Chapter 2, we have shown, for each standard optimization, that on may define
a certifying analyzer straightforwardly, due to the simplicity of the generated
proof obligations. It is possible to define a generic certifying analyzer under
mild assumptions on the relation between the analysis and the verification in-
frastructure. This is a substantial improvement if we plan to extend certificate
translation to arbitrary semantics preserving transformations.

We are aware of two previous works on certifying, or proof-producing,
program analyses. Both consider the backwards case. Seo, Yang and Yi [63]
consider a generic backwards abstract interpretation for a simple imperative
language and provide an algorithm that automatically constructs safety proofs
in Hoare logic from abstract interpretation results. Chaieb [24] considers a flow
chart language equipped with a weakest precondition calculus, and provides
sufficient conditions of the existence of certificates for solutions of backwards
abstract interpretations. The technique was applied in the context of a certi-
fied PCC infrastructure [68].

Conclusion

Certificate translation provides a mechanism to transfer the benefits of source
code verification to the certification of mobile code in a PCC scenario. At
the cost of interactive verification on the producer side, certificate transla-
tion extends the set of properties that can be enforced by PCC to arbitrarily
complex functional properties. A compilation procedure is composed of sev-
eral steps. The first phase consists in a näıve translation from a structured
source program to a non-structured lower level intermediate representation.
Previous work have proved that a nonoptimizing compiler preserves proof
obligations [14, 57]. In this thesis, we have shown that it is not the case in the
presence of common optimizations applied along the intermediate compiler
steps. To solve this difficulty, we have shown the feasibility of proof transfor-
mation in the presence of several program transformations. Furthermore, we
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have extended our results in certificate translation to less typical verification
and program transformation scenarios.

• In chapter 2, we have introduced the principles of certificate translation
showing that certificate translators exist for many common optimizations.
For concreteness, we focused on a particular set of optimizations applied
over a specific intermediate program representation. We have considered
optimizations such as constant propagation, common subexpression elimi-
nation, loop induction variable strength reduction, register allocation and
function inlining. We have provided a classification in terms of the proof
transformations needed in order to translate the certificates, and proposed
a general certificate translation scheme to cover several optimizations that
performs arithmetic simplifications. In addition, we have provided ad-
hoc proof transformations for optimizations that fall outside the general
scheme. We have introduced the notion of certifying analyzers, an exten-
sion of standard analyzers that provide in addition to the static result
a certificate of the validity of the analysis, expressed in the underlying
verification logic. A certifying analyzer is a necessary component that in-
corporates the information computed by the static analysis to the original
specification, incrementing the original certificate accordingly. We have
shown the interaction of certifying analyzers with certificate translation
for optimizations as common subexpression elimination and loop induc-
tion variable strength reduction.
• In chapter 3, we study certificate translation abstracting away from a

particular program representation and a particular verification setting.
To that end, we have used a mild extension of abstract interpretation in
which a notion of certificates is incorporated to the solutions of a set of
constraints. In this setting, we have isolated a set of sufficient conditions,
expressed in an abstract proof algebra, that ensures the existence of cer-
tifying analyzers and certificate translators. Our formalization allows us
to establish the scalability of certificate translation, since shows that the
concept of certificate translation can be potentially instantiated in a wide
range of settings, provided the requirements discovered on the abstract
model are fulfilled. That is the case in particular with the verification
infrastructure of chapter 2.
In addition, we have applied the general framework defined in this chapter
to the verification of concurrent programs. As a verification environment,
we have presented an Owicki-Gries like logic, in which invariants are shown
to be satisfied by an isolated sequential program execution and that it is
preserved under the concurrent execution of the other components. In this
setting, we have shown that no extra conditions are required to transform
certificates in the presence of transformations that operate on sequential
components.
• In the second part of the thesis we extend the applicability of certificate

translation to less typical scenarios:
– We have developed a modular verification method for programs with

specification-preserving advices, that mildly generalizes the notion of
harmless advices of Dantas and Walker, and shown how proof compi-
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lation extends naturally to this setting. Our results, while preliminary,
establish the feasibility of a Proof Carrying Code scenario with several
untrusted intermediaries that enhance the mobile code with specific
added value, e.g. related to security and efficiency.

– Program verification environments increasingly rely on hybrid meth-
ods to prove correctness of software. Motivated by applications to
Proof Carrying Code, we have shown the coincidence of hybrid veri-
fication methods at source and bytecode levels. Additionally, we have
shown that hybrid verification methods can be “compiled” into meth-
ods based on standard verification condition generation, which ensure
that hybrid methods are sound.

– We have used the framework of abstract interpretation to develop a
sound proof system to reason about Sequoia programs, and to provide
sufficient conditions for the existence of certificate translators. Then,
we have instantiated these results to common optimizations described
in [37].

Future Work

There are several directions for future work, in terms of the compiler infras-
tructure, the complexity of the source and target languages, the power of the
static analysis, and its interaction with the verification environment.

Compiler infrastructure: Compilers are commonly defined as a sequence of
progressive transformations to the input program. In this thesis, we have
restricted our attention mostly to program optimizations applied in in-
termediate compiler phases. This is complemented with previous results
that have shown that the translation of the source program into an in-
termediate representation preserves certificates, up to minor differences.
Combining this two results is sufficient to assert the existence of certifi-
cate translators in a PCC scenario in which applications are distributed
as interpretable bytecode, as it is the case for instance of several mobile
code environments based on Java Bytecode.
However, there are no complementary results that study proof transfor-
mation in the remaining compiler phases, such as register allocation or
instruction generation. Further work in this area is necessary to attest
the existence of certificate translators for a full compilation procedure. A
particular case study that would complement existing work on preserva-
tion of proof obligations for Java programs [57] is the case of Java native
compilers, that generates native code from a Java bytecode component.

Certifying the analysis: For some optimizations that perform arithmetic sim-
plifications, the analyzer is required to return, in addition to the result
of the analysis, a proof attesting its validity in the underlying verifica-
tion framework. While for some standard optimizations we show that it
is relatively simple to generate the required certificates, we have provided
a set of sufficient conditions in the abstract domain of the analysis in or-
der to ensure the existence of certifying analyzers. While this set of proof
obligations can be easily dischargeable for basic analysis domains such
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as those employed in common compiler optimizations, it is interesting to
study how it extends to more complex settings. For instance, one of such
scenarios is the recent method proposed by Halbwachs and Peron [33], to
automatically generate invariants referring to array contents.
Independently, it is interesting to consider more sophisticated verification
environments in order to dispense analyzers to generate a certificate of
their results. The reason that makes essential the representation of the
analysis result in the specification logic and a proof of their corresponding
verification conditions, is that the VCgen does not consider any informa-
tion other than the logical specification to generate the proof obligations.
Then, the abstract analysis results must be suitably translated in order
to be integrated with the original logical specification.
The main motivation to keep as simple as possible the definition of the
VCgen is to minimize the computation effort required from the code con-
sumer side.
It would be interesting to estimate how the computational complexity is
affected with the development of PCC infrastructures based on hybrid
VCgens that take as input the result of an analysis to compute the set of
proof obligations. As mentioned in Chapter 5, one of the advantages of
such hybrid VCgens is the smaller specification and verification effort. A
more important advantage is that the result of the analysis can then be
independently checked by a decidable procedure, dispensing analyzers to
certify its results. In consequence, certificate translation does not incur in
specification growth, since original invariants are not strengthened with
the result of the analysis, and the certificate growth is reduced, since
certificates for the analysis are not merged with the original certificate.
However, a negative counterpart of this approach is that a complex hybrid
VCgen makes the trusted computing base more difficult to trust by the
code consumer.

Certificate growth: Another direction for future work is to estimate the cer-
tificate growth entailed by a certificate translator. At the level of abstrac-
tion in which we have studied certificate translation, we are in a position
to estimate the specification growth incurred by a transformation. How-
ever, an analysis of the certificate growth is tightly bound to the formal
representation of proofs.
Although we have experimented with toy programs and simple optimiza-
tions, it would be interesting to perform more extensive experimental re-
sults in order to compare, in a realistic scenario, the size of certificates
before and after the compiler optimizations. This could be a long an daunt-
ing task, because it does not only require the development of a verification
environment, a compiler and a certificate translator, but the specification
and deductive formal verification of realistic applications.
On the other hand, further research can be pursued in order to reduce the
size of certificates after the transformation has been performed. One possi-
bility consists in reducing specifications by means of pruning, as suggested
by Besson et al. [20]. The method consists in removing specification frag-
ments that are neither part of the property that the program is required
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to satisfy, nor auxiliary invariants needed to prove the program correct.
Since a transformation in the program specification implies a transforma-
tion in the verification conditions, a certificate translator must be defined
in the presence of invariant pruning.
Other techniques to control the size explosion consist in reducing the ac-
tual representation of a certificate. In the case of a lambda-term represen-
tation of certificates, term normalization can be proposed as a technique
to generate a smaller proof attesting the same logical formula. It will be
an essential contribution to estimate how much it can be gained with this
technique in this particular formal representation of proofs.
In this thesis, we aim at providing general schemes to cover certificate
translation for an extensive list of compiler optimizations, without ab-
stracting away from implementation issues such as specification or certifi-
cate growth. However, the development of alternative proof transforma-
tions mechanisms can help attest the applicability of certificate translation
to realistic scenarios. Preliminary work has already provided alternative,
ad-hoc, proof transformation procedures, to minimize the effect of cer-
tificate translation in certificate growth. A prototype implementation has
been developed, integrating a tool that translates certificates from a sim-
ple imperative language to an RTL representation. This prototype tool has
served to show that certificate growth is negligible for simple optimiza-
tions like constant propagation and common subexpression elimination.
Further research in this area extending these techniques to more complex
optimizations will provide a substantial efficiency improvement in the de-
velopment of a PCC environment based on certificate translation.

Tool development: Certainly, the implementation of a realistic compiler re-
quires a significant effort, and that is also the case, in a minor extent,
of proof assistants and verifications tools. In addition, deductive verifi-
cation for realistic programs can be a daunting task. Then, a reasonable
development project aiming at experimentally estimating the applicability
of certificate translation must advocate for the integration of an already
existing compiler and verification tools.
Extending compiler analyses with a certification phase and program opti-
mizations with a proof transforming procedure is quite involved. It would
then be desirable to count on isolating the definition of the compiler from
the certificate translation process. To that end, we can consider an opti-
mization framework that relies on a special purpose specification language
for the analysis and optimizations, as has been proposed by the Rhodium
project [42]. In this framework, optimization phases are separated from the
compiler and, hence, they can be progressively defined and extending the
compiler becomes much easier. But more importantly, the set of require-
ments to define the corresponding certificate translator can be extracted
as a set of logical proof obligations and discharged in an independent
process.
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