
Composite Replicated Data Types?

Alexey Gotsman1 and Hongseok Yang2

1 IMDEA Software Institute
2 University of Oxford

Abstract. Modern large-scale distributed systems often rely on eventually con-
sistent replicated stores, which achieve scalability in exchange for providing weak
semantic guarantees. To compensate for this weakness, researchers have pro-
posed various abstractions for programming on eventual consistency, such as
replicated data types for resolving conflicting updates at different replicas and
weak forms of transactions for maintaining relationships among objects. How-
ever, the subtle semantics of these abstractions makes using them correctly far
from trivial.
To address this challenge, we propose composite replicated data types, which
formalise a common way of organising applications on top of eventually consis-
tent stores. Similarly to an abstract data type, a composite data type encapsulates
objects of replicated data types and operations used to access them, implemented
using transactions. We develop a method for reasoning about programs with com-
posite data types that reflects their modularity: the method allows abstracting
away the internals of composite data type implementations when reasoning about
their clients. We express the method as a denotational semantics for a program-
ming language with composite data types. We demonstrate the effectiveness of
our semantics by applying it to verify subtle data type examples and prove that it
is sound and complete with respect to a standard non-compositional semantics.

1 Introduction

Background. To achieve availability and scalability, many modern networked sys-
tems use replicated stores, which maintain multiple replicas of shared data. Clients can
access the data at any of the replicas, and these replicas communicate changes to each
other using message passing. For example, large-scale Internet services use data replicas
in geographically distinct locations, and applications for mobile devices keep replicas
locally as well as in the cloud to support offline use. Ideally, we would like replicated
stores to provide strong consistency, i.e., to behave as if a single centralised replica
handles all operations. However, achieving this ideal usually requires synchronisation
among replicas, which slows down the store and even makes it unavailable if network
connections between replicas fail [12, 2]. For this reason, modern replicated stores often
provide weaker guarantees, described by the umbrella term of eventual consistency [4].

? We thank Giovanni Bernardi, Sebastian Burckhardt and Andrea Cerone for many interesting
discussions and thoughtful comments about our results and the paper. Our work was supported
by the EU FET project ADVENT and EPSRC.

(a) Disallowed
R1: friends[a].add(b) R2: v = wall [a].get // {post}

wall [a].add(post) w = friends[a].get // ∅

ωfa.add(b)

ωwa.add(post)

ωwa.get: {post}

ωfa.get: ∅
sovis, arso

(b) Allowed, even when using transactions
R1: wall [a].add(post1) R2: wall [b].add(post2)

v = wall [b].get // ∅ w = wall [a].get // ∅

ωwa.add(post1)

ωwb.get: ∅

ωwb.add(post2)

ωwa.get: ∅
soso

(c) Disallowed
R1: atomic { R2: atomic {

friends[a].add(b) v = friends[a].get // {b}
friends[b].add(a) } w = friends[b].get // ∅ }

vis, ar
ωfa.add(b)

ωfb.add(a)

ωfa.get: {b}

ωfb.get: ∅
soso

Fig. 1. Anomalies illustrating the semantics of causal consistency and causally consistent trans-
actions. The outcomes of operations are shown in comments. The variables v and w are local to
clients. The structures shown on the right are explained in §3.2.

Eventually consistent stores adopt an architecture where a replica performs an oper-
ation requested by a client locally without any synchronisation with others and imme-
diately returns to the client; the effects of the operation are propagated to other replicas
only eventually. As a result, different replicas may find out about an operation at differ-
ent points in time. This leads to anomalies, one of which is illustrated by the outcome
in Figure 1(a). The program shown there consists of two clients operating on set ob-
jects friends[a] and wall [a], which represent information about a user a in a social
network application. The first client, connected to replica 1, makes b a friend of a’s
and then posts b’s message on a’s wall. After each of these operations, replica 1 might
send a message with an update to replica 2. If the messages carrying the additions of b
to friends[a] and post to wall [a] arrive at replica 2 out of order, the second client can
see b’s post , but does not know that b has become a’s friend. This outcome cannot be
produced by any interleaving of the operations shown in Figure 1(a) and, hence, is not
strongly consistent.

The consistency model of a replicated store restricts the anomalies that it exhibits.
In this paper, we consider the popular model of causal consistency [17], a variant of
eventual consistency that strikes a reasonable balance between programmability and
efficiency. A causally consistent store disallows the anomaly in Figure 1(a), because it
respects causal dependencies between operations: if the programmer sees b’s post to a’s
wall, she is also guaranteed to see all events that led to this posting, such as the addition
of b to the set of a’s friends. Causal consistency is weaker than strong consistency; in
particular, it allows reading stale data. This is illustrated by the outcome in Figure 1(b),
which cannot be produced by any interleaving of the operations shown. In a causally
consistent store it may be produced because each message about an addition sent by the
replica performing it may be slow to get to the other replica.

Due to such subtle semantics, writing correct applications on top of eventually con-
sistent stores is very difficult. In fact, finding a good programming model for eventual

consistency is considered one of the major research challenges in the systems commu-
nity [4]. We build on two programming abstractions proposed by researchers to address
this challenge, which we now describe.

One difficulty of programming for eventually consistent stores is that their clients
can concurrently issue conflicting operations on the same data item at different replicas.
For example, spouses sharing a shopping cart in an online store can add and concur-
rently remove the same item. To deal with these situations, eventually consistent stores
provide replicated data types [22] that implement objects, such as registers, counters
or sets, with various strategies for resolving conflicting updates to them. The strategies
can be as simple as establishing a total order on all operations using timestamps and
letting the last writer win, but can also be much more subtle. For example, a set data
type, which can be used to implement a shopping cart, can process concurrent oper-
ations trying to add and concurrently remove the same element so that ultimately the
element ends up in the set.

Another programming abstraction that eventually consistent stores are starting to
provide is transactions, which make it easier to maintain relationships among different
objects. In this paper we focus on causally consistent transactions, implemented (with
slight variations) by a number of stores [25, 17, 18, 23, 16, 1, 3]. When a causally con-
sistent transaction performs several updates at a replica, we are guaranteed that these
will be delivered to every other replica together. For example, consider the execution
in Figure 1(c), where at replica 1 two users befriend each other by adding their iden-
tifiers to set objects in the array friends . If we did not use transactions, the outcome
shown would be allowed by causal consistency, as replica 2 might receive the addition
of b to friends[a], but not that of a to friends[b]. This would break the expected invari-
ant that the friendship relation encoded by friends is symmetric. Causally consistent
transactions disallow this anomaly, but nevertheless provide weaker guarantees than
the classical serialisable ACID transactions. The latter guarantee that operations done
within a transaction can be viewed as taking effect instantaneously at all replicas. With
causally consistent transactions, even though each separate replica sees updates done by
a transaction together, different replicas may see them at different times. For example,
the outcome in Figure 1(b) could occur even if we executed the pair of commands at
each replica in a transaction, again because of delays in message delivery.

A typical way of using replicated data types and transactions for writing applications
on top of an eventually consistent store is to keep the application data as a set of objects
of replicated data types, and update them using transactions over these objects [25, 23,
16, 1]. Then replicated data types ensure sensible conflict resolution, and transactions
ensure the maintenance of relationships among objects. However, due to the subtle se-
mantics of these abstractions, reasoning about the behaviour of applications organised
in this way is far from trivial. For example, it is often difficult to trace how the choice
of conflict-resolution policies on separate objects affects the policy for the whole appli-
cation: as we show in §5, a wrong choice can lead to violations of integrity invariants
across objects, resulting in undesirable behaviour.

Contributions. To address this challenge, we propose a new programming concept
of a composite replicated data type that formalises the above way of organising appli-
cations using eventually consistent stores. Similarly to a class or an abstract data type, a

composite replicated data type encapsulates constituent objects of replicated data types
and composite operations used to access them, each implemented using a transaction.
For example, a composite data type representing the friendship relation in a social net-
work may consist of a number of set objects storing the friends of each user, with
transactions used to keep the relation symmetric. Composite data types can also capture
the modular structure of applications, since we can construct complex data types from
simpler ones in a nested fashion.

We further propose a method for reasoning about programs with composite data
types that reflects their modularity: the method allows one to abstract from the internals
of composite data type implementations when reasoning about the clients of these data
types. Technically, we express our reasoning method as a denotational semantics for a
programming language that allows defining composite data types (§4). As any denota-
tional semantics, ours is compositional and is thus able to give a denotation to every
composite data type separately. This denotation abstracts from the internal data type
structure using what we term granularity abstraction: it does not record fine-grained
events describing operations on the constituent objects that are performed by compos-
ite operations, but represents every invocation of a composite operation by a single
coarse-grained event. Thereby, the denotation allows us to pretend that the compos-
ite data type represents a single monolithic object, no different from an object of a
primitive data type implemented natively by the store. The denotation then describes
the data type behaviour using a mechanism recently proposed for specifying primitive
replicated data types [9]. The granularity abstraction achieved by this coarse-grained
denotational semantics is similar (but not identical, as we discuss in §7) to atomicity
abstraction, which has been extensively investigated in the context of shared-memory
concurrency [11, 24].

Our coarse-grained semantics enables modular reasoning about programs with com-
posite replicated data types. Namely, it allows us to prove a property of a program by: (i)
computing the denotations of the composite data types used in it; and (ii) proving that
the program satisfies the property assuming that it uses primitive replicated data types
with the specifications equal to the denotations of the composite ones. We thus never
have to reason about composite data type implementations and their clients together.

Since we use an existing specification mechanism [9] to represent a composite data
type denotation, our technical contribution lies in identifying which specification to
pick. We show that the choice we make is correct by proving that our coarse-grained
semantics is sound with respect to a fine-grained semantics of the programming lan-
guage (§6), which records the internal execution of composite operations and follows
the standard way of defining language semantics on weak consistency models [9]. We
also establish that the coarse-grained semantics is complete with respect to the fine-
grained one: we do not lose precision by reasoning with denotations of composite data
types instead of their implementations. The soundness and completeness results also
imply that our coarse-grained denotational semantics is adequate, i.e., can be used for
proving the observational equivalence of two composite data type implementations.

We demonstrate the usefulness of the coarse-grained semantics by applying the
composite data type denotation it defines to specify and verify small but subtle data
types, such as a social graph (§5). In particular, we show how our semantics lets one

Primitive data types B ∈ PrimType Data-type variables α, β ∈ DVar

Ordinary variables v, w ∈ Var = {vin, vout, . . .} Object variables x, y ∈ OVar

Data-type contexts Γ ::= α1 : O1, . . . , αk : Ok Ordinary contexts Σ ::= v1, . . . , vk

Object contexts ∆ ::= x1 : O1, . . . , xk : Ok

D ::= let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O T ::= B | D | α
G ::= v | G+G | G ∧G | G ∨G | ¬G | . . .
C ::= var v. C | v=x.o(G) | v=G | C;C | if G then C else C | while G do C | atomic {C}
P ::= C1 ‖ . . . ‖ Cn | let α = T in P | let x = new T in P

∆ | Σ ` C FV(G) ∪ {v} ⊆ (Σ − {vin, vout})
∆,x : {o} ∪O | Σ ` v = x.o(G)

∆ | Σ, v ` C
∆ | Σ ` var v. C

∆ | Σ ` C
∆ | Σ ` atomic {C}

Γ ` T : O Γ ` B : sig(B)

Γ, α : O ` α : O

Γ ` Tj : Oj for all j = 1..m

x1 : O1, . . . , xm : Om | vin, vout ` Co for all o ∈ O
Γ ` let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O : O

Γ | ∆ ` P Γ ` T : O Γ | ∆,x : O ` P
Γ | ∆ ` let x = new T in P

∆ | ∅ ` Cj for all j = 1..n

Γ | ∆ ` C1 ‖ . . . ‖ Cn

Fig. 2. Programming language and sample typing rules.

understand the consequences of different design decisions in the implementation of a
composite data type on its behaviour.

2 Programming Language and Composite Replicated Data Types

Store Data Model. We consider a replicated store organised as a collection of prim-
itive objects. Clients interact with the store by invoking operations on objects from
a set Op, ranged over by o. Every object in the store belongs to one of the primitive
replicated data types B ∈ PrimType, implemented by the store natively. The signature
sig(B) ⊆ Op determines the set of operations allowed on objects of the type B. As
we explain in §3, the data type also determines the semantics of the operations and,
in particular, the conflict-resolution policies implemented by them. For uniformity of
definitions, we assume that each operation takes a single parameter and returns a single
value from a set of values Val, whose elements are ranged over by a, b, c, d. We assume
that Val includes at least Booleans and integers, their sets and tuples thereof. We use a
special value⊥ ∈ Val to model operations that take no parameter or return no value. For
example, primitive data types can include sets with operations add, remove, contains
and get (the latter returning the set contents).

Composite Replicated Data Types. We develop our results for a language of client
programs interacting with the replicated store, whose syntax we show in Figure 2. We
consider only programs well-typed according to the rules also shown in the figure.
The interface to the store provided by the language is typical of existing implemen-
tations [25, 1]. It allows programs to declare objects of primitive replicated data types,

residing in the store, invoke operations on them, and combine these into transactions.
Crucially, the language also allows declaring composite replicated data types from the
given primitive ones and composite objects of these types. These composite objects
do not actually reside in the store, but serve as client-side anchors for compositions of
primitive objects. A declarationD of a composite data type includes several constituent
objects of specified types Tj , which can be primitive types, composite data type decla-
rations or data-type variables α ∈ DVar, bound to either. The constituent objects are
bound to distinct object variables xj , j = 1..m from a set OVar. The declaration D
also defines a set of composite operations O (the type’s signature), with each o ∈ O
implemented by a command Co executed as a transaction accessing the objects xj . We
emphasise the use of transactions by wrapping Co into an atomic block. Since a store
implementation executes a transaction at a replica without synchronising with other
replicas, transactions never abort.

The syntax of commands includes the form var v. C for declaring ordinary vari-
ables v, w ∈ Var, to be used by C, which store values from Val and are initialised to
⊥. Commands Co in composite data type declarations D can additionally access two
distinguished ordinary variables vin and vout (never declared explicitly), used to pass
parameters and return values of operations: the parameter gets assigned to vin at the
beginning of the execution of Co and the return value is read from vout at the end. The
command v = x.o(G) executes the operation o on the object bound to the variable x
with parameter G and assigns the result to v.3

Our type system enforces that commands only invoke operations on objects consis-
tent with the signatures of their types and that all variables be used within the correct
scope; in particular, constituent objects of composite types can only be accessed by their
composite operations. For simplicity, we do not adopt a similar type discipline for val-
ues and treat all expressions as untyped. Finally, for convenience of future definitions,
the typing rule for v = x.o(G) requires that vin and vout do not appear in v or G.

Example: Social Graph. Figure 3 gives our running example of a composite data
type soc, which maintains friendship relationships and requests between accounts in
a toy social network application. To concentrate on core issues of composite data type
correctness, we consider a language that does not allow creating unboundedly many
objects; hence, we assume a fixed number of accounts N . Using syntactic sugar, the
constituent objects are grouped into arrays friends and requesters and have the type
RWset of sets with a particular conflict-resolution policy (defined in §3.1). We use these
sets to store account identifiers: friends[a] gives the set of a’s friends, and requesters[a]
the set of accounts with pending friendship requests to a. The implementation maintains
the expected integrity invariants that the friendship relation is symmetric and the friend
and requester sets of any account are disjoint:

∀a, b. friends[a].contains(b)⇔ friends[b].contains(a); (1)
∀a. friends[a].get ∩ requesters[a].get = ∅. (2)

3 Since the object bound to x may itself be composite, this may result in atomic blocks being
nested. Their semantics is the same as the one obtained by discarding all blocks except the
top-level one. In particular, the atomic blocks that we include into the syntax of commands
have no effect inside operations of composite data types.

Dsoc = let { friends = new RWset[N]; requesters = new RWset[N] } in {
request(from, to) = atomic {

if (friends[to].contains(from) ∨ requesters[to].contains(from)) then vout = false

else { requesters[to].add(from); vout = true } };
accept(from, to) = atomic {

if (¬requesters[to].contains(from)) then vout = false

else { requesters[to].remove(from); requesters[from].remove(to);

friends[to].add(from); friends[from].add(to); vout = true } };
reject(from, to) = atomic {

if (¬requesters[to].contains(from)) then vout = false

else { requesters[to].remove(from); requesters[from].remove(to); vout = true } };
breakup(from, to) = atomic {

if (¬friends[to].contains(from)) then vout = false

else { friends[to].remove(from); friends[from].remove(to); vout = true } };
get(id) = atomic {vout = (friends[id].get, requesters[id].get) } }

Fig. 3. A social graph data type soc.

The composite operations allow issuing a friendship request, accepting or rejecting
it, breaking up and getting the information about a given account. For readability, we
use some further syntactic sugar in the operations. Thus, we replace vin with more de-
scriptive names, recorded after the operation name and, in the case when the parameter
is meant to be a tuple, introduce separate names for its components. Thus, from and to
desugar to fst(vin) and snd(vin). We also allow invoking operations on objects inside
expressions and omit unimportant parameters to operations.

The code of the composite operations is mostly as expected. For example, request
adds the user sending the request to the requester set of the user being asked, after
checking, e.g., that the former is not already a friend of the latter. However, this sim-
plicity is deceptive: when reasoning about the behaviour of the data type, we need to
consider the possibility of operations being issued concurrently at different replicas.
For example, what happens if two users concurrently issue friendship requests to each
other? What if two users managing the same institutional account take conflicting de-
cisions, such as concurrently accepting and rejecting a request? As we argue in §5, it
is nontrivial to implement the data type so that the behaviour in the above situations be
acceptable. Using the results in this paper, we can specify the desired social graph be-
haviour and prove that the composite data type in Figure 3 satisfies such a specification.
Our specification abstracts from the internal structure of the data type, thereby allowing
us to view it as no different from the primitive set data types it is constructed from. This
facilitates reasoning about programs using the data type, which we describe next.

Programs. A program P consists of a series of data type and object variable decla-
rations followed by a client. The latter consists of several commands C1, . . . , Cn, each
representing a user session accessing the store concurrently with others; a session is
thus an analogue of a thread in shared-memory languages. An implementation would

connect each session to one of the store replicas (as in examples in Figure 1), but this is
transparent on the language level. Data type variables declared in P are used to specify
the types of objects declared afterwards, and object variables are used inside sessions
Cj , as per the typing rules. Sessions can thus invoke operations on a number of objects
of primitive or composite types. By default, every such operation is executed within a
dedicated transaction. However, like in composite data type implementations, we allow
sessions to group multiple operations into transactions using atomic blocks included
into the syntax of commands. We consider data types T and programs P up to the
standard alpha-equivalence, adjusted so that vin and vout are not renamed.

Technical Restriction. To simplify definitions, we assume that commands inside
atomic blocks always terminate and, thus, so do all operations of composite data types.
We formalise this restriction when presenting the semantics of the language in §4. It can
be lifted at the expense of complicating the presentation. Note that the sessions Cj do
not have to terminate, thereby allowing us to model the reactive nature of store clients.

3 Replicated Store Semantics

A replicated store holds objects of primitive replicated data types and implements op-
erations on these objects. The language of §2 allows us to write programs that interact
with the store by invoking the operations while grouping primitive objects into com-
posite ones to achieve modularity. The main contribution of this paper is a denotational
semantics of the language that allows the reasoning about a program to reflect this
modularity. But before presenting it (in §4), we need to define the semantics of the
store itself: which values can operations on primitive objects return in an execution of
the store? This is determined by the consistency model of causally consistent transac-
tions [25, 17, 18, 23, 16, 10, 3], which we informally described in §1. To formalise it, we
use a variant of the framework proposed by Burckhardt et al. [9, 10, 8], which defines
the store semantics declaratively, without referring to implementation-level concepts
such as replicas or messages. The framework models store executions using structures
on events and relations in the style of weak memory models and allows us to define
the semantics of the store in two stages. We first specify the semantics of single oper-
ations on primitive objects using replicated data type specifications (§3.1), which are
certain functions on events and relations. We then specify allowed executions of the
store, including multiple operations on different objects, by constraining the events and
relations using consistency axioms (§3.2).

A correspondence between the declarative store specification and operational mod-
els closer to implementations was established elsewhere [9, 10, 8]. Although we do not
present an operational model in this paper, we often explain various features of the
store specification framework by referring to the implementation-level concepts they
are meant to model.

The granularity abstraction of the denotational semantics we define in §4 allows
us to pretend that a composite data type is a primitive one. Hence, when defining the
semantics, we reuse the replicated data type specifications introduced here to specify
the behaviour of a composite data type, such as the one in Figure 3, while abstracting
from the internals of its implementation.

3.1 Semantics of Primitive Replicated Data Types

In a strongly consistent system, there is a total order on all operations on an object, and
each operation takes into account the effects of all operations preceding it in this order.
In an eventually consistent system, the result of an operation o is determined in a more
complex way:

1. The result of o depends on the set of operations information about which has
been delivered to the replica performing o—those visible to o. For example, in
Figure 1(a) the operation friends[a].get returns ∅ because the message about
friends[a].add(b) has not yet been delivered to the replica performing the get.

2. The result of o may also depend on additional information used to order some
events. For example, we may decide to order concurrent updates to an object using
timestamps, as is the case when we use the last-writer-wins conflicts resolution
policy mentioned in §1.

Hence, we specify the semantics of a replicated data type by a function F that computes
the return value of an operation o given its operation context, which includes all we need
to know about the store execution to determine the value: the set of events visible to o,
together with a pair of relations on them that specify the above relationships.

Assume a countably-infinite set Event of events, representing operations issued to
the store. A relation is a strict partial order if it is transitive and irreflexive. A total
order is a strict partial order such that for every two distinct elements e and f , the order
relates e to f or f to e. We call a pair p ∈ Op× Val = AOp of an operation o together
with its parameter a an applied operation, written as o(a).

DEFINITION 1 An operation context is a tuple N = (p,E, aop, vis, ar), where p ∈
AOp, E is a finite subset of Event, aop : E → AOp, and vis (visibility) and ar (arbitra-
tion) are strict partial orders on E such that vis ⊆ ar.

We call the tuple M = (E, aop, vis, ar) a partial operation context.

We write Ctxt for the set of all operation contexts and denote components of N and
similar structures as in N.E. For a relation R we write (e, f) ∈ R and e R−→ f inter-
changeably. Informally, the orders vis and ar record the relationships between events in
E motivated by the above points 1 and 2, respectively. In implementation terms, the re-
quirement vis ⊆ ar guarantees that timestamps are consistent with message delivery: if
e is visible to f , then e has a lower timestamp than f . We define where vis and ar come
from formally in §3.2; for now we just assume that they are given and define replicated
data type specifications as certain functions of operation contexts including them.

DEFINITION 2 A replicated data type specification is a partial function F : Ctxt ⇀
Val that returns the same value on isomorphic operation contexts and preserves it on
arbitration extensions. Formally, let us order operation contexts by the pre-order v:

(p,E, aop, vis, ar) v (p′, E′, aop′, vis′, ar′) ⇐⇒
p = p′ ∧ ∃π ∈ E →bijective E

′. π(aop) = aop′ ∧ π(vis) = vis′ ∧ π(ar) ⊆ ar′,

where we use the expected lifting of π to relations. Then we require

∀N,N ′ ∈ Ctxt. N v N ′ ∧N ∈ dom(F) =⇒ N ′ ∈ dom(F) ∧ F (N) = F (N ′). (3)

Let Spec be the set of data type specifications F and assume a fixed FB for every prim-
itive type B ∈ PrimType provided by the store. The requirement (3) states that, once
arbitration gives all the information that is needed in addition to visibility to determine
the outcome of an operation, arbitrating more events does not change this outcome.

Replicated Sets. We illustrate the above definitions by specifying replicated set data
types with different conflict-resolution policies. The semantics of a replicated set is
straightforward when it is add-only, i.e., its signature is {add, contains, get}. An
element a is in the set if there is an add(a) event in the context, or informally, if the
replica performing contains(a) has received a message about the addition of a:

FAOset(contains(a), E, aop, vis, ar) = (∃e ∈ E. aop(e) = add(a)).

We define the result to be⊥ for add operations and define the result of get as expected.4

Things become more subtle if we allow removing elements, since we need to define
the outcome of concurrent operations adding and removing the same element, as in
the context N = (contains(42), {e, f}, aop, vis, ar), where aop(e) = add(42) and
aop(f) = remove(42). There are several possible ways of resolving this conflict [6]: in
add-wins sets (AWset) adds always win against concurrent removes (so that the element
ends up in the set), remove-wins sets (RWset) act vice versa, and last-writer-wins sets
(LWWset) apply operations in the order of their timestamps. We specify the result of
contains in these cases using the vis and ar orders in the operation context:

FAWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ ¬(e
vis−→ f));

FRWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
vis−→ e);

FLWWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
ar−→ e),

if ar is total on {e ∈ E | aop(e) ∈ {add(), remove()}};
FLWWset(contains(a), E, aop, vis, ar) = undefined, otherwise.

Thus, the add-wins semantics is formalised by mandating that remove operations cancel
only the add operations that are visible to them; the remove-wins semantics additionally
mandates that they cancel concurrent add operations, but not those that follow them
in visibility. On the above context N , the operation contains(42) returns true iff:
¬(e

vis−→ f) for AWset; f vis−→ e for RWset; and f ar−→ e for LWWset. As we show in §5,
using a remove-wins set for requesters in Figure 3 is crucial for preserving the integrity
invariant (2); friends could well be add-wins, which would lead to different, but also
sensible, data type behaviour.

3.2 Whole-Store Semantics

We define the semantics of a causally consistent store by the set of its histories, which
are certain structures on events recording all client-store interactions that can be pro-

4 FAOset is undefined on contexts with operations other than those from the signature. The type
system of our language ensures that such contexts do not arise in its semantics.

duced during a run of the store; these include operations invoked on all objects and their
return values. The store has no control over the operations occurring in histories, since
these are chosen by the client; hence, the semantics only constrains return values. Repli-
cated data type specifications define return values of operations in terms of visibility and
arbitration, but where do these orders come from? As we explained in §3.1, intuitively,
they are determined by the way messages are delivered and timestamps assigned in a
run of a store implementation. Since this highly non-deterministic, in general, visibility
and arbitration orders are arbitrary, but not entirely. A causally consistent store provides
to its clients a guarantee that these orders in the contexts of different operations in the
same run are related in certain ways, and this guarantee disallows anomalies such as the
one in Figure 1(a).

We formalise the guarantee using the notion of an execution, which extends a history
with visibility and arbitration orders on its events. A history is allowed by the store
semantics if there is a way to extend it to an execution such that: (i) the return values of
operations in the execution are obtained by applying replicated data type specifications
to contexts extracted from it; and (ii) the execution satisfies certain consistency axioms,
which constrain visibility and arbitration and, therefore, operation contexts.

Histories, Executions and the Satisfaction of Data Type Specifications. We iden-
tify objects (primitive or composite) by elements of the set Obj, ranged over by ω. A
strict partial order R is prefix-finite if {f | (f, e) ∈ R} is finite for every e.

DEFINITION 3 A history is a tuple H = (E, label, so,∼), where:

– E ⊆ Event.
– label : E → Obj × AOp × Val describes the events in E: if label(e) = (ω, p, a),

then the event e describes the applied operation p on the object ω returning the
value a.

– so ⊆ E × E is a session order, ordering events in the same session according to
the order in which they were submitted to the store. We require that so be prefix-
finite and be the union of finitely many total orders defined on disjoint subsets of E,
which correspond to events in different sessions.

– ∼ ⊆ E × E is an equivalence relation grouping events in the same transaction.
Since all transactions terminate (§2), we require that every equivalence class of ∼
be a finite set. Since every transaction is performed by a single session, we require
that any two distinct events by the same transaction be related by so one way or
another:

∀e, f. e ∼ f ∧ e 6= f =⇒ e
so−→ f ∨ f so−→ e.

We also require that a transaction be contiguous in so:

∀e, f, g. e so−→ f
so−→ g ∧ e ∼ g =⇒ e ∼ f ∼ g.

An execution is a triple X = (H, vis, ar) of a history H and prefix-finite strict
partial orders vis and ar on H.E, such that vis ∪ ar ⊆ {(e, f) | H.obj(e) = H.obj(f)}
and vis ⊆ ar.

We denote the sets of all histories and executions by Hist and Exec. We write H.obj(e),
H.aop(e) and H.rval(e) for the components of H.label(e) and shorten, e.g., X.H.so

to X.so. Note that the set H.E can be infinite, which models infinite runs. Figure 1(a)
graphically represents an execution corresponding to the causality violation anomaly
explained in §1. The relation ∼ is an identity in this case, and the objects in this and
other executions in Figure 1 are add-only sets (AOset, §3.1).

Given an execution X , we extract the operation context of an event e ∈ X.E by
selecting all events visible to it according to X.vis:

ctxt(X, e) = (X.aop(e), E, (X.aop)|E , (X.vis)|E , (X.ar)|E), (4)

whereE = (X.vis)−1(e) and ·|E is the restriction to events inE. Then, given a function
F : Obj ⇀ Spec that associates data type specifications with some objects, we say that
an execution X satisfies F if the return value of every event in X is computed on its
context according to the specification that F gives for the accessed object.

DEFINITION 4 An execution X satisfies F, written X |= F, if

∀e ∈ X.E. (X.obj(e) ∈ dom(F) =⇒ X.rval(e) = F(X.obj(e))(ctxt(X, e))).

Since a context does not include return values, the above equation determines them
uniquely for the events e satisfying the premise. For example, in the execution in Fig-
ure 1(a) the context of the get from ωfa is empty. Hence, to satisfy F = (λω. FAOset),
the get returns ∅. If we had a vis edge from the add(b) to the get, then the latter would
have to return {b}.
Consistency Axioms. We now formulate additional constraints that executions have
to satisfy. They restrict the anomalies allowed by the consistency model we consider
and, in particular, rule out the execution in Figure 1(a).

To define the semantics of transactions, we use the following operation. For a rela-
tion R on a set of events E and an equivalence relation ∼ on E (meant to group events
in the same transaction), we define the factoring R/∼ of R over ∼ as follows:

R/∼ = R ∪ ((∼;R;∼)− (∼)), (5)

where ; composes relations. Thus, R/∼ includes all edges from R and those obtained
from such edges by relating any actions coming from the same transactions as their
endpoints, excluding the case when the endpoints themselves are from the same trans-
action. We also let sameobj(X)(e, f) ⇐⇒ X.obj(e) = X.obj(f).

DEFINITION 5 An execution X = ((E, label, so,∼), vis, ar) is causally consistent if it
satisfies the following consistency axioms:

CAUSALVIS. ((so ∪ vis)/∼)+ ∩ sameobj(X) ⊆ vis;
CAUSALAR. (so ∪ ar)/∼ is acyclic;

EVENTUAL. ∀e ∈ E.
∣∣{f ∈ E | sameobj(X)(e, f) ∧ ¬(e

vis−→ f)}
∣∣ <∞.

We write X |=CC F if X |= F and X is causally consistent.

The axioms follow the informal description of the consistency model we gave in §1.
We explain them below; however, their details are not crucial for understanding the rest

of the paper. Before explaining the axioms, we note that Definitions 4 and 5 allow us to
define the semantics of a store with object specifications given by F : Obj ⇀ Spec as
the set of histories that can be extended to a causally consistent execution satisfying F:

HistCC(F) = {H | ∃vis, ar. (H, vis, ar) |=CC F}. (6)

To prove that a particular store implementation satisfies this specification, for every
history H the implementation produces we have to come up with vis and ar that satisfy
the constraint in (6); this is usually done by constructing them from message delivery
and timestamps in the run of the implementation producing H . Here we rely on previ-
ous correctness proofs of store implementations [9, 10, 8] and use the above declarative
specification of the store semantics without fixing the store implementation.

Causal Consistency. The axioms CAUSALVIS and CAUSALAR in Definition 5 en-
sure that visibility and arbitration respect causality between operations. CAUSALVIS
guarantees that an event sees all events on the same object that causally affect it, i.e.,
those preceding it in a chain of session order and visibility edges (ignore the use of
factoring over ∼ for now). Thus, CAUSALVIS disallows the execution in Figure 1(a).
CAUSALAR similarly requires that arbitration be consistent with session order on all
objects (recall that X.vis ⊆ X.ar). EVENTUAL formalises the liveness property that
every replica eventually sees every update: it ensures that an event cannot be invisible
to infinitely many other events on the same object.

Transactions. The use of factoring over the ∼ relation in CAUSALVIS formalises
the guarantee provided by causally consistent transactions that we noted in §1: updates
done by a transaction get delivered to replicas together. According to CAUSALVIS, a
causal dependency established between two actions of different transactions results in
a dependency also being established between any other actions in the two transactions.
Thus, CAUSALVIS disallows the execution in Figure 1(c), where the dashed rectangles
group events into transactions. The axioms allow the execution in Figure 1(b) even
when the operations by the same session are done within a transaction—an outcome
that would not be allowed with serialisable transactions.

4 Coarse-grained Language Semantics

We now describe our main contribution—a coarse-grained denotational semantics of
programs in the language of §2 that enables modular reasoning. We establish a corre-
spondence between this semantics and the reference fine-grained semantics in §6.

4.1 Session-Local Semantics of Commands

The semantics of the replicated store defined by (6) in §3 describes the store behaviour
under any client and thus produces histories with all possible sets of client operations.
However, a particular command C in the language of §2 generates only histories with
certain sequences of operations. Thus, our first step is to define a session-local seman-
tics that, for each (sequential) command C, gives the set of histories that C can possibly
generate. This semantics takes into account only the structure of the command C and

〈∆ | Σ ` C〉 : (dom(∆)→inj Obj)× LState(Σ)→ P((FHist× LState(Σ)) ∪ IHist)

〈v = G〉(obj , σ) = {(Hemp, σ[v 7→ JGKσ]) | Hemp = (∅, [], ∅, ∅)}
〈v = x.o(G)〉(obj , σ) = {(He, σ[v 7→ a]) | e ∈ Event ∧ a ∈ Val

∧He = ({e}, [e 7→ (obj (x), o(JGKσ), a)], ∅, {(e, e)})}
〈atomic {C}〉(obj , σ) = {((E, label, so, E × E), σ′) | ((E, label, so,∼), σ′) ∈ 〈C〉(obj , σ)}

Fig. 4. Key clauses of the session-local semantics of commands. Here FHist and IHist are respec-
tively sets of histories with finite and infinite event sets; σ[v 7→ a] denotes the function that has
the same value as σ everywhere except v, where it has the value a; and [] is a nowhere-defined
function. We assume a standard semantics of expressions JGK : LState(Σ)→ Val.

operations on local variables; the return values of operations executed on objects in the
store are chosen arbitrarily. Later (§4.3), we intersect the set of histories produced by
the session-local semantics with (6) to take the store semantics into account.

To track the values of local variablesΣ in the session-local semantics of a command
∆ | Σ ` C (Figure 2), we use local states σ ∈ LState(Σ) = Σ → Val. The semantics
interprets commands by the function 〈∆ | Σ ` C〉 in Figure 4. Its first parameter obj
determines the identities of objects bound to object variables in∆. Given an initial local
state σ as the other parameter, 〈∆ | Σ ` C〉 returns the set of histories produced by
C when run from σ, together with final local states when applicable. The semantics is
mostly standard and therefore we give only key clauses; see [13, §A] for the remaining
ones. Recall that, to simplify our formalism, we require every transaction to terminate
(§2). To formalise this assumption, the clause for atomic filters out infinite histories.

4.2 Composite Data Type Semantics

The distinguishing feature of our coarse-grained semantics is its support for granularity
abstraction: the denotation of a composite data type abstracts from its internal structure.
Technically, this means that composite data types are interpreted in terms of replicated
data type specifications, which we originally used for describing the meaning of prim-
itive data types (§3.1). Thus, type variable environments Γ and data types Γ ` T : O
(Figure 2) are interpreted over the following domains:

JΓ K = dom(Γ)→ Spec; JΓ ` T : OK ∈ JΓ K→ Spec.

We use type to range over elements of JΓ K. Two cases in the definition of JΓ ` T : OK
are simple. We interpret a primitive data type B ∈ PrimType as the corresponding
data type specification FB , which is provided as part of the store specification (§3.1):
JBKtype = FB . We define the denotation of a type variable α by looking it up in the
environment type: JαKtype = type(α).

The remaining and most interesting case is the interpretation JΓ ` D : OK of a
composite data type

D = let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O. (7)

For type ∈ JΓ K, the data type specification F = JΓ ` D : OKtype returns a value given
a context consisting of coarse-grained events that represent composite operations on

request(b,a)

accept(b,a) reject(b,a)

e0: get(a): ({b},∅)

ωfa.contains(b): f
ωra.contains(b): f
ωra.add(b)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)
ωfa.add(b)
ωfb.add(a)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)

ωfa.get: {b}
ωra.get: ∅

c = ({b},∅)

(a) (b)

Fig. 5. (a) A context N of coarse-grained events for the social graph data type soc in Figure 3,
with an event e0 added to represent the operationN.p. Solid edges denote both visibility and arbi-
tration (equal, since the data type does not use arbitration). The dashed edges show the additional
edges in vis′ and ar′ introduced in Definition 7. (b) An execution X belonging to the concreti-
sation of N . The objects ωfa, ωfb, ωra, ωrb correspond to the variables friends[a], friends[b],
requesters[a], requesters[b] of type RWset. Solid edges denote both visibility and arbitration.
We have omitted the session order inside transactions, the visibility and arbitration edges it in-
duces and the transitive consequences of the edges shown. Dashed rectangles group events into
transactions. The function β maps events in X to the horizontally aligned events in N .

an object of type D (e.g., the one in Figure 5(a)). This achieves granularity abstraction,
because, once a denotation of this form is computed, it can be used to determine the
return value of a composite operation without knowing the operations on the constituent
objects xj that were done by the implementations Co of the composite operations in its
context (e.g., the ones in Figure 3). We call events describing the operations on xj
fine-grained.

Informally, our approach to defining the denotation F ofD is to determine the value
that F has to return on a context N of coarse-grained events by “running” the imple-
mentations Co of the composite operations invoked in N . This produces an execution
X over fine-grained events that describes how Co acts on the constituent objects xj—a
concretisation of N . The execution X has to be causally consistent and satisfy the data
type specifications for the objects xj . We then define F (N) to be the return value that
the implementation of the composite operation N.p gives in X . However, concretis-
ing N into X is easier said than done: while the history part of X is determined by
the session-local semantics of the implementations Co (§4.1), determining the visibility
and arbitration orders so that the resulting denotation be sound (in the sense described
in §6) is nontrivial and represents our main insight.

To define the denotation of (7) formally, we first gather all histories that an imple-
mentation Co of a composite operation can produce in the session-local semantics 〈·〉
into a summary: given an applied composite operation and a return value, a summary
defines the set of histories that its implementation produces when returning the value.

DEFINITION 6 A summary ρ is a partial map ρ : AOp × Val ⇀ P(FHist) such that
for every (p, a) ∈ dom(ρ), ρ(p, a) is closed under the renaming of events, and for every
H ∈ ρ(p, a), H.so is a total order on H.E and H.∼ = H.E ×H.E.

For a family of commands {∆ | vin, vout ` Co}o∈O and obj : dom(∆) →inj Obj,
we define the corresponding summary J{Co}o∈OK(obj) : AOp × Val ⇀ P(FHist) as
follows: for o′ ∈ O and a, b ∈ Val, we let

J{Co}o∈OK(obj)(o′(a), b) =

{H | (H, [vin 7→ , vout 7→ b]) ∈ 〈atomic {Co′}〉(obj , [vin 7→ a, vout 7→ ⊥])}.

For example, the method bodies Co in Figure 3 and an appropriate obj define the sum-
mary ρsoc = J{Co}o∈{request,accept,...}K(obj). This maps the get operation in Fig-
ure 5(a) to a set of histories including the one shown to the right of it in Figure 5(b).

We now define the executions X that may result from “running” the implementa-
tions of composite operations in a coarse-grained context N given by a summary ρ.
The definition below pairs these executions X with the value c returned in them by the
implementation of N.p, since this is what we are ultimately interested in. We first state
the formal definition, and then explain it in detail. We write id for the identity relation.

DEFINITION 7 A pair (X, c) ∈ Exec × Val is a concretisation of a context N with
respect to a summary ρ : AOp × Val ⇀ P(FHist) if for some event e0 6∈ N.E and
function β : X.E → N.E] {e0} we have

(∀f ∈ (N.E). (X.H)|β−1(f) ∈ ρ(N.aop(f),)) ∧ ((X.H)|β−1(e0) ∈ ρ(N.p, c)); (8)

β(X.so) ⊆ id; (9)
β(X.vis)− id ⊆ vis′; (10)

β−1(vis′) ∩ sameobj(X) ⊆ X.vis; (11)
β(X.ar)− id ⊆ ar′, (12)

where vis′ = N.vis ∪ {(f, e0) | f ∈ N.E} and ar′ = N.ar ∪ {(f, e0) | f ∈ N.E}.
We write γ(N, ρ) for the set of all concretisations of N with respect to ρ.

For example, the pair of the execution and the value in Figure 5(b) belongs to
γ(N, ρsoc) for N in Figure 5(a). When X concretises N with respect to ρ, the his-
tory X.H is a result of expanding every composite operation in N into a history of its
implementation according to ρ. The function β maps every event in X.E to the event
from N it came from, with an event e0 added to N.E to represent the operation N.p;
this is formalised by (8). The condition (9) further requires that the implementation
of every composite operation be executed in a dedicated session. As it happens, it is
enough to consider concretisations of this form to define the denotation.

The conditions (10)–(12) represent the main insight of our definition of the denota-
tion: they tell us how to select the visibility and arbitration orders in X given those in
N . They are best understood by appealing to the intuition about how an implementa-
tion of the store operates. Recall that, from this perspective, visibility captures message
delivery: an event is visible to another event if and only if the information about the
former has been delivered to the replica of the latter (§3.1). Also, in implementations
of causally consistent transactions, updates done by a transaction are delivered to every
replica together (§1). Since composite operations execute inside transactions, the visi-
bility order in N can thus be intuitively thought of as specifying the delivery of groups

of updates made by them: we have an edge e′ vis′−−→ f ′ between coarse-grained events
e′ and f ′ in N (e.g., request and accept in Figure 5(a)) if and only if the updates
performed by the transaction denoted by e′ have been delivered to the replica of f ′.
Now consider fine-grained events e, f ∈ X.E on the same constituent object describ-
ing updates made inside the transactions of e′ and f ′, so that β(e) = e′ and β(f) = f ′

(e.g., ωra.add(b) and ωra.contains(b) in Figure 5(b)). Then we can have e X.vis−−−→ f if

and only if e′ vis′−−→ f ′. This is formalised by (10) and (11).
To explain (12), recall that arbitration captures the order of timestamps assigned

to events by the store implementation. Also, in implementations the timestamps of all
updates done by a transaction are contiguous in this order. Thus, arbitration in N can
be thought of as specifying the timestamp order on the level of whole transactions
corresponding to the composite operations in N . Then (12) states that the order of
timestamps of fine-grained events in X is consistent with that over transactions these
events come from.

To define the denotation, we need to consider only those executions concretising N
that are causally consistent and satisfy data type specifications. Hence, for F : Obj ⇀
Spec we let

γ(N, ρ,F) = {(X, c) ∈ γ(N, ρ) | X |=CC F}.

For example, the execution in Figure 5(b) belongs to γ(N, ρsoc,F) for N in Figure 5(a)
and F = (λω. FRWset). As the following theorem shows, the constraints (8)–(12) are
so tight that the set of concretisations defined in this way never contains two different
return values; this holds even if we allow choosing object identities differently.

THEOREM 8 Given a family {∆ | vin, vout ` Co}o∈O, we have:

∀N. ∀obj 1, obj 2 ∈ [dom(∆)→inj Obj].

∀F1 ∈ [range(obj 1)→ Spec].∀F2 ∈ [range(obj 2)→ Spec].

(∀x ∈ dom(∆).F1(obj 1(x)) = F2(obj 2(x))) =⇒
∀(X1, c1) ∈ γ(N, J{Co}o∈OK(obj 1),F1).

∀(X2, c2) ∈ γ(N, J{Co}o∈OK(obj 2),F2). c1 = c2.

This allows us to define the denotation of (7) according to the outline we gave before.

DEFINITION 9 For (7) we let JΓ ` DKtype = F , where F : Ctxt ⇀ Val is defined as
follows: for N ∈ Ctxt and c ∈ Val, if

∃obj ∈ [{xj | j = 1..m} →inj Obj].∃F ∈ [range(obj)→ Spec].

(∀j = 1..m.F(obj (xj)) = JTjKtype) ∧ (, c) ∈ γ(N, J{Co}o∈OK(obj),F),

then F (N) = c; otherwise F (N) is undefined.

The existence and uniqueness of F in the definition follow from Theorem 8. It is easy
to check that F defined above satisfies all the properties required in Definition 2 and,
hence, F ∈ Spec. According to the above definition, the denotation of the data type in
Figure 3 has to give ({b}, ∅) on the context in Figure 5(a).

JΓ | ∆ ` P K : JΓ K→
∏

obj∈[dom(∆)→injObj]((range(obj)⇀ Spec)→ P(Hist))

Jlet α = T in P K(type, obj ,F) = JP K(type[α 7→ JT Ktype], obj ,F)
Jlet x = new T in P K(type, obj ,F) =

⋃
{JP K(type, obj [x 7→ ω],F[ω 7→ JT Ktype]) |

ω 6∈ range(obj)}
JC1 ‖ . . . ‖ CnK(type, obj ,F) = HistCC(F) ∩

{⊎n
j=1Hj | ∀j = 1..n.

(Hj ,) ∈ 〈Cj〉(obj , []) ∨ Hj ∈ 〈Cj〉(obj , [])
}

Fig. 6. Semantics of Γ | ∆ ` P . Here H]H ′ = (H.E]H ′.E, H.label]H ′.label, H.so ∪
H ′.so, H.∼ ∪H ′.∼); undefined if so is H.E]H ′.E.

4.3 Program Semantics

Having defined the denotations of composite data types, we give the semantics to a
program in the language of §2 by instantiating (6) with an F computed from these de-
notations and by intersecting the result with the set of histories that can be produced
by the program according to the session-local semantics of its sessions (§4.1). A pro-
gram Γ | ∆ ` P is interpreted with respect to environments type, obj and F, which
give the semantics of data type variables in Γ , the identities of objects in ∆ and the
specifications associated with these objects (Figure 6). A data type variable declaration
extends the type environment with the specification of the data type computed from its
declaration as described in §4.2. An object variable declaration extends obj with a fresh
object and F with the specification corresponding to its type. A client is interpreted by
combining all histories its sessions produce in the session-local semantics with respect
to obj and intersecting the result with (6). Note that we originally defined the store se-
mantics (6) under the assumption that all replicated data types are primitive. Here we
are able to reuse the definition because our denotations of composite data types have
the same form as those of primitive ones.

Using the Semantics. Our denotational semantics enables modular reasoning about
programs with composite replicated data types. Namely, it allows us to check if a pro-
gram P can produce a given history H by: (i) computing the denotations F of the
composite data types used in P ; and (ii) checking if the client of P can produce H
assuming it uses primitive data types with the specifications F. Due to the granularity
abstraction in our denotation, it represents every invocation of a composite operation by
a single event and thereby abstracts from its internal structure. In particular, different
composite data type implementations can have the same denotation describing the data
type behaviour. As a consequence, in (ii) we can pretend that composite data types are
primitive and thus do not have to reason about the behaviour of their implementations
and the client together. For example, we can determine how a program using the so-
cial graph data type behaves in the situation shown in Figure 5(a) using the result the
data type denotation gives on this context, without considering how its implementation
behaves (cf. Figure 5(b)). We get the same benefits when reasoning about a complex
composite data type D constructed from simpler composite data types Tj as in (7): we
can first compute the denotations of Tj and then use the results in reasoning about D.

In practice, we do not compute the denotation of a composite data type D using
Definition 9 directly. Instead, we typically invent a specification F that describes the

desired behaviour of D, and then prove that F is equal to the denotation of D, i.e., that
D is correct with respect to F . Definition 9 and, in particular, constraints (8)–(12), give
a proof method for establishing this. The next section illustrates this on an example.

5 Example: Social Graph

We have applied the composite data type denotation in §4 to specify and prove the
correctness of three composite data types: (i) the social graph data type in Figure 3; (ii)
a shopping cart data type implemented using an add-wins set, which resolves conflicts
between concurrent changes to the quantity of the same product; (iii) a data type that
uses transactions to simultaneously update several objects that resolve conflicts using
the last-writer-wins policy (cf. LWWset from §3.1). The latter example uses arbitration
in a nontrivial way. Due to space constraints, we focus here on the social graph data
type and defer the others to [13, §D].

Below we give a specification Fsoc to the social graph data type, which we have
proved to be the denotation of its implementation Dsoc in Figure 3. The proof is done
by considering an arbitrary context N and its concretisation (X, c) according to Def-
inition 7 and showing that Fsoc(N) = c. The constraints (8)–(12) make the required
reasoning mostly mechanical and therefore we defer the easy proof to [13, §D] and only
illustrate the correspondence between Dsoc and Fsoc on examples.

The function Fsoc is defined recursively using the following operation that selects
a subcontext of a given event in a context, analogously to the ctxt operation on execu-
tions (4) from §3.2. For a partial context M and an event e ∈M.E, we let

ctxt(M, e) = (M.aop(e), E, (M.aop)|E , (M.vis)|E , (M.ar)|E),

where E = (M.vis)−1(e). Then

Fsoc(get(a),M) =

({b | ∃e ∈ (M.E). (M.aop(e) = accept((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)) ∧
(∀f ∈ (M.E). (M.aop(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M,f))

=⇒ f
vis−→ e)},

{b | ∃e ∈ (M.E). (M.aop(e) = request(b, a)) ∧ Fsoc(ctxt(M, e)) ∧
(∀f ∈ (M.E). (M.aop(f)∈ (accept | reject)((b, a) | (a, b)))∧Fsoc(ctxt(M,f))

=⇒ f
vis−→ e)});

Fsoc(accept(b, a),M) = (b ∈ snd(Fsoc(get(a),M))).

The results of request, reject and breakup are defined similarly to accept. For
brevity, we use the notation (G1 | G2) above to denote the set arising from picking
eitherG1 orG2 as the subexpression of the expression where it occurs. Even though the
definition looks complicated, its conceptual idea is simple and has a temporal flavour.
Our definition takes into account that: after breaking up, users can become friends again;
and sometimes data type operations are unsuccessful, in which case they return false.
According to the two components of Fsoc(get(a),M):

request(b,a)

accept(b,a)

e0: get(a): ({b},∅)

request(b,a) ωra.add(b) ωra.add(b)

ωra.remove(b)

ωfa.get: {b}

ωfa.add(b)

ωra.get:
(a) {{b} if ωra is AWset

∅ if ωra is RWset

ωfa.add(b) ωfa.add(b)

ωfa.remove(b)

ωfa.get:{{b} if ωfa is AWset
∅ if ωfa is RWset

request(b,a)

accept(b,a)

e0: get(a): (∅,∅)

request(b,a)

(b)

breakup(b,a)

accept(b,a)

request(a,b)

accept(a,b)

e0: get(a): ({b},∅)

request(b,a) ωrb.add(a) ωra.add(b)

ωrb.remove(a)

ωra.get: ∅

ωra.remove(b)

(c)

Fig. 7. (Left) Coarse-grained contexts of the social graph data type together with the result that
Fsoc gives on them. (Right) Relevant events of the fine-grained executions of the implementation
in Figure 3 resulting from concretising the contexts according to Definition 7. We use the same
conventions as in Figure 5.

1. a’s friends are the accounts b with a successful accept operation between a and
b such that any successful breakup between them was in its past, as formalised
by visibility. We determine whether an operation was successful by calling Fsoc

recursively on its subcontext.
2. a’s requesters are the accounts b with a successful request(b, a) operation such

that any successful accept or reject between a and b was in its past.

This specifies the behaviour of the data type while abstracting from its implementation,
thereby enabling modular reasoning about programs using it (§4.3).

Our specification Fsoc can be used to analyse the behaviour of the implementation
in Figure 3. By a simple unrolling of the definition of Fsoc, it is easy to check that the
two sets returned by Fsoc(get(a),M) are disjoint and, hence, the invariant (2) in §2
holds; (1) can be checked similarly. Also, since Fsoc returns ({b}, ∅) on the context in
Figure 5(a), when the same friendship request is concurrently accepted and rejected,
the accept wins. Different behaviour could also be reasonable; the decision ultimately
depends on application requirements.

We now illustrate the correspondence between Dsoc and Fsoc on examples and, on
the way, show that our coarse-grained semantics lets one understand how the choice
of conflict-resolution policies on constituent objects affects the policy of the composite

data type. First, we argue that making requesters remove-wins in Figure 3 is crucial
for preserving the integrity invariant (2) and satisfying Fsoc. Indeed, consider the sce-
nario shown in Figure 7(a). Here two users managing the same account b concurrently
issue friendship requests to a, which initially sees only one of them. If requesters were
add-wins, the accept by a would affect only the request that it sees. The remaining
request would eventually propagate to all replicas in the system, and the calls to get in
the implementation would thus return b as being both a friend and a requester of a’s,
violating (2). The remove-wins policy of requesters ensures that, when a user accepts
or rejects a request, this also removes all identical requests issued concurrently.

If we made friends add-wins, this would make the data type behave differently,
but sensibly, as illustrated in Figure 7(b). Here we again have two concurrently issued
requests from b to a. The account a may also be managed by multiple users, which
concurrently accept the requests they happen to see. One of the users then immedi-
ately breaks up with a. Since friends are remove-wins, this cancels the addition of b
to friends[a] (i.e., ωfa) resulting from the concurrent accept by the other user; thus, b
ends up not being a’s friend, as prescribed by Fsoc. Making friends add-wins would
result in the reverse outcome, and Fsoc would have to change accordingly. Thus, the
conflict-resolution policy on friends determines the way conflicts between accept and
breakup are resolved.

Finally, if users a and b issue friendship requests to each other concurrently, a de-
cision such as an accept taken on one of them will also affect the other, as illustrated
in Figure 7(c). To handle this situation without violating (2), accept removes not only
the request it is resolving, but also the symmetric one.

6 Fine-grained Language Semantics, Soundness and Completeness

To justify that the coarse-grained semantics from §4 is sensible, we relate it to a fine-
grained semantics that follows the standard way of defining language semantics on
weak consistency models [9]. Unlike the coarse-grained semantics, the fine-grained
one is defined non-compositionally: it considers only certain complete programs and
defines the denotation of a program as a whole, without separately defining denotations
of composite data types in it. This denotation is computed using histories that record
all operations on all primitive objects comprising the composite data types in the pro-
gram; hence, the name fine-grained. The semantics includes those histories that can be
produced by the program in the session-local semantics (§4.1) and are allowed by the
semantics of the store managing the primitive objects the program uses (§3).

We state the correspondence between the coarse-grained and fine-grained seman-
tics as an equivalence of the externally-observable behaviour of a program in the two
semantics. Let us fix a variable xio ∈ OVar and an object io ∈ Obj used to inter-
pret xio. A program P is complete if ∅ | xio : {oio} ` P . The operation oio on xio
models a combined user input-output action, rather than an operation on the store, and
the externally-observable behaviour of a complete program P is given by operations
on xio it performs. Formally, for a history H let observ(H) be its projection to events
on io: {e ∈ H | H.obj(e) = io}. We lift observ to sets of histories pointwise. Then
we define the set of externally-observable behaviours of a complete program P in the

coarse-grained semantics of §4 as JP KCG = observ(JP K([], [xio : io], [])). Note that our
semantics does not restrict the values returned by oio, thus accepting any input.

To define the fine-grained semantics of a complete program P , we flatten P by in-
lining composite data type definitions using a series of reductions −→ on programs
(defined shortly). Applying the reductions exhaustively yields programs with only ob-
jects of primitive data types, which have the following normal form:

P̄ ::= C1 ‖ . . . ‖ Cn | let x = new B in P̄

Given a complete program P , consider the unique P̄ such that P −→∗ P̄ and
P̄ 6−→ . Then we define the denotation of P in the fine-grained semantics by the set
of externally-observable behaviours that P̄ produces when interacting with a causally
consistent store managing the primitive objects it uses. To formalise this, we reuse the
definition of the coarse-grained semantics and define the denotation of P in the fine-
grained semantics as JP KFG = JP̄ KCG. Since P̄ contains only primitive data types, this
does not use the composite data type denotation of §4.2.

We now define the reduction −→. Let Comm be the set of commands C in Fig-
ure 2. We use an operator subst that takes a mapping S : OVar × Op ⇀ Comm and a
command C or a program P , and replaces invocations of object operations in C or P
according to S. The key clauses defining subst are as follows:

subst(S, v = x.o(G)) = if ((x, o) 6∈ dom(S)) then (v = x.o(G))

else (atomic {var v1. var v2. v1 = G; (S(x, o)[v1/vin, v2/vout]); v = v2})
subst(S, let x = new T in P) = let x = new T in subst(S|¬x, P)

subst(S, let α = T in P) = let α = T in subst(S, P)

subst(S,C1 ‖ . . . ‖ Cn) = subst(S,C1) ‖ . . . ‖ subst(S,Cn)

Here v1, v2 are fresh ordinary variables, and S|¬x denotes S with its domain restricted
to (OVar \ {x})×Op. Applying subst to an assignment command does not change the
command, and applying it to all others results in recursive applications of subst to their
subexpressions. Then the relation −→ is defined as follows:

P ::= [−] | let x = new T in P | let α = T in P
P[let α = T in P] −→ P[P [T/α]]

P[let x = new (let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O) in P]

−→ P[let {xj = new Tj}j=1..m in subst({(x, o)7→Co | o ∈ O}, P)],

where xj do not occur in P . The first reduction rule replaces data-type variables by their
definitions, and the second defines the semantics of composite operations via inlining.

Our central technical result is that the coarse-grained semantics of §4 is sound
and complete with respect to the fine-grained semantics presented here: the sets of
externally-observable behaviours of programs in the two semantics coincide.

THEOREM 10 For every complete program P we have JP KFG = JP KCG.

We give a (highly nontrivial) proof in [13, §C]. The theorem allows us to reason about
programs using the coarse-grained semantics, which enables granularity abstraction and

modular reasoning (§4.3). It also implies that our denotational semantics is adequate,
i.e., can be used to prove the observational equivalence of two data type implementa-
tions D1 and D2: if JD1K = JD2K, then JC[D1]KFG = JC[D2]KFG for all contexts C of
the form P[let α = [−] in P]. Note that both soundness and completeness are needed
to imply this property.

7 Related Work

One of the classical questions of data abstraction is: how can we define the semantics
of a data type implementation that abstracts away the implementation details, includ-
ing a particular choice of data representation? Our results can be viewed as revisiting
this question, which has so far been investigated in the context of sequential [14] and
shared-memory concurrent [11, 24] programs, in the emerging domain of eventually
consistent distributed systems. Most of the work on data abstraction for concurrency
has considered a strongly consistent setting [11, 24]. Thus, it usually aimed to achieve
atomicity abstraction, which allows one to pretend that a composite command takes
effect atomically throughout the system. Here we consider data abstraction in the more
challenging setting of weak consistency and achieve a weaker and more subtle guaran-
tee of granularity abstraction: although our coarse-grained semantics represents com-
posite operations by single events, these events are still subject to anomalies of causal
consistency, with different replicas being able to see the events at different times.

We are aware of only a few previous data abstraction results for weak consis-
tency [15, 7, 5]. The most closely related is the one for the C/C++ memory model by
Batty et al. [5]. Like the consistency model we consider, the C/C++ model is defined
axiomatically, which leads to some similarities in the general approach followed in [5]
and in this paper. However, other features of the settings considered are different. First,
we consider arbitrary replicated data types, whereas, as any model of a shared-memory
language, the C/C++ one considers only registers with the last-writer-wins conflict-
resolution policy. Second, the artefacts related during abstraction in [5] and in this paper
are different. Instead of composite replicated data types, [5] considers libraries, which
encapsulate last-writer-wins registers and operations accessing them implemented by
arbitrary code without using transactions. A specification of a library is then just an-
other library, but with operations implemented using atomic blocks reminiscent of our
transactions. Hence, a single invocation of an operation of a specification library is still
represented by multiple events and therefore [5] does not support granularity abstrac-
tion to the extent achieved here. Our work can roughly be viewed as starting where [5]
left off, with composite constructions whose operations are implemented using transac-
tions, and specifying their behaviour more declaratively with replicated data type spec-
ifications over contexts of coarse-grained events. It is thus possible that our approach
can be adapted to give more declarative specifications to C/C++ libraries.

Researchers and developers have often implemented complex objects with domain-
specific conflict resolution policies inside replicated stores [21], which requires dealing
with low-level details, such as message exchange between replicas. Burckhardt et al. [9]
also proposed a method for proving the correctness of such replicated data type imple-
mentations with respect to specifications of Definition 2. Our results show that, using

causally consistent transactions, complex domain-specific objects can often be imple-
mented as composite replicated data types, using a high-level programming model to
compose replicated objects and their conflict-resolution policies. Furthermore, due to
the granularity abstraction we established, the resulting objects can be viewed as no dif-
ferent from those implemented inside the store. The higher-level programming model
we consider makes our proof method significantly different from that of Burckhardt et
al.

Partial orders, such as event structures [19] and Mazurkiewicz traces [20], have been
used to define semantics of concurrent or distributed programs by explicitly expressing
the dependency relationships among events such programs generate. Our results extend
this line of semantics research by considering new kinds of relations among events,
describing computations of eventually consistent replicated stores, and studying how
consistency axioms on these relations interact with the granularity abstraction for com-
posite replicated data types.

8 Conclusion

In this paper we have proposed the concept of composite replicated data types, which
formalises a common way of organising applications on top of eventually consis-
tent stores. We have presented a coarse-grained denotational semantics for these data
types that supports granularity abstraction: the semantics allows us to abstract from
the internals of a composite data type implementation and pretend that it represents a
single monolithic object, which simplifies reasoning about client programs. We have
also shown that our semantics is sound and complete with respect to a standard non-
compositional semantics.

One important derivative of our semantics is a mechanism for specifying composite
data types where we regard all operations of these data types as atomic, and describe
their return values for executions that consist of such atomic operations. As our sound-
ness and completeness results show, this mechanism is powerful enough to capture all
essential aspects of composite replicated data types. Using a nontrivial example, we
have illustrated how the denotation of a data type in our semantics specifies its be-
haviour in tricky situations and thereby lets one understand the consequences of differ-
ent design decisions in its implementation.

As we explained in §1, developing correct programs on top of eventually consis-
tent stores is a challenging yet unavoidable task. Our results mark the first step towards
providing developers with methods and tools for specifying and verifying programs in
this new programming environment and expanding the rich theories of programming
languages, such as data abstraction, to this environment. Even though our results were
developed for a particular popular variant of eventual consistency—causally consistent
transactions—we hope that in the future the results can be generalised to other consis-
tency models with similar formalisations [8, 3]. Another natural future direction is to
use our coarse-grained semantics to propose a logic for reasoning about composite data
types symbolically.

References
1. Microsoft TouchDevelop. https://www.touchdevelop.com/.
2. D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP is only

part of the story. IEEE Computer, 2012.
3. P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly Avail-

able Transactions: virtues and limitations. In VLDB, 2014.
4. P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and beyond.

CACM, 56(5), 2013.
5. M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concurrency. In POPL,

2013.
6. A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero, V. Balegas, and

S. Duarte. Semantics of eventually consistent replicated sets. In DISC, 2012.
7. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on

the TSO memory model. In ESOP, 2012.
8. S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual consistency. Technical

Report MSR-TR-2013-39, Microsoft, 2013.
9. S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: specification,

verification, optimality. In POPL, 2014.
10. S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent transactions.

In ESOP, 2012.
11. I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.

Theor. Comput. Sci., 411(51-52), 2010.
12. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2), 2002.
13. A. Gotsman and H. Yang. Composite replicated data types (extended version). Available

from http://software.imdea.org/∼gotsman, 2015.
14. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1, 1972.
15. R. Jagadeesan, G. Petri, C. Pitcher, and J. Riely. Quarantining weakness - compositional

reasoning under relaxed memory models (extended abstract). In ESOP, 2013.
16. C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke. Making geo-

replicated systems fast if possible, consistent when necessary. In OSDI, 2012.
17. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for eventual:

scalable causal consistency for wide-area storage with COPS. In SOSP, 2011.
18. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger semantics for low-

latency geo-replicated storage. In NSDI, 2013.
19. M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and domains. In

Semantics of Concurrent Computation, 1979.
20. M. Nielsen, V. Sassone, and G. Winskel. Relationships between models of concurrency. In

REX School/Symposium, 1993.
21. M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Conver-

gent and Commutative Replicated Data Types. Technical Report 7506, INRIA, 2011.
22. M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data

types. In SSS, 2011.
23. Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated

systems. In SOSP, 2011.
24. A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-style reasoning in a

logic for higher-order concurrency. In ICFP, 2013.
25. M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero, M. Shapiro, and N. Preguiça.

SwiftCloud: Fault-tolerant geo-replication integrated all the way to the client machine. Tech-
nical Report 8347, INRIA, 2013.

