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Abstract
Modern distributed systems often rely on databases that achieve scalability by providing only
weak guarantees about the consistency of distributed transaction processing. The semantics
of programs interacting with such a database depends on its consistency model, defining these
guarantees. Unfortunately, consistency models are usually stated informally or using disparate
formalisms, often tied to the database internals. To deal with this problem, we propose a frame-
work for specifying a variety of consistency models for transactions uniformly and declaratively.
Our specifications are given in the style of weak memory models, using structures of events and
relations on them. The specifications are particularly concise because they exploit the property
of atomic visibility guaranteed by many consistency models: either all or none of the updates
by a transaction can be visible to another one. This allows the specifications to abstract from
individual events inside transactions. We illustrate the use of our framework by specifying several
existing consistency models. To validate our specifications, we prove that they are equivalent
to alternative operational ones, given as algorithms closer to actual implementations. Our work
provides a rigorous foundation for developing the metatheory of the novel form of concurrency
arising in weakly consistent large-scale databases.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Replication, Consistency models, Transactions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.58

1 Introduction

To achieve availability and scalability, modern distributed systems often rely on replicated
databases, which maintain multiple replicas of shared data. The database clients can ex-
ecute transactions on the data at any of the replicas, which communicate changes to each
other using message passing. For example, large-scale Internet services use data replicas in
geographically distinct locations, and applications for mobile devices keep replicas locally as
well as in the cloud to support offline use. Ideally, we want the concurrent and distributed
processing in a replicated database to be transparent, as formalised by the classical notion
of serialisability [19]: the database behaves as if it executed transactions serially on a non-
replicated copy of the data. However, achieving this ideal requires extensive coordination
between replicas, which slows down the database and even makes it unavailable if network
connections between replicas fail [1]. For this reason, nowadays replicated databases of-
ten provide weaker consistency guarantees, which allow non-serialisable behaviours, called
anomalies. For example, consider the following program issuing transactions concurrently:

txn {x.write(post); y.write(empty) } ‖ txn {u = x.read(); y.write(comment) }
‖ txn { v = x.read(); w = y.read() }

(1)

where x, y are database objects and u, v, w local variables. In some databases the above
program can execute so that the last transaction observes the comment, but not the post:
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u = post, v = empty, w = comment. This result cannot be obtained by executing the three
transactions in any sequence and, hence, is not serialisable. In an implementation it may
arise if the first two transactions are executed at a replica r, and the third one at another
replica r′, and the messages carrying the updates by the first two transactions arrive to r′
out of order.

The semantics of programs interacting with a replicated database thus depends on its
consistency model, restricting the anomalies it can exhibit and, as a consequence, the pos-
sible performance optimisations in its implementation. Recent years have seen a plethora
of proposals of consistency models for replicated databases [4, 6, 12, 13, 18, 20, 23] that
make different trade-offs between consistency and performance. Unfortunately, these subtle
models are usually specified informally or using disparate formalisms, often tied to database
internals. Whereas some progress in formalising the consistency models has been recently
made for replicated databases without transactions [11, 12], the situation is worse for data-
bases providing these. The lack of a uniform specification formalism represents a major
hurdle in developing the metatheory of the novel form of concurrency arising in weakly
consistent replicated databases and, in particular, methods for formal reasoning about ap-
plication programs using them.

To deal with this problem, we propose a framework to uniformly specify a variety of
modern transactional consistency models. We apply the framework to specify six existing
consistency models for replicated databases; the results are summarised in Figure 1, page 6.
Specifications in our framework are declarative, i.e., they do not refer to the database intern-
als and thus allow reasoning about the database behaviour at a higher abstraction level. To
achieve this, we take an axiomatic approach similar to the one used to define the semantics
of weak memory models of multiprocessors and shared-memory programming languages [3]:
our specifications model database computations by abstract executions, which are structures
of events and relations on them, reminiscent of event structures [25]. For example, Fig-
ure 3(a), page 6 gives an execution that could arise from the program (1). The boxes named
T1, T2 and T3 depict transactions, which are sequences of events ordered by the program
order po, reflecting the program syntax. The visibility edges T1

VIS−−→ T2 and T2
VIS−−→ T3 mean

that the transaction T2 (T3) is aware of the updates made by T1 (T2). Consistency models
are specified by consistency axioms, constraining abstract executions; e.g., a consistency
axiom may require the visibility relation to be transitive and thereby disallow the execution
in Figure 3(a).

The key observation we exploit in our framework is that modern consistency models for
replicated databases usually guarantee atomic visibility: either all or none of the events in a
transaction can be visible to another transaction; it is the flexibility in when a transaction
becomes visible that leads to anomalies. Thanks to atomic visibility, in abstract executions
we can use relations on whole transactions (such as VIS in Figure 3(a)), rather than on
separate events inside them, thereby achieving particularly concise specifications. We further
illustrate the benefits of this form of the specifications by exploiting it to obtain sufficient
and necessary conditions for observational refinement [15] between transactions. This allows
replacing a transaction in an abstract execution by another one without invalidating the
consistency axioms of a given model. One can think of our conditions as characterising the
optimisations that the database can soundly perform inside a transaction due to its atomic
visibility.

To ensure that our declarative axiomatic specifications indeed faithfully describe the
database behaviour, we prove that they are equivalent to alternative operational ones, given
as algorithms closer to actual implementations (Theorem 6, §4). This correspondence also
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highlights implementation features that motivate the form of the consistency axioms.
Our work systematises the knowledge about consistency models of replicated databases

and provides insights into relationships between them (§3). The proposed specification
framework also gives a basis to develop methods for reasoning about application programs
using weakly consistent databases. Finally, our framework is an effective tool for exploring
the space of consistency models, because their concise axiomatic specifications allow easily
experimenting with alternative designs. In particular, our formalisation naturally suggests
a new consistency model (§3).

2 Abstract Executions

We consider a database storing objects Obj = {x, y, . . .}, which for simplicity we assume to be
integer-valued. Clients interact with the database by issuing read and write operations on
the objects, grouped into transactions. We let Op = {read(x, n), write(x, n) | x ∈ Obj, n ∈
Z} describe the possible operation invocations: reading a value n from an object x or writing
n to x.

To specify a consistency model, we need to define the set of all client-database interactions
that it allows. We start by introducing structures for recording such interactions in a
single database computation, called histories. In these, we denote operation invocations
using history events of the form (ι, o), where ι is an identifier from a countably infinite
set EventId and o ∈ Op. We use e, f, g to range over history events. We let WEventx =
{(ι, write(x, n)) | ι ∈ EventId, n ∈ Z}, define the set REventx of read events similarly, and
let HEventx = REventx ∪WEventx. A relation is a total order if it is transitive, irreflexive,
and relates every two distinct elements one way or another.

I Definition 1. A transaction T, S, . . . is a pair (E, po), where E ⊆ HEvent is a finite,
non-empty set of events with distinct identifiers, and the program order po is a total order
over E. A history H is a (finite or infinite) set of transactions with disjoint sets of event
identifiers.

All transactions in a history are assumed to be committed: to simplify presentation, our
specifications do not constrain values read inside aborted or ongoing transactions.

To define the set of histories allowed by a given consistency model, we introduce ab-
stract executions, which enrich histories with certain relations on transactions, declaratively
describing how the database processes them. Consistency models are then defined by con-
straining these relations. We call a relation prefix-finite, if every element has finitely many
predecessors in the transitive closure of the relation.

I Definition 2. An abstract execution is a triple A = (H,VIS,AR) where:
visibility VIS ⊆ H×H is a prefix-finite, acyclic relation; and
arbitration AR ⊆ H×H is a prefix-finite, total order such that AR ⊇ VIS.

We often write T VIS−−→ S in lieu of (T, S) ∈ VIS, and similarly for AR. Figure 3(a)
gives an execution corresponding to the anomaly explained in §1. Informally, T VIS−−→ S

means that S is aware of T , and thus T ’s effects can influence the results of operations
in S. In implementation terms, this may be the case if the updates performed by T have
been delivered to the replica performing S; the prefix-finiteness requirement ensures that
there may only be finitely many such transactions T . We call transactions unrelated by
visibility concurrent. The relationship T AR−−→ S means that the versions of objects written
by S supersede those written by T ; e.g., comment supersedes empty in Figure 3(a). The
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constraint AR ⊇ VIS ensures that writes by a transaction T supersede those that T is aware
of; thus AR essentially orders writes only by concurrent transactions. In an implementation,
arbitration can be established by assigning timestamps to transactions.

A consistency model specification is a set of consistency axioms Φ constraining execu-
tions. The model allows those histories for which there exists an execution that satisfies the
axioms:

HistΦ = {H | ∃VIS,AR. (H,VIS,AR) |= Φ}. (2)

Our consistency axioms do not restrict the operations done by the database clients. We can
obtain the set of histories produced by a particular program interacting with the database,
such as (1), by restricting the above set, as is standard in weak memory model definitions [7].

3 Specifying Transactional Consistency Models

We now apply the concepts introduced to define several existing consistency models; see
Figures 1-3. For a total order R and a set A, we let maxR(A) be the element u ∈ A such
that ∀v ∈ A. v = u ∨ (v, u) ∈ R; if A = ∅, then maxR(A) is undefined. In the following,
the use of maxR(A) in an expression implicitly assumes that it is defined. For a relation
R ⊆ A×A and an element u ∈ A, we let R−1(u) = {v | (v, u) ∈ R}. We denote the sequential
composition of relations R1 and R2 by R1; R2. We write _ for a value that is irrelevant and
implicitly existentially quantified.

Baseline consistency model: Read Atomic. The weakest consistency model we consider,
Read Atomic (Figure 1), is defined by the axioms Int and Ext (Figure 2), which determine
the outcomes of reads in terms of the visibility and arbitration relations. Consistency models
stronger than Read Atomic are defined by adding axioms that constrain these relations. The
internal consistency axiom Int ensures that, within a transaction, the database provides
sequential semantics: a read from an object returns the same value as the last write to or
read from this object in the transaction. In particular, Int guarantees that, if a transaction
writes to an object and then reads the object, then it will observe its last write. The axiom
also disallows so-called unrepeatable reads: if a transaction reads an object twice without
writing to it in-between, it will read the same value in both cases.

If a read is not preceded in the program order by an operation on the same object,
then its value is determined in terms of writes by other transactions using the external
consistency axiom Ext. The formulation of Ext relies on the following notation, defining
certain attributes of a transaction T = (E, po). We let T ` Write x : n if T writes to x and
the last value written is n: maxpo(E ∩WEventx) = (_, write(x, n)). We let T ` Read x : n
if T makes an external read from x, i.e., one before writing to x, and n is the value returned
by the first such read: minpo(E ∩ HEventx) = (_, read(x, n)). In this case, Int ensures
that n will be the result of all external reads from x in T . According to Ext, the value
returned by an external read in T is determined by the transactions VIS-preceding T that
write to x: if there are no such transactions, then T reads the initial value 0; otherwise it
reads the final value written by the last such transaction in AR. (In examples we sometimes
use initial values other than 0.) For example, the execution in Figure 3(a) satisfies Ext;
if it included the edge T1

VIS−−→ T3, then Ext would force the read from x in T3 to return
post. The axiom Ext implies the absence of so-called dirty reads: a committed transaction
cannot read a value written by an aborted or an ongoing transaction (which are not present
in abstract executions), and a transaction cannot read a value that was overwritten by the
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transaction that wrote it (ensured by the definition of T ` Write x : n). Finally, Ext
guarantees atomic visibility of a transaction: either all or none of its writes can be visible to
another transaction. For example, Ext disallows the execution in Figure 3(b) and, in fact,
any execution with the same history. This illustrates a fractured reads anomaly: T1 makes
Alice and Bob friends, but T2 observes only one direction of the friendship relationship.
Thus, the consistency guarantees provided by Read Atomic are useful because they allow
maintaining integrity invariants, such as the symmetry of the friendship relation.

Stronger consistency models. Even though Read Atomic ensures that all writes by a
transaction become visible together, it does not constrain when this happens. This leads
to a number of anomalies, including the causality violation shown in Figure 3(a). We now
consider stronger consistency models that provide additional guarantees about the visibility
of transactions. We specify the first model of causal consistency by requiring VIS to be
transitive (TransVis). This implies that transactions ordered by VIS (such as T1 and T2 in
Figure 3(a)), are observed by others (such as T3) in this order. Hence, the axiom TransVis
disallows the anomaly in Figure 3(a).

Both Read Atomic and causal consistency can be implemented without requiring any
coordination among replicas [6, 18]: a replica can decide to commit a transaction without
consulting other replicas. This allows the database to stay available even during network
failures. However, the above consistency models allow the lost update anomaly illustrated by
the execution in Figure 3(c), which satisfies the axioms of causal consistency. This execution
could arise from the code, also shown in the figure, that uses transactions T1 and T2 to make
deposits into an account. The two transactions read the initial balance of the account and
concurrently modify it, resulting in one deposit getting lost. The next consistency model
we consider, parallel snapshot isolation, prohibits such anomalies in exchange for requiring
replica coordination in its implementations [23]. We specify it by strengthening causal
consistency with the axiom NoConflict, which does not allow transactions writing to the
same object to be concurrent. This rules out any execution with the history in Figure 3(c):
it forces T1 and T2 to be ordered by VIS, so that they cannot both read 0 from acct.

The axiom TransVis in causal consistency and parallel snapshot isolation guarantees
that VIS-ordered transactions are observed by others in this order (cf. Figure 3(a)). However,
the axiom allows two concurrent transactions to be observed in different orders, as illustrated
by the long fork anomaly in Figure 3(d), allowed by both models. Concurrent transactions
T1 and T2 write to x and y, respectively. A transaction T3 observes the write to x, but not
y, and a transaction T4 observes the write to y, but not x. Thus, from the perspectives of
T3 and T4, the writes of T1 and T2 happen in different orders.

The next pair of consistency models that we consider disallow this anomaly. We spe-
cify prefix consistency and snapshot isolation by strengthening causal consistency, respect-
ively, parallel snapshot isolation, with the requirement that all transactions become visible
throughout the system in the same order given by AR. This is formalised by the axiom
Prefix: if T observes S, then it also observes all AR-predecessors of S. Since AR ⊇ VIS,
Prefix implies TransVis. The axiom Prefix disallows any execution with the history in
Figure 3(d): T1 and T2 have to be related by AR one way or another; but then by Prefix,
either T4 has to observe post1 or T3 has to observe post2 .

Even though consistent prefix and snapshot isolation ensure that transactions become
visible to others in the same order, they allow this to happen with a delay, caused by
asynchronous propagation of updates in implementations. This leads to the write skew
anomaly shown in Figure 3(e). Here each of T1 and T2 checks that the combined balance
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Φ Consistency model Axioms (Figure 2) Fractured Causality Lost Long Write
reads violation update fork skew

RA Read Atomic [6] Int, Ext 8 X X X X RA

CC

PSIPC

SI

SER

⊂
⊂⊂

⊂ ⊂
⊂

CC Causal Int, Ext, TransVis 8 8 X X X

consistency [12, 18]
PSI Parallel snapshot Int, Ext, TransVis, 8 8 8 X X

isolation [20, 23] NoConflict
PC Prefix consistency [13] Int, Ext, Prefix 8 8 X 8 X

SI Snapshot isolation [8] Int, Ext, Prefix, 8 8 8 8 X

NoConflict
SER Serialisability [19] Int, Ext, TotalVis 8 8 8 8 8

Figure 1 Consistency model definitions, anomalies and relationships.

∀(E, po) ∈ H. ∀e ∈ E.∀x, n. (e = (_, read(x, n)) ∧ (po−1(e) ∩ HEventx 6= ∅))
=⇒ maxpo(po−1(e) ∩ HEventx) = (_,_(x, n)) (Int)

∀T ∈ H. ∀x, n. T ` Read x : n =⇒
((VIS−1(T ) ∩ {S | S `Write x : _} = ∅ ∧ n = 0) ∨

maxAR(VIS−1(T ) ∩ {S | S `Write x : _}) `Write x : n) (Ext)

VIS is transitive (TransVis) AR; VIS ⊆ VIS (Prefix) VIS is total (TotalVis)

∀T, S ∈ H. (T 6= S ∧ T `Write x : _ ∧ S `Write x : _) =⇒ (T VIS−−→ S ∨ S VIS−−→ T ) (NoConflict)

Figure 2 Consistency axioms, constraining an execution (H,VIS,AR).

(a) Causality violation

T1 T2 T3
VIS

AR

VIS

AR

AR

write(x, post) write(y, empty) read(x, post) write(y, comment) read(x, empty) read(y, comment)
po po po

(b) Fractured reads

write( ,Bob)xAlice write( ,Alice)xBob read( ,Bob)xAlice read( , empty)xBob

T1 T2
po poVIS

(c) Lost update (d) Long fork

AR

VIS

VIS

acct := acct + 50

acct := acct + 25

T1

T2

T3read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 25)

read(acct, 25)

po

po

T1

T2

T3

T4

VIS

VIS

write(x, post1 ) read(x, post1 ) read(y, empty)
po

write(y, post2 ) read(x, empty) read(y, post2 )
po

(e) Write skew. Initially acct1 = acct2 = 60.

if (acct1 + acct2 > 100)
acct1 := acct1 - 100

if (acct1 + acct2 > 100)
acct2 := acct2 - 100

T1

T2

read(acct1, 60) read(acct2, 60) write(acct1,−40)

read(acct1, 60) read(acct2, 60) write(acct2,−40)

po po

po po

Figure 3 Executions illustrating anomalies allowed by different consistency models. The boxes
group events into transactions. We sometimes omit irrelevant AR edges.
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of two accounts exceeds 100 and, if so, withdraws 100 from one of them. Both transactions
pass the checks and make the withdrawals from different accounts, resulting in the combined
balance going negative. NoConflict allows the transactions to be concurrent, because they
write to different objects.

Write skew and all the other anomalies mentioned above are disallowed by the classical
consistency model of serialisability. Informally, a history is serialisable if the results of
operations in it could be obtained by executing its (committed) transactions in some total
order according to the usual sequential semantics. We formalise this in our framework by
the axiom TotalVis, which requires the visibility relation VIS to be total. Since we always
have AR ⊇ VIS, it is easy to see that there is no execution with the history in Figure 3(e)
and a total VIS that would satisfy Ext.

Ramifications. The above specifications demonstrate the benefits of using our framework.
First, the specifications are declarative, since they state constraints on database processing
in terms of VIS and AR relations, rather than the database internals. The specifications thus
allow checking whether a consistency model admits a given history solely in terms of these
relations, as per (2).

The declarative nature of our specifications also provides a better understanding of con-
sistency models. In particular, it makes apparent the relationships between different models
and highlights the main mechanism of strengthening consistency—mandating that more
edges be included into visibility.
I Proposition 3. The strict inclusions between the consistency models in Figure 1 hold.
The strictness of the inclusions in Figure 1 follows from the examples of histories in Figure 3.

Axiomatic specifications also provide an effective tool for designing new consistency mod-
els. For example, the existing consistency models do not include a counterpart of Read
Atomic obtained by adding the NoConflict axiom. Such an “Update Atomic” consistency
model would prevent lost update anomalies without having to enforce causal consistency (as
in parallel snapshot isolation), which incurs performance overheads [5]. Update Atomic
could be particularly useful when mixed with Read Atomic, so that the NoConflict axiom
apply only to some transactions specified by the programmer. This provides a lightweight
way of strengthening consistency where necessary.

Atomic visibility and observational refinement. Our specifications are particularly concise
because they are tailored to consistency models providing atomic visibility. With axioms Int
and Ext establishing this property, additional guarantees can be specified while abstracting
from the internal events in transactions: solely in terms of VIS and AR relations on whole
transactions and transaction attributes given by the `-judgements. To further illustrate the
benefits of this way of specification, we now exploit it to establish sufficient and necessary
conditions for when one transaction observationally refines another, i.e., we can replace it
in an execution without invalidating the consistency axioms. This notion is inspired by
that of testing preorders in process algebras [15]. We can think of it as characterising
the optimisations that the database can soundly perform inside the transaction due to its
atomic visibility. As it happens, the conditions we establish differ subtly depending on the
consistency model.

To formulate observational refinement, we introduce contexts X—abstract executions
with a hole [ ] that represents a transaction with an unspecified behaviour: X = (H ∪
{[ ]},VIS,AR), where VIS,AR ⊆ (H∪{[ ]})× (H∪{[ ]}) satisfy the conditions in Definition 2.
We can fill in the hole in the above context X by a transaction T , provided that the sets
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of event identifiers appearing in T and H are disjoint. This yields the abstract execution
X [T ] = (H∪ {T},VIS[[ ] 7→ T ],AR[[ ] 7→ T ]), where VIS[[ ] 7→ T ] treats T in the same way as
VIS treats [ ] and similarly for AR[[ ] 7→ T ] (we omit the formal definition to conserve space).
We say that a transaction T1 observationally refines a transaction T2 on the consistency
model Φ, written T1 vΦ T2, if ∀X .X [T1] |= Φ =⇒ X [T2] |= Φ.

I Theorem 4. Let T1, T2 be such that ({T1, T2}, ∅, ∅) |= Int. We have T1 vRA T2 if and
only if for all x, n:(
¬(T1 ` Read x : n) =⇒ ¬(T2 ` Read x : n)

)
∧
(
T1 `Write x : n ⇐⇒ T2 `Write x : n

)
.

For Φ ∈ {CC,PC,SER} we have T1 vΦ T2 if and only if for all x, n,m, l:(
¬(T1 ` Read x : n) =⇒ (¬(T2 ` Read x : n) ∧ (T1 `Write x : n ⇐⇒ T2 `Write x : n))

)
∧(

(T1 ` Read x : n ∧ (T1 `Write x : m =⇒ m = n)) =⇒ (T2 `Write x : l =⇒ l = n)
)
.

For Φ ∈ {SI,PSI} we have T1 vΦ T2 if and only if T1 vCC T2 and for all x, n:

¬(T1 `Write x : n) =⇒ ¬(T2 `Write x : n).

We prove the theorem in §A. In the case of Φ = RA, we prohibit T2 from reading more
objects than T1 or changing the values read by T1; however, it is safe for T2 to read less
than T1. We also require T1 and T2 to have the same sets of final writes. The case of
Φ ∈ {CC,PC} introduces two exception to the latter requirement. One exception is when
T1 reads an object and writes the same value to it. Then T2 may not change the value
written, but may omit the write. Another exception is when T1 reads an object, but does
not write to it. Then T2 can write the value read without invalidating the reads in the
context. This is disallowed when Φ ∈ {SI,PSI}.

4 Operational Specifications

To justify that our axiomatic specifications of weak consistency models indeed faithfully
describe the intended database behaviour, we now prove that they are equivalent to altern-
ative operational ones. These are given as algorithms that are close to actual implementa-
tions [6, 13, 18, 23], yet abstract from some of the more low-level features that such imple-
mentations have. We start by giving an operational specification of the weakest consistency
model we consider, Read Atomic. We then specify other models weaker than serialisabil-
ity by assuming additional guarantees about the communication between replicas in this
algorithm.

4.1 Operational Specification of Read Atomic

Informally, the idealised algorithm for Read Atomic operates as follows. The database con-
sists of a set of replicas, identified by RId = {r0, r1, . . .}, each maintaining a copy of all
objects. The set RId is infinite, to model dynamic replica creation. We assume that the
system is fully connected: each replica can broadcast messages to all others. All client oper-
ations within a given transaction are initially executed at a single replica (though operations
in different transactions can be executed at different replicas). For simplicity, we assume that
every transaction eventually terminates. When this happens, the replica decides whether
to commit or abort it. In the former case, the replica sends a message to all other replicas
containing the transaction log, which describes the updates done by the transaction. The
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replicas incorporate the updates into their state upon receiving the message. A transaction
log has the form t : ρ, where ρ ∈ {write(x, n) | x ∈ Obj, n ∈ N}∗ , UpdateList. This gives
the sequence of values written to objects and the unique timestamp t ∈ N of the transaction,
which is used to determine the precedence of different object versions (and thus implements
the AR relation in abstract executions). We denote the set of all sets of logs with distinct
timestamps by LogSet.

Every replica processes transactions locally without interleaving. This idealisation does
not limit generality, since all anomalies that would result from concurrent execution of
transactions at a single replica arise anyway because of the asynchronous propagation of
updates between replicas. The above assumption allows us to maintain the state of a replica
r in the algorithm by a pair (D, l) ∈ RState , LogSet× (UpdateList ] {idle}), where:

l is either the sequence of updates done so far by the (single) transaction currently
executing at r, or idle, signifying that no transaction is currently executing; and
D is the database copy of r, represented by the set of logs of transactions that have
committed at r or have been received from other replicas.

Then a configuration of the whole system (R,M) ∈ Config , (RId → RState) × LogSet is
described by the state R(r) of every replica r and the pool of messages M in transit among
replicas.

Formally, our algorithm is defined using the transition relation _: Config×LEvent×Config
in Figure 4, which describes how system configurations change in response to low-level events
from a set LEvent, describing actions by clients and message receipts by replicas. The set
LEvent consists of triples of the form (ι, r,o), where ι ∈ EventId is the event identifier, r ∈ RId
is the replica the event occurs at, and o is a low-level operation from the set

COp = {start, read(x, n), write(x, n), commit(t), abort, receive(t : ρ) |
x ∈ Obj, n ∈ Z, t ∈ N, ρ ∈ UpdateList}.

We use e, f ,g to range over low-level events.
According to _, when a client starts a transaction at a replica r (Start), the database

initialises the current sequence of updates to signify that a transaction is in progress. Since
a replica processes transactions serially, a transaction can start only if r is not already
executing a transaction. When a client writes n to an object x at a replica r (Write), the
corresponding record write(x, n) is appended to the current sequence of updates. This rule
can be applied only when r is not executing a transaction. A read of an object x at r (Read)
returns the value determined by a lastval function based on the transactions in r’s database
copy and the current transaction. For D′ ∈ LogSet we define lastval(x,D′) as the last value
written to x by the transaction with the highest timestamp among those in D′, or 0 if x is
not mentioned in D′. Since the timestamps of transactions in D′ are distinct, this defines
lastval(x,D′) uniquely. For brevity, we omit its formal definition. Note that (Read) implies
that a transaction always reads from its own writes and a snapshot of the database the
replica had at its start; the transaction is not affected by writes concurrently executing at
other replicas, thus ensuring the absence of unrepeatable reads (§3).

If a transaction aborts at a replica r (Abort), the current sequence of updates of r is
cleared. If the transaction commits (Commit), it gets assigned a timestamp t, and its log is
added to the message pool, as well as to r’s database copy. The timestamp t is chosen to
be greater than the timestamps of all the transactions in r’s database copy, which validates
the condition AR ⊇ VIS in Definition 2. The timestamp t also has to be distinct from any
timestamp assigned previously in the execution. The fact that (Commit) sends all updates
by a transaction in a single message ensures atomic visibility. Note that, in Read Atomic, a
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(Start)
e = (_, r, start)

(R[r 7→ (D, idle)],M)
e
_ (R[r 7→ (D, ε)],M)

(Write)
e = (_, r, write(x, n))

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ · write(x, n))],M)

(Read)
e = (_, r, read(x, n)) n = lastval(x,D ∪ {∞ : ρ})

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ)],M)

(Abort)
e = (_, r, abort)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, idle)],M)

(Commit)

e = (_, r, commit(t))
(∀r′, D′. R(r′) = (D′,_) =⇒ (t : _) /∈ D′) (∀t′. (t′ : _) ∈ D =⇒ t > t′)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D ∪ {t : ρ}, idle)],M ∪ {t : ρ})

(Receive)
e = (_, r, receive(t : ρ))

(R[r 7→ (D, idle)],M ∪ {(t : ρ)})
e
_ (R[r 7→ (D ∪ {(t : ρ)}, idle)],M ∪ {t : ρ})

Figure 4 Transition relation _: Config×LEvent×Config for defining the operational specification.
We let R[r 7→ u] be the function that has the same value as R everywhere except r, where it has
the value u; · denotes sequence concatenation, and ε the empty sequence.

(
e1 ∈ {(_, r, receive(t1 : _)), (_, r, commit(t1))} ∧ e2 = (_, r, commit(t2)) ∧ e1 ≺ e2 ∧ r 6= r′ ∧

f2 = (_, r′, receive(t2 : _))
)

=⇒
(
∃f1 ∈ {(_, r′, receive(t1 : _)), (_, r′, commit(t1))}. f1 ≺ f2

)
(CausalDeliv)(

e1 = (_,_, commit(t1)) ∧ e2 = (_,_, commit(t2)) ∧ e1 ≺ e2
)

=⇒ t1 < t2 (MonTS)(
g = (_, r, start) ∧ e2 ∈ {(_, r, commit(t2)), (_, r, receive(t2 : _))} ∧ f = (_,_, commit(t1))

∧ t1 < t2 ∧ e2 ≺ g
)

=⇒
(
∃e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))}. e1 ≺ g

)
(TotalDeliv)(

e1 = (_, r, write(x,_)) ∧ f1 = (_, r, commit(t1)) ∧ TSC(e1) = t1 ∧

e2 = (_, r′, write(x,_)) ∧ f2 = (_, r′, commit(t2)) ∧ TSC(e2) = t2 ∧ f2 ≺ f1 ∧ r 6= r′
)

=⇒
(
∃g ∈ E.g = (_, r, receive(t2 : _)) ∧ g ≺ f1

)
, (ConflictCheck)

where for e ∈ E we let

TSC(e) =


t, if ∃r. e ∈ {(_, r, read(_,_)), (_, r, write(_,_))} ∧

∃g ∈ E.g = (_, r, commit(t)) ∧
¬(∃f ∈ {(_, r, commit(_)), (_, r, abort)}. (e ≺ f ≺ g))

undefined, otherwise

Φ Constraints Φ Constraints Φ Constraints

RA None PSI (CausalDeliv), (ConflictCheck)
SI

(MonTS), (TotalDeliv),
CC (CausalDeliv) PC (MonTS), (TotalDeliv) (ConflictCheck)

Figure 5 Constraints on concrete executions C = (E,≺) required by various consistency models.
Free variables are universally quantified and range over the following domains: ei, f , fi,g ∈ E for
i = 1, 2; t1, t2 ∈ N; r, r′ ∈ RId.
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transaction can always commit; as we explain in the following, this is not the case for some
of the other consistency models. Finally, a replica r that is not executing a transaction can
receive a transaction log from the message pool (Receive), adding it to the database copy.

We define the semantics of Read Atomic by considering all sequences of transitions
generated by _ from an initial configuration where the log sets of all replicas and the
message pool are empty. We thereby consider all possible operations that clients could issue
to the database.

I Definition 5. Let (R0,M0) = (λr. (∅, idle), ∅). A concrete execution is a pair C = (E,≺),
where: E ⊆ LEvent; ≺ is a prefix-finite, total order on E; and if e1, e2, e3, . . . is the enumer-
ation of the events in E defined by ≺, then for some configurations (R1,M1), (R2,M2), . . . ∈
Config we have (R0,M0) e1_ (R1,M1) e2_ (R2,M2) e3_ . . .

4.2 Correspondence to Axiomatic Specifications and Other Models

We next show that the above operational specification indeed defines the semantics of Read
Atomic, and that stronger models can be defined by assuming additional guarantees about
communication between replicas. These guarantees are formalised by the constraints on
concrete executions in Figure 5; in implementations they would be ensured by distributed
protocols that our specifications abstract from.

We first map each concrete execution into a history, which includes only reads and writes
in its committed transactions. The history of C = (E,≺) is defined as follows:

history(C) =
{
Tt | {e ∈ E | TSC(e) = t} 6= ∅

}
, where Tt = (Et, pot) for

Et = {(ι,o) | ∃e ∈ E. e = (ι,_,o) ∧ TSC(e) = t};
pot = {(ι1,o1), (ι2,o2) | (ι1,o1), (ι2,o2) ∈ Et ∧ (ι1,_,o1) ≺ (ι2,_,o2)},

where TSC is defined in Figure 5. We lift the function history to sets of concrete executions
as expected.

I Theorem 6. For a consistency model Φ let ConcExecΦ be the set of concrete executions
satisfying the model-specific constraints in Figure 5. Then history(ConcExecΦ) = HistΦ.

Proof outline. We defer the full proof to §B. Here we sketch the argument for one set
inclusion (⊆) and, on the way, explain the constraints in Figure 5. Fix a Φ and let C =
(E,≺) ∈ ConcExecΦ. To show history(C) ∈ HistΦ we let A = (history(C),VIS,AR), where
AR = {(Tt1 , Tt2) | t1 < t2} and

VIS =
{

(Tt1 , Tt2) | ∃e1, e2 ∈ E.∃r. e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))} ∧
e2 = (_, r, commit(t2)) ∧ e1 ≺ e2

}
.

While AR merely lifts the order on timestamps to transactions, VIS reflects message delivery:
Tt1

VIS−−→ Tt2 if the effects of Tt1 have been incorporated into the state of the replica where
Tt2 is executed. We can show that any abstraction execution A constructed from a concrete
execution C as above satisfies Int and Ext, and hence, its history belongs to HistRA. The
constraints on a concrete execution C in Figure 5 ensure that the abstract execution A
constructed from it satisfies other axioms in Figure 2.

Constraint (CausalDeliv) implies the axiom TransVis, because it ensures that the mes-
sage delivery is causal [9]: if a replica r sends the log of a transaction t2 (event e2) after it
sends or receives the log of t1 (event e1), then every other replica r′ will receive the log of
t2 (event f2) only after it receives or sends the log of t1 (event f1).
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The axiom Prefix follows from constraints (MonTS) and (TotalDeliv). The constraint
(MonTS) requires that timestamps agree with the order in which transactions commit.
The constraint (TotalDeliv) requires that each transaction access a database snapshot that
is closed under adding transactions with timestamps (t1) smaller than the ones already
present in the snapshot (t2). In an implementation, the above constraints can be satisfied if
replicas communicate via a central server, which assigns timestamps to transactions when
they commit, and propagates their logs to replicas in the order of their timestamps [13].

The axiom NoConflict follows from the constraint (ConflictCheck), similar to that in
the original definitions of SI [8] and PSI [23]. The constraint allows a transaction t1 to
commit at a replica r (event f1) only if it passes a conflict detection check: if t1 updates
an object x (event e1) that is also updated by a transaction t2 (event e2) committed at
another replica r′ (event f2), then the replica r must have received the log of t2 (event g).
If this check fails, the only option left for the database is to abort t using the rule (Abort).
Implementing the check in a realistic system would require the replica r to coordinate with
others on commit [23]. �

The above operational specifications are closer to the intuition of practitioners [6, 13, 18,
23] and thus serve to validate our axiomatic specifications. However, they are more verbose
and reasoning about database behaviour using them may get unwieldy. It requires us to
keep track of low-level information about the system state, such as the logs at all replicas
and the set of messages in transit. We then need to reason about how the system state is
affected by a large number of possible interleavings of operations at different replicas. In
contrast, our axiomatic specifications (§3) are more declarative and, in particular, do not
refer to implementation-level details, such as message exchanges between replicas. These
specifications thereby facilitate reasoning about the database behaviour.

5 Related Work

Our specification framework builds on the axiomatic approach to specifying consistency
models, previously applied to weak shared-memory models [3] and eventual consistency [11,
12]. In particular, the visibility and arbitration relations were first introduced for specifying
eventual consistency and causally consistent transactions [12]. In comparison to prior work,
we handle more sophisticated transactional consistency models. Furthermore, our framework
is specifically tailored to transactional models with atomic visibility, by defining visibility
and arbitration relations on whole transactions as opposed to events. This avoids the need
to enforce atomic visibility explicitly in all axioms [12], thus simplifying specifications.

Adya [2] has previously proposed specifications for weak consistency models of transac-
tions in classical databases. His framework also broadly follows the axiomatic specification
approach, but uses relations different from visibility and arbitration. Adya’s work did not ad-
dress the variety of consistency models for large-scale databases proposed recently, while our
framework is particularly appropriate for these. On the other hand, Adya handled transac-
tional consistency models that do not guarantee atomic visibility, such as Read Committed,
which we do not address. Adya also specified snapshot isolation (SI), which is a weak con-
sistency model older than the others we consider. However, his specification is low-level,
since it introduces additional events to denote the times at which a transaction takes a snap-
shot of the database state. Saeida Ardekani et al. [21] have since proposed a higher-level
specification for snapshot isolation; this specification still uses relations on individual events
and thus does not exploit atomic visibility.

Partial orders have been used to define semantics of concurrent and distributed programs,
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e.g., by event structures [25]. Our results extend this research line by considering new
kinds of relations among events, appropriate to describe computations of weakly consistent
databases, and by relating the resulting abstract specifications to lower-level algorithms.

Prior work has investigated calculi with transactions communicating via message passing:
cJoin [10], TCCSm [16] and RCCS [14]. Even though replicated database implementations
and our operational specifications are also based on message passing, the database interface
that we consider allows client programs only to read and write objects. Thereby, it provides
the programs with an (imperfect) illusion of shared memory, and our goal was to provide
specifications for this interface that abstract from its message passing-based implementation.

6 Conclusion

We have proposed a framework for uniformly specifying transactional consistency models of
modern replicated databases. The axiomatic nature of our framework makes specifications
declarative and concise, with further simplicity brought by exploiting atomic visibility. We
have illustrated the use of the framework by specifying several existing consistency models
and thereby systematising the knowledge about them. We have also validated our axiomatic
specifications by proving their equivalence to operational specifications that are closer to
implementations.

We hope that our work will promote an exchange of ideas between the research com-
munities of large-scale databases and concurrency theory. In particular, our framework
provides a basis to develop techniques for reasoning about the correctness of application
programs using modern databases; this is the subject of our ongoing work.

Finally, axiomatic specifications are well-suited for systematically exploring the design
space of consistency models. In particular, insights provided by the specifications may sug-
gest new models, as we illustrated by the Update Atomic model in §3. This is likely to
help in the design of the sophisticated programming interfaces that replicated databases
are starting to provide to compensate for the weakness of their consistency models. For
example, so-called replicated data types [22] avoid lost updates by eventually merging con-
current updates without coordination between replicas, and sessions [24] provide additional
consistency guarantees for transactions issued by the same client. Finally, there are also
interfaces that allow the programmer to request different consistency models for different
transactions [17], analogous to fences in weak memory models [3]. In the future we plan to
generalise our techniques to handle the above features. We expect to handle replicated data
types by integrating our framework with their specifications proposed in [11], and to handle
sessions and mixed consistency models by studying additional constraints on the visibility
and arbitration relations. We believe that the complexity of database consistency models
and the above programming interfaces makes it indispensable to specify them formally and
declaratively. Our work provides the necessary foundation for achieving this.
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A Proof of Theorem 4

In the following, we adopt the notation discussed below. Given two sets of events E,F , we
let E eF = {e ∈ E | ∃ι.e = (ι,_)∧∃f ∈ F.f = (ι,_)} ∪ {f ∈ F | ∃ι.f = (ι,_)∧∃e ∈ E.e =
(ι,_)}. This is the sets of events belonging to either E of F , whose identifier identifies at
least one event in both sets.

Given a set of transactions H, we let H[] = H ∪ {[]}. Given a transaction T such that
T eT ′ = ∅ for any T ′ ∈ H, we define H[T ] = H∪{T}. Let R ⊆ H[]×H[], and a transaction
T such that for any T ′ ∈ H, T e T ′ = ∅. We define R[[] 7→ T ] = R|H∪{(T, T ′) | T ′ ∈
R([])} ∪ {(T ′, T ) | T ′ ∈ R−1([])}, where we recall that R|H is the restriction of R to the set
H. To maintain an easy notation, we will often write R[T ] in lieu of R[[] 7→ T ].

I Lemma 7. Let H be a set of transactions. If (H,AR,VIS) |= Int, then for any AR′, VIS′

and H′ ⊆ H we have that (H,AR′,VIS′) |= Int. Also, if H1,H2 are such that (H1,_,_) |=
Int, (H2,_,_) |= Int, then (H1 ∪H2,_,_) |= Int.

Proof. This is because neither AR, nor VIS, appear in the Definition of Int in Figure 2.
Also, Int is a property that quantifies over all transactions in a history H. J

I Lemma 8. Let T1, T2 be two transactions such that ({T2},_,_) |= Int. Then, for any
context X [] such that both X [T1],X [T2] are defined, X [T1] |= Int implies that X [T2] |= Int.

Proof. Let X = (H[],AR,VIS). Recall that H[T1] = H ∪ {T1}. Since X [T1] |= Int by hy-
pothesis, by Lemma 7 it follows that (H,_,_) |= Int. By hypothesis, ({T2},_,_) |=
Int, hence by Lemma 7 and the definition H[T2] = H ∪ {T2} again we get that
(H[T2],AR[T2],VIS[T2]) |= Int This last abstract execution is exactly X [T2]. J

I Definition 9. For any two transactions T1, T2, we write T1 v̂RA T2 if, for any x ∈ Obj
and n ∈ N,

if ¬(T1 ` Read x : n) then ¬(T2 ` Read x : n), and
T1 `Write x : n if and only if T2 `Write x : n.

I Proposition 10. Let X be a context, and let T1, T2 be two transactions such that T1 v̂RA
T2, and both X [T1],X [T2] are defined. If X [T1] |= Ext, then X [T2] |= Ext.

Proof. We let X = (H[],VIS,AR). We show that, for any T ∈ H[T2] such that T ` Read x :
n, either maxAR[T2](VIS[T2]−1(T ) ∩WEventx) = ∅ and n = 0, or maxAR[T2](VIS[T2]−1(T ) ∩
WEventx) `Write x : n.

Let then T ∈ H[T2] be such that T ` Read x : n; we distinguish two cases:
T = T2; note that (a) VIS[T1]−1(T1) = VIS[T2]−1(T2), and (b) AR[T1]−1(T1) =
AR[T2]−1(T2). Since T2 ` Read x : n, and because T1 v̂RA T2, it has to be the case
that T1 ` Read x : n. Also, X [T1] |= Ext by hypothesis, hence there are two possible
cases:

(VIS[T1]−1(T1)∩Write x) = ∅ and n = 0; In this case it is tirival to see that (a) above
implies (VIS[T2]−1(T2) ∩Write x) = ∅, and there is nothing to prove,
otherwise, let W = maxAR[T1](VIS[T1]−1(T1) ∩WEventx); since T1 ` Read x : n and
X [T1] |= Ext, then W ` Write x : n. Now it remains to note that (a) and (b) above
imply that maxAR[T2](VIS[T2]−1(T2) ∩WEventx) = W , hence there is nothing left to
prove;

T 6= T2. Let us distinguish two subcases:
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if (VIS[T1]−1(T ) ∩ WEventx) = ∅ then n = 0, because X [T1] |= Ext; note that
(VIS[T2]−1(T ) ∩ WEventx) ⊆ {T2}. In practice, we prove that it always has to be
the case that (VIS[T2]−1(T2) ∩WEventx) = ∅ by showing that T2 /∈ (VIS[T2]−1(T ) ∩
WEventx). Since (VIS[T1]−1(T ) ∩ WEventx) = ∅, either ¬(T1 ` Write x : _), or
¬(T1

VIS[T1]−−−−→ T . If ¬(T1 ` Write x : _), then ¬(T2 ` Write x : _) because T1 v̂RA

T2; if¬(T1
VIS[T1]−−−−→ T ), then ¬(T2

VIS[T2]−−−−→ T ). In both cases, we obtain that T2 /∈
(VIS[T2]−1(T ) ∩WEventx),
otherwise, let W = maxAR[T1](VIS[T1]−1(T ) ∩WEventx); then, since T ` Read x : n
and X [T1] |= Ext, it needs to be W `Write x : n. We are left with two sub-cases:
∗ W = T1; since T1 v̂RA T2, it follows that T2 ` Write x : n. Also, in this case we

have that T2 = maxAR[T2](VIS[T2]−1(T ) ∩WEventx), and there is nothing left to
prove,

∗ W 6= T1; in this case we have that W = maxAR[T2](VIS[T2]−1(T )∩WEventx), as we
wanted to prove.

J

I Definition 11. Let T1, T2, be two transactions. For Φ ∈ {CC,PC,SER} we write
T1 v̂Φ T2 if, for any x ∈ Obj and n ∈ N

if ¬(T1 ` Read x : n) then ¬(T2 ` Read x : n), and (T1 ` Write x : n) if and only if
(T2 `Write x : n),
otherwise, if there exists no m 6= n such that T1 `Write x : m, then there exists no l 6= n

such that T2 `Write x : l.

I Proposition 12. Let X be a context, and let T1, T2 be two transactions such that T1 v̂SER
T2, and both X [T1],X [T2] are defined. If X [T1] |= Ext, and X [T1] |= TransVis, then
X [T2] |= Ext.

Proof. Assume that X = (H[],AR,VIS). We need to show that, for any transaction
T ∈ X [T2], either VIS[T2]−1(T ) ∩ WEventx = ∅ and n = 0, or maxAR[T2](VIS[T2]−1(T ) ∩
WEventx) ` Write x : n. Let T ∈ X [T2] be a transaction such that T ` Read x : n. There
are two possible cases:

T 6= T2; then T ∈ H, hence T ∈ H[T1]. We distinguish between two sub-cases:
Suppose that there are no transactions T ′ ∈ H[T1] such that T ′ VIS[T1]−−−−→ T and T ′ `
Write x : _. Since X [T1] |= Ext, then it is n = 0.
If there are no T ′′ ∈ H[T2] such that T ′′ VIS[T2]−−−−→ T and T ′′ ` Write x : _, then there
is nothing left to prove. Otherwise, we have that VIS[T2]−1(T ) ∩WEventx = {T2}.
In fact, whenever T ′′ ∈ H[T2], T ′′ VIS[T2]−−−−→ T and T ′′ ` Write x : _, then it cannot be
T ′′ ∈ H, since otherwise it would also be T ′′ ∈ H[T1] and T ′′ VIS[T1]−−−−→ T . In particular,
T2 = maxAR[T2](VIS[T2]−1(T ) ∩WEventx), and T2 ` Write x : m for some m. Also,

since T2
VIS[T2]−−−−→ T , then it is the case that T1

VIS[T1]−−−−→ T . There are other two sub-cases
to consider:
∗ ¬(T1 ` Read x : m). Since we are assuming that T1 v̂SER T2, and T2 `Write x : m,

then it follows that T1 ` Write x : m. However, since T2
VIS[T2]−−−−→ T , then it also

has to be T1
VIS[T1]−−−−→ T , contradicting the statement that there exists no T ′ ∈ H[T1]

such that T ′ VIS[T1]−−−−→ T and T ′ `Write x : _.
∗ Therefore it has to be that T1 ` Read x : m. Since there are no transactions
T ′ ∈ H[T1] such that T ′ ` Write x : _ and T ′

VIS[T1]−−−−→ T , then it is also the
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case that there exists no transaction T ′ ∈ H[T1] such that T ′ ` Write x : _ and
T ′

VIS[T1]−−−−→ T1. If it were the case, the transitivity of VIS[T1] and the fact that
T1

VIS[T1]−−−−→ T would lead to T ′ `Write x : _ and T ′ VIS−−→ T , causing a contradiction.
Since X [T1] |= Ext, it follows that m = 0, as we wanted to prove.

Otherwise, let T ′ ∈ H[T1] be such that T ′ = maxAR[T1](VIS[T1]−1(T ) ∩ WEventx).
Since X [T1] |= Ext, then T ′ `Write x : n. There are two sub-cases to consider:
∗ ¬

(
T ′

VIS[T1]−−−−→ T1
VIS[T1]−−−−→ T

)
. In this case it follows immediately that ¬

(
T ′

VIS[T2]−−−−→

T2
VIS[T1]−−−−→ T

)
, and more in general, whenever T ′′ is a transaction such that

T
VIS[T1]−−−−→ T ′′

VIS[T1]−−−−→ T , then T
VIS[T2]−−−−→ T ′′

VIS[T2]−−−−→ T . As a consequence, we
obtain that T ′ = maxAR[T2](VIS[T2]−1(T ) ∩WEventx), and there is nothing left to
prove.

∗ T ′
VIS[T1]−−−−→ T1

VIS[T1]−−−−→ T . Because of T ′ = maxAR[T1](VIS[T1]−1(T ) ∩WEventx), it
has to be the case that ¬(T1 ` Write x : _). If ¬(T2 ` Write x : _) then there is
nothing to prove, since in this case we have that T ′ = maxAR[T2](VIS[T2]−1(T ) ∩
WEventx). Otherwise, T2 ` Write x : m for some m; further, in this case we have
that T2 = maxAR[T2](VIS[T2]−1(T ) ∩WEventx). We can proceed as in the previous
case to show that, since T1 v̂SER T2, it must be T2 ` Read x : m; the hypothesis
T1 v̂SER T2 leads then to T1 ` Read x : m, and the transitivity of VIS[T1] gives
that maxAR[T1](VIS[T1]−1(T1) ∩ WEventx) = T ′. Since X [T1] |= Ext, we obtain
m = n, as we wanted to prove.

T = T2; since T1 v̂SER T2, it has to be the case that T1 ` Read x : n. Now note that, if
there exists no transaction T ′ ∈ H[T1] such that T ′ `Write x : _ and T ′ VIS[T1]−−−−→ T1, then
n = 0 because X [T1] |= Ext; also, there exists no T ′′ ∈ H[T2] such that T ′′ `Write x : _
and T ′′ VIS[T2]−−−−→ T2, as we wanted to prove.
Otherwise, let T ′ = maxAR[T1](VIS[T1]−1(T1) ∩WEventx). Since X [T1] |= Ext, it fol-
lows that T ′ ` Write x : n. Now it is not difficult to see that it also has to be
T ′ = maxAR[T2](VIS[T2]−1(T2) ∩WEventx), and there is nothing left to prove.

J

I Definition 13. Let T1, T2, be two transactions. For Φ ∈ {SI,PSI} we write T1 v̂Φ T2 if
T1 v̂CC T2, and
for any x ∈ Obj, if ¬(T1 `Write x : _) then ¬(T2 `Write x : _).

I Proposition 14. Let T1, T2 be two transitions such that, whenever T2 ` Write x : _ then
T1 ` Write x : _. Let X be a context such that both X [T1] and X [T2] are defined. If
X [T1] |= NoConflict, then X [T2] |= NoConflict.

Proof. Let X = (H[],AR,VIS). Consider two transactions S, T ∈ H[T2] such that S `

Write x : _, T ` Write x : _, and S 6= T . We show that either S VIS[T2]−−−−→ T or T VIS[T2]−−−−→ S.
There are three different cases to consider:

S 6= T2, T 6= T2. Then both S, T ∈ H, and particularly S, T ∈ H[T1]. Since X [T1] |=
NoConflict by hypothesis, it has to be the case that either S VIS[T1]−−−−→ T or T VIS[T1]−−−−→ S.
In this case it is immediate to note that either S VIS[T2]−−−−→ T or T VIS[T2]−−−−→ S.
S = T2; then T2 ` Write x : _, and by hypothesis we have that T1 ` Write x : _.
Since X [T1] |= NoConflict, then either T1

VIS[T1]−−−−→ T or T VIS[T1]−−−−→ T1. Without loss of
generality, suppose that T1

VIS[T1]−−−−→ T ; a trivial consequence of this fact is that T2
VIS[T2]−−−−→

T , and since S = T2 there is nothing left to prove.
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T = T2; this case is symmetric to the previous one, and it is therefore omitted.
J

I Theorem 15. Let Φ be a consistency model. Let T1, T2 be two transactions, and assume
that ({T2},_,_) |= Int. If T1 v̂Φ T2, then T1 vΦ T2.

Proof. Let X be a context such that both X [T1] and X [T2] are defined. In the following we
let X = (H[],AR,VIS. We show that the relevant properties of X [T1] are preserved in X [T2],
by performing a case analysis over Φ:
1. Φ = RA; suppose that X [T1] |= Int,Ext. By Lemma 8 it follows that X [T2] |= Int,

while Proposition 10 it follows that X [T2] |= Ext,
2. Φ = CC; suppose that X [T1] |= Int,Ext,TransVis. Since T1 v̂CC T2, Lemma 8

and Proposition 12 imply that X [T2] |= Int, X [T2] |= Ext, respectively. The fact that
X [T2] |= TransVis follows directly from X [T1] |= TransVis,

3. Φ = PC; suppose that X [T1] |= Int,Ext,Prefix. Since X [T1] |= Prefix and VIS[T1] ⊆
AR[T1], it is immediate to note that VIS[T1] is transitive, hence X [T1] |= TransVis.
Following the case above, we can prove that X [T2] |= Int,Ext; further, X [T2] |= Prefix
is a trivial consequence of X [T1] |= Prefix,

4. Φ = PSI; suppose that X [T1] |= Int,Ext,TransVis,NoConflict. We have already
shown that in this case X [T2] |= Int,Ext,TransVis. Also, by Proposition 14 it follows
that X [T2] |= NoConflict,

5. Φ = SI; suppose that X [T1] |= Int,Ext,Prefix,NoConflict. We have already
proved that in this case X [T2] |= Int,Ext,Prefix,NoConflict.

6. Φ = SER; suppose that X [T1] |= Int,Ext,TotalVis. Since VIS[T1] is a total order, it
is also reflexive, hence X [T1] |= TransVis. In this case we know that X [T2] |= Int,Ext.
Further, the totality of VIS[T1] implies the totality of VIS[T2], or equivalently X [T2] |=
TotalVis.

J

I Proposition 16. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ T2
for some Ψ ∈ {RA,CC,PC,PSI,SI,SER}. If ¬(T1 ` Read x : n), for some object x and
value n, then ¬(T2 ` Read x : n).

Proof. If ¬(T1 ` Read x : n), there are two possible cases:
T1 ` Read x : m, for some m 6= n. Take the context X = ({S}[], {(S, [])}, {(S, [])}, where
S ` Write x : m. Then X [T1] |= Ψ, and X [T2] |= Ψ. In particular, X [T2] |= Ext;
therefore, either ¬(T2 ` Read x : _) or T2 ` Read x : m. In any case, we have that
¬(T2 ` Read x : n).
¬(T1 ` Read x : _); in this case, choose one arbitrary value m 6= n and take again the
context X = ({S}[], {(S, [])}, {(S, [])}. We have that X [T1] |= Ψ, hence by hypothesis
X [T2] |= Ψ. In particular, X [T2] |= Ext, which is possible only if either T2 ` Read x : m,
or ¬(T2 ` Read x : _). In both cases, we obtain that ¬(T2 ` Read x : _).

J

I Proposition 17. Let T1, T2 be two transactions such that T1 vRA T2; then T1 `Write x : n
if and only if T2 `Write x : n.

Proof. Suppose that T1 `Write x : n. We consider two sub-cases as follows:



REFERENCES 19

¬(T1 ` Read x : _); in this case, it suffices to consider the context X =
{(W, [], R),VIS,AR), where W ` Write x : m for some m 6= n, R ` Read x : n,
VIS = {(W,R), ([], R)} and AR = {(W, []), ([], R)}+. It is immediate to show that
X [T1] |= RA, hence X [T2] |= RA by hypothesis. In particular, X [T2] |= Ext, from
which it follows that M := maxAR[T2](VIS[T2]−1(R) ∩ WEventx) ` Write x : n. Note
that VIS[T2]−1(R) = {W,T2}, hence it is either M = W , or M = T2. However, since
W ` Write x : m, and m 6= n, it has to be the case that M = T2, and there is nothing
left to prove,
otherwise, suppose that (T1 ` Read x : m) for some m (not necessarily distinct
from n); let X = ({W1,W2, [], R}),VIS,AR), where W1 ` Write x : m, W2 `
Write x : l for some l 6= n, R ` Read x : n, VIS = {(W1, []), ([], R), (W2, R)}, and
AR = {(W1,W2), (W2, []), ([], R)}+. Note that VIS is not transitive: in particular,
(W1, []), ([], R)) ∈ VIS, but (W1, R) /∈ VIS. Because T1 = maxAR[T1](VIS[T1]−1(R) ∩
WEventx), T1 ` Write x : n, R ` Read x : n, then X [T1] |= RA. It follows that X [T2] |=
RA, and in particular X [T2] |= Ext. Let M := maxAR[T2](VIS[T2]−1(R) ∩WEventx); it

has to be M ` Write x : n. Since VIS[T2]−1(R) = {W2, T2} (recall that ¬(W1
VIS[T2]−−−−→

T2)), then either M = W2 or M = T2. But since W2 ` Write x : l, and l 6= m, it cannot
be M = W2. We are left with M = T2, and there is nothing left to prove.

Next, suppose that ¬(T1 `Write x : n). There are two possibilities:
¬(T1 ` Write x : _); in this case it suffices to consider the context X =
({W, [], R},AR,VIS), where AR = VIS = {(W, []), ([], R)}+, W ` Write x : m and R `
Read x : m for somem 6= n. Since ¬(T1 `Write X : _), we have that X [T1] |= RA, hence
X [T2] |= RA, hence X [T2] |= Ext. In particular, maxAR[T2](VIS[T2]−1(R) ∩WEventx) `
Write x : m; now note that VIS[T2]−1(R) = {W,T2}; if ¬(T2 ` Write x : _), then there
is nothing to prove. Otherwise, we have that T2 = maxAR[T2](VIS[T2]−1(R) ∩WEventx),
hence T2 `Write x : m. Because m 6= n, it follows that ¬(T2 `Write x : n).
T1 ` Write x : m for some m 6= n; we can proceed as in the first part of the proof to
show that T2 `Write x : m, hence ¬(T2 `Write x : n).

J

I Proposition 18. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ
T2. If ¬(T1 ` Read x : n) and (T1 ` Write x : n) for some object x and value n, then
(T2 `Write x : n).

Proof. We have to consider two possible cases; either (T1 ` Read x : m) for some m 6= n,
or ¬(T1 ` Read x : _). We consider only the first case, as the second one can be handled
similarly.

Suppose then that (T1 ` Read x : m) for some m 6= n. Consider the context X =
({S, T}[],AR,VIS), where AR = VIS = {(S, []), ([], T )}+, where S ` Write x : m and T `
Read x : n. It is immediate to note that X [T1] |= Ψ; in fact X [T1] |= SER, hence X [T1] |= Ψ
for any consistency level Ψ. It follows that X [T2] |= Ψ. Consider the transaction W =
maxAR[T2](VIS[T2]−1(T ) ∩WEventx); this transaction is well defined, and either W = S or
W = T2. Further, since X [T2] |= Ext, then W ` Write x : n. But we already know that
S ` Write x : m for some m 6= n, so that it has to be W = T2. We have now proved that
T2 `Write x : n. J

I Proposition 19. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ T2.
If ¬(T1 ` Read x : n) and ¬(T1 ` Write x : n) for some object x and value n, then
¬(T2 `Write x : n).
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Proof. First, assume that ¬(T1 ` Read x : n) because ¬(T1 ` Read x : _). If ¬(T1 `
Write x : n), then there are two possible cases:

(T1 `Write x : m) for some valuem 6= n. In this case, we have that ¬(T1 ` Read x : m) by
assumption, hence (T2 `Write x : m) because of Proposition 18. Since (T2 `Write x : m)
and m 6= n, then ¬(T1 `Write x : n),
otherwise ¬(T1 ` Write x : _). In this case, we consider two contexts X1,X2, where for
i = 1, 2, Xi = ({Wi, Ri}[],ARi,VISi), ARi = VISi = {(Wi, []), (Ri, [])}+, Wi ` Write x : i
and Ri ` Read x : i. Note that both X1[T1] |= Ψ and X2[T1] |= Ψ. By hypothesis, it
follows that both X1[T2] |= Ψ and X2[T2] |= Ψ. In particular, X1[T2] |= Ext implies that
either ¬(T2 ` Write x : _) or T2 ` Write x : 1. But T2 ` Write x : 1 contradicts the
fact that X [T2] |= Ext, since T2 = maxAR2[T2](VIS2[T2]−1(R2)) but ¬(T2 ` Write x : 2).
Therefore it has to be the case that ¬(T2 ` Write x : _), and in particular ¬(T2 `
Write x : n).

Now suppose that T1 ` Read x : m for some m 6= n. There are three different subcases:
T1 ` Write x : m′ for some m′ 6= m; note that in this case it also has to be m′ 6= n,
since ¬(T1 ` Write x : n) by hypothesis. Here we have that ¬(T1 ` Read x : m′),
T1 ` Write x : m′, so that it follows from Proposition 18 that T2 ` Write x : m′, and in
particular ¬(T2 `Write x : n),
T1 ` Write x : m. Choose the context ({W,R}[],AR,VIS) where AR = VIS =
{(W, []), ([], R)}+, W ` Write x : m and R ` Read x : m. Note that X [T1] |= Ψ,
so that X [T2] |= Ψ by hypothesis. In particular, X [T2] |= Ext which is possible if
either T2 ` Write x : m) or ¬(T2 ` Write x : _). In both cases, we obtain that
¬(T2 `Write x : n),
¬(T1 `Write x : _); this case is analogous to the previous one.

J

I Proposition 20. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ T2,
for any consistency level Ψ. If (T1 ` Read x : n) and ¬(T1 ` Write x : _) for some object x
and value n, then either ¬(T2 `Write x : _) or (T2 `Write x : n).

Proof. Consider the context X = ({W,R}[],AR,VIS), where AR = VIS = {(W, []), ([], R)}+,
W ` Write x : n and R ` Read x : n. Note that X [T1] |= Ψ, and by hypothesis X [T2] |= Ψ.
Therefore, maxAR[T2](VIS[T2]−1∩WEventx) ` Read x : n. We have VIS[T2]−1(R) = {W,T2},
and W `Write x;n; there are two possibilities:
1. maxAR[T2](VIS[T2]−1 ∩WEventx) = W ; this is possible only if ¬(T2 ` Write x : _), so

that there is nothing left to prove, or
2. maxAR[T2](VIS[T2]−1 ∩WEventx) = T2, hence T2 `Write x : n.

J

I Proposition 21. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ T2.
If (T1 ` Read x : n) and T1 ` Write x : n for some object x and value n, then either
¬(T2 `Write x : _) or (T2 `Write x : n).

Proof. Identical to the one of Proposition 20 J

I Proposition 22. Let T1, T2 be two transactions such that ({T2},_,_) |= Int, and T1 vΨ T2,
where Ψ ∈ {SI,PSI}. If ¬(T1 `Write x : _) then ¬(T2 `Write x : _).
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Proof. Take the context X = ({W}[], ∅, ∅}, where W ` Write x : _. Since ¬(T1 ` Write x :
_) it follows that X [T1] |= NoConflict, and more specifically χ[T1] |= Ψ. By hypothesis,
X [T2] |= Ψ, hence X [T2] |= NoConflict. Since there is no visibility edge between W and
T2 in X [T2], and W `Write x : _, it has to be the case that ¬(T2 `Write x : _). J

I Theorem 23. Consider a consistency level Ψ. and let T1, T2 be transactions such that
({T2},_,_) |= Int. If T1 vΨ T2, then T1 v̂Ψ T2.

Proof. A straightforward consequence of propositions 16, 17, 18, 19, 20, 21 and 22. J

B Proof of Theorem 6

B.1 Technical Results for Concrete Executions

In the following, given a partial order ≺, we use the symbol � to denote its reflexive closure.

I Lemma 24. Let {Dr}r∈RId, {D′r}r∈RId be two RId-indexed collections of sets in LogSet,
and let e be an event such that ((λr.Dr,_),_) e

_ ((λr.D′r,_),_); then Dr ⊆ D′r for any
r ∈ RId.

Proof. A straightforward case analysis on the proof of the transition ((λr.Dr,_),_) e
_

((λr.D′r,_),_). J

I Lemma 25. Let C = (E,≺) be a concrete execution, and suppose that e, f ∈ E with
e = (_,_, commit(t)), f = (_,_, commit(t)) for some t ∈ N. Then e = f .

Proof. Since e, f ∈ E, either e ≺ f , f ≺ e or e = f . We show that the first two cases lead
to a contradiction, hence it has to be e = f .

Suppose that e ≺ f ; the case f ≺ e is analogous, and it will be omitted. There exists a
sequence of transitions

(R0,_) e1_ (R1,_) e2_ · · ·
en_ (Rn,_)

such that e = ei, f = ej for some i, j : 1 ≤ i < j ≤ n. Since ei = e = (_,_, commit(t)), the
transition (Ri−1,_) ei_ (Ri,_) can be derived only via an application of Rule (Commit) from
Figure 4; therefore there exists r ∈ RId such that Ri(r) = (D∪(t : _),_). By Lemma 27 then
(a) (t : _) ∈ Rj−1(r) (recall that i < j, hence i ≤ j − 1). Since ej = f = (_,_, commit(t)),
the transition (Rj−1,_)

ej
_ (Rj ,_) can also be derived via an application of Rule (Commit).

This requires that (t : _) /∈ Rj−1(r′) for any r′ ∈ RId, contradicting (a) above. J

I Lemma 26. Let C = (E,≺) be a concrete execution. If e, f are two events in E such that
TSC(e),TSC(f) are defined and coincide. Then e = (_, r,_), f = (_, r,_) for some r ∈ RId.

Proof. By definition, if TSC(e) = t andt e = (_, r,_) ∈ E for some r ∈ RId and t ∈ N, then
there exists h ∈ E such that h = (_, r, commit(t)) and e ≺ f . Simlarly, if f = (_, r′,_)
and TSC(f) = t, then there exists h′ ∈ E such that h′ = (_, r′, commit(t)) and f ≺ h′. By
Lemma 25, it must be the case that h = h′, and in particular r = r′. J

I Lemma 27. Let C = (E,≺) be a concrete execution. Let e = (_, r,_) be an event in E,
where r ∈ RId is an arbitrary replica identifier. Assume that (R,M) e

_ (R′,M ′), for some
(R,M), (R′,M ′). Then R(r′) = R′(r′) for any r′ 6= r, .
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Proof. A simple case analysis on the proof of the transition (R,M) e
_ (R′,M ′) reveals that

if e = (_, r,_) then there exists a R′′ such that R = R′′[r 7→ _] and R′ = R′′[r 7→ _].
Consequently, for any r′ 6= r, R(r′) = R′′(r′) = R′(r′). J

I Lemma 28. Let C = (E,≺) be a concrete execution, with an event e = (_,_, read(_,_)).
If (R,M) e

_ (R′,M ′) for some (R,M), (R′,M ′), then R = R′.

Proof. This is true because the transition (R,M) e
_ (R′,M ′) can be obtained only via an

application of Rule (Read), which ensures that R = R′ J

I Lemma 29. Let C = (E,≺) be a concrete execution, and suppose that e = (_, r,o) is an
event in E such that o 6= receive(_). Then E contains an event f = (_, r, start) such
that f � e.

Proof. Note that if e = (_, r, start) then the proof of the statement is trivial; therefore,
suppose that e 6= (_, start,_).

Let e0, e1, · · · , en be the maximal sequence of events in e such that en = e, and for
any i, j : 0 ≤ i, j ≤ n, ei ≺ ej . The maximality of the sequence ensures that we can find
R0, R1, · · · , Rn+1 such that

(R0,_) e0_ (R1,_) e1_ · · ·
en−1
_ (Rn,_) en_ (Rn+1,_)

where we recall that R0 = λr ∈ RId.(∅, idle), and in particular R0(r) = (_, idle). Since
en = (_, r,o) and o /∈ {start, receive(t : ρ) | t ∈ N, ρ ∈ UpdateList}, a simple case analysis
on the rules of Figure 4 reveals that Rn(r) = (_, ρ) for some ρ 6= idle. Therefore, there exists
an index i : 0 ≤ i < n such that Ri(r) = (_, idle) and Ri+1(r) = (_, ρ′) for some ρ′ 6= idle.
Another case analysis on the rules of Figure 4 reveal that the transition (Ri,_) ei_ (Ri+1,_)
can be derived only via Rule (Start), hence ei = (_, r, start). J

I Definition 30. Let C = (E,≺) be a concrete execution. For any event e ∈ E such that
e = (_, r,o) and o 6= receive(_), the event startC(e) is defined as max�(f ∈ E | f �
e ∧ f = (_, r, start).

Also, if there exists an event e = (_, r, commit(t)) ∈ E. then we let startC(t) =
startC(e).

I Lemma 31. Let C = (E,≺) be a concrete execution. Let e = (_, r,o) be an event in E such
that o 6= receive(_) and r ∈ RId. Then the event startC(e) is well-defined, and whenever
startC(e) ≺ f ≺ e for some f = (_, r,o′), then o′ /∈ {start, abort, commit(t), receive(t :
ρ) | t ∈ N, ρ ∈ UpdateList}.

Proof. The fact that startC(e) is well-defined is an immediate consequence of Lemma 29.
Next, suppose that f = (_, r,o′) is an event in f ∈ E such that startC(e) ≺ f ≺ e and
f = (_, r,o′). Clearly it cannot be o′ = start, since this would contradict the definition of
startC(e).

We have the sequence of transitions

(R1,_) e1_ (R2,_) ···_
en_ (Rn+1,_)

such that e1 = startC(e), ei = f for some 1 < i < n, and en = e. Now note that
if it were o′ = commit(_), then Ri+1(r) = (_, idle); by using the same argument of the
proof of Lemma 29, we may conclude that there exists an index j : i < j < n such that
ej = (_, r, start), contradicting the definition of startC(e). We have proved that whenever
f = (_, r,o′) and startC(e) ≺ f ≺ e then o′ /∈ {commit(t), | t ∈ N}. A similar argument
can be used to prove that o′ 6= abort,o′ 6= receive(_). J
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I Lemma 32. Let C = (E,≺) be a concrete execution. Let e = (_, r,o) be an event in E
such that TSC(e) = t Then the event startC(t) is well-defined.

Proof. It suffices to note that, since TSC(e) = t, there exists an event f = (_, r, commit(t))
such that e ≺ f , and whenever g is an event such that e ≺ g ≺ f , then g 6= (_, r, commit(_)).
By Lemma 25, whenever f ′ = (_, r, commit(t)) for some f ′ ∈ E, then f = g. Therefore,
startC(t) is well-defined and we have that startC(t) = startC(f). J

I Lemma 33. Let C = (E,≺) be a concrete execution. For any two events e, f such that
TSC(e) = TSC(f) = t, then startC(e) = startC(f) = startC(t).

Proof. Let e = (_, r,_), f = (_, r,_). We can assume that e, f occur at the same replica
because of the hypothesis TSC(e) = TSC(f) and because of Lemma 26.

First note that if TSC(e) is defined and equal to t, then there exists an event g =
(_,_, commit(t)) which occurs in C, such that e ≺ g, and whenever e ≺ e′ ≺ g then
e′ 6= (_, r,o) where o ∈ {abort, commit(t′) | t′ ∈ N}. Therefore the event startC(t) =
max≺{h ≺ g | h = (_, r, start)} is well-defined by lemmas 29 and 25.

Next, we show that there exists no event h′ ∈ C such that e ≺ h′ ≺ ccg and h′ =
(_, r, start). The proof of this statement is carried out by contradiction: let then h′ be
an event in E as described above. Its existence ensures that we can derive a sequence of
transitions

(R,_) e
_ (R1,_) e1_ · · ·

en_ (R2,_) h′
_ (R3,_)

Since TSC(e) = t, it means that e = (_, r,o) for some o ∈ {read(x, n), write(x, n) | x ∈
Obj, n ∈ N}. A case analysis on the derivation of the transition (R,_) e

_ (R1,_) reveals
that it has to be the case that R1(r) 6= (_, idle).

However, since h = (_, r, start), then the transition (R2,_) h′
_ (R3,_) can be derived

only if R2(r) = (,idle). Thus, the sequence of transitions

(R1,_) e1_ · · ·
en_ (R2,_)

includes a transition (R′,_)
ek_ (R′′,_), where 1 ≤ k ≤ n, such that R′(r) 6= idle and

R′′(r) = idle. This is possible only if ek = (_, r,o′) with o′ ∈ {abort, commit(t′) | t′ ∈ T}.
Define g′ := ek.

If g′ = (_, r, abort) then we obtain a contradiction, since in this case we have e ≺ g′ ≺ g,
contradicting the definition of TSC(g) according to which there are no event of the form
(_, r, abort) between e and g.

If g′ = (_, r, commit(t′) then we also obtain a contradiction; in fact, in this case we have
that e ≺ g′ ≺ h′ ≺ g, hence g 6= g′. Since TSC = t, it has to be the case that there exists an
event g′′ such that e ≺ g′′ � g′ and g′′ = (_, r, commit(t)). By Lemma 25, this contradicts
the hypothesis that g = (_, r, commit(t)).

This can be done in a way analogous to the proof of Lemma 29. It can be shown that
the existence of such a h′ implies the existence of an event g′ ∈ {abort, commit(t′) | t′ ∈ N},
such that e ≺ g′ ≺ h′. This gives in turn e ≺ g′ ≺≺ g, contradicting the hypothesis that
there exists no commit or abort event at replica r, between e and g (this assumption is given
by the fact that TSe = g and that g is the unique event in E such that g = (_,_, commit(t)),
cf Lemma 25).

Since there exists no event h′ such that e ≺ h′ ≺ g, and h = (_, r, start), we obtain
that startC(e) = max≺(h ≺ e | h = (_, r, start)} = max≺(h ≺ g | h = (_, r, start)} =
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TSC(g) = TSC(t). We can repeat this kind of reasoning for the event f , showing that
startC(f) = TSC(t). At this point it is immediate to note that startC(e) = startC(f). J

I Lemma 34. Let C = (E,≺) be a concrete execution. Let t ∈ N, e ∈ E be such that e =
(_, r,o) with o ∈ {write(x, n), read(x, n) | x ∈ Obj, n ∈ N}, and startC(e) = startC(t).
Then TSC(e) = t.

Proof. By definition there exists an event f = (_, r, commit) for some r, such that
startC(t) = max≺{g ≺ e | g = (_, r, start)}. Since startC(t) = startC(e), we have
that startC(t) � e.

There are three possible cases: f ≺ e, e ≺ f and e = f . The case e = f is not possible,
since f = (,r, commit) and e = (_, r,o), where o ∈ {read(x, n), write(x, n) | x ∈ Obj, n ∈
N}.

Suppose that f ≺ e, then we would have a sequence of transitions

(R,_)
startC(t)

_ (R1,_) e1_ · · ·
en_ (Rn+1,_) f

_ (R′,_) f1_ · · ·
fk_ (R′k,_) e

_ (R′′,_)

A simple case analysis over the proof of the transitions (Rn+1,_) f
_ (R′,_) and (R′k,_) e

_
(R′′,_) proves that R′(r) = (_, idle) and R′′(r) = (_, ρ) for some ρ 6= idle. This is possible
only if there exists an index h < k such that f ′h = (,r, start), contradicting the hypothesis
that startC(e) = startC(t). Therefore it cannot be f ≺ e.

We are left with the only possibility e ≺ f . A similar analysis, reveals that there exist
no event g = (_, r,o′) such that o′ ∈ {abort, commit(t′) | t′ ∈ N} and e ≺ h ≺ f . At least
intuitively, the existence of such a h implies that the state of replica r in C, immediately
after the event g has been performed, has the form (_, idle), while the state of the same
replica before executing f has the form (_, ρ), where ρ 6= idle. This is possible only if there
exists an event h = (_, r, start) such that g ≺ h ≺ f ; since e ≺ g, this contradicts the
assumption that startC(e) = startC(f).

It remains to apply the definition of TSC(·) to prove that TSC(e) is defined and equal to
t. J

I Lemma 35. Let C = (E,≺) be a concrete execution. For any events e, f ,g ∈ E and
replica r such that e = (_, r,_), f = (_, r,_), g = (_, r,_) and TSC(e) = TSC = t. Then
TSC(g) = t.

Proof. By Lemma 33 we know that startC(e) = startC(f) = startC(t). It is easy to note
that in this case it has to be startC(g) = startC(t), and by Lemma 34 it follows that
TSC(g) = t. J

I Definition 36. Let C be a concrete execution. Given a (possibly empty) finite sequence
of events σ = e1 · · · en and a timestamp t, we define the transaction log of t for σ in C by
letting LogOfC(t, σ) = idle if the event startC(t) does not occur in σ, otherwise it is defined
as t : LogAuxC(t, σ), where

LogAuxC(t, σ) =



ε if σ = ε

LogAuxC(t, σ′) · write(x, n) if σ = σ′ · e where
e = (_,_, write(x, n)) ∧ TSC(e) = t

LogAuxC(t, σ′) if σ = σ′ · e where
¬(e = (_,_, write(x, n)) ∧ TSC(e) = t)
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I Lemma 37. Let C be a concrete execution, t ∈ N and σ be a sequence of events such that
startC(t) occurs in σ. Suppose that startC(t) = (_, r,_) and let e = (_, r′,_) for some
r′ 6= r. Then LogOfC(t, σ) = LogOfC(t, σ · e).

Proof. First note, that if either TSC(e) is undefined or different from t, then the statement
follows immediately from Definition 36.

Suppose then that TSC(e) = t. By Lemma 33 we know that startC(e) = startC(t) =
(_, r, start). By Definition, we also have that startC(e) = max≺(g ≺ e | g =
(_, r′, start)}, from which it follows that r′ = r. Contradiction. J

I Lemma 38. Let

(R0,M0) e1_ (R1,M1) e2_ · · ·

such that C = ({ei}i∈N0 , {(ei, ej) | i < j}) is a concrete execution. For any i = 1, · · · and
replica r ∈ RId such that Ri(r) = (_, ρr), where ρr 6= idle, and startC(tr) = maxj≤i{ej =
(_, r, start)}. Then tr : ρr = LogOfC(tr, e1 · · · ei).

Proof. By induction on i. If i = 0, then for any replica r, R0(r) = (_, idle) (cf. Definition
5), hence this case is vacuous.

Let then i > 0, and suppose that the statement holds for i− 1. Note that if there exists
no index j ≤ i such that startC(tr) 6= ej , then the statement is vacuous. Assume then that
startC(tr) = ej for some j ≤ i.

We perform a case analysis on the event ei.
Assume first that ei = (_, r′,_) for some r′ 6= r; in this case it cannot be startC(tr) = ei,
since startC(tr) = (_, r, start) and r′ 6= r. Thus, startC(tr) = ej for some j < i. By
Lemma 27 we know that Ri−1(r) = Ri(r); In particular, since Ri(r) = (_, ρr), then
Ri−1(r) = (_, ρr); by inductive hypothesis LogOfC(tr, e1 · · · ei−1) = tr : ρr. Finally,
since r 6= r′, and startC(tr) = (_, r, start), we can apply Lemma 37, from which it
follows that LogOfC(tr, e1 · · · ei) = LogOfC(tr, e1 · · · ei−1) = tr : ρr.
Since ei = (_, r′,_), it cannot be that TS(ei) = tr. In fact, if it were TSei

= tr, then it
would be the case that startC(tr) = startcexec(ei) = (_, r′, start), contradicting the
hypothesis that startC(tr) = (_, r, start).
Suppose that ei = (,r, start). By hypothesis, it follows that ei = startC(tr). A
simple case analysis on the proof of the transition (Ri−1,_) ei_ (Ri,_) reveals that
Ri(r) = (_, ε). Hence ρr = ε. In thix case there exists no event ej such that j < i and
TSC(ej) = tr. In fact, if such an event ej existed, then by Lemma 29 we would have
that startC(tr) = startC(ej) ≺ startC(ei) = startC(tr), leading to a contradiction.
Since the event startC(tr) occurs in e1 · · · ei, by Definition we have that
LogOfC(tr, e1, · · · , ei) = tr : LogAuxC(tr, e1 · · · ei). Using the fact that TSC(ej) 6= tr
for any j < i, it is immediate to note that LogAuxC(tr, e1 · · · ei) = ε.
Assume that ei = (_, r, write(x, n)). Since ei 6= (_, r, start), it has to be
the case that startC(t) = ej for some j < i. Thus we can apply the induct-
ive hypothesis, and infer that Ri−1(r) = LogAuxC(tr, e1 · · · ei−1). By Performing
a case analysis over the proof of the transition (Ri−1,_) ei_ (Ri,_), we get that
Ri(r) = (_, LogAuxC(tr, e1 · · · ei−1) · · · write(x, n)). Therefore, in this case ρr =
LogAuxC(tr, e1 · · · ei−1) · · · write(x, n).
By Lemma 34 it has to be the case that TSC(ei) = tr. By Definition,
LogOfC(tr, e1 · · · ei) = tr : LogAuxC(tr, e1 · · · ei) = tr : (LogAuxC(tr, e1 · · · ei−1) ·
(write(x, n)) = tr : ρr.
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The case ei . tr : read(x, n) @ r is analogous to the previous one, where Lemma 28 is
used to prove that Ri−1(r) = Ri(r).
The remaining cases, ei . tr : {abort, commit, receive(_)} @ r, are vacuous, since an
analysis on the proof of the transition (Ri−1,Mi−1) ei_ (Ri,Mi) reveals that Ri(r) =
(_, idle).

J

I Lemma 39. Let C = (E,≺) be a concrete execution. For any e = (_,_receive(t : _))
there exists f ≺ e such that f = (_,_, commit(t)).

Proof. If e = (_,_, receive(t : _)) appears in E, then there exists a sequence of transitions

(R0,M0) e0_ (R1,M1) e1_ · · ·
en_ (Rn+1,Mn+1)

where R0(r) = λr.(∅, idle), M0 = ∅ and en = e. An inspection of the derivation (Rn,Mn) e
_

(Rn+1,Mn+1) reveals that t : ρ ∈Mn for some ρ. Since M0 = ∅, there exists an index i < n

such that t : ρ /∈Mi, t : ρ ∈Mi+1. This is possible only if ei = (_,_, commit(t)). J

I Lemma 40. Let C = (E,≺) be a concrete execution. For any e = (_, r, receive(t : _)) ∈
E and f = (_, r, start) such that f ≺ e, there exists g ∈ E such that f ≺ g ≺ e and
g = (_, r,o) for some o ∈ {abort, commit(t′) | t′ ∈ N}.

Outline. The proof is similar in style to the previous ones. It suffices to note that, since
e = (_, r, receive(t : _)), then the state of replica r in C before performing e has the
form (_, idle). On the other hand, the state of the same replica after performing the event
f has the form (_, ρ), where ρ ∈ UpdateList. This is possible only if there is an event
g occurring between e and f , which causes the state of replica r to evolve from a value in
UpdateList to idle. But then this means that g corresponds to either an abort or a commit(_)
operation. J

I Lemma 41. Let C = (E,≺) be a concrete execution; let also e, f ∈ E be such that
TSC(e) = TSC(f) = t. If g ∈ E is such that g = (_, r,o) and e � g ≺ f , then og ∈
{read(_,_), write(_,_)}.

Proof. An immediate consequence of Lemma 35 and the Definition of TSC(·). J

I Definition 42. For any list of records ρ we let

lastval(x, ρ) =


undefined if ρ = ε

n if ρ = ρ′ · write(x, n)
lastval(x, ρ′) if ρ = ρ′ · write(y,_) and y 6= x

We lift this notation to transaction logs t : ρ by letting lastval(x, t : ρ) = lastval(x, ρ).
For a set of transaction logs D such that whenever t : ρ, t′ : ρ′ ∈ D and t = t′ then

ρ = ρ′, we define lastval(x,D) = n if there exists t : ρ ∈ D such that lastval(x, t : ρ) = n, and
t = max<{t′ : ρ′ ∈ D | lastval(x, t : ρ′) 6= undefined}; otherwise, we let lastval(x,D) = 0.

I Lemma 43. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

such that C = ({ei}i∈N0 , {(ei, ej) | i < j}) is a concrete execution. Let i ≥ 0 and r ∈ RId
such that Ri(r) 6= (_, idle), and choose D, ρ such that Ri(r) = (D, ρ). Then
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lastval(x,D ∪ {∞ : ρ}) =
{

lastval(x, ρ) if lastval(x, ρ) 6= undefined
lastval(x,D) otherwise

Proof. Immediate from the definition of lastval(x,D). J

I Lemma 44. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

such that the execution C = (E,≺), where E = ({ei}i∈N0 ,≺ = {(ei, ej) | i < j}) is a concrete
execution. Let ei be such that TSC(ei) = t for some t ∈ N, and ei = (_, r, read(x, n)) for
some r ∈ RId. Assume that Ri(r) = (_, ρ). If lastval(x, t : ρ) = n, the event f := max≺{e′ |
e′ ≺ ei ∧ e′ = (_, r, write(x,_) ∧ TSC(e′) = t} is defined, and f = (_, r, write(x, n)).

Proof. First note that, if lastval(x, ρ) = n, then ρ = rho′ · write(x, n) · ρ′′, for some ρ′, ρ′′
such that no record of the form write(x,_) appears in ρ′′.

By Lemma 38 we know that t : ρ = LogOfC(t, e1, · · · , ei) = ρ′ · write(x, n) · ρ′′. By
the definition of LogOfC(·) there exists an index j such that ej = (_,_, write(x, n)) and
TSC(ej) = t, and whenever ek = (_, r, write(x,_) for some j < k, then we also have that
k < i. In fact, it cannot be TSC(ek) = t, since otherwise we would have that write(x,_)
occurs in ρ′′. Then, by Lemma 35 and the fact that TSC(ej) = TSC(ei) = t, it follows that
¬(j < k < i). Since j < k, either it has to be ej = ek or ei ≺ ek. Since TSC(ej) 6= TSC(ek),
it has to be ei ≺ ek.

We have proved that there exists an event ej ≺ ei such that TSC(ej) = t, ej =
(_,_, write(x, n)) and whenever f is such that TS(f) = t, f = (_,_, write(x,_)), then
ei ≺ ef . By definition, ej = max≺(e′ ≺ ei | TSC(e′) = t ∧ e′ = (_,_, write(x,_))}. J

I Lemma 45. Let C = (E,≺) be a concrete execution. Let e, f be such that TSC(e) =
TSC(f) = t, e = (_, r, read(x, ne)), f = (_, r, read(x, nf ) and whenever e ≺ g ≺ f for some
g such that TSC(g) = t, then ¬(g = (_,_, write(x,_)). Then ne = nf .

Proof. As in the previous proof, we let E = {ei}n
i=1 (with possibly n =∞) and such that for

any i < j, ei ≺ ej . Also, for each i = 1, · · · , n, we let ei = (ιi, ri,oi) and we let TSC(ei) = ti
whenever it is defined.

Since e ≺ f , there exist two indices i, j such that e = ei, f = ej and i < j. Also, by
Lemma 41 we know that for any index k = 0, · · · , j− i, if ri+k = r, ti+k is defined and equal
to t, then either oi+k = read(yi+k, ni+k) or oi+k = write(yi+k, ni+k), for some yi+k, ni+k.
Furthermore, in this second case the hypothesis of the Lemma implies that yi+k 6= x.

By Definition 5 there exists a sequence of states (Ri−1,Mi−1), · · · , (Rj ,Mj) such that

(Ri−1,Mi−1) ei_ (Ri,Mi)
ei+1
_ · · ·

ej−1
_ (Rj−1,Mj−1)

ej

_ (Rj ,Mj) (3)

For any k = 0, (j − i) + 1, we let R(i−1)+k(r) = (D(i−1)+k, t : ρ(i−1)+k) (note that the cases
R(i−1)+k = (_, idle) or R(i−1)+k = (_, t′ : ρ) for some t′ 6= t are not possible, since replica r
is already executing a transaction, and transactions are processed sequentially by replicas.).

By hypothesis both TSC(ei) = TSC(ej) = t, ei = (_,_, read(x, ne)), ej =
(_,_, read(x, nf )). The judgements (Ri−1,Mi−1) ei_ (Ri,Mi) and (Rj−1,Mj−1)

ej

_
(Rj ,Mj) could have been derived only via an application of Rule (Read), in the op-
erational semantics of Figure 4. It follows that ne = lastval(x,D(i−1) ∪ {t : ρi−1},
nf = lastval(x,D(j−1) ∪ {t : ρj−1}.

Next we show thatD(i−1) = D(j−1); To do this, we show that for any k = 0, · · · , (j−i)+1
then D(i−1)+k = Di+k; we do this by performing a case analysis on ei+k.
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If ei+k = (_, r′, ccoi+k). for some r′ 6= r, then, the claim follows by a direct application
of Lemma 27;
if ei+k = (_, r, read(yi+k, ni+k)), then (Ri+k−1,_)

ei+k

_ (R(i+k),_) has been derived by
applying Rule (Read). This ensures that Ri+k−1 = Ri+k, and in particular Di+k−1 =
Di+k.
If ei+k = (_, r, write(yi+k, ni+k)), then the judgement (Ri+k−1,_)

ei+k

_ (R(i+k),_) has
been derived by applying Rule (Write). Again, we have that (Di+k−1,_) = Ri+k−1(r) =
Ri+k(r) = (Di+k,_).

Another point to be noted is that lastval(x, t : ρi−1) = lastval(x, t : ρj−1. This
can be shown by proving that, for any k = 0, · · · , (j − i) + 1, lastval(x, t : ρi−1) =
lastval(x, t : ρ(i−1)+k. The proof is performed by induction on k; the case k = 0 is
trivial. Suppose then that k > 0, and the claim holds for k − 1. We perform a case
analysis on the operation performed by ei+k; we give the details for the only non-trivial
case, which is ei+k = (_, r, write(yi+k, ni+k)) (in all other cases, it is easy to show that
t : ρi+k−1 = t : ρi+k). If ei+k = (_, r, write(yi+k, ni+k)) then the facts that ei ≺ ei+k ≺ ej ,
ei = (_, r,_), ej = (_, r,_) and TSC(ei) = TSC(ej) = t, give that TSC(ei+k) = t. This is a
direct consequence of Lemma 35. Since ρi+k = write(yi+k, ni+k)·ρi+k−1, and since yi+k 6= x

it follows by Definition 42 that lastval(x, write(yi+k, ni+k) · ρi+k−1) = lastval(x, ρi+k−1).
The last step to be performed is that of proving that ne = lastval(x,Di−1 ∪ {t : ρi−1} =

lastval(x,Dj−1 ∪ {t : ρi−1} = nf . This is an immediate consequence of Lemma 43. J

I Lemma 46. Let (E,≺) be a concrete execution. Let also (e = (_, r, commit(t)) be an
event in E. For any f ∈ E such that e ≺ f , and TSC(f) = t′, then t′ 6= t.

Proof. If f be such that TSC(f) = t, then there exists an event g = (_, r, commit(t))
such that f ≺ g. But we also have that e ≺ f . By Lemma 25 we obtain that e = f .
Contradiction. J

I Lemma 47. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

and assume that the pair (E,≺), where E = ({ei}i∈N0 ,≺= {(ei, ej) | i < j}) is a concrete
execution.

For any i ≥ 0, we let Dr
j , l

r
j be such that Ri(r) = (Dr

i , l
r
i ).

Then, for any i ≥ 0 and r ∈ RId, Dr
i ⊆Mi.

Proof. First note that, for any i ≥ 0, we have that Mi ⊆ Mi+1. This can be proved by a
simple inspection of the rules of the operational semantics illustrated in Figure 4.

We prove the statement by performing an induction on i. If i = 0, then Dr
i = ∅ and

there is nothing to prove.
If i > 0, suppose that the claim is valid for i − 1. We perform a case analysis over ei.

If ei = (_, r′,_) for some r′ 6= r, then Dr
i = Dr

i−1 by Lemma 27. By inductive hypothesis
Dr

i−1 ⊆Mi−1, and finally Mi−1 ⊆Mi.
If ei = (_, r,_) where o ∈ {start, read(_,_), write(_,_)} then we also have Dr

i =
Dr

i−1, and we can proceed as in the last case.
If ei = (_, r, commit(t)) then Dr

i = Dr
i−1 ∪ {t : ρ}, Mi = Mi−1 ∪ {t : ρ} for some

ρ ∈ UpdateList, and Dr
i−1 ⊆Mi−1 by inductive hypothesis. Hence Dr

i ⊆Mi.
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Finally, if ei = (_, r, receive(t : ρ)) then Dr
i = Dr

i−1 ∪ {t : ρ}, Mi−1 = Mi and
t : ρ ∈Mi−1. Since Dr

i−1 ⊆ Dr
i by inductive hypothesis, we have that Dr

i = Dr
i−1∪{t : ρ} ⊆

Mi−1 ∪ {t : ρ} = Mi−1 = Mi.
J

I Lemma 48. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

and assume that the pair (E,≺), where E = ({ei}i∈N0 ,≺= {(ei, ej) | i < j}) is a concrete
execution.

If t : ρ is such that t : ρ ∈ Mi for some i ≥ 0, then there exists an event ej, j ≤ i, such
that ej = (_, r, commit(t)).

Proof. By induction on i. If i = 0, then Mi = ∅, and there is nothing to prove.
Suppose that i > 0, and assume that the statement holds for i − 1. If e =

(_,_, commit(t)), then there is nothing to prove.
If e = (_,_, commit(t′)) for some t′ 6= t, then Mi = Mi−1 ∪ {t′ : ρ} for some ρ. The

hypothesis that t : ρ ∈ Mi, and the fact that t 6= t′, imply that t : ρ ∈ Mi−1, and by
inductive hypothesis there exists j ≤ i− 1 ≤ i such that ej = (_,_, commit(t)).

Finally, if ej 6= (_,_, commit(t′)) for any t ∈ N, then Mi−1 = Mi, and the statement
follows by inductive hypothesis as before. J

I Lemma 49. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

and assume that the pair (E,≺), where E = ({ei}i∈N0 ,≺= {(ei, ej) | i < j}) is a concrete
execution.

For any i ≥ 0, we let Dr
j , l

r
j be such that Ri(r) = (Dr

i , l
r
i ).

Let r ∈ RId, t ∈ N and ρ, ρ′ ∈ UpdateList.
1. if {t : ρ, t : ρ′} ⊆ Dr

i , then ρ = ρ′,
2. {t : ρ, t : ρ′} ⊆Mi, then ρ = ρ′.

Proof. It suffices to prove the second statement. In fact, in this case we would have that if
{t : ρ, t : ρ′} ⊆ Dr

i , then by Lemma 47 we would have that {t : ρ, t′ : ρ′} ⊆M i, hence ρ = ρ′.
We prove by induction on i that, if t : ρ, t : ρ′ ∈ Mi for some i ≥ 0, then ρ = ρ′. The

case i = 0 is vacuous, since Mi = ∅.
Let then i > 0, and suppose that the statement is true for i − 1. Suppose that ei =

(_,_,o) for some o
If o 6= commit(_), then Mi−1 = Mi. Thus, t : ρ, t : ρ′ ∈ Mi−1, and by inductive

hypothesis ρ = ρ′.
If o = commit(t′) for some t′ 6= t, then Mi = Mi−1 ∪ {t′ : ρ′′} for some ρ′′, and again it

has to be the case that t : ρ, t : ρ′ ∈Mi−1. Hence ρ = ρ′ by inductive hypothesis.
Finally, if o = commit(t), then Mi = Mi−1 ∪ {t : ρ′′} for some ρ′′. Note that if

t : ρ ∈ Mi−1, then by Lemma 48 there exists an event ej � ei−1 ≺ ei such that
ej = (_,_, commit(t)). But Lemma 25 gives that ej = ei, causing a contradiction. There-
fore, t : ρ /∈ Mi−1; the same argument can be used to prove that t : ρ′ /∈ Mi−1. Therefore,
it has to be the case that t : ρ, t : ρ′ ∈ {t : ρ′′}, from which the equality ρ = ρ′′ = ρ′ follows.

The two statements are proved simultaneously by induction over i. If i = 0, there is
nothing to prove. Suppose then that i > 0, and the claim holds for i−1. We perform a case
analysis on the proof of the derivation (Ri−1,Mi−1) ei_ (Ri,Mi). J
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I Lemma 50. Consider a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

and assume that the pair (E,≺), where E = ({ei}i∈N0 ,≺= {(ei, ej) | i < j}) is a concrete
execution. let {Dr

i }i≥0,r∈RId and {lri }i≥0,r∈RId be two sets such that let Ri(r) = (Dr
i , I

r
i ).

Whenever t : ρ is a transaction log such that t : ρ ∈ Dr
i , for some i ≥ 0< there ex-

ists an index j ≤ i such that ej = (_, r,o) where o ∈ {receive(t : ρ), commit(t)}. and
LogOfC(t, e1 · · · ei) = t : ρ.

Proof. We perform an induction over i. If i = 0 thenDr
i = idle for any r ∈ RId, by Definition

5. This case is vacuous. Let then i > 0, and suppose that the claim holds for i − 1. We
perform a case analysis over ei:

if ¬(ei = (_,_,oi)), whereoi ∈ {receive(t′ : ρ), commit(t′)}, then it can be proved
Dr

i = Dr
i−1 for any r ∈ RId; the proof is performed via a case analysis on the proof of

the transition (Ri−1,Mi−1) ei_ (Ri,Mi).
Let r ∈ RId be such that t : ρ ∈ Dr

i ; then t : ρ ∈ Dr
i−1 and by inductive hypothesis there

exists an index j < i−1 < i such that ccej = (_,_,oj) with oj ∈ {commit(t), receive(t :
ρ) | ρ ∈ UpdateList}, and LogOfC(t, e1 · · · ei−1) = t : ρ.
Finally, note that there exists an index h ≤ j < i such that eh = (_,_, commit(t)).
In fact, if oj = commit(t)), simply take h := j; otherwise, oj = receive(t : ρ) and
the existence of such an event eh follows from an application of Lemma 39. We have
that eh � ej ≺ ei, hence by Lemma 46 it has to be TSC(ei) 6= t. By definition,
LogOfC(t, e1 · · · ei) = LogOfC(t, e1 · · · ei−1) = (t : ρ),
if ei = (_, r,oi) where oi ∈ {receive(t : ρ), commit(t) | ρ ∈ UpdateList}. If t′ 6= t, then
whenever t : ρ ∈ Dr′

i for some replica r′ (possibly r′ = r) it has to be the case that
t : ρ ∈ Dr′

i , and the claim follows from the inductive hypothesis and the definition of
LogOfC(t, e1 · · · ei). Otherwise t = t′; note that, for any replca r′ 6= r, Dr′

i = Dr′

i−1, hence
if t : ρ ∈ Dr′

i then t : ρ ∈ Dr−1
i−1 , and by inductive hypothesis t : ρ = LogOfC(e1 · · · ei−1).

Since oi is not an operation of the form write(_,_), read(_,_), TSC(ei) is not defined,
and by definition LogOfC(e1 · · · ei = LogOfC(e1 · · · ei−1) = t : ρ.
Finally, suppose that t : ρ ∈ Dr′

i−1. We distinguishing between two sub-cases:
ei = (_, r, commit(t)); since (Ri−1,Mi−1) ei_ (Ri,Mi) can be derived only by applying
Rule (Commit), it has to be the case that Dr

i = Dr
i−1 ∪ {t : ρ}, and lri−1 = t : ρ.

By Lemma 38 it follows that t : ρ = lri−1 = LogOfC(t, e1 · · · ccei−1). Since ei =
(_, r, commit(t)), then TSC(ei) is undefined, and by definition of LogOfC we obtain
that LogOf(t, e1 · · · ei) = LogOf(t, e1 · · · ei−1) = t : ρ.
Finally, suppose that ei = (_, r, receive(t : ρ)). This is possible only if t : ρ ∈Mi−1.
By Lemma 48, there exists an event ej � ei such that ej = (_, r′, commit(t)); note
that it cannot be ej = ei, hence it has to be ej ≺ ei. Since ej = (_, r′, commit(t)),
it has to be the case that t : ρ′ ∈ Dr

j for some ρ′. By Lemma 38 we know that
ρ′ = LogAuxC(t, e1, · · · , ej). Also, since ej = commit(t), by Lemma 46, whenever eh

is such that ej ≺ eh, then TSC(eh) 6= t. By definition, ρ′ = LogAuxC(t, e1 · · · ej) =
LogAuxC(t, e1 · · · ei). Finally, since ρ′ ∈ Dr′

j , by Lemma we obtain that t : ρ′ ∈ Mj ,
hence t : ρ′ ∈ Mi−1 because ej � ei−1. We have proved that t : ρ′, t : ρ ∈ Mi−1; By
Lemma 49 we obtain that ρ = ρ′.
In this case Dr

i = Dr
i−1 ∪ {t : ρ′}.

First note that ρ′ = ρ; in fact, if it were ρ′ 6= ρ, then t : ρ ∈ Di implies that
t : ρ ∈ Di−1.

J
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B.2 Encoding Concrete Executions into Abstract Ones

We write again the definition of history(C) for the sake of clarity. We also show how the two
relaitons AR(C) ⊆ history(C)× history(C) and VIS(C) ⊆ history(C)× history(C) can be derived
from a given concrete execution C.

I Definition 51. Let C = (E,≺) be a concrete execution. We define the underlying abstract
execution of C as AbsExec(C) = (history(C),VIS(C),AR(C)), where

For any t ∈ N let Tt = (Et, pot), where Et = {(ι,o) | (ι,_,o) ∈ E ∧ TSC(e) = t} and
pot = {(ι1,o1), (ι2,o2) | (ι1,_,o1) ≺ (ι2,_,o2)} (note that Et = ∅, pot = ∅ if there
exists no e ∈ E such that e . t : _ @ _); then history(C) = {Tt | Tt 6= ∅};,
AR(C) = {(Tt, Ts) ∈ history(C) | t < s},
VIS(C) = {(Tt, Ts) | ∃r,o, ι. (_, r,o) ≺ (ι, r, start) ∧ o ∈ {commit(t), receive(t : _)} ∧
(ι, r, start) = startC(t)}.

I Proposition 52. For any concrete execution C, AR(C) is a total order.

Proof. A simple consequence of the fact that AR(C) orders transactions according to the
total order < over timestamps assigned in C. J

I Proposition 53. For any concrete execution C, VIS(C) ⊆ AR(C).

Proof. Consider a concrete execution C = (E,≺); for convenience, we let E = {ei}n
i=1, with

possibly n = ∞, and such that for any i < j, ei ≺ ej . Let now (E, po) ∈ history(C), and
consider an event e ∈ E such that e = (ι, read(x, n)). By construction of history(C) it follows
that there exists a timestamp t such that E = Et, po = pot, as per Definition 51. Let also
(Ri,Mi), i = 1, · · · be such that

(R0,M0) e1_ (R1,M1) e2_ · · ·

and for any i = 1, · · · let Ri(r) = (Dr
i , l

r
i ).

Let S, T ∈ history(C) be such that S VIS(C)−−−−→ T . By definition 51, there exist t, t′ such
that S = T ′t , T = Tt. Also, there exists two indexes i, j such that j < i, ej = (_, r,o)
where o ∈ {receive(t′ : _), commit(t′)} and es = (_, r, start) = startC(t). It follows that
(t′ : _) ∈ Dr

j , and by Lemma 24, (t′ : _) ∈ Dr
s−1. By looking at the structure of the proof of

(Rs−1,Ms−1) es_ (Rs,Ms), recalling that e = (_, r, start), it has to be the case that t′ < t,
hence Tt′

AR(C)−−−−→ Tt by Definition 51. J

I Proposition 54. For any concrete execution C, both AR(C) and VIS(C) are prefix-finite.

Proof. If suffices to show that AR(C) is prefix-finite; the result for HB(C) follows then from
Proposition 53. Let (E, po) ∈ history(C). Then (E, po) = (Et, pot) for some timestamp t,
where Et, pot are defined as per Definition 51. Also, note that whenever S AR(C)−−−−→ T , then
S = (Et′ , pot′) for some timestamp t′ < t. It follows that |{S | S AR(C)−−−−→ T}| ≤ |{t′ | t′ <
t}| ≤ t < +∞. J

I Proposition 55. Let C be a concrete execution. Then, for any (E, po) ∈ historyC, |E| < +∞.

Proof. Consider a concrete execution C = (E,≺); for convenience, we let E = {ei}n
i=1,

with possibly n = ∞, and such that for any i < j, ei ≺ ej . Let (E, po) ∈ history(C).
Then there exists a timestamp t ∈ N such that E = Et, as per Definition 51. Recall
that Et = {(ι,o) | ∃e ∈ E.e = (ι,_,o) ∧ TSC(e) = t. Also, it is easy to note that
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{e ∈ E | TSC(e) = t} ⊆ {e ∈ E | e ≺ (_,_, commit(t))}. Recall that by Lemma 25 there
exists a unique event of the form (_,_, commit(t)), and assume that such an event is ei, for
some i ≥ 0.

Now we have that

|Et| = |{e ∈ E | TSC(e) = t}| ≤ |{e ∈ E | e ≺ ei}| ≤ i < +∞.

J

I Proposition 56. Let C be a concrete execution. For any (E, po) ∈ history(C), po is a total
order.

Proof. Assume C = (E,≺). IF (E, po) ∈ history(C), there exists a timestamp t such that
E = Et, po = pot, as per Definition 51. For any e = (ι1,_), f = (ι2,_) ∈ Et, with
ι1 6= ι2. Definition 51 ensures that there exist two events e = (ι1,_,_)f = (ι2,_,_) and
TSC(e) = TSC(f) = t. Since ι1 6= ι2, then e 6= f . Since ≺ is a total order, either e ≺ f or
f ≺ e. Without loss of generality, let e ≺ f . By Definition 51, it follows that e pot−−→ f .

In a similar way, we can prove that pot is both irreflexive and transitive. J

I Proposition 57. Let C be a concrete execution. If (E, po1), (F, po2) ∈ history(C), and
E ∩ F 6= ∅, then E = F .

Proof. By Definition 51 there exist two timestamps t, t′ such that (E, po1) = (Et, pot),
(F, po2) = (Et′ , pot′), where the right hand sides of the equations are defined according to
Definition 51. Let e ∈ Et ∩ Et′ , and assume that e = (ι,_). By Definition 51, there exists
an event e such that both e = (ι,_,_), and t′ = TSC(e) = t. Therefore, t = t′, hence
(Et, pot) = (Et′ , pot′), as we wanted to prove. J

I Proposition 58. For any C ∈ ConcExecRA, AbsExec(C) |= Int.

Proof. Consider a concrete execution C = (E,≺); for convenience, we let E = {ei}n
i=1,

with possibly n = ∞, and such that for any i < j, ei ≺ ej . Let now (E, po) ∈ history(C),
and consider an event e ∈ E such that e = (ι, read(x, n)). By construction of history(C) it
follows that there exists a timestamp t such that E = Et, po = pot, as per Definition 51.
This means that there exists a (possibly infinite) computation

(R0,M0) e1_ (R1,M1) e2_ · · ·

and an index i such that ei = (ι,_, read(x, n)) and TSC(ei) = t. In particular, this
means that Ri−1 = (Di, ρi), and n = lastval(x,D∪{∞ : ρi}). By Lemma 43 then either n =
lastval(x, ρi), or lastval(x, ρi) is undefined and n = lastval(x,D). We perform a case analysis
on whether n = lastval(x, ρi) or lastval(x, ρi) is undefined n = lastval(x,D), to prove that if
the event eh := max≺{e | e′ ≺ ei ∧ ∃o′.e′ = (_,_,o′) ∧ o′ ∈ {read(x,_), write(x,_)} ∧
TSC(o′) = t} is defined, then eh = (_,_,_(x, n)).

If n = lastval(x, ρi), then by Lemma 44 the event ej := max≺{e′ | e′ ≺ ei ∧ e′ =
(_,_, write(x,_))∧TSC(e′) = t} is well defined with j < i, and ej = (_,_, write(x, n)).
Since ej is defined, then also eh is defined (recall that ≺ is assumed to be a total order,
hence max≺(X) is not defined for some set X, if and only if X = ∅). Also, it has to be
the case that j ≤ h < i. If j = h then we already know that ej = (_, r,_(x, n)) and
TSC(ej) = t; if j < h, instead, it has to be the case that eh = (_,_, read(x,m)) for
some m, and TSC(eh) = t. Also, for no index k such that such h < k < i we would have
ek = (_,_, write(x,_)) with TSC(ek) = t, since it would contradict the assumption
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that ej := max≺{e′ | e′ ≺ ei ∧ e′ = (_,_, write(x,_)) ∧ TSC(e′) = t}. It follows from
Lemma 45 that m = n, and in particular eh = (_,_, read(x, n)), as we wanted to prove.
Otherwise, suppose that n = lastval(x,D), which means that lastval(x, t : rho) =
undefined; equivalently, there exists no index of the form write(x,_) in ρ. By
Lemma 38, it follows that there exists no event ej = (_,_, write(x, n)) such that
TSC(ej) = t and j < i. Thus, if the event eh is defined, it has to be the case
that eh = (_,_, read(x,m)), TSC(eh) = t, and there exist no index k such such
ek = (_,_, write(x,_)), TSC(ek) = t and h < k < i. Again, it follows from Lemma 45
that m = n, and in particular eh = (_,_, read(x, n)) with TSC(eh) = t.

Next, it remains to note that an event e = (ι, read(x, n)) is included in Et if and only
if the event e = (ι,_, read(x, n)) is such that e ∈ E and TSC(e) = t. Similarly, for any
e, f ∈ Et, with e = (ι1,_), f = (ι2,_), we have that epotf if and only if e ≺ f , where
e = (ι1,_) and f = (ι2,_). It follows that the event eh = max≺{e | e′ ≺ ei ∧ ∃o′.e′ =
(_,_,o′) ∧ o′ ∈ {read(x,_), write(x,_)} ∧ TSC(o′) = t} is defined if and only if the event
f := maxpot

(po−1
t (e) ∩ HEventx) is defined (recall that e is the event that corresponds to

e). Also, eh = read(x, n) if and only if f = (_, read(x, n)), and similarly for writes. This
concludes the proof.

J

I Proposition 59. For any C ∈ ConcExecRA,AbsExec(C) |= Ext.

Proof. Consider a concrete execution C = (E,≺); for convenience, we let E = {ei}n
i=1, with

possibly n = ∞, and such that for any i < j, ei ≺ ej . Also, let {(Ri,Mi)}n+1
i=0 be the

sequence of states for which (Ri−1,Mi−1) ei_ (Ri,Mi), for any i = 1, · · ·n; finally, for any
i = 1, · · · , n, let Ri(r) = (Dr

i , l
r
i ), where either lri = idle or lri = ρr

i for some ρr
i ∈ UpdateList.

Let now (E, po) ∈ history(C) be such that (E, po) ` Read x : n. By definition, there
exists an event e ∈ E such that e = (ι, read(x, n)), and for any event f ∈ po−1

t (e), f 6=
(_, write(x, n)).

Since (E, po) ∈ history(C), then there exists a timestamp t ∈ N such that E = Et, po =
pot, as per Definition 51. It follows that there exists an event e ∈ E such that ei =
(_, r, read(x, n)) with TSC(ei) = t, and for any ej with j < i and TSC(ej) = t, then
ej 6= (_,_, write(x, n)).

By looking at the derivation of the transition (Ri − 1,Mi − 1) ei_ (Ri,Mi), it has
to be the case that lri−1 = ρr

i−1 for some ρr
i−1 ∈ UpdateList; by Lemma 38 it follows

that LogOfC(t, · · · e1, · · · , ccei) = (ti−1 : ρi−1), and since there exists no index j < i

such that TSej
= t and ej = (_, write(x,_)), then ρi−1 does not contain a record of

the form write(x,_). It follows that lastval(x, ρi−1) = undefined. By Lemma 43 then
n = lastval(x,Di−1).

Let us now look at the set of transaction logs Dr
i−1.

If there exists no log of the form t′ : ρ such that t′ : ρ ∈ Dr
i−1 and lastval(x, t′ : ρ) 6=

undefined, then by Definition 42 n = 0. In this case, it suffices to show that there exists no
transaction (Et′ , pot′) ∈ history(C) such that (Et′ , pot′) ` Write x : _ and (Et′ , pot′

VIS(C)−−−−→
(Et, pot).

Suppose then that lastval(x, t′ : ρ) = undefined for any t′ : ρ ∈ Dr−1. Fix a transaction
log t′ such that t′ : ρ ∈ Dr−1 and let let (Et′ , pot′) ∈ history(C) be a transaction such that
(Et′ , pot′)

VIS(C−−−→ (Et, pot).
By Definition 51, we have that there exists an index j such that ej = (_, r,o), where

o ∈ {commit(t′), receive(t′ : ρ) | ρ ∈ UpdateList} and ej ≺ startC(t) ≺ ei (recall that
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TSC(ei) = t, hence startC(ei) = startC(t). By looking at the proof of the transition
(Rj−1,Mj−1)

ej

_ (Rj ,Mj), we can infer that there exists a transaction log ρ′ ∈ UpdateList
such that (t′ : ρ′ ∈ Dr

j ), and since j < i it follows from Lemma 24 that (t′ : ρ′ ∈ Di−1).
Therefore, we have that (t′ : ρ), (t′ : ρ′) ∈ Dr

i−1, and by Lemma 49 it follows that ρ = ρ′.
Hence lastval(x, t′ : ρ′) = undefined.

By Lemma 50 we have that LogOfC(t′, e1, · · · ei) = t′ : ρ′, and since lastval(x, t′ : ρ′) =
undefined it follows that whenever h is an index such that h < i and TSC(eh) = t′, then
eh 6= (_,_, write(x, n)) for any h < i. Equivalently, there exists no event e ∈ Et′ such that
e = (_, write(x,_)), from which it follows that (Et′ , pot′ 6` Write x : _, as we wanted to
prove.

Assume instead that there exists at least one transaction log t′ : ρ ∈ Dr
i−1 such that

lastval(x, t′ : ρ) is defined. Let ek = (_,_, commit(t)) be the unique event in E such that
ei ≺ ek; this event exist because TSC(ei) is defined; by Lemma 24, t′ : ρ ∈ Dr

k−1, and
by analysing the proof of the derivation (Rk−1,Mk−1)

ek_ (Rk,Mk), this is possible only if
t′ < t.

Without loss of generality, assume that t′ = max<{t′′ | t′′ : ρ′′ ∈ Dr
i−1 ∧ lastval(x, t′′ :

ρ′′) 6= undefined}; in this case we have that lastval(x, t′ : ρ′) = n. We show that
(Et′ , po′t) ` Write x : n, and (Et′ , pot′) = maxAR(C){(Et′′ , pot′′) | (Et′′ , pot′′)

VIS(C)−−−−→
(Et, pot) ∧ (Et′′ , pot′′) `Write x : _}.

First, note that since t′ : ρ ∈ Dr
i−1, then (E′t, po′t)

VIS(C)−−−−→ (Et, pot). In fact, note
that by Lemma 50 there exists an index j such that j < i, and ej = (_, r,o) with o ∈
{commit(t′), receive(t′ : ρ′) | ρ′ ∈ UpdateList}. Because of Lemma 35, and since t′ 6= t, it
has to be the case that ej ≺ startC(t) ≺ ei.

By Definition 51 this gives (Et′ , pot′)
VIS(C)−−−−→ (Et, ρt). Lemma 50 also ensures that t′ :

ρ = LogOfC(t′, e1, · · · , ei). Since lastval(x, t : ρ′) = n, this means that there exists an event
eh, h < i, such that TSC(eh) = t′, ej = (_,_, write(x, n)) and whenever k : i < h < k, if
TSC(ek) = t′ then ek 6= (_,_, write(x,_)). By Definition 51, there exists an event f ∈ Et′

such that op(f) = write(x, n), and for any g : f pot′−−→ g, then op(g) 6= write(x,_). By
definition, f = maxpot′{g | op(g) = write(x,_)}, hence Et′ `Write x : n.

Let now (Et′′ , pot′′) ∈ history(C) be a transition such that (Et′′ , pot′′)
VIS(C)−−−−→ (Et, pot),

and (Et′′ , pot′′) ` Write x : _. We show that either (Et′′ , pot′′) = (Et′ , pot′), or
(Et′′ , pot′′)

AR(C)−−−−→ (Et′ , pot′). Since we have already proved that t′ < t, then it follows
from (Et′ , pot′)

AR(C)−−−−→ (Et, pot) and by Proposition 52 that (Et′′ , pot′′
AR(C)−−−−→ (Et, pot); as

a simple consequence, we get that (Et′ , pot′) = maxAR(C){(Et′′ , pot′′) | (Et′′ , pot′′)
VIS(C)−−−−→

(Et, pot) ∧ (Et′′ , pot′′) `Write x : _}.
Since (Et′′ , pot′′) ∈ history(C), by definition 51 there exists an event ej , such that ej ≺

startC(t), ej = (_, r,oj) where oj ∈ {receive(t′′ : ρ′′), commit} @ r. Using 24, we can
show that t′′ : ρ′′ ∈ Dr. By hypothesis, t′ = max<(t′′ | t′′ : ρ′′ ∈ Di−1 ∧ lastval(x, t′′ : ρ′′) 6=
undefined; therefore either t′′ ≤ t′ or there is no record of the form write(x, n) occurs in
ρ′′.

Since we are assuming that (Et′′ , pot′′) ` Write x : _, there exists an event f ∈ Et′′

such that f = (_, write(x,_)). By Definition 51, it follows that there exists an index
h < i such that TSC(eh) = t′′ and eh = (_,_, write(x,_)). We also have that t′′ :
ρ′′ = LogOf(t′′, e1 · · · ei), By (Lemma 38), hence it has to be the case that write(x,_)
occurs in ρ′′. Therefore, the only possibility is that t′′ ≤ t′. That is, either t′′ = t′, from
which we get that (Et′′ , pot′′) = (Et′ , pot′ , or t′′ < t′, and by Definition 51 it follows that
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(Et′′ , pot′′)
AR(C)−−−−→ (Et′ , pot′), as we wanted to prove. J

I Proposition 60. Let (E,≺) be a concrete execution satisfying (??). Then AbsExec(C) |=
TransVis.

Proof. Let S, T, V be three transactions in history(E,≺), such that S VIS(C)−−−−→ T
VIS(C)−−−−→ V .

Then there exist three timestamps t, t′, t′′ such that S = Tt, T = Tt′ and V = Tt′′ as per
Definition 51. Also, since Tt

VIS(C)−−−−→ Tt′ , there exist er, es′ ∈ E such that er = (_, r,o) with
o ∈ {commit(t), receive(t : ρ) | ρ ∈ UpdateList}, and er ≺ (_, r, commit(t′)). Note that by
Lemma 25, the event (_, r, commit(t)) is uniquely defined in E.

Also, since Tt′
VIS(C)−−−−→ Tt′′ . there exist fr′ ∈ E such that fr′ = (_, r′,o′) with o′ ∈

{commit(t′), receive(t′ : ρ′) | ρ′ ∈ UpdateList} and er′ ≺ (_, r′, commit(t′′)).
By Lemma 39 we get that er ≺ (_, r, commit(t′)) � er′ ≺ (_, r′, commit(t′′)). If r = r′,

By Definition 51 and the fact that er ≺ (_, r′, commit(t′′)) = (_, r, commit(t′′)), we obtain
that Tt

VIS(C)−−−−→ Tt′′ , as we wanted to prove.
Suppose then that r′ 6= r; since we are assuming that C satisfies (CausalDeliv), and

because er ≺ (_, r′, commit(t′)), then there exists an event e′r = (_, r′,o′′) with o′′ ∈
{commit(t′′), receive(t′′ : _)} such that er′ ≺ fr′ ≺ (_, r′, commit(t′′)). By Definition 51,
it follows that Tt

VIS(C)−−−−→ Tt′′ . J

I Proposition 61. Let (E,≺) be a concrete execution satisfying (TotalDeliv). Then
AbsExec((E,≺)) |= Prefix.

Proof. Let Tt, Tt′ , Tt′′ ∈ history(E,≺), where Tt, Tt′ , Tt′′ are defined from t, t′, t′′ according
to Definition 51, respectively. Suppose that Tt

AR(C)−−−−→ Tt′
VIS(C)−−−−→ Tt′′ . We need to show that

Tt
VIS(C)−−−−→ Tt′′ .
Since Tt

AR(C)−−−−→ Tt′ , by Definition 51 it follows that t < t′. Also, since Tt′
VIS(C)−−−−→

Tt′′ , we have that there exist two events ec′ ,∈ E such that ec′ = (_, r′,o′) with o′ ∈
{commit(t′), receive(t′ : _)}, and ec′ ≺ (_, r′, commit(t′′)). Here it is also important
to note that, because of Lemma 35, it has to be the case that ec′ ≺ startC(t′), where
startC(t′) = (_, r′, start).

Since Tt ∈ E, then there exists at least one event in e ∈ E such that TSC(e) = t. This
is possible only if an event of the form (_,_, commit(t)) appears in E. Thus we have that
(a) there exists an event of the form (_,_, commit(t)) in E, (b), ec′ ≺ startC(t′′), (c)
startC(t′′) = (_, r′, start) and (d) t < t′. Since C satisfies (TotalDeliv), it has to be the
case that there exists an event ec such that ec = (_, r′,o) with o ∈ {commit(t), receive(t :
_)} and ec ≺ startC(t′′). It is immediate to observe now that it has to be the case that
ec ≺ (_, r′, commit(t′′)), and by Definition 51, Tt

VIS(C)−−−−→ Tt′′ . J

I Proposition 62. Let (E,≺) be a concrete execution that satisfies ConflictCheck. Then
AbsExec((E,≺)) |= NoConflict.

Proof. Let Tt, T
′
t ∈ history((E,≺)), where t, t′ are timestamps such that t 6= t′ and Tt, T

′
t

are defined according to Definition 51. Suppose that Tt `Write x : _ and Tt′ `Write x : _.
We nedd to show that either Tt

VIS(C)−−−−→ Tt′ or Tt′
VIS(C)−−−−→ Tt.

Since both Tt, T
′
t ` Write x : _, then Tt = (Et,_), Tt′ = (Et′ ,_) for some Et, Et′ such

that there exist et ∈ Et, et′ ∈ Et′ with et = (_, write(x,_)), et′ = (_, write(x,_)).
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By Definition 51, we have that there exist two events ew, ew′ such that ccew =
(_, r, write(x,_)), ew = (,r

′, write(x,_)) and TSC(ew) = t, TSC(ew′) = t′. By Defin-
ition of TSC(·), then there exists two unique events of the form (_, r, commit(t)) and
(_, r′, commit(t′)) appearing in E.

since ≺ is total, either (_, r, commit(t)) ≺ (_, r, commit(t′)) or (_, r′, commit(t′)) ≺
(_, r, commit(t)) (recall that t 6= t′ by hypothesis). Without loss of generality, assume that
(_, r, commit(t)) ≺ (_, r′, commit(t′)). We have two possible cases:

r′ = r; in this case it is immediate, by Definition 51, to obtain that Tt
VIS(C)−−−−→ Tt′ ,

r′ 6= r; in this case (ConflictCheck) ensures that there exists an event ercv ∈ E such that
ercv = (_, r′, receive(t : _)), It follows from Definition 51 that Tt

VIS(C)−−−−→ Tt′ .
J

B.3 Recovering Concrete Executions from Abstract Ones

In the following, we use γ to range over computation fragments, i.e. γ = (R0,M0) e1_
(R1,M1) e2_ · · ·

ei_ (Ri,M i) for some (Rj ,M j), with j = 0, · · · , i and ej ,with j = 1, · · · , i.
The concatenation of two execution fragments γ1, γ2, denoted as γ1 · γ2, is defined whether
γ1 = (R0,M0) e1_ (R1,M1) e2_ · · ·

ei_ (Ri,M i), γ2 = (Ri,M i)
ei+1
_ (Ri+1,M i+1)

ei+2
_ · · ·

ei+j

_
(Ri+j ,M i+j) for some (R1,M1), · · · (Ri+j ,Mi+J) ∈ RState; in this case we let γ1 · γ2 =
(R0,M0) e1_ (R1,M1) e2_ · · ·

ei+j

_ (Ri+j ,M i+j).
We define a concrete execution, given an abstract one (H,VIS,AR), by applying the

following criteria: any two different transactions in H to be executed at different replicas;
the timestamp of transactions are determined to be consistent with the arbitration relation
AR; at any given time, at most one replica is executing a transaction (i.e. there is a global
sequential order according to which transactions are executed by some replicas); before
starting executing a transaction T at a given replica r, the latter will have received the
effects of exactly those transactions which are visible to T (i.e. message delivery is defined
to be consistent with the visibility relation). In the following we fix an abstract execution
A = (H,VIS,AR). This is done to keep the notation easy; however, since we are not making
any assumption about the structure of A, all the results in the Section hold for an arbitrary
abstract execution. Also, the notation introduced in the next Definition is maintained
throughout this section.

I Definition 63. If H = ∅, then we let Recover(A) = (R0,M0), where we recall that
R0 = λr.(∅, idle), M0 = ∅. Here the pair (R0,M0) is meant as a computation fragment with
no transitions. Otherwise, we define Recover(A) as follows:

For each T ∈ H, we let tT , rT to be a timestamp and replica identifier, respectively,
such that T 6= S implies rT 6= rS , and if T AR−−→ S then tT < tS . We assume that
RId = {rT | T ∈ H} (this is possible since H is either finite or countably infinite). For
example, we can assume that RId = N = N, and tT = rT := |{S | S AR−−→ T}|.
Given (E, po) ∈ H, define ρ(E,po) is defined inductively as follows

ρ(E,po) =



ε if E = ∅
ρ(E\{e}),po|(E\{e}) where e := minpo(E), is defined

and op(e) = read(_,_)
write(x, n) · ρ(E\{e}),po|(E\{e}) where e := minpo(E), is defined

and op(e) = write(x, n)



REFERENCES 37

For any T ∈ H, we define lT := tT : ρT .
For any T ∈ H, we define RT so that, for any rS ∈ RId, RT (rS) = (DT,S , idle) where
DT,S = {lT ′ | T ′

VIS−−→ S} if tS < tT , DT,S = ∅ otherwise.
We let MT := {lT ′ | T ′

AR−−→ T}.
For each T = (ET , poT ) ∈ H, we define two execution fragmentsγT,rcv and γT,exec as
follows:

we assume that the set of event identifiers is Hist× {rcv, exec} × N,
let S1, · · · , Sn be the enumeration of VIS−1(T ) determined by AR. Note that VIS is
prefix finite by hypothesis, hence |VIS−1(T )| < +∞. Then, for any i = 1, · · · , n we
let (ei

T,rcv = ((T, rcv, i), rT , receive(tSi : ρSi)), Ri
T,rcv(rS) := RT (rS), if S 6= T ,

Ri
T,rcv(rT ) := ({lS1 , · · · , lSi

}, idle), and M i
T,rcv = MT . We also let R0

T,rcv :=
RT ,M

0
T,rcv := MT . Then

γT,rcv = (R0
T,rcv,M

0
T,rcv)

e1
T,rcv
_ (R1

T,rcv,M
1
T,rcv)

e2
T,rcv
_ · · ·

en
T,rcv
_ (Rn

T,rcv,M
n
T,rcv)

Let R0
T,exec := RT [rT 7→ ({lS | S

VIS−−→ T}, idle)]. Take M0
T,exec := MT . Let

(e1
T,exec = ((T, exec, 1), rT , start). Define R1

T,exec = RT [rT 7→ ({lS | S
VIS−−→ T}, ε)],

and M1
T,exec = MT .

Now, let e2
T , · · · , en

T be the enumeration of ET given by poT . Without loss of generality,
assume that for any i = 2, · · · , n, ei

T = ((T, exec, i),_); note that if this is not the
case we can still rename the identifiers of ET in A so that ei

T = ((T, exec, i),_).
If ei

T = (_, o(x, n)), where o ∈ {read, write}, we let ei
T,exec := (ι, rT , o(x, n)). We

also let Ri
T,exec := RT [rT 7→ ({lS | S

VIS−−→ T}, ρ{e2
T

,··· ,ei
T
},po|{e2

T
,··· ,ei

T
}
)], M i

T,exec := MT .

Finally, let en+1
T,exec := ((T, exec, n + 1), rT , commit(tT )), and define Rn+1

T,exec =
RT,exec[rT 7→ (({lT } ∪ {lS | S

VIS−−→ T}), idle)], M i+1
T,exec := MT ∪ {lT }. Then

γT,exec = (R0
T,exec,M

0
T,exec)

e1
T,rcv
_ (R1

T,exec,M
1
T,exec)

e2
T,rcv
_ · · ·

en+1
T,rcv
_ (Rn+1

T,exec,M
n+1
T,exec)

Suppose that T1, · · · , Tn (with possibly n = ∞ is the enumeration of H given by AR. For
i = 1, · · · , n we let γTi

:= γTi,rcv · γTi,exec, and we define Recover(A) = γT1 · · · γTn
.

I Proposition 64. The execution Recover(A) is well defined.

Proof. Let T1, · · · , Tn be the enumeration of H given by AR; note that possibly n =∞. We
first show that,

for each i = 1, · · · , n, the computation fragment γTi,rcv · γTi,exec is well defined,
for any i = 1, · · · , n− 1, the computation fragment γTi,exec · γTi+1,rcv is well defined.

We only give the details for the first statement, as the second one can be proved similarly.
Let then i = 1, · · · , n. Let also k := |{S | S VIS−−→ Ti}. By definition, we have that

γTi,rcv = (R0
Ti,rcv,M

0
Ti,rcv)

e1
Ti,rcv
_ · · ·

e|VIS−1(Ti)|
Ti,rcv

_ (R|VIS−1(Ti)|
Ti,rcv ,M

|VIS−1(Ti)|
Ti,rcv ),

while

γTi,exec = (R0
Ti,exec,M

0
Ti,exec)

e1
Ti,rcv
_ · · ·

e
|ETi

|+2
Ti,exec
_ (R|ETi

|+2
Ti,exec ,M

|ETi
|+2

Ti,exec ).



38 REFERENCES

In order to prove that γTi,rcv · γTi,exec is well-defined, it suffices to prove that
(R|VIS−1(Ti)|

Ti,rcv ,M
|VIS−1(Ti)|
Ti,rcv ) = (R0

Ti,exec,M
0
Ti,exec).

Note that, for any r ∈ RId, r 6= rTi , we have that r = rS for some S 6= Ti; also,
in this case we have that R0

Ti,exec(rS) = RTi
(rS) = R

|VIS−1(Ti)|
Ti,rcv (rS). For r = rTi

, we
have that R0

Ti,exec(rTi) = ({lS | S
VIS−−→ Ti}, idle); on the other hand, R|VIS−1(Ti)|

Ti,rcv (rTi) =
({lS1 , · · · , lS|VIS−1(Ti)|

}, idle), where S1, · · · , S|VIS−1(Ti)| correspond to the enumeration of

VIS−1(Ti) induced by AR. Therefore, {lS1 , · · · , lS|VIS−1(Ti)|
} = {lS | S

VIS−−→ Ti}, hence

R
|VIS−1(Ti)|
Ti,rcv (rTi

) = ({lS | S
VIS−−→ Ti}, idle) = R0

Ti,exec(rTi
).

Finally, by construction we have thatM0
Ti,exec = MTi = M

|VIS−1(Ti)|
Ti,rcv , and there is nothing

left to prove.
J

I Proposition 65. Recall that R0 = λr.(∅, idle), and M0 = ∅. Then either Recover(A) =
(R0,M0) or Recover(A) = (R0,M0) e1_ · · · for some event e1.

Proof. If H = ∅, then by definition Recover(A) = (R0,M0). Suppose then that H 6= ∅.
By definition, Recover(A) = γT1 · · · , where T1, · · · is the enumeration of transactions in H,
according to AR. We show that γT1 = (R0,M0) e1_ (R1,M1) · γ′. By Definition 63 we have
that RId = {rS | S ∈ H}, and γT1 = (R0

T ,M
0
T ), where R0

T (rS) = ({lT ′ | T ′
VIS−−→ S}, idle) if

S
AR−−→ T , (∅, idle) otherwise. Note that T1 = minAR(H), so that AR−1(T1) = ∅, hence for

any S ∈ H, it follows that R0
T (rS) = (∅, idle), or equivlently R0

T = λr.(∅, idle) = R0. Also
MT

0 = ∅ = M0. J

I Proposition 66. Let e, f be two events in Recover(A) such that e = (_,_, start), f =
(_,_, start). Then there exists two transacitons T, S such that e = startRecover(A)(tT ),
f = startRecover(A)(tS).

As an immediate consequence, if S = T then e = f .

Proof. By definition, if e = (_,_, start), then there exists a transaction T ∈ H such that
e = e1

T,exec. This implies that e = (_, rT , start). Now note that there is a unique event
g = (_, rT , commit(_)) appearing in Recover(A); such an event is exactly e|ET |+2

T,exec , and in
particular we have that e|,ET |+2

T,exec = (_, rT , commit(tT )).
Both the events e = e1

T,exec and g = e vertET |+2
T,exec appear in the computation fragment

γT , and in particularly e1
T,exec precedes e|ET |+2

T,exec ; that is, e1
T,exec ≺ e|ET |+2

T,exec . Since the event
e|ET |+2

T,exec is the unique commit event that takes place at replica rT , and the transaction iden-
tifier of such a commit operation is tT , it follows immediately that e = startRecover(A)(tT ).
Analogously, it can be proved that f = startRecover(A)(tS).

that e = f . J

I Proposition 67. Each of the transitions appearing in Recover(A) can be inferred from the
rules given in Figure 4.

Proof. If H = ∅, then there is nothing to prove. Suppose then that H 6= ∅. We assume that
T1, · · · , Tn (with possibly n = ∞) is the enumeration of H according to AR. Recall that
Recover(A) = γT1 · · · γTn , where for each i = 1, · · · , n, γTi = γTi,rcv · γTi,exec. Fix an index i
in the interval [1, n]. We show that any transition (R,M) e

_ (R′,M ′) which appears in γTi

can be inferred by the rules given in Figure 4, by performing a case analysis on whether the
transition occurs in γTi,rcv or in γTi,exec.
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Suppose that the transition (R,M) e
_ (R′,M ′) occurs in γTi,rcv. Let Si, · · · , |VIS−1(Ti)|

be the enumeration of VIS−1(Ti) induced by AR. Then it has to be the case that there
exists an index j = 1, · · · , |VIS−1(Ti)| such that (R,M) = (Rj−1

Ti,rcv,M
j−1
Ti,rcv), (R′,M ′) =

(Rj
Ti,rcv,M

j
Ti,rcv) and e = ej

Ti,rcv = (_, rTi
= receive(tSj

: ρSj
).

By Definition, M j−1
Ti,rcv = MTi

= {tT ′ : ρT ′ | T ′
AR−−→ Ti}. Since Sj

VIS−−→ Ti and VIS ⊆ AR,
then Sj

AR−−→ Ti, hence tSj : ρSj ∈ M j−1
Ti,rcv = M . Also, we have that M ′ = M j

Ti,rcv =
MTi

= M j−1
Ti,rcv = M .

Note also that for any r′ 6= rTi , we have that r′ = RT ′ for some T ′ 6= T . If Ti
AR−−→ T ′,

then Rj−1
Ti,rcv(rT ′) = (∅, idle) = Rj

Ti,rcv(rT ); if T ′ AR−−→ Ti, then Rj−1
Ti,rcv(rT ′) = ({lT ′′ |

T ′′
VIS−−→ T ′}, idle) = Rj

Ti,rcv(rT ′). Therefore, whenever r ∈ RId is such that r 6= rTi
,

then R(r) = Rj−1
Ti,rcv(r) = Rj

Ti,rcv(r) = R. Finally, we have that Rj
Ti,rcv(rTi) = ({(tS1 :

ρS1), · · · , (tSj−1 : ρSj−1)}, idle) and Rj
Ti,rcv(rTi

) = ({(tS1 : ρS1), · · · , (tSj
: ρSj

)}, idle). If
we let D = {(tS1 : ρS1), · · · , (tSj−1 : ρSj−1)}, then it follows that R(rTi

) = Rj−1
Ti,rcv(rTi

) =
(D, idle). Observe that, since R(rTi) = (D, idle), we have that R = R[rTi 7→ (D, idle)].
Since for any r 6= rTi

we also have that R′(r) = R(r), and R′(rTi
) = (D∪{tSj

: ρSj
}, idle),

it follows that R′ = R[rTi 7→ (D ∪ {tSj : ρSj}, idle).
We have proved that e = (_, rTi

, receive(tSj
: ρSj

), R = R[rTi
7→ (D, idle) for some set

of transaction logs D, R′ = R[rTi
7→ (D ∪ {tSj

: ρSj
), and M = M ′. Therefore, we can

apply Rule (Receive) from Figure 4 and infer (R,M) e
_ (R′,M ′), as we wanted to prove.

Suppose that the transition (R,M) e
_ (R′,M ′) occurs in γTi,exec. in this case we have

that e = (_, rTi
,o) where , where o ∈ {start, commit(tTi

), write(_,_), read(_,_)}.
We perform a case analysis on o:

o = start; this is possible only if e = e0
Ti,exec. It follows that (R,M) =

(R0
Ti,exec,M

0
Ti,exec), (R′,M ′) = (R1

Ti,exec,M
1
Ti,exec). We can proceed as in the case above

to prove thatM = MTi
= M ′, and for any r 6= rTi

we have that R(r) = R′(r). We also
have that R(rTi) = ({lS | S

VIS−−→ T}, idle) and R′(rTi) = ({lS | S
VIS−1

−−−−→ T}, ε). If we
let D = {lS | S

VIS−−→ T}, we can rewrite R = R[rTi
7→ (D, idle)], R′ = R[rTi

7→ (D, ε)].
Now we can infer (R,M) e

_ (R′,M ′) by applying Rule (Start) from Figure 4.
o = commit(tTi); by construction, it has to be the case that e = e|ETi

|+2
Ti,exec , (R,M) =

(R|ETi
|+1

Ti,exec ,M
|ETi

|+1
Ti,exec ) and (R′,M ′) = (R|ETi

|+2
Ti,exec ,M

|ETi
|+2

Ti,exec ).
Note that whenever r ∈ RId, and R(r) = (Dr,_) for some Dr, then for any l ∈ Dr

we have that l = tTj
: ρTj

for some j < i. This is because, if l ∈ Dr, then Dr 6= ∅,
and by construction this means that r = rT ′ for some T ′ ∈ H such that T ′ AR−−→ Ti.
Furthermore, the fact that tTj : ρTj ∈ Dr implies that Tj

AR−−→ T ′, and by transitivity
of AR we get that Tj

AR−−→ Ti. Since T1 · · ·Tn is the sequence of transactions appearing
in H, induced by AR, it has to be the case that j < i. Also, by construction it has to
be the case that tTj < tTi . We proved that whenever R(r) = ({t : _} ∪ _,_), then
t < tTi

, and in particular tTi
6= t for any t such that R(r) = ({t : _} ∪ _,_), and

tTi > t for any t such that R(rTi) = ({t : _} ∪_,_).
Next, observe that we can proceed as in the previous cases, and prove that for any
r 6= rTi

, it has to be R(r) = R′(r). For r = rTi
, by construction we have that

R(rTi
) = ({tS : ρS | S

VIS−−→ Ti}, ρTi
), R′(rTi

) = ({tS : ρS | S
VIS−−→ Ti}∪{tTi

: ρTi
}, idle);

if we let D = {tS : ρS | S
VIS−−→ Ti}, then we obtain that R = R[rTi 7→ (D, ρTi),

R′ = R[rTi
7→ {tTi

: ρTi
}, idle).
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Finally, by construction we have that M = {tT1 : ρT1 , · · · , tTi−1 : ρTi−1}, while M ′ =
{tT1 : ρT1 , · · · , tTi : ρTi}; hence, M ′ = M ∪ {tTi : ρTi}.
We have proved all the premises necessary to apply Rule (Commit) from Figure 4,
from which we infer the transition (R,M) e

_ (R′,M ′).
o = write(x, n) where x ∈ Obj and n ∈ N. Let Ti = (Ei, poi) In this case we have that
e = cceh+1

T,exec for some h = 1, · · · , |Ei|. Also, if we let e1, · · · , e|Ei| be the enumeration
of Ei according to poi, we also have that eh = (_, write(x, n)).
In this case we have that R = RTi

[rTi
7→ ({lS | S

VIS−−→ Ti}, tTi
: ρ)], ρ =

ρ{e1,··· ,eh−1},poi|{e1,··· ,eh−1}
. It is also the case that R′ = RTi

[rTi
7→ {lS |

VIS−−→
Ti}tTi : ρ′)], where ρ′ = ρ{e1,··· ,eh},poi|{e1,··· ,eh}

. Since we already argued that
eh = (_, write(x, n)), it is straightforward to see that in this case we have that
ρ′ = ρ · write(x, n).
Finally, we have that M = M ′ = MTi

, where MTi
is given by Definition 63. Putting

all this information together, we find that the transition (R,M) e−→ (R′,M ′) can be
inferred via an application of Rule (Write) from Figure 4.
o = read(x, n); this is the last, and most interesting case. Let Ti = (Ei, poi). We have
that e = eh+1

T,exec for some h = 1, · · · , |Ei|. Also, let e1, · · · , e|Ei| be the enumeration
of Ei given by poi. Then, we have that for any j = 1, · · · , |Ei|, ej = (_, read(y,m))
if and only if ej

Ti,exec = (_, rTi
, read(y,m)); a similar statement follows for the case

ej = (_, write(y,m)).
In this case we have that R = RTi

[rTi
7→ ({lS | S

VIS−−→ Ti}, tTi
: ρ), where ρ =

ρ{e1,··· ,eh−1},poi|{e1,··· ,eh−1}
. We also have that R′ = RTi

[rTi
7→ ({lS | S

VIS−−→ Ti}, tTi
:

ρ′]), where ρ′ = ρ{e1,··· ,eh−1},poi|{e1,··· ,eh−1}
. In this case it is not difficult to see that

ρ = ρ′.
Since Definition 63 ensures that M = M ′ = MTi

, where MTi
is defined according to

Definition 51, we have that (R,M) = (R′,M ′).
Next, we show that lastval(x, {lS | S

VIS−−→ Ti}∪{∞ : ρ}) = n. There are three possible
cases:
∗ there exists an index k < h such that ek

Ti,exec = (_, rTi , write(x,m)). In this case
lastval(x, {lS | S

VIS−−→ Ti} ∪ {∞ : ρ} = lastval(x, tTi : ρ). Without loss of generality,
assume that there exists no index k′ such that k < k′ < h and ek′

Ti,exec . tTi
:

write(x,_) @ rTi
. In this case we have that lastval(x, tTi

: ρ) = m. Also, it is the
case that ek ∈ ETi

, ek = (_, write(x,m)) and there exists no index k′ such that
k < k′ < h and op(k′) = write(x,_). Axiom Int now gives m = n, as we wanted
to prove.

∗ there exists no index k < h such that ek
Ti,exec . tTi : write(x,m) @ rTi . Note that

this means that there exists no index k < h such that ek = (_, write(x,_)), and
by definition we get that Ti ` Read x : n. However, assume that there exists a
transaction S such that S VIS−−→ Ti and lastval(x, lS) is defined. Without loss of
generality, assume that tS = max<{tT ′ | T ′

VIS−−→ Ti ∧ lastval(x, lT ′) is defined}. By
definition, we have that lastval(x, {lT ′ | T ′

VIS−−→ Ti} ∪ {tTi
: rho}} = lastval(x, lS).

Also, note that there exists no transaction T ′ such that T ′ VIS−−→ Ti, and S
AR−−→ T ′,

since otherwise we would have tS < tT ′ ; therefore, S = maxAR{T ′ ` T ′
VIS−−→ Ti}.

Since Ti ` Read x : n, Axiom Ext ensures that S ` Write x : n. If we let
S = (Es, poS), and we let f1, · · · , f|S| be the enumeration of ES given by poS ,
then there exists an index k such that fk = (_, write(x, n)) and for no k′ such
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that k′ < k ≤ |ES |, fk′ = (_, write(x,_)). It remains to note that lS = tS : ρS ,
from which it is easy to see that ρS = ρpre · write(x, n) · ρpost, for some ρpre, ρpost
such that no record of the form write(x,_) occurs in ρpost. Now we obtain that
lastval(tS : ρS) = n, as we wanted to prove.

∗ There exists no k < h such that ek
Ti,exec . tTi

: write(x,m) @ rTi
; further, assume

that there exists no transaction S such that S VIS−−→ Ti and lastval(x, lS) is defined.
In this case we have that lastval(x, {lS | S

VIS−−→ Ti} ∪ {tTi : ρ}} = 0. It is also easy
to see that if lastval(x, lS) is undefined for some transaction S = (Es, poS), then
there exists no event f ∈ Es such that f = (_, write(x,_)). That is, whenever
S

VIS−−→ Ti we get that ¬(S `Write x : _), and by Axiom Ext it follows that n = 0.
We can now combine all the facts above to show that the transition (R,M) e

_ (R′,M ′)
can be inferred via an application of Rule (Read) from Figure 4. In fact we have

J

I Proposition 68. Recover(A) satisfies (MonTS).

Proof. Let e, f be two event appearing in Recover(A) such that e = (_,_, commit(t)),
f = (_,_, commit(t′)) and e ≺ f . We show that t < t′.

By construction, e = (_,_, commit(tTi
)) for some Ti ∈ H; note that the event e appears

in γ only in the computation fragment γTi . Similarly, f = (_,_, commit(tTj )) for some
Tj ∈ H, and the event f appears in γ only in the computation fragment γTj

. Since e ≺ f , it
has to be the case that γ = γ′ · γTi

· γ′′ · γTj
· γ′′′ for some γ′, γ′′, γ′′′. In particular, we have

that Ti
AR−−→ Tj , and by construction it follows that tTi < tTj . J

I Proposition 69. If A |= TransVis, then Recover(A) satisfies (CausalDeliv).

Proof. Suppose that e1, e2, f2 ∈ E are such that (e1 ∈
{(_, r1, commit(t1)), (_, r, receive(t1 : _))},

(e2 = (_, r1, commit(t2)) and f2 = (_, r2, receive(t2 : _)) for some t1, t2 and
r1, r2 such that r1 6= r2. Suppose also that e1 ≺ e2; this implies that it cannot be
(e1 = (_, r1, commit(t1)), since by Definition 63 only one transaction can be executed
at replica r; this is the transaction t2, as established by the existence of the event
f2 = (_, r, commit(t2)); further, since e1 ≺ e2, it has to be t1 < t2. Therefore it has to
be e1 = (_, r, receive(t1 : _)).

Now, note that by Definition 51, it has to be the case that there exists three transactions
S, T, V ∈ H such that t1 = tS , t2 = tT , and r2 = rV . Note that t1 = tS < tT = t2,
which is possible only if T AR−−→ S. Also, we have that (e1 = (_, r1, receive(tS : _)),
e2 = (_, r1, commit(tT )); by construction, this is possible only if e1 ≺ e2, which in turn
is possible only if S VIS−−→ T . This also implies that S AR−−→ T . Also, we have that ef2 =
(_, rV , receive(tT : _)); by construction, there exists an event ef3 = (_, rV , commit(tV ))
such that ef2 ≺ ef3 (recall that, at least informally, rV is the replica where transaction V is
executed). This is possible only if T VIS−−→ V .

We have proved that S → VIST VIS−−→ V , and since VIS is transitive by hypothesis,
S

VIS−−→ T . Therefore, there exists an event f1 = (_, RV receive(tS : _)) such that f1 ≺ f3.
Also, since S AR−−→ T , by construction it has to be the case that f1 ≺ f2. J

I Proposition 70. If A |= Prefix, then Recover(A) satisfies (TotalDeliv).
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Proof. Suppose that e, f ,g ∈ E are such that (e ∈ {(_, r, commit(t)), (_, r, receive(t :
_))}, (f = (_, r, start) and ccg = (_, r′, commit(t′)) for some t, t′, t′′ and r, r′. Suppose
also that e ≺ f ; this implies that it cannot be e = (_, r, commit), since Definition 63 ensures
that only one transaction can be executed at replica r - this is the transaction which starts
with the event f , nothing that obviously it cannot be f = startRecover(A)(t), since ; e ≺ f .
In the following, we let f = startRecover(A)(t′′) for some t′′ ∈ N. Note that we can assume
this since, by construction, any transaction in Recover(A) eventually commits.

Therefore it has to be e = (_, r, receive(t : _)). By Definition 51, it has to be the case
that there exist three transactions S, T, V ∈ H such that t = tS , t

′ = tT and t′′ = tV ; further,
r = rV . Note that tT < tS by hypothesis; according to Definition 63, this is possible only if
T

AR−−→ S. Also, it is possible that e = (_rV , receive(tS : _)) ≺ f = (_, rV , start) only if
S

VIS−−→ V . We have that T AR−−→ S
VIS−−→ V ; by Prefix, this gives T VIS−−→ V . By Definitionwe

obtain that g = (_, rV , receive(tT : _)) ≺ (_, rV , start) = f , as we wanted to prove. J

I Proposition 71. If A |= NoConflict, then Recover(A) satisfies (ConflictCheck).
I Proposition 72. Let e1, f1, e2, f2 ∈ E be such that (e1 = (_, r1, write(x,_)) and
TSRecover(A)(e1) = t1, f1 = (_, r1, commit(t1)), (e2 = (_, r2, write(x,_)), f2 =
(_, r2, commit(t2)), and r1 6= r2. This also implies that t1 6= t2.

Assume that f2 ≺ f1. Note that we have that t2 = tS , t1 = tT for some S, T ∈ H.
Because of NoConflict, it has to be either S VIS−−→ T or T VIS−−→ S. Note that it cannot
be be T VIS−−→ S, because by Definition 63 we would have (f1 = (_, rS , commit(tS)) ≺ f ′ =
(_, rT , receive(tS : _)) ≺ f ′′ = (_rT , start) ≺ (f2 = (_, rt, commit(tT )), contradicting the
hypothesis that f2 ≺ f1. Then it has to be S VIS−−→ T , which by Definition 51 gives that there
exists an event g such that g = (_, rT , receive(tS : _)) ≺ (_, rT , commit(tT )) = f1, as we
wanted to prove.
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