
Proving That Programs Eventually Do Something Good

Byron Cook
Microsoft Research

bycook@microsoft.com

Alexey Gotsman
University of Cambridge

Alexey.Gotsman@cl.cam.ac.uk

Andreas Podelski
University of Freiburg

podelski@informatik.uni-freiburg.de

Andrey Rybalchenko
EPFL and MPI-Saarbrücken

rybal@mpi-sb.mpg.de

Moshe Y. Vardi
Rice University

vardi@cs.rice.edu

Abstract
In recent years we have seen great progress made in the area ofau-
tomatic source-level static analysis tools. However, mostof today’s
program verification tools are limited to properties that guarantee
the absence of bad events (safety properties). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventuallyhappen
(liveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Liveness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove critical liveness properties of Windows device drivers
and found several previously unknown liveness bugs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Verification, Software Model Checking, Live-
ness, Termination

1. Introduction
As computer systems become ubiquitous, expectations of system
dependability are rising. To address the need for improved software
quality, practitioners are now beginning to use static analysis and
automatic formal verification tools. However, most of software
verification tools are currently limited tosafety properties[2, 3]
(see Section 5 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Consider Static Driver Verifier (SDV) [5, 26] as an example.
SDV is packaged with 60 safety specifications that are automati-
cally proved of the device driver to which SDV is being applied.
Many of these properties specify temporal connections between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

Windows kernel APIs that acquire resources and APIs that release
resources. For example:

A device driver should never callKeReleaseSpinlock
unless it has already calledKeAcquireSpinlock.

This is a safety property for the reason that any counterexample
to the property will be a finite execution through the device driver
code. We can think of safety properties as guaranteeing thatspeci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before callingKeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver callsKeAcquireSpinlock then it must eventu-
ally make a call toKeReleaseSpinlock.

A counterexample to this property may not be finite—thus making
it a liveness property. More precisely, a counterexample tothe prop-
erty is a program trace in whichKeAcquireSpinlock is called but
it is not followed by a call toKeReleaseSpinlock. This trace may
be finite (reaching termination) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (i.e. thatKeReleaseSpinlock will eventually be called in the
case that a call toKeAcquireSpinlock occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“f(); g(); h();”. It is easy to prove that the functionf is al-
ways called beforeh: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove thath is
eventually called afterf: we first have to prove the termination of
g. In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness is as important as safety. As one co-authorlearned
while spending two years with the Windows kernel team:

• Formal verification experts have been taught to think only in
terms of safety properties: liveness properties are considered
too hard.

• Non-experts in formal verification (i.e. programmers that write
software that needs to be verified) think equally in terms of both
liveness and safety.

In this paper we describe a new algorithm which automati-
cally constructs correctness proofs for liveness properties of soft-
ware systems. The algorithm has been implemented as an extension
to the TERMINATOR tool, which is a fully automatic termination
prover for software [15]. Properties are described in a new spec-
ification language, which is an extension to the safety-property-
only language used by SDV. When given a property description

and a program, TERMINATOR attempts to construct a correctness
proof. If a proof is found, then the property is guaranteed tohold.
Conversely, if the proof fails, a potential counterexampleis pro-
duced. If the counterexample is a non-terminating execution, then
it is presented via a finite description, to enable the programmer to
analyze it.

Our prototype tool represents the first known liveness prover
to handle large systems written in C. The tool is interprocedu-
ral, path-sensitive, and context-sensitive. It supports infinite-state
programs with arbitrary nesting of loops and recursive functions,
pointer-aliasing and side-effects, function-pointers, etc. The tool’s
scalability leverages recent advances in program termination anal-
ysis (e.g.[7, 10, 11, 13, 14, 15]).

Following the automata-theoretic framework for program veri-
fication [31], our algorithm takes a liveness property and a program
and constructs an equivalentfair terminationproblem (termination
under a set of fairness constraints, a formal definition willbe given
later). The novel contributions of the paper include:

• An extension to SDV’s language for specifying liveness prop-
erties (Section 2).

• A method for checking fair termination of programs (Sec-
tion 3).

• Experimental results that demonstrate the viability of ourap-
proach to industrial software (Section 4).

2. Specifying liveness properties
In this section we describe a language for specifying liveness and
safety properties of software systems. The language is an extension
of SLIC [6], which is used to specify temporal safety properties in
SDV [5]. SLIC is designed to specify API-usage rules for client-
code (like Windows device drivers and their use of the Windows
Driver Model API as described in [5]). For this reason it was
designed such that programmers do not need to modify or annotate
source code—the code is typically not available when writing the
specification.

Checking liveness can be reduced to checking fair termina-
tion [31]. Therefore, we first define a minimal language for specifi-
cation of fair termination properties, which is essentially a language
for defining Streett automata. In Section 3 we describe an algorithm
for checking properties in this language. While the language can
express allω-regular properties [32], using it to specify liveness
properties of real code is awkward since most of such properties
have a response flavor. To overcome this problem, in Section 2.4
we introduce auxiliary statements (set andunset) that are helpful
to concisely specify response requirements.

2.1 Syntax

The syntax of the specification language is defined in Figure 1.
A specification describes an automaton that accepts programex-
ecutions that satisfy the desired property. It consists of three basic
parts:

A state structure declaration. The state structure defines a set of
state variables that are maintained by the automaton represent-
ing the specification during its execution. The variables can be
of any scalar C type or pointer.

A list of transfer functions. Transfer functions define transitions
taken by the automaton as API operations are invoked and re-
turn. Each transfer function has two parts: a pattern specifica-
tion and a statement block that defines the transfer function
body. A pattern specification usually has two parts: a proce-
dure identifierid (i.e. the name of the API procedure) and one
of two basic event types (event): entry, exit. These events

identify the program points in the named procedure immedi-
ately before its first statement and immediately before it returns
control to the caller. Theany pattern can be used to trigger the
event throughout the code. The body of a transfer function is
written in a simple imperative C-like language. One important
control construct is missing from the statements used in speci-
fications: loops. This means that transfer functions alwayster-
minate.

A list of fairness constraints. The fairness constraints are given
as pairs of Boolean expressions inside of the scope of the
fairness keyword. Each Boolean expression is guarded by a
pattern. Fairness constraints are an extension of SLIC, andcan
be used to rule out counterexamples in which the environmentis
not “fair”. An example of a fairness constraint is the following:
“whenever functionfoo is called infinitely often then it returns
a value distinct from0 infinitely many times”. We say that a
non-terminating path satisfies a fairness constraint if andonly
if either the first Boolean expression succeeds (i.e. it is invoked
and evaluates to true) only finitely often or the second Boolean
expression succeeds infinitely often. A non-terminating execu-
tion can be a counterexample only if it satisfies all of the fair-
ness constraints given.

Informally, we think of a specification as a monitor that is
executed along with the program. Safety properties are expressed
using theerror statement, which explicitly signals that an unsafe
state has been reached (i.e. a safety property has been violated).
A computation of the program does not satisfy the specification if
eithererror is called during the computation, or the computation
does not terminate and satisfies all the fairness constraints. Note
that an empty specification specifies program termination.

The functionnondet() is used to specify non-deterministic
value introduction. That is,nondet() returns an arbitrary value. A
proof of the conformance of a program to the specification should
then take any valuation into account.

The expression sub-language (expr) is the pure expression lan-
guage of C, without state update operators (++, --, etc.), pointer
arithmetic, or the address-of operator (&). Dereferencing pointers
via ∗ and-> is allowed. The identifiers in this language are of sev-
eral forms: regular C-style identifiers behave as expected,the$int
identifiers are used to refer to the function’s formal parameters, and
the identifier$return is used to refer to the return value, which is
accessible at theexit event.

2.2 Semantics

We treat programs as fair discrete systems [23], where fairness re-
quirements are given in terms of sets of program states. A program
P = (Σ, Θ, T , C) consists of:

• Σ: a set of states;

• Θ: a set of initial states such thatΘ ⊆ Σ;

• T : a finite set of transitions such that each transitionτ ∈ T is
associated with a transition relationρτ ⊆ Σ × Σ;

• C = {〈p1, q1〉, . . . , 〈pm, qm〉}: a set of compassion require-
ments, such thatpi, qi ⊆ Σ for eachi ∈ {1, . . . , m}.

Transitions in this definition intuitively correspond to program
statements. A computationσ is a maximal sequence of states
s1, s2, . . . such thats1 is an initial state,i.e. s1 ∈ Θ, and for each
i ≥ 1 there exists a transitionτ ∈ T such thatsi goes tosi+1

underρτ , i.e. (si, si+1) ∈ ρτ .
A computationσ = s1, s2, . . . satisfies the set of compassion

requirementsC when for each〈p, q〉 ∈ C eitherσ contains only
finitely many positionsi such thatsi ∈ p, or σ contains infinitely
many positionsj such thatsj ∈ q. For example, a computation sat-

Elements of syntax Description

S ::=

state

transFun+

fairness+

A specification consists of a state structure, and a list of
transfer function definitions together with fairness con-
straints

state ::= state { fieldDecl+ } A state structure is a list of field declarations

fieldDecl ::= ctype id = expr;
A field has a C type, an identifier and an initialization
expression

transFun ::= pattern stmt A transfer function consists of a pattern and a statement
pattern ::= id . event | any
event ::= entry | exit
stmt ::= id = expr; Assignment statement

| stmt; stmt
| if (choose) stmt [else stmt]
| error(); Safety property violation
| return [expr]; Return from the transfer function
| { stmt }

choose ::= nondet() Non-deterministic choice
| expr

expr ::= id | expr op expr | · · · Pure expression sub-language of C
id ::= C identifier Refers to state elements or program variables

| $int $i refers toith formal parameter
| $return Return value of a function

fairness ::= fairness { pattern { expr } pattern { expr } } Fairness constraint

Figure 1. Syntax of the specification language.

isfies the compassion requirement (wherepc denotes the program
counter)〈pc = foo.entry, pc = foo.exit ∧ $return 6= 0〉 if
whenever functionfoo is called infinitely often then it infinitely
often returns a value distinct from0. A computation is fair if it
satisfies all compassion requirements of the program. We saythat
a program is fair terminating if it does not admit any infinitefair
computation.

In order to prove that a specification holds of a given program,
we instrumentthe specification into the program. That is, we tra-
verse the input program and find all program locations in which
the patterns described in the specification can be triggered. A new
program—called theinstrumented program—is produced in which
the code found in the transfer functions is inserted to the original
program. Formally, this constructs the product of the original pro-
gram with the automaton representing the specification [31]. In our
implementation we also perform a pointer analysis in order to con-
structs an over-approximation of all the potential pointeraliasing
relationships. This allows us to statically find function-call events
when functions are called by pointer.

Bodies of transfer function are inserted into the program as
they are given in the specification. The variables mentionedin the
state structure become global variables in the program. For each
expressionei, wherei = 1, 2, in a fairness constraint from the
specification and at each location where the corresponding pattern
can be triggered we insert the code “if (ei) { L: skip; }”,
whereL is a fresh label.

The fairness constraints in the specification are translated to
compassion requirements on the instrumented program (thatcan
also be viewed as a fair discrete system). For each fairness con-
straint we introduce a compassion requirement〈pc = L1 ∨ . . . ∨
Lk, pc = M1∨ . . .∨Ml〉 whereL1, . . . , Lk, respectively,M1, . . . , Ml
are the labels introduced during the instrumentation for the first,
respectively, second expression of the fairness constraint.

To prove that a program does not violate the specification we
need to prove that the instrumented program can never make a call
to theerror function and that it is fair terminating. The former can
be done using existing techniques. An algorithm for checking the
latter is presented in Section 3.

state {}

fairness {
// First Boolean expression: succeeds
// on every return from IoCreateDevice
IoCreateDevice.exit { 1 }

// Second Boolean expression: succeeds
// if IoCreateDevice returns
// something other than
// STATUS_OBJ_NAME_COLLISION
IoCreateDevice.exit {

$return != STATUS_OBJ_NAME_COLLISION
}

}

Figure 2. A specification of termination under a fairness con-
straint stating that if a program callsIoCreateDevice enough
times then it will eventually return a value not equal to
STATUS OBJ NAME COLLISION.

2.3 A simple example

Consider the example specification in Figure 2. As it was noted
before, the empty specification “state {}” specifies the termi-
nation of the program. Figure 2 specifies an instance of fair ter-
mination. Recall that fairness constraints in our specification lan-
guage come as pairs of Boolean expressions guarded by pat-
terns. In this case, the first Boolean expression always succeeds
whenever the functionIoCreateDevice returns. The second
Boolean expression does not succeed whenIoCreateDevice re-
turnsSTATUS OBJ NAME COLLISION. This particular constraint is
saying:

Ignore non-terminating program executions in which
IoCreateDevice from some point on always returns
STATUS OBJ NAME COLLISION.

In other words, a program satisfies this specification if
it terminates provided that whenever we continue to call
IoCreateDevice repeatedly, it will eventually return a value other
thanSTATUS OBJ NAME COLLISION.

Functions used during the translation Fairness constraint Transfer functions

void set() {
if (q == NONE) {

if (nondet()) {
q = PENDING;

}
}

}

void unset() {
if (q == PENDING) {

q = MATCHED;
}

}

fairness {
any { 1 }
any { q == PENDING }

}

main.entry {
q = NONE;

}

main.exit {
if (q == PENDING) {

error();
}

}

Figure 3. Auxiliary constructs for specifying response-style liveness properties.

2.4 Auxiliary constructs

Most of the frequently specified liveness properties have a response
flavor and are awkward to specify with the minimalistic language
described in Section 2.1. To make their specification easierwe in-
troduce auxiliary constructs—the functionsset andunset, which
can be used in the specification’s transfer functions. Theirintended
meaning is that when the property callsset then an execution
through the property in whichunset is never called represents a
liveness violation. More precisely, a program satisfies a specifica-
tion with set andunset if and only if error is never called in the
instrumented program and there is no computation of the instru-
mented program that (i) satisfies all compassion requirements, (ii)
contains a call toset, and (iii) contains no calls tounset after the
last call toset. This corresponds to the validity of the LTL formula

G ((pc = set.entry) ⇒ F (pc = unset.entry))

under the compassion requirements.
A specification containingset andunset can be translated to

a specification in the language of Section 2.1 using an application
of the automata-theoretic framework for program verification [31].
Namely, we translate the negation of the LTL formula above into
a Büchi automaton and construct the synchronous product ofthe
program and the automaton. Toward this end we introduce an extra
variableq into our program denoting the state of the automaton
and assume defined three constants representing the states of the
automaton—NONE, PENDING, andMATCHED. Initially q = NONE and
the statePENDING is accepting. We then defineset andunset as
is shown in Figure 3 and add the fairness condition and transfer
functions from Figure 3 to the specification. The fairness constraint
excludes infinite computations satisfying conditions (ii)and (iii)
above. To exclude finite computations satisfying (ii) and (iii) we
call error when the program terminates in the case when there is
a pendingset call.

The original program satisfies the specification if and only if
it satisfies the transformed specification,i.e. if the instrumented
program is safe and fair terminating.

2.5 Using response requirements and state

We provide an example that shows how specifications can use
set/unset and maintain internal state. It is based on a specification
of how a device driver is supposed to modify the processor’s inter-
rupt request level (IRQL) that controls which kinds of interrupts are
to be delivered. Two functions are involved:KeRaiseIrql(x, p)

state { int irql = -1; }

KeRaiseIrql.entry {
if (irql == -1) {

irql = KeGetCurrentIrql();
set();

}
}

KeLowerIrql.entry {
if ($1 == irql && irql > -1) {

unset();
}
irql = -1;

}

Figure 4. A liveness property involving the Windows kernel APIs
KeRaiseIrql andKeLowerIrql. The macroKeGetCurrentIrql
refers to a variable in the OS environment model.

raises the IRQL to the value ofx and writes the old IRQL value to
the location in memory pointed to byp; KeLowerIrql(y) lowers
the IRQL toy. A driver must match these operations correctly: if it
raises the IRQL then it must subsequently lower it back to theorig-
inal value. Note that it is a fatal (safety) error to callKeLowerIrql
usingy that was not returned by the immediately preceding call to
KeRaiseIrql.

Figure 4 shows how this specification is modeled in our lan-
guage. This example demonstrates the usage of the state structure,
which in this case contains an integer variableirql that stores the
IRQL-value at the time of the call toKeRaiseIrql. Two trans-
fer functions are included in the specification: one callingset if
KeRaiseIrql is called (with a few side conditions), the other call-
ing unset only if KeLowerIrql is called appropriately.

If the code the specification of which we are writing uses the
function IoCreateDevice, we might add thefairness clause
from Figure 2 to the specification in Figure 4 to restrict the behavior
of this function.

2.6 Combining liveness and safety

Specifications can contain both liveness and safety properties. In
the case of Figure 5, we have a safety property mixed togetherwith
the liveness property from Figure 4. TERMINATOR will search for
at least one violation of the properties, either of safety orliveness.

state { int irql = -1; }

KeRaiseIrql.entry {
if ($1 <= KeGetCurrentIrql()) {

error();
}
if (irql == -1) {

irql = KeGetCurrentIrql();
set();

}
}

KeLowerIrql.entry {
if ($1 >= KeGetCurrentIrql()) {

error();
}
if ($1 == irql && irql > -1) {

unset();
}
irql = -1;

}

Figure 5. A specification defining both liveness and safety prop-
erties involving the Windows kernel APIsKeRaiseIrql and
KeLowerIrql.

The safety property in this case specifies thatKeRaiseIrql should
not be used to lower the IRQL, andKeLowerIrql should not be
used to raise IRQL.

2.7 Discussion

Temporal properties can be specified using temporal logics such
as LTL [27]. However, such properties can also be specified using
automata on infinite words [32] (in fact, LTL is less expressive than
such automata); see also [24]. To extend the expressive power of
LTL to that of automata on infinite words, industrial languages,
such as ForSpec [4] and PSL [1], add to LTL a layer of regular
expressions.

Logic-based specifications have the advantage that they areeas-
ily combined, composed, and can be used to express deeper prop-
erties of code. Automata-based specifications have the advantage
they are more like computer programs and are therefore easier for
programmers to use. Specifications in SLIC, for example, canbe
viewed as automata on finite words.

In this paper we are taking an automata-based approach to
specifying temporal properties—properties in our language can be
viewed as automata on infinite words. We note that compilation
techniques described in [32] can be used to extend TERMINATOR
to logic-based specifications.

Set andunset make it easier to specify properties being in-
stances of response specification pattern [18]. The same approach
as was taken here can be used to add other specification patterns to
our language.

3. Verifying fair termination
In this section we describe a novel algorithm for checking
fair termination of programs. The approach we take is to use
counterexample-guided refinement for building fair termination ar-
guments (i.e., relations justifying that the program is fair termi-
nating). The algorithm is an extension of the TERMINATOR al-
gorithm [14]. It adds support for fair termination using theproof
rule proposed in [28], which separates reasoning about fairness and
well-foundedness by using transition invariants [30].

Assume that the specification to be checked has already been
instrumented into the program and the problem of checking the
conformance of the program to the liveness specification hasbeen

reduced to a fair termination problem as described in Section 2.2.
We fix a programP = (Σ, Θ, T , C) represented by a fair discrete
system with a (finite) set of compassion requirementsC. We want
to check whether the programP terminates under the compassion
requirementsC.

3.1 Counterexample-guided refinement for fair termination

First of all, we introduce some auxiliary definitions. A binary
relationR is well-founded if it does not admit any infinite chains.
We say that a relationT is disjunctively well-founded [30] if it is a
finite unionT = T1 ∪ . . . ∪ Tn of well-founded relations.

We remind the reader that a computationσ is a maximal se-
quence of statess1, s2, . . . such thats1 is an initial state, and for
eachi ≥ 1 there exists a transitionτ ∈ T such thatsi goes to
si+1 underρτ . A finite segmentsi, si+1, . . . , sj of a computation
wherei < j is called a computation segment. Note that all the
states constituting a computation segment must be reachable from
initial states. Following [28], we define two auxiliary functions that
map a set of statesS to a set of compassion requirements:

NoneC(S) = {〈p, q〉 ∈ C | S ∩ p = ∅},

SomeC(S) = {〈p, q〉 ∈ C | S ∩ q 6= ∅}.

Let S be the set of states that appear in a computation segmentσ.
Then,NoneC(S) and SomeC(S) record the compassion require-
ments fromC that are fulfilled on the infinite computationπ ob-
tained by repeatingσ infinitely many times and prefixing the result
with a computation segment from an initial state of the program to
the starting state ofσ (we know that such a computation segment
exists since all the states inσ are the reachable states of the pro-
gramP). NoneC(σ) keeps track of the compassion requirements
〈p, q〉 that are fulfilled becauseπ contains only finitely many states
from p. SomeC(σ) keeps track of the compassion requirements
〈p, q〉 that are fulfilled becauseπ contains infinitely many states
from q.

Finally, let

RC = {〈s1, sn+1〉 | ∃ computation segmentσ = s1, . . . , sn+1.

NoneC(σ) ∪ SomeC(σ) = C}.

We call RC the fair binary reachability relation. RC consists of
all the pairs of starting and ending states of (finite) computation
segments of the programP such that, if repeated as above, will give
(infinite) computations satisfying all the compassion requirements
from C. We remind the reader that all the states in a computation
segment must be reachable from the initial states so the states in
RC are reachable from the initial states too.

The following adaptation of Theorem 3 from [28] forms the
basis for our algorithm.

THEOREM 1. The programP terminates under the compassion
requirementsC if and only if there exists a disjunctively well-
founded relationT such thatRC ⊆ T .

Theorem 1 says that to prove a programP fair terminating we
have to cover its fair binary reachability relation by a finite union
of well-founded relations. We build such a relationT by iterative
refinement extendingT each time a spurious counterexample is
discovered.

Instead of considering one computation segment at a time we
cover the set of computation segments resulting from the execution
of a sequence of program statements as a whole. This is formalized
in the following notions of path and fair path.

We define a pathπ to be a finite sequence of program transi-
tions. Given a pathπ = τ1, . . . , τn, we say thatπ is fair with
respect to a compassion requirement〈p, q〉 if some computation
segmentσ = s1, . . . , sn+1 obtained by executing the statements

input
ProgramP
Compassion requirementsC

begin
T := ∅
repeat

if exists pathπ such thatfair(π) andρπ 6⊆ T then
if ρπ is well-founded byW then

T := T ∪ W
else

return “Counterexample pathπ”
else

return “Fair termination argumentT ”
end.

Figure 6. Incremental construction of a fair termination argument.
The compassion requirements on the program specify when the
predicatefair(π) holds for a pathπ. The existence of a fair ter-
mination argument implies the validity of the given liveness prop-
erty under fairness constraints. The evaluation of the underlined
if -expression is explained in Section 3.2. The relationW can be
computed using a ranking function synthesis engine,e.g., [29].

of π either does not visit anyp-states or traverses someq-state.
A path is fair, written asfair(π), if it is fair with respect to every
compassion requirement inC.

The algorithm for the construction of a fair termination argu-
ment is presented in Figure 6. The algorithm first performs a fair bi-
nary reachability analysis to check whether the inclusionRC ⊆ T
holds. Fair binary reachability analysis is described in Section 3.2.
ρπ is the path relation, which is also defined in Section 3.2.

If the subset inclusion holds then, by Theorem 1,P terminates
under the compassion requirementsC and we report fair termina-
tion. In the case that the inclusion does not hold, a fair pathπ is
produced such thatρπ 6⊆ T . The algorithm then checks if there
exists a well-founded relationW (called a ranking relation) cover-
ing ρπ. If such a relation does not exist,π represents a potential fair
termination bug and the algorithm terminates. Otherwise, the rank-
ing relationW is added to the setT . This ensures that the same
path will not be discovered at the subsequent iterations of the algo-
rithm. The ranking relationW can be generated using any tool for
ranking function synthesis [10, 11, 17, 29]. In practiceW produced
by these tools is usually sufficient for ruling out not onlyπ, but also
all the paths that are obtained by repeatingπ.

3.2 Binary reachability for fair termination

The problem of checking fair binary reachability consists of check-
ing the inclusionRC ⊆ T for a programP with a set of compassion
requirementsC = {〈p1, q1〉, . . . , 〈pm, qm〉} and a relationT . The
solution we propose here is based on an extension of the procedure
for solving binary (as opposed to ordinary ’unary’) reachability.
Our extension takes into account the compassion requirementsC.

The key idea of the approach is to leverage the techniques
from symbolic software model checking for safety properties (e.g.
[12, 20, 21]). Note that techniques are available for reducing check-
ing of fair termination to safety checking [31]. We use here another
reduction which is more amenable to automated abstraction tech-
niques. Fair binary reachability analysis is performed by transform-
ing the programP to a programP̂T , the set of reachable states of
which represents the fair binary reachability relation of the original
program. The inclusionRC ⊆ T holds if and only if the trans-
formed program satisfies a certain safety property. If the safety
property is violated, then the inclusion does not hold and the coun-

terexample provided by the safety checker can be used to construct
the pathπ in the underlined expression in Figure 6.

We transform the programP to the programP̂ T in the follow-
ing way. LetV = {v1, . . . , vn, pc} be the set of all program vari-
ables inP including the program counterpc. The set of variables
of the programP̂T containsV and the corresponding pre-versions
’v1, . . . , ’vn, ’pc. Besides, we introduce two Boolean arraysin p

and in q indexed by1, . . . , m. Therefore, a state of̂P T can be
represented by a tuple〈s, r, in p, in q〉, wheres, r ∈ S. The state
〈s, r, in p, in q〉 represents a computation segment starting withs
and ending withr. The variablein pj (respectively,in qj) is true
if and only if there is a state in the segment satisfyingpj (respec-
tively, qj). We assume that initially’v = v and all elements of
in p andin q are false.

The transformation is shown in Figure 7. To simplify the pre-
sentation, consider first the program̂P obtained using the trans-
formation without the assignment tofair and theassert state-
ment. At each state of the program̂P we update the elements of
in p and in q and we can also non-deterministically choose to
start recording a new computation segment. In this case we copy
all the program variables to the corresponding pre-variables and
clear the contents of the arraysin p andin q.

Let Θ̂ be the set of initial states of the program̂P defined as
above,Σ̂ the set of states of̂P and post+

P̂
(Θ̂) the set of states of̂P

reachable after at least one step. The following theorem formally
defines the meaning of the transformed program described above.

THEOREM 2. Suppose that in the programP there are no transi-
tions to the initial locations. Then

post+
P̂
(Θ̂) ={〈s1, sn+1, in p, in q〉 |

∃ computation segmentσ = s1, . . . , sn+1.

∀j ∈ {1, . . . , m}.

(in pj = false ⇔ 〈pj , qj〉 ∈ None({s1, . . . , sn})) ∧

(in qj = true ⇔ 〈pj , qj〉 ∈ Some({s1, . . . , sn}))}.

Proof sketch. “⊆”. For each state from the set on the left-hand
side of the equality there exists a sequence of program transitions
of P̂ leading to it from an initial state. We prove the inclusion by
induction on the length of this sequence.

“⊇”. For each computation segment from the set on the right-
hand side of the equality there exists a sequence of program tran-
sitions of P̂ leading from an initial state to the first state in the
computation segment. We first prove the inclusion in the casewhen
this sequence is empty. We then prove the general case by induction
on the length of the computation segment. �

The technical restriction on the initial locations is due tothe fact
that we do not transform the initial statement of the program, and is
inherited from the binary reachability analysis of [14]. Note that in
Theorem 2 and in the rest of the paper we consider the sequenceof
operations resulting from the transformation of a statement of the
original program as one statement (transition) of the transformed
program. The states in computation segments are reachable from
the initial states of the original program and, therefore, the sets of
statess andr in the theorem depend on̂Θ.

To check whether the inclusionRC ⊆ T holds we have to stop
the reachability computation as soon as the current computation
segment is fair andT is violated on it. Theassert statement in the
program transformation ensures this. Consider now the fulltrans-
formation shown in Figure 7 and the corresponding programP̂ T .
The set of states of the program̂P T resulting from the transforma-
tion isΣ̂∪{ERROR} (whereERROR is the state to which the program
goes when anassert is violated) and the transition relation is a

input
P : program over variablesv1, . . . ,vn, program counterpc, and initial locationL0

{〈p1, q1〉, . . . , 〈pm, qm〉}: set of compassion requirements
T : candidate fair termination argument given by an assertionover

the program variables and their pre-versions‘v1, . . . ,‘vn, ‘pc
begin

1. Add pre-variables toP : ‘v1, . . . ,‘vn,‘pc,
2. Add auxiliary variables toP : fair, in p1, . . . ,in pm, in q1, . . . ,in qm

3. Replace each statement (except for the one at the initial locationL0)

L: stmt;

with
L: fair = ((!p1 && !in p1) || q1 || in q1) &&

...
((!pm && !in pm) || qm || in qm);

assert(!fair || T);
if (nondet()) {

‘vi = vi; /∗ for each i ∈ {1, . . . , n} ∗/
‘pc = L;
in pi = 0; /∗ for each i ∈ {1, . . . , m} ∗/
in qi = 0; /∗ for each i ∈ {1, . . . , m} ∗/

}
if (pi) in pi = 1; /∗ for each i ∈ {1, . . . , m} ∗/
if (qi) in qi = 1; /∗ for each i ∈ {1, . . . , m} ∗/
stmt;

4. Add initialization statements:‘pc = L0; ‘v1 = v1; . . . ‘vn = vn;
end.

Figure 7. Program transformation for checking fair binary reachability using a temporal safety checker.nondet() represents nondetermin-
istic choice.

subset of the transition relation of̂P . We denote with post+

P̂ T
(Θ̂)

the set of states of̂P reachable after at least one step.

THEOREM 3. Suppose that in the programP there are no transi-
tions to the initial locations. Then the inclusionRC ⊆ T holds if
and only if the stateERROR is not reachable in the program̂P T .

Proof. “If”. Suppose the contrary:ERROR is unreachable in̂P T

and RC 6⊆ T . Then there exists a computation segmentσ =
s1, . . . , sn, sn+1 such thatNoneC(σ) ∪ SomeC(σ) = C and
〈s1, sn+1〉 6∈ T . For eachj ∈ {1, . . . , m} we define

in p
0

j =

(

false, if 〈pj , qj〉 ∈ NoneC({s1, . . . , sn});

true, otherwise

and

in q
0

j =

(

true, if 〈pj , qj〉 ∈ SomeC({s1, . . . , sn});

false, otherwise.

By Theorem 2 we have that〈s1, sn+1, in p0, in q0〉 ∈ post+
P̂
(Θ̂).

Since ERROR is unreachable inP̂ T , it is also the case that
〈s1, sn+1, in p0, in q0〉 ∈ post+

P̂ T
(Θ̂). Consider the execution of

P̂ T starting from this state. As the program̂P T has no transitions
to the initial location, the program counter in the statesn+1 is dif-
ferent from the initial location and so the next statements to execute
will be the ones in the auxiliary code shown in Figure 7. Taking into
account the definition ofin p0 andin q0 above and the fact that
NoneC(σ) ∪ SomeC(σ) = C one can see thatfair will evaluate
to true. But then since〈s1, sn+1〉 6∈ T theassert will fail and,

hence,ERROR ∈ post+
P̂ T

(Θ̂), which contradicts our initial assump-
tion.

“Only if ”. Again, suppose the contrary:RC ⊆ T andERROR
is reachable inP̂T . Since we do not apply the transformation in
Figure 7 to the initial location, it follows that there exists a state
〈s1, sn+1, in p0, in q0〉 ∈ post+

P̂ T
(Θ̂) such that〈s1, sn+1〉 6∈ T

and on this statefair evaluates totrue. We have that

post+
P̂T (Θ̂) ⊆ post+

P̂
(Θ̂) ∪ {ERROR},

thus,〈s1, sn+1, in p0, in q0〉 ∈ post+
P̂
(Θ̂).

Then according to Theorem 2 there exists a computation seg-
mentσ = s1, . . . , sn, sn+1 such that for allj = {1, . . . , m}

in p
0

j = false ⇔ 〈pj , qj〉 ∈ None({s1, . . . , sn})

and

in q
0

j = true ⇔ 〈pj , qj〉 ∈ Some({s1, . . . , sn}).

Sincefair evaluates totrue on 〈s1, sn+1, in p0, in q0〉, we have
thatNoneC(σ)∪SomeC(σ) = C and, hence,〈s1, sn+1〉 ∈ RC . But
sinceRC ⊆ T it follows that〈s1, sn+1〉 ∈ T , which contradicts a
previously established fact. �

It follows from Theorem 3 that to check fair binary reachabil-
ity one can apply a temporal safety checker on the programP̂ T

to prove the non-reachability of the locationERROR or generate a
corresponding counterexample. In the latter case the counterexam-
ple returned by the safety checker is a lasso path,i.e. a sequence
of program statements of the formτ1, . . . , τn, . . . , τp, τn. The path

state {}

PPBlockInits.entry {
set();

}

PPUnblockInits.entry {
unset();

}

Figure 9. An example liveness property for the program fragment
in Figure 8.

τn, . . . , τp, τn becomes then the pathπ in the algorithm in Figure 6.
The path relation corresponding to this path is defined as follows:

ρπ = {〈s2, s3〉 | ∃s1 ∈ Θ.

〈s1, s2〉 ∈ ρτ1
◦ · · · ◦ ρτn−1

∧ 〈s2, s3〉 ∈ ρτn ◦ · · · ◦ ρτp}.

Optimizations. The transformation ofP into P̂T was presented
above somewhat idealistically. In practice, it is sufficient to instru-
ment the code shown in Figure 7 only on cutpoints [19]; see [14]
for details. Additionally, program slicing techniques canbe used
to eliminate redundant assignments to variables added during the
transformation and sometimes the variables themselves.

Example. Consider the code fragment from Figure 8. Imagine
that we are trying to prove that wheneverPPBlockInits is called,
PPUnblockInits will eventually be called (Figure 9) with the
fairness constraint from Figure 2.

Our implementation constructs a disjunctively well-founded re-
lationT for each cutpoint in the program’s control-flow graph. Sup-
pose that we are considering the cutpoint at location 3. While per-
forming fair binary reachability analysis, our extension to TERMI-
NATOR would produce the code in Figure 10. We assume the fol-
lowing conditions:

• We have already translatedset andunset away, instrumented
the fairness constraints, and constructed the analogous fair ter-
mination problem. The compassion requirements on the result-
ing program are〈pc = 6.1, pc = 6.3〉 (corresponding to the
fairness constraint from Figure 2) and〈true, q = PENDING〉
(corresponding to the condition onset andunset).

• The variablesin p1 andin q1 are used to represent the com-
passion requirement corresponding to the fairness constraint in
Figure 2. The variablesin p2 andin q2 correspond to the con-
ditions onset andunset, and hence the property in Figure 9
(the variablein p2 can be eliminated as explained below).

• TERMINATOR has already has constructed a candidate fair ter-
mination argument for program location3:

T (s, t) , t(i) > s(i) ∧ t(i) < t(Pdolen)

∧ s(Pdolen) = t(Pdolen).

The differences between Figure 8 and Figure 10 are as follows:

• Lines INIT.1–INIT.5 initialize the state of the automatonq,
pre-variables, and variables for keeping track of compassion
requirements.

• Lines 0.1–0.5 and 19.1–19.3 come from the property’s transfer
functions and in this case are just inlining of the code forset
andunset from Figure 3.

• Lines 6.1–6.4 update the auxiliary variables associated with
the compassion requirement corresponding to the fairness con-
straint in Figure 2.

• Lines 2.1–2.3 update the auxiliary variables associated with the
compassion requirement obtained from the condition on the
set andunset. In principle the updates should appear at each
line in the new program. However, using live variables analysis,
we remove many of them—in q2 only needs to be evaluated
before it is used. We have also removedin p2 since after the
simplification of the Boolean expression in line 2.4 (see below)
its value is not used in the program.

• Line 2.6 executes a non-deterministic decision as to whether or
not to take a snapshot of the current state. Since this program is
then passed to a temporal safety checker, this means that, given
any valuations returned bynondet during numerous executions
through this loop, if a bad set of valuations exists, the model
checker will find it—this gives us full coverage of the property.

• Lines 2.7–2.10 copy the current state into the auxiliary vari-
ables and clear the contents of the variables for keeping track
of compassion requirements. This has the effect of startingthe
recording of a new computation segment. As an optimization
we copy only variables that are used in the candidate fair termi-
nation argument.

• Lines 2.4–2.5 check the termination condition in the case when
the compassion requirements are not being violated. We simpli-
fied the Boolean expression in line 2.4 using the fact that one
of the Boolean expressions in the compassion requirement for
set andunset is just true. After this simplification the vari-
ablein p2 was not used in line 2.4 anymore, which allowed us
to eliminate it.

• Lines EXIT.1–EXIT.3 check the absence of terminating com-
putations violating the condition onset andunset.

TERMINATOR will perform an infinite-state reachability check
on the code in Figure 8 to check that theassert cannot fail and
error() cannot be called. If TERMINATOR can prove that this
cannot be the case, then the liveness condition is not violated at
this cutpoint and the algorithm proceeds to attempt to provethat
the fair termination property is not violated at the next cutpoint.

3.3 Lazy treatment of fairness constraints

The number of fairness constraints that appear in properties of pro-
grams with complex interaction with the environment can be large.
In many cases some of these constraints may not be required to
prove the property. We observe that our abstraction-based algo-
rithm naturally exploits this fact, due to the following reasons. First,
our encoding of fairness using Boolean variables that keep track of
the fulfilment of the constraints does not introduce a significant in-
crease in the program size. Second, by applying a counterexample-
guided abstraction refinement procedure based on predicateab-
straction to validate fair termination arguments we only consider
those fairness constraints that are relevant to the property. This is
ensured by predicate abstraction together with a refinementproce-
dure, which only tracks values of those variables that appear in the
predicates that define the abstraction.

4. Experimental results
In this section we describe the results from experiments with our
implementation of the proposed algorithm on Windows device
drivers. In order to perform the experiments we have implemented
the algorithm as an extension to the TERMINATOR termination
prover [15], which uses SDV [5] as its underlying safety checker.
Tables 1 through 4 contain the statistics from these experiments.
We used three liveness properties involving the acquiring and re-
leasing of resources together with the fair termination property
in Figure 2. The fairness constraint from Figure 2 was also used
in the former three experiments (Tables 1 through 3). Note that

1 PPBlockInits();
2 while (i < Pdolen) {
3 DName = PPMakeDeviceName(lptName[i], PdoType, dcId[i], num);
4 if (!DName) { break; }
5 RtlInitUnicodeString(&deviceName, DName);
6 status = IoCreateDevice(fdx->do, PDOSZ, &deviceName, 0, 0, TRUE, Pdo[i]);
7 if (STATUS_SUCCESS != status) {
8 Pdo[i] = NULL;
9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool(DName);
11 num++;
12 continue;
13 }
14 break;
15 } else {
16 i++;
17 }
18 }
19 num = 0;
20 PPUnblockInits();

Figure 8. Example code from a Windows device driver dispatch routine.The correct behavior of the code depends on the fairness constraint
from Figure 2.

SDV’s model of the driver’s environment has amain function that
non-deterministically decides to call one of the driver’s dispatch
routines—meaning that, in the case of SDV, Figure 2 represents
the termination of every dispatch routine within the devicedriver.
We used a timeout threshold of 10,000 seconds and a memory limit
of one gigabyte. T/O in the tables means that timeout limit was
exceeded. LOC denotes “Lines of code”.

During these experiments we found several previously unknown
bugs. Note that, if the number of “Bugs found” is0, then this means
that TERMINATOR has found a proof that the driver does not violate
the specification. The validity of the liveness properties that we
checked on the device drivers did not depend on significant tracking
of heap manipulations or bit-level operations, which caused false
bugs in experiments with TERMINATOR [14]. This is why we
have not obtained any false bugs in our experiments. We note that
techniques from [8] can be used to perform termination analysis in
cases where accurate tracking of the heap is required for proving
fair termination.

The experimental results demonstrate that we have finally ob-
tained a method for checking liveness properties of real systems
code. We believe that the experience that we have had with Win-
dows device drivers will match the results that users will have in
other similar domains.

5. Related work
Our proposed algorithm builds on a large body of formal founda-
tions, ranging from the formalization of the semantics of programs
by fair discrete systems [25] and the automata-theoretic approach
to temporal verification [31] to the more recent construction of fix-
point domains for abstract interpretation with fairness [28]. We also
use recent advances in the area of automatic termination analysis
(e.g. [11, 14]). From these foundations we have developed (to the
best of our knowledge) the first known fully automatic verification
tool for liveness properties of infinite-state programs.

The key difference between TERMINATOR and finite-state
model checkers that support liveness checking, e.g. SPIN [22],
Bandera [16], and Java PathFinder [33], is that TERMINATOR em-
ploys completely automatic abstraction, while the others either ex-
plore the state space as-is (SPIN) or use user-provided and,hence,
not automatic abstractions (Bandera). These tools will terminate
with “Out-Of-Memory” for programs with infinite or very large

state spaces. Automatic abstraction provides effectiveness and effi-
ciency to overcome this limitation.

The idea of using program transformations to convert liveness
into safety is known in finite-state model checking [9, 31]. Here we
adapt these ideas to the context of infinite-state systems.

It is possible to approximate a liveness property by a stronger
safety property. One strategy is to bound the number of stepsin
which theeventually-eventmust occur. This does not scale well
to large numbers of events, and it is often difficult to decidewhich
finite number of steps should be taken. Another approach is towrite
a safety property that at least specifies that the liveness property
will not be violated by any terminating executions. This is,in fact,
what the developers of SDV do today: they construct a number of
main.exit transfer functions in SLIC that check that the liveness
property is not violated when the driver terminates. In thiscase
SDV will miss any violations to liveness properties that involve
non-terminating executions.

6. Conclusion
Since automatic safety property checking has only recentlybecome
a reality, automatic liveness proving for real code has beencon-
sidered impossible. TERMINATOR is the first known tool to break
through this liveness checking barrier. We have applied TERMINA-
TOR to device drivers ranging in sizes from 1,000 to 20,000 LOC.

The proposed algorithm takes advantage of recent advances in
termination analysis by converting the problem of livenesscheck-
ing into fair termination checking. The scalability and support for
real programming language features comes from the termination
analysis. This paper has also presented a language in which live-
ness properties can be expressed.

Through the use of examples we have also demonstrated a set
of liveness properties thatshould be checkedon Windows device
drivers. In fact: over1/3 of the safety specifications included in
the today’s SDV distribution have analogous and equally important
liveness properties that should be checked. Similar properties will
exist in other programming domains, such as Linux device drivers,
embedded software, real-time systems, etc.

Limitations. A few notes about limitations:

• As program termination is an undecidable problem, TERMINA-
TOR’s analysis is not guaranteed to terminate.

In
iti

al
iz

at
io

n
INIT.1 q = NONE;
INIT.2 pre_pc = 1;
INIT.3 pre_i = i;
INIT.4 pre_Pdolen = Pdolen;
INIT.5 in_p1 = in_q1 = in_q2 = 0;

B
od

y

...
0.1 if (q == NONE) { /* set() */
0.2 if (nondet()) {
0.3 q = PENDING;
0.4 }
0.5 }
1 PPBlockInits();
2 while (i < Pdolen) {
2.1 if (q == PENDING) {
2.2 in_q2 = 1;
2.3 }
2.4 fair = (!in_p1 || in_q1) && ((q == PENDING) || in_q2);
2.5 assert(!fair || !(pre_pc == 3) || (i > pre_i && i < Pdolen && pre_Pdolen == Pdolen));
2.6 if (nondet()) {
2.7 pre_pc = 3;
2.8 pre_i = i;
2.9 pre_Pdolen = Pdolen;
2.10 in_p1 = in_q1 = in_q2 = 0;
2.11 }
3 DName = PPMakeDeviceName(lptName[i], PdoType, dcId[i], num);
4 if (!DName) { break; }
5 RtlInitUnicodeString(&deviceName, DName);
6 status = IoCreateDevice(fdx->do, PDOSZ, &deviceName, 0, 0, TRUE, Pdo[i]);
6.1 in_p1 = 1;
6.2 if (status != STATUS_OBJECT_NAME_COLLISION) {
6.3 in_q1 = 1;
6.4 }
7 if (STATUS_SUCCESS != status) {
8 Pdo[i] = NULL;
9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool(DName);
11 num++;
12 continue;
13 }
14 break;
15 } else {
16 i++;
17 }
18 }
19 num = 0;
19.1 if (q == PENDING) { /* unset() */
19.2 q = MATCHED;
19.3 }
20 PPUnblockInits();

...

E
xi

tp
oi

nt
s

EXIT.1 if (q == PENDING) {
EXIT.2 error();
EXIT.3 }

Figure 10. Code produced while performing fair binary reachability analysis on the code from Figure 8.nondet() represents nondetermin-
istic choice.

• Counterexamples are not guaranteed to be real counterexam-
ples. Our proposed algorithm attempts to prove that the prop-
ertyholds, not that itdoesn’t hold.

• The validity of proofs constructed in TERMINATOR relies on the
soundness of the underlying safety checker. For example, TER-

MINATOR may return a “proof” of correctness when the code is
not correct due to the fact that TERMINATOR’s symbolic safety
checker assumes that integers are not bounded and that code
is always being executed in a sequential setting. For this rea-
son the proof is restricted to sequential code in which overflow
cannot occur.

Driver Time (seconds) LOC Bugs found
1 15 1K 1
2 314 7K 0
3 2344 15K 0
4 3122 20K 1

1R 16 1K 0
4R 3217 20K 0

Table 1. Checking entering and leaving critical regions.
The property proved is the property in Figure 9 with
KeEnterCriticalRegion and KeLeaveCriticalRegion
substituted forPPBlockInits and PPUnblockInits respec-
tively. The fairness constraint used is the one from Figure 2. The
bug in driver 1 was known. The bug in driver 4 was not known
before. Drivers 1R and 4R are repaired versions of driver 1 and 4
respectively.

Driver Time (seconds) LOC Bugs found
1 23 1K 0
2 188 7K 0
3 271 15K 0
4 T/O 20K T/O

Table 2. Checking acquiring and releasing of spin locks. The
property being checked is the property in Figure 9 with
KeAcquireSpinLock and KeReleaseSpinLock substituted for
PPBlockInits and PPUnblockInits respectively. The fairness
constraint used is displayed in Figure 2.

Driver Time (seconds) LOC Bugs found
1 62 1K 5
2 N/A 7K N/A
3 N/A 15K N/A
4 T/O 20K T/O

1R 35 1K 0

Table 3. Checking modifications of IRQLs. The property being
checked is the one in displayed in Figure 4 together with the fair-
ness constraint from Figure 2. The bugs in driver 1 were known.
Driver 1R is a repaired version of driver 1. Drivers 2 and 3
are marked as N/A because they call neitherKeRaiseIrql nor
KeLowerIrql, the property is trivially true.

Driver Time (seconds) LOC Bugs found
1 9 1K 0
2 129 7K 0
3 1463 15K 1
4 T/O 20K T/O

Table 4. Checking the termination of driver dispatch routines
under a fairness constraint. The fair termination propertybeing
checked is in Figure 2. Themain function in SDV’s model of the
driver’s environment considers all possible calls to the driver’s dis-
patch routines— meaning that Figure 2 represents the termination
of every dispatch routine within the device driver. The bug in driver
3 was previously unknown.

• As previously described, TERMINATOR uses pointer analysis
to over-approximate the pointer aliasing relationships during
instrumentation. In some cases this over-approximation may
lead to aliasing relationships that do not occur in the program,
which may result in false counterexamples being reported. In
many cases false-aliasing relationships can be resolved later
during binary reachability (as described in [14]), but not always.

Acknowledgments
Andreas Podelski and Andrey Rybalchenko are supported in part
by the German Research Foundation (DFG) as a part of the Transre-
gional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS), by the Ger-
man Federal Ministry of Education and Research (BMBF) in the
framework of the Verisoft project under grant 01 IS C38.

Moshe Vardi is supported in part by NSF grants CCR-9988322,
CCR-0124077, CCR-0311326, and ANI-0216467, by BSF grant
9800096, by Texas ATP grant 003604-0058-2003, and by a
Guggenheim Fellowship. Part of this work was done while the au-
thor was visiting the Isaac Newton Institute for Mathematical Sci-
ence, as part of a Special Programme on Logic and Algorithms,as
well as Microsoft Research, Cambridge, UK.

References
[1] A LBIN ET AL . Property specification language reference manual.

Tech. Rep. Version 1.1, Accellera, 2004.

[2] A LPERN, B., AND SCHNEIDER, F. Defining liveness.Information
processing letters 21(1985), 181–185.

[3] A LPERN, B., AND SCHNEIDER, F. Recognizing safety and liveness.
Distributed computing 2(1987), 117–126.

[4] A RMONI, R., FIX , L., FLAISHER, A., GERTH, R., GINSBURG, B.,
KANZA , T., LANDVER, A., MADOR-HAIM , S., SINGERMAN, E.,
TIEMEYER, A., VARDI , M., AND ZBAR, Y. The ForSpec temporal
logic: A new temporal property-specification logic. InTACAS’02:
Tools and Algorithms for the Construction and Analysis of Systems
(2002), vol. 2280 ofLNCS, Springer-Verlag, pp. 296–311.

[5] BALL , T., BOUNIMOVA , E., COOK, B., LEVIN , V., L ICHTENBERG,
J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI , S. K., AND

USTUNER, A. Thorough static analysis of device drivers. In
EuroSys’06: European Systems Conference(2006).

[6] BALL , T., AND RAJAMANI , S. K. SLIC: A specification language for
interface checking (of C). Tech. Rep. MSR-TR-2001-21, Microsoft
Research, 2001.

[7] BERDINE, J., CHAWDHARY, A., COOK, B., DISTEFANO, D., AND

O’HEARN, P. Variance analyses from invariance analyses. In
POPL’07: Principles of Programming Languages(2007), ACM
Press.

[8] BERDINE, J., COOK, B., DISTEFANO, D., AND O’HEARN, P.
Automatic termination proofs for programs with shape-shifting heaps.
In CAV’06: Computer-Aided Verification(2006), vol. 4144 ofLNCS,
Springer-Verlag, pp. 386–400.

[9] B IERE, A., ARTHO, C., AND SCHUPPAN, V. Liveness checking
as safety checking. InFMICS’02: Formal Methods for Industrial
Critical Systems(2002), vol. 66(2) ofENTCS.

[10] BRADLEY, A., MANNA , Z., AND SIPMA , H. Linear ranking
with reachability. InCAV’05: Computer-Aided Verification(2005),
vol. 3576 ofLNCS, Springer-Verlag, pp. 491–504.

[11] BRADLEY, A., MANNA , Z., AND SIPMA , H. Termination of
polynomial programs. InVMCAI’05: Verification, Model Checking,
and Abstract Interpretation(2005), vol. 3385 ofLNCS, Springer-
Verlag, pp. 113–129.

[12] COLÓN, M. A., AND URIBE, T. E. Generating finite-state
abstractions of reactive systems using decision procedures. In

CAV 98: Computer-Aided Verification(1998), vol. 1427 ofLNCS,
Springer-Verlag, pp. 293–304.

[13] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Abstraction
refinement for termination. InSAS’05: Static Analysis Symposium
(2005), vol. 3672 ofLNCS, Springer-Verlag, pp. 87–101.

[14] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termination
proofs for systems code. InPLDI’06: Programming Language Design
and Implementation(2006), ACM Press, pp. 415–426.

[15] COOK, B., PODELSKI, A., AND RYBALCHENKO , A. Terminator:
Beyond safety. InCAV’06: Computer-Aided Verification(2006),
vol. 4144 ofLNCS, Springer-Verlag, pp. 415–418.

[16] CORBETT, J., DWYER, M., HATCLIFF, J., PASAREANU, C.,
ROBBY, LAUBACH, S., AND ZHENG, H. Bandera: Extracting
finite-state models from Java source code. InICSE’00: Int. Conf.
on Software Engineering(2000), IEEE Press, pp. 439–448.

[17] COUSOT, P. Proving program invariance and termination by
parametric abstraction, Lagrangian relaxation and semidefinite
programming. InVMCAI’05: Verification, Model Checking, and
Abstract Interpretation(2005), vol. 3385 ofLNCS, Springer-Verlag,
pp. 1–24.

[18] DWYER, M. B., AVRUNIN , G. S.,AND CORBETT, J. C. Patterns in
property specifications for finite-state verification. InICSE’99: Int.
Conf. on Software Engineering(1999), IEEE Press, pp. 411–420.

[19] FLOYD, R. W. Assigning meanings to programs. InMathematical
Aspects of Computer Science(1967), J. T. Schwartz, Ed., vol. 19
of Proceedings of Symposia in Applied Mathematics, American
Mathematical Society, pp. 19–32.

[20] GRAF, S.,AND SA ÏDI , H. Construction of abstract state graphs with
PVS. InCAV 97: Computer-Aided Verification(1997), vol. 1254 of
LNCS, Springer-Verlag, pp. 72–83.

[21] HENZINGER, T., JHALA , R., MAJUMDAR, R., AND SUTRE,
G. Lazy abstraction. InPOPL’02: Principles of Programming
Languages(2002), ACM Press, pp. 58–70.

[22] HOLZMANN , G. J. The model checker SPIN.IEEE Transactions on
Software Engineering 23, 5 (1997), 279–295.

[23] KESTEN, Y., PNUELI , A., AND RAVIV , L. Algorithmic verification
of linear temporal logic specifications. InICALP’98: Int. Colloq. on
Automata, Languages and Programming(1998), vol. 1443 ofLNCS,
Springer-Verlag, pp. 1–16.

[24] KURSHAN, R. Computer Aided Verification of Coordinating
Processes. Princeton Univ. Press, 1994.

[25] MANNA , Z., AND PNUELI , A. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, Berlin, 1992.

[26] M ICROSOFT CORPORATION. Windows Static Driver Verifier.
Available at www.microsoft.com/whdc/devtools/tools/SDV.mspx,
July 2006.

[27] PNUELI , A. The temporal logic of programs. InProc. 18th IEEE
Symp. on Foundation of Computer Science(1977), pp. 46–57.

[28] PNUELI , A., PODELSKI, A., AND RYBALCHENKO, A. Separating
fairness and well-foundedness for the analysis of fair discrete systems.
In TACAS’05: Tools and Algorithms for the Construction and Analysis
of Systems(2005), vol. 3440 ofLNCS, Springer-Verlag, pp. 124–139.

[29] PODELSKI, A., AND RYBALCHENKO, A. A complete method for
the synthesis of linear ranking functions. InVMCAI’04: Verification,
Model Checking, and Abstract Interpretation(2004), vol. 2937 of
LNCS, Springer-Verlag, pp. 239–251.

[30] PODELSKI, A., AND RYBALCHENKO , A. Transition invariants. In
LICS’04: Logic in Computer Science(2004), LNCS, IEEE Press,
pp. 32–41.

[31] VARDI , M. Verification of concurrent programs—the automata-
theoretic framework.Annals of Pure and Applied Logic 51(1991),
79–98.

[32] VARDI , M., AND WOLPER, P. Reasoning about infinite computa-
tions. Information and Computation 115, 1 (1994), 1–37.

[33] V ISSER, W., HAVELUND , K., BRAT, G., PARK , S.,AND LERDA, F.
Model checking programs.Automated Software Engineering Journal
10, 2 (2003).

