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Abstract

In recent years we have seen great progress made in the area of
tomatic source-level static analysis tools. However, robsiday’s
program verification tools are limited to properties thaiguntee
the absence of bad eventafety properties Until now no for-
mal software analysis tool has provided fully automaticpsurpfor
proving properties that ensure that good events eventbafhpen
(liveness propertigs In this paper we present such a tool, which
handles liveness properties of large systems written ini&ness
properties are described in an extension of the specifitddio-
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Windows kernel APls that acquire resources and APls thatsel

resources. For example:

A device driver should never caleReleaseSpinlock
unless it has already callekkAcquireSpinlock.

This is a safety property for the reason that any counterpl@m
to the property will be a finite execution through the devicget
code. We can think of safety properties as guaranteeingsieati-
fied bad events will not happend. calling KeReleaseSpinlock
before callingkeAcquireSpinlock). Note that SDV cannot check

guage used in the SDV system. We have used the tool to automat-the equally important related liveness property:

ically prove critical liveness properties of Windows devidrivers
and found several previously unknown liveness bugs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.L¢gics and Meanings

of Program$: Specifying and Verifying and Reasoning about Pro-

grams
General Terms Verification, Reliability, Languages

Keywords Formal Verification, Software Model Checking, Live-
ness, Termination

1. Introduction

As computer systems become ubiquitous, expectations térays
dependability are rising. To address the need for improvédare
quality, practitioners are now beginning to use static ysialand
automatic formal verification tools. However, most of saftes
verification tools are currently limited teafety propertieg2, 3]
(see Section 5 for discussion). No software analysis tofdref
fully automatic scalable support for the remaining set ofyerties:
liveness properties

Consider Static Driver Verifier (SDV) [5, 26] as an example.

SDV is packaged with 60 safety specifications that are auiema
cally proved of the device driver to which SDV is being apglie
Many of these properties specify temporal connections &etw

Permission to make digital or hard copies of all or part o thbrk for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17-19, 2007, Nice, France.
Copyright(© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

If a driver callskeAcquireSpinlock then it must eventu-
ally make a call t&keReleaseSpinlock.

A counterexample to this property may not be finite—thus megki
it a liveness property. More precisely, a counterexamplleegrop-
erty is a program trace in whidteAcquireSpinlock is called but
itis not followed by a call tKeReleaseSpinlock. This trace may
be finite (reaching termination) or infinite. We can thinkigéhess
properties as ensuring that certain good things will evahytinap-
pen {.e.thatKeReleaseSpinlock will eventually be called in the
case that a call tdeAcquireSpinlock Occurs).

Liveness properties are much harder to prove than safepy pro
erties. Consider, for example, a sequence of calls to fonsti
“£0); g0O; h(Q;" Itis easy to prove that the functiofis al-
ways called beforé: in this case we need only to look at the struc-
ture of the control-flow graph. It is much harder to prove thé
eventually called aftef: we first have to prove the termination of
g. In fact, in many cases, we must prove several safety priegént
order to prove a single liveness property. Unfortunatelypracti-
tioners liveness is as important as safety. As one co-alghoned
while spending two years with the Windows kernel team:

e Formal verification experts have been taught to think only in
terms of safety properties: liveness properties are censid
too hard.

o Non-experts in formal verificatiori.¢. programmers that write
software that needs to be verified) think equally in termsathb
liveness and safety.

In this paper we describe a new algorithm which automati-
cally constructs correctness proofs for liveness progemif soft-
ware systems. The algorithm has been implemented as arsixien
to the TERMINATOR tool, which is a fully automatic termination
prover for software [15]. Properties are described in a npecs
ification language, which is an extension to the safety-priyp
only language used by SDV. When given a property description



and a program, ERMINATOR attempts to construct a correctness
proof. If a proof is found, then the property is guaranteetdtul.
Conversely, if the proof fails, a potential counterexamiglgro-
duced. If the counterexample is a non-terminating exeoutitzen

it is presented via a finite description, to enable the pnognar to
analyze it.

Our prototype tool represents the first known liveness prove
to handle large systems written in C. The tool is interproeed
ral, path-sensitive, and context-sensitive. It suppaorfmite-state
programs with arbitrary nesting of loops and recursive fions,
pointer-aliasing and side-effects, function-pointets, €he tool’s
scalability leverages recent advances in program terinimanal-
ysis €.9.[7, 10, 11, 13, 14, 15]).

Following the automata-theoretic framework for programi-ve
fication [31], our algorithm takes a liveness property andogymm
and constructs an equivaldair terminationproblem (termination
under a set of fairness constraints, a formal definition bélgiven
later). The novel contributions of the paper include:

e An extension to SDV'’s language for specifying liveness prop
erties (Section 2).

e A method for checking fair termination of programs (Sec-
tion 3).

e Experimental results that demonstrate the viability of apf
proach to industrial software (Section 4).

2. Specifying liveness properties

In this section we describe a language for specifying ligsrend
safety properties of software systems. The language istang®n

of SLIC [6], which is used to specify temporal safety projgerin
SDV [5]. SLIC is designed to specify API-usage rules for miie
code (like Windows device drivers and their use of the Winslow
Driver Model API as described in [5]). For this reason it was
designed such that programmers do not need to modify or atenot
source code—the code is typically not available when wgitime
specification.

Checking liveness can be reduced to checking fair termina-
tion [31]. Therefore, we first define a minimal language farafi-
cation of fair termination properties, which is essenyiallanguage
for defining Streett automata. In Section 3 we describe aorigthgn
for checking properties in this language. While the languean
express allw-regular properties [32], using it to specify liveness
properties of real code is awkward since most of such prigsert
have a response flavor. To overcome this problem, in Sectién 2
we introduce auxiliary statementset andunset) that are helpful
to concisely specify response requirements.

2.1 Syntax

The syntax of the specification language is defined in Figure 1
A specification describes an automaton that accepts progkam
ecutions that satisfy the desired property. It consisthiafe basic
parts:

A state structure declaration. The state structure defines a set of
state variables that are maintained by the automaton @mres
ing the specification during its execution. The variables loa
of any scalar C type or pointer.

A list of transfer functions. Transfer functions define transitions

taken by the automaton as API operations are invoked and re-

turn. Each transfer function has two parts: a pattern speeifi
tion and a statement block that defines the transfer function
body. A pattern specification usually has two parts: a proce-
dure identifierid (i.e. the name of the API procedure) and one
of two basic event types(ent): entry, exit. These events

identify the program points in the named procedure immedi-
ately before its first statement and immediately beforetitrres
control to the caller. Theny pattern can be used to trigger the
event throughout the code. The body of a transfer function is
written in a simple imperative C-like language. One impotta
control construct is missing from the statements used inispe
fications: loops. This means that transfer functions alviays
minate.

A list of fairness constraints. The fairness constraints are given
as pairs of Boolean expressions inside of the scope of the
fairness keyword. Each Boolean expression is guarded by a
pattern. Fairness constraints are an extension of SLIC¢cand
be used to rule out counterexamples in which the environieent
not “fair”. An example of a fairness constraint is the foliog:
“whenever functiorfoo is called infinitely often then it returns
a value distinct fronD infinitely many times”. We say that a
non-terminating path satisfies a fairness constraint if @mg
if either the first Boolean expression succeeéds if is invoked
and evaluates to true) only finitely often or the second Baiole
expression succeeds infinitely often. A non-terminatingoex
tion can be a counterexample only if it satisfies all of the-fai
ness constraints given.

Informally, we think of a specification as a monitor that is
executed along with the program. Safety properties areesspd
using theerror statement, which explicitly signals that an unsafe
state has been reachdd(a safety property has been violated).
A computation of the program does not satisfy the speciboafi
eithererror is called during the computation, or the computation
does not terminate and satisfies all the fairness consrditdte
that an empty specification specifies program termination.

The functionnondet () is used to specify non-deterministic
value introduction. That igjondet () returns an arbitrary value. A
proof of the conformance of a program to the specificatiorukho
then take any valuation into account.

The expression sub-languagea:fr) is the pure expression lan-
guage of C, without state update operators, (--, etc.), pointer
arithmetic, or the address-of operat@).(Dereferencing pointers
via x and-> is allowed. The identifiers in this language are of sev-
eral forms: regular C-style identifiers behave as expettedint
identifiers are used to refer to the function’s formal parerse and
the identifier$return is used to refer to the return value, which is
accessible at thexit event.

2.2 Semantics

We treat programs as fair discrete systems [23], wheredairne-
quirements are given in terms of sets of program states. grano
P =(X%,0,7,C) consists of:

e Y: a set of states;
e O: a set of initial states such thé& C ¥;

e 7 afinite set of transitions such that each transitioa 7 is
associated with a transition relatipn C X x 3;

o C = {{p1,q1),...,(pm,qm)}: @ set of compassion require-
ments, such that;, ¢; C X for eachi € {1,...,m}.

Transitions in this definition intuitively correspond toogram
statements. A computatiosr is a maximal sequence of states
s1, 82, ... such thats; is an initial statej.e. s1 € ©, and for each
i > 1 there exists a transition € 7 such thats; goes t0s;+1
underp,,i.e.(si, si+1) € pr-

A computationo = s1, s2, ... satisfies the set of compassion
requirement< when for each(p, q) € C eithero contains only
finitely many positiong such thats; € p, or o contains infinitely
many positiong such thats; € ¢. For example, a computation sat-



ent

[ Elements of syntax || Description |
state A specification consists of a state structure, and a lis
S = transFun™ transfer function definitions together with fairness cq
fairness™ straints
state = state { fieldDecl™ } A state structure is a list of field declarations
. ._ L . A field has a C type, an identifier and an initializatiq
fieldDecl = ctype id = expr; expression
transFun :=  pattern stmt A transfer function consists of a pattern and a statem
pattern = id . event | any
event := entry|exit
stmt = id=expr; Assignment statement
| stmt; stmt
| if (choose ) stmt [ else stmt ]
| error(); Safety property violation
| return [ expr 1; Return from the transfer function
| { stmt }
choose == nondet() Non-deterministic choice
| expr
expr = id|expropexpr]|--- Pure expression sub-language of C
id = Cldentifier Refers to state elements or program variables
| $int $i refers toit formal parameter
| $return Return value of a function
fairness :=  fairmess { pattern { expr } pattern { expr } } || Fairness constraint

Figure 1. Syntax of the specification language.

isfies the compassion requirement (whpeedenotes the program
counter)(pc = foo.entry, pc = foo.exit A $return # 0) if
whenever functiorfoo is called infinitely often then it infinitely
often returns a value distinct frofh. A computation is fair if it
satisfies all compassion requirements of the program. Wehsay
a program is fair terminating if it does not admit any infiriaér
computation.

In order to prove that a specification holds of a given program
we instrumentthe specification into the program. That is, we tra-
verse the input program and find all program locations in twhic
the patterns described in the specification can be triggéregw
program—called thenstrumented prograr-is produced in which
the code found in the transfer functions is inserted to thgircal
program. Formally, this constructs the product of the oagipro-
gram with the automaton representing the specification [81dur
implementation we also perform a pointer analysis in ordeon-
structs an over-approximation of all the potential poirakasing
relationships. This allows us to statically find functicalt@vents
when functions are called by pointer.

Bodies of transfer function are inserted into the program as
they are given in the specification. The variables mentidnete
state structure become global variables in the program. For each
expressiore;, wherei 1,2, in a fairness constraint from the
specification and at each location where the corresponditigmp
can be triggered we insert the codef” (e;) { L: skip; },
whereL is a fresh label.

The fairness constraints in the specification are trarglade
compassion requirements on the instrumented program ¢trat
also be viewed as a fair discrete system). For each fairr@ss c
straint we introduce a compassion requiremgmt = L1V ... V
Lk, pc = M1V...VM) whereLl,..., Lk, respectivelyMi, ... M
are the labels introduced during the instrumentation fer first,
respectively, second expression of the fairness constrain

To prove that a program does not violate the specification we
need to prove that the instrumented program can never ma&é a ¢
to theerror function and that it is fair terminating. The former can
be done using existing techniques. An algorithm for cheglie
latter is presented in Section 3.

state {}

fairness {
// First Boolean expression: succeeds
// on every return from IoCreateDevice
IoCreateDevice.exit { 1 }

// Second Boolean expression: succeeds
// if IoCreateDevice returns
// something other than
// STATUS_OBJ_NAME_COLLISION
IoCreateDevice.exit {

$return != STATUS_0BJ_NAME_COLLISION
}

Figure 2. A specification of termination under a fairness con-
straint stating that if a program call®CreateDevice enough
times then it will eventually return a value not equal to
STATUS_OBJ_NAME_COLLISION.

2.3 Asimple example

Consider the example specification in Figure 2. As it was ahote
before, the empty specificatiorstate {}” specifies the termi-
nation of the program. Figure 2 specifies an instance of &air t
mination. Recall that fairness constraints in our spedificalan-
guage come as pairs of Boolean expressions guarded by pat-
terns. In this case, the first Boolean expression alwaysesuaisc
whenever the functiornloCreateDevice returns. The second
Boolean expression does not succeed whelreateDevice re-

turns STATUS_OBJ_NAME_COLLISION. This particular constraint is
saying:

Ignore non-terminating program executions in which
IoCreateDevice from some point on always returns
STATUS_0BJ_NAME_COLLISION.

In other words, a program satisfies this specification if
it terminates provided that whenever we continue to call
IoCreateDevice repeatedly, it will eventually return a value other
thanSTATUS_0BJ_NAME_COLLISION.



[ Functions used during the translation

Fairness constraint

Transfer functions

void set() {
if (q == NONE) {

fairness {
any { 1 }

main.entry {
q = NONE;

if (nondet()) {
q = PENDING;
}

}

void unset() {
if (q == PENDING) {
q = MATCHED;
}

any { q == PENDING } }

main.exit {
if (q == PENDING) {
error();

}

Figure 3. Aukxiliary constructs for specifying response-style liess properties.

2.4 Auxiliary constructs

Most of the frequently specified liveness properties hawspanse
flavor and are awkward to specify with the minimalistic laaga
described in Section 2.1. To make their specification easiein-
troduce auxiliary constructs—the functiosst andunset, which
can be used in the specification’s transfer functions. Tiheended
meaning is that when the property callst then an execution
through the property in whichnset is never called represents a
liveness violation. More precisely, a program satisfiesecica-
tion with set andunset if and only if error is never called in the
instrumented program and there is no computation of theunst
mented program that (i) satisfies all compassion requirésnéi)
contains a call tget, and (iii) contains no calls tanset after the
last call toset. This corresponds to the validity of the LTL formula

G ((pc = set.entry) = F (pc = unset.entry))

under the compassion requirements.

A specification containinget andunset can be translated to
a specification in the language of Section 2.1 using an agjpic
of the automata-theoretic framework for program verifmafi31].
Namely, we translate the negation of the LTL formula abote in
a Bichi automaton and construct the synchronous produttteof

program and the automaton. Toward this end we introducetaa ex

state { int irql = -1; }

KeRaiseIrql.entry {

if (irql == -1) {
irql = KeGetCurrentIrql();
set();

}

}

KeLowerIrql.entry {
if ($1 == irql && irql > -1) {
unset () ;
}
irql = -1;

Figure 4. A liveness property involving the Windows kernel APIs
KeRaiseIrql andKeLowerIrql. The macrkeGetCurrentIrql
refers to a variable in the OS environment model.

raises the IRQL to the value afand writes the old IRQL value to
the location in memory pointed to kpy; KeLowerIrql (y) lowers
the IRQL toy. A driver must match these operations correctly: if it
raises the IRQL then it must subsequently lower it back tatige

variableq into our program denoting the state of the automaton inal value. Note that it is a fatal (safety) error to dédLowerIrql

and assume defined three constants representing the stabes o
automaton—-NONE, PENDING, andMATCHED. Initially 9 = NONE and
the statePENDING is accepting. We then definet andunset as

is shown in Figure 3 and add the fairness condition and teansf

functions from Figure 3 to the specification. The fairnessstint
excludes infinite computations satisfying conditions &iyd (iii)
above. To exclude finite computations satisfying (ii) arit) (e

usingy that was not returned by the immediately preceding call to
KeRaiseIrql.

Figure 4 shows how this specification is modeled in our lan-
guage. This example demonstrates the usage of the stattustru
which in this case contains an integer variahte1 that stores the
IRQL-value at the time of the call tdeRaiseIrql. Two trans-
fer functions are included in the specification: one callirg if

call error when the program terminates in the case when there is KeRaiseIrql is called (with a few side conditions), the other call-

a pendingset call.

The original program satisfies the specification if and ofily i

it satisfies the transformed specificatiore. if the instrumented
program is safe and fair terminating.

2.5 Using response requirements and state

We provide an example that shows how specifications can use

ing unset only if KeLowerIrql is called appropriately.

If the code the specification of which we are writing uses the
function IoCreateDevice, we might add thefairness clause
from Figure 2 to the specification in Figure 4 to restrict te@évior
of this function.

2.6 Combining liveness and safety

set/unset and maintain internal state. It is based on a specification Specifications can contain both liveness and safety priegein

of how a device driver is supposed to modify the processotéyi
rupt request level (IRQL) that controls which kinds of imtgats are
to be delivered. Two functions are involvetkRaiseIrql(x, p)

the case of Figure 5, we have a safety property mixed togetitter
the liveness property from Figure 4ERMINATOR will search for
at least one violation of the properties, either of safetiiveness.



state { int irql = -1; } reduced to a fair termination problem as described in Se@ia.
We fix a programP = (3,0, T, C) represented by a fair discrete
system with a (finite) set of compassion requiremeéhtg/e want
to check whether the program terminates under the compassion

KeRaiseIrql.entry {
if ($1 <= KeGetCurrentIrql()) {

} errorO; requirementg.
if (irql == -1) { . ) ) L
irql = KeGetCurrentIrql(); 3.1 Counterexample-guided refinement for fair termination
setO; First of all, we introduce some auxiliary definitions. A bipa
} ¥ relation R is well-founded if it does not admit any infinite chains.
We say that a relatioff’ is disjunctively well-founded [30] if it is a
KeLowerIrql.entry { finite union7" =T, U ... U T;, of well-founded relations.
if ($1 >= KeGetCurrentIrql()) { We remind the reader that a computatioris a maximal se-
error(); guence of states;, s, ... such thats; is an initial state, and for
} each:i > 1 there exists a transition € 7 such thats; goes to
if (81 == irql && irql > -1) { si+1 underp,. A finite segmens;, s;+1,. . ., s; of a computation
unset () wherei < j is called a computation segment. Note that all the
} L states constituting a computation segment must be reachaioh
} irql = -1 initial states. Following [28], we define two auxiliary fuians that
map a set of state$ to a set of compassion requirements:
Figure 5. A specification defining both liveness and safety prop- Nonec (S) = {{p,q) € C| Snp =0},
erties involving the Windows kernel APIXeRaiseIrql and Somec(S) = {(p,q) € C | SNq+#0}.
KeLowerIrql. . .
Let S be the set of states that appear in a computation segment
Then, Nonec (S) and Somec(S) record the compassion require-
The safety property in this case specifies #eRtaiseIrql should ments fromC that are fulfilled on the infinite computation ob-
not be used to lower the IRQL, ark&LowerIrql should not be tained by repeating infinitely many times and prefixing the result
used to raise IRQL. with a computation segment from an initial state of the paogto
] ) the starting state of (we know that such a computation segment
2.7 Discussion exists since all the states inare the reachable states of the pro-

Temporal properties can be specified using temporal logick s 9ram P). Nonec(o) keeps track of the compassion requirements
as LTL [27]. However, such properties can also be specifietyus ~ (p; ¢) that are fulfilled because contains only finitely many states
automata on infinite words [32] (in fact, LTL is less expreeghan from p. Somec (o) keeps track of the compassion requirements
such automata); see also [24]. To extend the expressiverpmfive (P, q) that are fulfilled because contains infinitely many states
LTL to that of automata on infinite words, industrial langaag from.q.

such as ForSpec [4] and PSL [1], add to LTL a layer of regular ~ Finally, let

expressions. .

Logic-based specifications have the advantage that thesaare Re = {(s1,sn+1) | Icomputation segment = s1, ..., snt1.
ily combined, composed, and can be used to express deefger pro Nonec (o) U Somec (o) = C}.
erties of code. Automata-based specifications have thentatya
they are more like computer programs and are thereforerdasie
programmers to use. Specifications in SLIC, for example,bzan
viewed as automata on finite words.

In this paper we are taking an automata-based approach to
specifying temporal properties—properties in our languean be
viewed as automata on infinite words. We note that compiiatio
techniques described in [32] can be used to exteBEMINATOR
to logic-based specifications.

Set andunset make it easier to specify properties being in-
stances of response specification pattern [18]. The santeagp THEOREM 1. The programP terminates under the compassion
as was taken here can be used to add other specificatiomgatier  requirementsC if and only if there exists a disjunctively well-
our language. founded relatiori” such thatR¢ C 7.

We call R¢ the fair binary reachability relation R¢ consists of
all the pairs of starting and ending states of (finite) corapab
segments of the prograf such that, if repeated as above, will give
(infinite) computations satisfying all the compassion ieguents
from C. We remind the reader that all the states in a computation
segment must be reachable from the initial states so thessiat
R¢ are reachable from the initial states too.

The following adaptation of Theorem 3 from [28] forms the
basis for our algorithm.

P . R Theorem 1 says that to prove a progratair terminating we
3. Verifying fair termination have to cover its fair binary reachability relation by a #nitnion
In this section we describe a novel algorithm for checking of well-founded relations. We build such a relatihby iterative
fair termination of programs. The approach we take is to use refinement extending’ each time a spurious counterexample is

counterexample-guided refinement for building fair teration ar- discovered.

guments i(e, relations justifying that the program is fair termi- Instead of considering one computation segment at a time we

nating). The algorithm is an extension of th&RMINATOR al- cover the set of computation segments resulting from theugian

gorithm [14]. It adds support for fair termination using theof of a sequence of program statements as a whole. This is fiaadal

rule proposed in [28], which separates reasoning aboutgssrand in the following notions of path and fair path.

well-foundedness by using transition invariants [30]. We define a pathr to be a finite sequence of program transi-
Assume that the specification to be checked has already beertions. Given a pathr = 7,...,7,, we say thatr is fair with

instrumented into the program and the problem of checkimg th respect to a compassion requireméptq) if some computation
conformance of the program to the liveness specificatiorbbas segmenis = si1,...,sp+1 Obtained by executing the statements



input
ProgramP
Compassion requirements
begin
T:=0
repeat
if exists pathr such thafair(w) andp, Z T then
if pr is well-founded by then

T=TUuW
else
return “Counterexample path”

else
return “Fair termination argumerit™
end.

Figure 6. Incremental construction of a fair termination argument.

terexample provided by the safety checker can be used téraohs
the pathr in the underlined expression in Figure 6.

We transform the prograr® to the progran®” in the follow-
ing way. LetV = {v1,...,vn,pc} be the set of all program vari-
ables inP including the program counterc. The set of variables
of the programP? containsV’ and the corresponding pre-versions
’vi,..., Vp, *pc. Besides, we introduce two Boolean arraysp
and in_q indexed byl, ..., m. Therefore, a state aP” can be
represented by a tuple, r, in_p, in_q), wheres, r € S. The state
(s,r,in_p, in_q) represents a computation segment starting with
and ending with-. The variablein_p; (respectivelyin_q;) is true
if and only if there is a state in the segment satisfyingrespec-
tively, ¢;). We assume that initiallyv = v and all elements of
in_p andin_q are false.

The transformation is shown in Figure 7. To simplify the pre-
sentation, consider first the prografobtained using the trans-

The compassion requirements on the program specify when theformation without the assignment fmir and theassert state-

predicatefair(7) holds for a pathr. The existence of a fair ter-
mination argument implies the validity of the given liveagsop-
erty under fairness constraints. The evaluation of the tingel
if-expression is explained in Section 3.2. The relafincan be
computed using a ranking function synthesis engéng, [29].

of 7 either does not visit any-states or traverses somestate.
A path is fair, written agair(n), if it is fair with respect to every
compassion requirement ¢h

The algorithm for the construction of a fair termination @arg
ment is presented in Figure 6. The algorithm first perfornasrebi-
nary reachability analysis to check whether the inclusganC T
holds. Fair binary reachability analysis is described intide 3.2.
p= is the path relation, which is also defined in Section 3.2.

If the subset inclusion holds then, by TheorenPlterminates
under the compassion requiremed@tand we report fair termina-
tion. In the case that the inclusion does not hold, a fair path
produced such that, ¢ T'. The algorithm then checks if there
exists a well-founded relatioi (called a ranking relation) cover-
ing p~. If such a relation does not existrepresents a potential fair
termination bug and the algorithm terminates. Otherwlse rank-
ing relationW is added to the sef. This ensures that the same
path will not be discovered at the subsequent iterationseétgo-
rithm. The ranking relatio®” can be generated using any tool for
ranking function synthesis [10, 11, 17, 29]. In pracfi¥egproduced
by these tools is usually sufficient for ruling out not orlybut also
all the paths that are obtained by repeating

3.2 Binary reachability for fair termination

The problem of checking fair binary reachability considtstoeck-
ing the inclusiorR¢ C T for a programP with a set of compassion
requirement® = {(p1,¢1),-. -, (Pm,gm)} and a relatior!’. The
solution we propose here is based on an extension of theguoee
for solving binary (as opposed to ordinary 'unary’) readhgb
Our extension takes into account the compassion requirs@en

ment. At each state of the prografwe update the elements of
in p andin_q and we can also non-deterministically choose to
start recording a new computation segment. In this case wg co
all the program variables to the corresponding pre-vaggaind
clear the contents of the arrays_p andin_q.

Let © be the set of initial states of the prografhdefined as
above 3 the set of states aP and pos}; (©) the set of states P
reachable after at least one step. The following theoremddy
defines the meaning of the transformed program describedkabo

THEOREM 2. Suppose that in the prograi there are no transi-
tions to the initial locations. Then

post;(©) ={(s1, sn+1, inp,inq) |
3 computation segment= s, . .
vje{l,...,m}.
(in-p; = false < (p;,q;) € None({s1,..

<y Snt1-

Sy Sn})) A
- sn}))}-

Proof sketch. “C”. For each state from the set on the left-hand
side of the equality there exists a sequence of programitiars

of P leading to it from an initial state. We prove the inclusion by
induction on the length of this sequence.

“D". For each computation segment from the set on the right-
hand side of the equality there exists a sequence of progeam t
sitions of P leading from an initial state to the first state in the
computation segment. We first prove the inclusion in the adsm
this sequence is empty. We then prove the general case bstiodu
on the length of the computation segment. O

(in-q; = true & (p;, ¢;) € Some({s1,..

The technical restriction on the initial locations is dugtte fact
that we do not transform the initial statement of the prograimd is
inherited from the binary reachability analysis of [14].tH¢hat in
Theorem 2 and in the rest of the paper we consider the seqoénce
operations resulting from the transformation of a stateroéthe
original program as one statement (transition) of the fransed

The key idea of the approach is to leverage the techniques Program. The states in computation segments are reactrabte f

from symbolic software model checking for safety proper{eg.
[12, 20, 21]). Note that techniques are available for reayicheck-
ing of fair termination to safety checking [31]. We use hemether
reduction which is more amenable to automated abstractichn t
niques. Fair binary reachability analysis is performedrbpsform-
ing the programP to a program?”, the set of reachable states of
which represents the fair binary reachability relationhaf original
program. The inclusiorR¢c C T holds if and only if the trans-
formed program satisfies a certain safety property. If tHetga
property is violated, then the inclusion does not hold amdctbun-

the initial states of the original program and, therefone, $ets of
statess andr in the theorem depend @.

To check whether the inclusioR¢: C T holds we have to stop
the reachability computation as soon as the current cortipata
segment is fair and’ is violated on it. Thessert statement in the
program transformation ensures this. Consider now thetrfaris-
formation shown in Figure 7 and the corresponding progfahm
The set of states of the prografit resulting from the transforma-
tion is U {ERROR} (WhereERROR is the state to which the program
goes when amssert is violated) and the transition relation is a



input
P: program over variables, , ..

., Vn, program countepc, and initial locatiorL

{{p1,q1),- .-, (pm,qm)}: Set of compassion requirements
T candidate fair termination argument given by an assetian

the program variables and their pre-versions, ...

begin
1. Add pre-variables t@: ‘vq, ...

y ‘Vn, ‘PC

y ‘Vn, fPC,
2. Add auxiliary variables td@: fair, in_py, ..

.,in_ps,,in_qi,...,in_gm

3. Replace each statement (except for the one at the imtiatibnL,)

[ L: stmt;

with

L: fair = ((!p;

assert(!fair || T);
if (nondet()) {
‘vi = Vi
‘pC = L;
inp; = 0;
ing; = 0;

3

}

if (p;) inp; = 1;
if (¢;) inqg; = 1;
stmt;

&& !in_p;)

(('pm && 'inpm) |1 gm || ingm);

[T g1 |l in_q1) &&

/% for each i € {1,...,n} %/
/+ for each i € {1,...,m} =/
/% for each i€ {1,...,m} =/
/x for each i€ {1,...,m} =/

/+ for each i € {1,...,m} =/

4. Add initialization statementspc =
end.

Lo; ‘vi

= Vi ... Vn = Vn,

Figure 7. Program transformation for checking fair binary reachisbilsing a temporal safety checkanndet () represents nondetermin-

istic choice.

subset of the transition relation &f. We denote with pogf,.(©)
the set of states dP reachable after at least one step.

THEOREM 3. Suppose that in the prograif there are no transi-
tions to the initial locations. Then the inclusid®: C T holds if

and only if the stat&@RROR is not reachable in the progra” .

Proof. “If”. Suppose the contrarfRROR is unreachable i
and R¢ ¢ T. Then there exists a computation segment=

S1y...,8n,8nt+1 such thatNonec (o) U Somec(c) = C and
(s1,8n+1) € T. Foreachj € {1,...,m} we define
inp? — false, if (pj,q;) € Nonec({s1,...,5n});
P; true, otherwise
and
ing® — true, if (pj,q;) € Somec({s1,...,8n});
4= false, otherwise

By Theorem 2 we have tha:, sn1, in-p’, in.q”) € post; (6).
Since ERROR is unreachable inﬁT, it is also the case that
(s1,8n+1,1inp, inq°) € post;, (©). Consider the execution of

PT starting from this state. As the prograftf has no transitions
to the initial location, the program counter in the state is dif-
ferent from the initial location and so the next statememexecute
will be the ones in the auxiliary code shown in Figure 7. Takitto
account the definition ofn_p” andin_q° above and the fact that
Nonec (o) U Somec (o) = C one can see thaair will evaluate
to true. But then sincgs1, sn+1) ¢ T theassert will fail and,

henceERROR & posggT(é), which contradicts our initial assump-
tion.

“Only if”. Again, suppose the contrarRc C T andERROR
is reachable inP”. Since we do not apply the transformation in
Figure 7 to the initial location, it follows that there exisi state
<S17 Snd1, j.Il_pO7 in_q0> € pong(é) such that(sl, Sn+1> gT
and on this statéair evaluates tarue. We have that

post,. (©) C post;(©) U {ERROR},

thus,{(s1, sn+1, in_po7 in_q0> € posgg(é)).
Then according to Theorem 2 there exists a computation seg-
mento = s1, ..., Sn, Sn4+1 Such thatforalj = {1,...,m}

in_p? = false < (p;,q;) € None({s1,...,sn})
and
in_q? = true & (pj,q;) € Some({s1,...,sn}).

Sincefair evaluates tarue on (s1, sn+1,inp’, in_q°), we have
thatNonec (0)USomec (o) = C and, hence(s:, sn+1) € Re. But
sinceR¢ C T it follows that (s1, sn4+1) € T, which contradicts a
previously established fact. d

It follows from Theorem 3 that to check fair binary reachabil
ity one can apply a temporal safety checker on the progfdm
to prove the non-reachability of the locati@RROR or generate a
corresponding counterexample. In the latter case the ecexam-
ple returned by the safety checker is a lasso patha sequence
of program statements of the form, . .., 7, . .., 7, 7. The path



state {}

PPBlockInits.entry {
set();
}

PPUnblockInits.entry {
unset () ;

}

Figure 9. An example liveness property for the program fragment
in Figure 8.

Tn, - - -, Tp, Tn DECOMES then the pathin the algorithm in Figure 6.
The path relation corresponding to this path is defined mwist

P {(s2,53) | 351 € ©.
(s1,52) € pry 00 pr,_y A(s2,83) € pr, ©-+- 0 pr }.

Optimizations. The transformation of” into P was presented
above somewhat idealistically. In practice, it is suffitigninstru-
ment the code shown in Figure 7 only on cutpoints [19]; seé [14
for details. Additionally, program slicing techniques da@ used

to eliminate redundant assignments to variables addedgltine
transformation and sometimes the variables themselves.

Example. Consider the code fragment from Figure 8. Imagine
that we are trying to prove that whenew®BlockInits is called,
PPUnblockInits will eventually be called (Figure 9) with the
fairness constraint from Figure 2.

Our implementation constructs a disjunctively well-foedde-
lationT for each cutpoint in the program’s control-flow graph. Sup-
pose that we are considering the cutpoint at location 3. &\héir-
forming fair binary reachability analysis, our extensionfERMI-
NATOR would produce the code in Figure 10. We assume the fol-
lowing conditions:

¢ We have already translatedt andunset away, instrumented
the fairness constraints, and constructed the analogousifa
mination problem. The compassion requirements on thetresul
ing program ardpc = 6.1, pc = 6.3) (corresponding to the
fairness constraint from Figure 2) arftrue, g = PENDING)
(corresponding to the condition et andunset).

e The variablesin_p1 andin_q1 are used to represent the com-
passion requirement corresponding to the fairness camisina
Figure 2. The variables_p2 andin_qg2 correspond to the con-
ditions onset andunset, and hence the property in Figure 9
(the variablein_p2 can be eliminated as explained below).

e TERMINATOR has already has constructed a candidate fair ter-
mination argument for program locatién

T(s,t) 2 t(i) > s(i) At(1) < t(Pdolen)
A s(Pdolen) = ¢(Pdolen).

The differences between Figure 8 and Figure 10 are as fallows

e Lines INIT.1-INIT.5 initialize the state of the automataen
pre-variables, and variables for keeping track of compassi
requirements.

e Lines 0.1-0.5 and 19.1-19.3 come from the property’s teansf
functions and in this case are just inlining of the codedet
andunset from Figure 3.

e Lines 6.1-6.4 update the auxiliary variables associatatl wi
the compassion requirement corresponding to the fairrass ¢
straint in Figure 2.

Lines 2.1-2.3 update the auxiliary variables associat#ul tve
compassion requirement obtained from the condition on the
set andunset. In principle the updates should appear at each
line in the new program. However, using live variables asialy

we remove many of them+a_q2 only needs to be evaluated
before it is used. We have also removeadp2 since after the
simplification of the Boolean expression in line 2.4 (se@Wg!

its value is not used in the program.

e Line 2.6 executes a non-deterministic decision as to wihethe
not to take a snapshot of the current state. Since this progra
then passed to a temporal safety checker, this means ther, gi
any valuations returned lpndet during numerous executions
through this loop, if a bad set of valuations exists, the rhode
checker will find it—this gives us full coverage of the proger

Lines 2.7-2.10 copy the current state into the auxilianj-var
ables and clear the contents of the variables for keepirmy tra
of compassion requirements. This has the effect of stattiag
recording of a new computation segment. As an optimization
we copy only variables that are used in the candidate faimiter
nation argument.

e Lines 2.4-2.5 check the termination condition in the caserwh
the compassion requirements are not being violated. Weisimp
fied the Boolean expression in line 2.4 using the fact that one
of the Boolean expressions in the compassion requirement fo
set andunset is justtrue. After this simplification the vari-
ablein_p2 was not used in line 2.4 anymore, which allowed us
to eliminate it.

Lines EXIT.1-EXIT.3 check the absence of terminating com-
putations violating the condition atet andunset.

TERMINATOR will perform an infinite-state reachability check
on the code in Figure 8 to check that thgsert cannot fail and
error () cannot be called. If ERMINATOR can prove that this
cannot be the case, then the liveness condition is not eiblat
this cutpoint and the algorithm proceeds to attempt to pthae
the fair termination property is not violated at the nextomirt.

3.3 Lazy treatment of fairness constraints

The number of fairness constraints that appear in progesfipro-
grams with complex interaction with the environment candrge.
In many cases some of these constraints may not be required to
prove the property. We observe that our abstraction-bakgsd a
rithm naturally exploits this fact, due to the following sems. First,
our encoding of fairness using Boolean variables that ke of
the fulfilment of the constraints does not introduce a sigaift in-
crease in the program size. Second, by applying a countepgza
guided abstraction refinement procedure based on preditate
straction to validate fair termination arguments we oniynsider
those fairness constraints that are relevant to the prop#hts is
ensured by predicate abstraction together with a refineprecte-
dure, which only tracks values of those variables that appehe
predicates that define the abstraction.

4. Experimental results

In this section we describe the results from experimenth witr
implementation of the proposed algorithm on Windows device
drivers. In order to perform the experiments we have implees:
the algorithm as an extension to th&RMINATOR termination
prover [15], which uses SDV [5] as its underlying safety dtesc
Tables 1 through 4 contain the statistics from these exparim
We used three liveness properties involving the acquirimg) re-
leasing of resources together with the fair terminationpprty

in Figure 2. The fairness constraint from Figure 2 was alsmus
in the former three experiments (Tables 1 through 3). No& th



IoCreateDevice(fdx->do, PDOSZ, &deviceName, O, O, TRUE, Pdo[il]);

1 PPBlockInits();

2 while (i < Pdolen) {

3 DName = PPMakeDeviceName(lptName[i], PdoType, dcId[i], num);
4 if (!DName) { break; }

5 RtlInitUnicodeString(&deviceName, DName) ;

6 status =

7 if (STATUS_SUCCESS != status) {

8 Pdo[i] = NULL;

9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool (DName) ;

11 num++;

12 continue;

13 }

14 break;

15 } else {

16 i++;

17 }

18 }

19 num = 0;

20 PPUnblockInits();

Figure 8. Example code from a Windows device driver dispatch roufliie correct behavior of the code depends on the fairness¢raors

from Figure 2.

SDV'’s model of the driver's environment hamain function that
non-deterministically decides to call one of the driverispatch
routines—meaning that, in the case of SDV, Figure 2 reptssen
the termination of every dispatch routine within the deuiciwer.

We used a timeout threshold of 10,000 seconds and a mematy lim
of one gigabyte. T/O in the tables means that timeout limis wa
exceeded. LOC denotes “Lines of code”.

During these experiments we found several previously uwkno
bugs. Note that, if the number of “Bugs found'listhen this means
that TERMINATOR has found a proof that the driver does not violate
the specification. The validity of the liveness propertieat twe
checked on the device drivers did not depend on significackiing
of heap manipulations or bit-level operations, which cduisése
bugs in experiments with BRMINATOR [14]. This is why we
have not obtained any false bugs in our experiments. We hate t
techniques from [8] can be used to perform termination aisin
cases where accurate tracking of the heap is required feirmgro
fair termination.

The experimental results demonstrate that we have finally ob
tained a method for checking liveness properties of reakesys
code. We believe that the experience that we have had with Win
dows device drivers will match the results that users willehim
other similar domains.

5. Related work

Our proposed algorithm builds on a large body of formal fand
tions, ranging from the formalization of the semantics afgrams
by fair discrete systems [25] and the automata-theoreficogeh
to temporal verification [31] to the more recent construttid fix-
point domains for abstract interpretation with fairnes¥j [®Ve also
use recent advances in the area of automatic terminatidgsia
(e.g. [11, 14]). From these foundations we have developethé&
best of our knowledge) the first known fully automatic veafion
tool for liveness properties of infinite-state programs.

The key difference between ERMINATOR and finite-state
model checkers that support liveness checking, e.g. SPHY [2
Bandera [16], and Java PathFinder [33], is theRTMINATOR em-
ploys completely automatic abstraction, while the othétsee ex-
plore the state space as-is (SPIN) or use user-providechande,
not automatic abstractions (Bandera). These tools withitesite
with “Out-Of-Memory” for programs with infinite or very lagy

state spaces. Automatic abstraction provides effectseand effi-
ciency to overcome this limitation.

The idea of using program transformations to convert ligsne
into safety is known in finite-state model checking [9, 31érelwe
adapt these ideas to the context of infinite-state systems.

It is possible to approximate a liveness property by a s&ong
safety property. One strategy is to bound the number of steps
which theeventually-eveninust occur. This does not scale well
to large numbers of events, and it is often difficult to deaidech
finite number of steps should be taken. Another approachnsite
a safety property that at least specifies that the liveneggsepty
will not be violated by any terminating executions. Thisisfact,
what the developers of SDV do today: they construct a number o
main.exit transfer functions in SLIC that check that the liveness
property is not violated when the driver terminates. In ttése
SDV will miss any violations to liveness properties thatdive
non-terminating executions.

6. Conclusion

Since automatic safety property checking has only recéettpme

a reality, automatic liveness proving for real code has b=en
sidered impossible. BRMINATOR is the first known tool to break
through this liveness checking barrier. We have appliegMINA-
TORto device drivers ranging in sizes from 1,000 to 20,000 LOC.

The proposed algorithm takes advantage of recent advances i
termination analysis by converting the problem of livenelssck-
ing into fair termination checking. The scalability and pog for
real programming language features comes from the terimimat
analysis. This paper has also presented a language in vitéch |
ness properties can be expressed.

Through the use of examples we have also demonstrated a set
of liveness properties thahould be checkedn Windows device
drivers. In fact: overl/3 of the safety specifications included in
the today’s SDV distribution have analogous and equallyairtgnt
liveness properties that should be checked. Similar ptigsewill
exist in other programming domains, such as Linux deviceeds]
embedded software, real-time systems, etc.

Limitations. A few notes about limitations:

e As program termination is an undecidable problemRWINA-
TOR's analysis is not guaranteed to terminate.



INIT.1 q = NONE;
.5 INIT.2 pre_pc = 1;
T INIT.3 pre_i = i;
N INIT.4 pre_Pdolen = Pdolen;
;% INIT.5 in_pl = in_ql = in_q2 = 0;
0.1 if (q == NONE) { /* set() */
0.2 if (nondet()) {
0.3 q = PENDING;
0.4 }
0.5 }
1 PPBlockInits();
2 while (i < Pdolen) {
2.1 if (q == PENDING) {
2.2 in_q2 = 1;
2.3 }
2.4 fair = ('in_pl || in_q1) && ((q == PENDING) || in_g2);
2.5 assert(!fair || !(pre_pc == 3) || (i > pre_i & i < Pdolen && pre_Pdolen == Pdolen));
2.6 if (nondet()) {
2.7 pre_pc = 3;
2.8 pre_i = i;
2.9 pre_Pdolen = Pdolen;
2.10 in_pl = in_ql = in_q2 = 0;
2.11 }
3 DName = PPMakeDeviceName(lptName[i], PdoType, dcId[i], num);
4 if (!DName) { break; }
- 5 RtlInitUnicodeString(&deviceName, DName) ;
3 6 status = IoCreateDevice(fdx->do, PDOSZ, &deviceName, O, O, TRUE, Pdo[i]);
[ai] 6.1 in_pl = 1;
6.2 if (status != STATUS_OBJECT_NAME_COLLISION) {
6.3 in_ql = 1;
6.4 }
7 if (STATUS_SUCCESS != status) {
8 Pdo[i] = NULL;
9 if (STATUS_OBJECT_NAME_COLLISION == status) {
10 ExFreePool (DName) ;
11 num++;
12 continue;
13 }
14 break;
15 } else {
16 i++;
17 }
18 }
19 num = 0;
19.1 if (q == PENDING) { /* unset() */
19.2 q = MATCHED;
19.3 }
20 PPUnblockInits();
1]
5 EXIT.1 if (q == PENDING) {
oy EXIT.2 error();
X EXIT.3 }

Figure 10. Code produced while performing fair binary reachabilitalgsis on the code from Figure Bondet () represents nondetermin-

istic choice.

e Counterexamples are not guaranteed to be real counterexam-
ples. Our proposed algorithm attempts to prove that the-prop
erty holds not that itdoesn't hold

¢ The validity of proofs constructed inERMINATOR relies on the
soundness of the underlying safety checker. For examge; T

MINATOR may return a “proof” of correctness when the code is
not correct due to the fact thaERMINATOR’s symbolic safety
checker assumes that integers are not bounded and that code
is always being executed in a sequential setting. For this re
son the proof is restricted to sequential code in which owerfl
cannot occur.



Driver | Time (seconds) LOC | Bugs found
1 15 1K 1
2 314 7K 0
3 2344 15K 0
4 3122 20K 1
1R 16 1K 0
4R 3217 20K 0

Table 1. Checking entering and leaving critical
The property proved is the property in Figure 9 with
KeEnterCriticalRegion and KeLeaveCriticalRegion
substituted forPPBlockInits and PPUnblockInits respec-
tively. The fairness constraint used is the one from Figuréhz
bug in driver 1 was known. The bug in driver 4 was not known
before. Drivers 1R and 4R are repaired versions of driverdl4an
respectively.

regions.

Driver | Time (seconds) LOC | Bugs found
1 23 1K 0
2 188 7K 0
3 271 15K 0
4 T/O 20K T/O

Table 2. Checking acquiring and releasing of spin locks. The
property being checked is the property in Figure 9 with
KeAcquireSpinLock and KeReleaseSpinLock substituted for
PPBlockInits and PPUnblockInits respectively. The fairness
constraint used is displayed in Figure 2.

Driver | Time (seconds) LOC | Bugs found
1 62 1K 5
2 N/A 7K N/A
3 N/A 15K N/A
4 T/O 20K T/O
1R 35 1K 0

e As previously described, BRMINATOR uses pointer analysis
to over-approximate the pointer aliasing relationshipsrau
instrumentation. In some cases this over-approximatiog ma
lead to aliasing relationships that do not occur in the paogr
which may result in false counterexamples being reported. |
many cases false-aliasing relationships can be resolved la
during binary reachability (as described in [14]), but netays.
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