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Abstract

Binary code reuse is the process of automatically identi-
fying the interface and extracting the instructions and
data dependencies of a code fragment from an exe-
cutable program, so that it is self-contained and can be
reused by external code. Binary code reuse is useful for
a number of security applications, including reusing the
proprietary cryptographic or unpacking functions from
a malware sample and for rewriting a network dialog.
In this paper we conduct the first systematic study of au-
tomated binary code reuse and its security applications.

The main challenge in binary code reuse is under-
standing the code fragment’s interface. We propose a
novel technique to identify the prototype of an undoc-
umented code fragment directly from the program’s bi-
nary, without access to source code or symbol informa-
tion. Further, we must also extract the code itself from
the binary so that it is self-contained and can be easily
reused in another program. We design and implement a
tool that uses a combination of dynamic and static anal-
ysis to automatically identify the prototype and extract
the instructions of an assembly function into a form that
can be reused by other C code. The extracted function
can be run independently of the rest of the program’s
functionality and shared with other users.

We apply our approach to scenarios that include ex-
tracting the encryption and decryption routines from
malware samples, and show that these routines can be
reused by a network proxy to decrypt encrypted traf-
fic on the network. This allows the network proxy to
rewrite the malware’s encrypted traffic by combining the
extracted encryption and decryption functions with the
session keys and the protocol grammar. We also show
that we can reuse a code fragment from an unpacking
function for the unpacking routine for a different sample
of the same family, even if the code fragment is not a
complete function.

1 Introduction

Often a security analyst wishes to reuse a code frag-
ment that is available in a program’s binary, what we
call binary code reuse. For example, a piece of malware
may use proprietary compression and encryption algo-
rithms to encode the data that it sends over the network
and a security analyst may be interested in reusing those
functions to decode the network messages. Further, the
analyst may be interested in building a network proxy
that can monitor and modify the malware’s compressed
and encrypted protocol on the network. Also, for dialog
rewriting [24, 29] if some field of a network protocol is
changed, other dependant fields such as length or check-
sum fields may need to be updated. If those fields use
proprietary or complex encodings, the encoding func-
tions can be extracted and deployed in the network proxy
so that the rewritten message is correctly formatted. An-
other application is the creation of static unpacking tools
for a class of malware samples [17]. Currently, creating
a static unpacker is a slow, manual process. Frameworks
have emerged to speed the process [15], but a faster ap-
proach would be to extract the unpacking function from
the malware sample and reuse it as a static unpacker.

At the core of these and other security applications is
binary code reuse, an important problem for which cur-
rent solutions are highly manual [1, 5, 6, 30]. In this pa-
per we conduct the first systematic study of automatic
binary code reuse, which can be defined as the pro-
cess of automatically identifying the interface and ex-
tracting the instructions and data dependencies of a code
fragment from an executable program, so that it is self-
contained and can be reused by external code. Reusing
binary code is useful because for many programs, such
as commercial-off-the-shelf applications and malware,
source code is not available. It is also challenging be-
cause binary code is not designed to be reusable even if
the source code it has been generated from is. The main
challenge of binary code reuse is to interface with the
code fragment that we want to reuse. The code fragment
may not have a function prototype available, for example
because it was intended only for internal use, or it may



not even correspond to a function in the first place. Iden-
tifying a prototype for the binary code fragment enables
reuse of the code by generating and passing appropriate
inputs. In addition, we want to extract the code frag-
ment itself, i.e., its instructions and data dependencies,
so that it is self-contained and can be reused by other
code, independently of the rest of the functionality in the
program. The self-contained code fragment can easily
be shared with other users and can be statically instru-
mented or rewritten, for profiling or to enforce a safety
policy on its memory accesses if it is untrusted. To sum-
marize, binary code reuse encompasses two tasks: iden-
tifying the interface of the code fragment and extracting
the instructions and data dependencies of the code frag-
ment so that it is self-contained.

Scope. Not all binary code can be reused. To reuse a bi-
nary code fragment, the fragment should have a clean
interface and be designed to perform a specific well-
contained task, mostly independent of the remaining
code in the program. In this paper we mostly focus on
reusing binary code fragments that correspond to func-
tions at the source code level, what we call assembly
functions, because in structured programming a function
is the base unit of source code reuse. Functions are usu-
ally designed to perform an independent, well-contained
task and have a well-defined interface, the function pro-
totype. In addition, we show that a code fragment that
does not correspond to a complete assembly function,
but has a clean interface and performs a well-contained
task, can also be reused.

Reusing an arbitrary assembly function can be ex-
tremely challenging because the function interface can
be convoluted and the function can have complex side
effects. Our approach handles common side effects such
as an assembly function modifying one of its parameters
or accessing a global variable, and also handles calls to
internal and standard library functions. But we exclude
functions with a variable-length argument list or func-
tions that are passed recursive structures such as trees.
We refer the reader to Section 2.3 for a more detailed
description of the problem’s scope. An important class
of functions that we extract in this paper are transforma-
tion functions, which include encryption and decryption,
compression and decompression, code packing and un-
packing, checksums, and generally any function that en-
codes data. Such functions are usually well-contained,
have clean interfaces, limited side effects, are interest-
ing for many security applications, and can be identified
using previously proposed techniques [24, 46].

Approach. The main challenge in assembly function
reuse is identifying the interface of an assembly func-
tion and generating a prototype for it so that it can be
reused by other source code. This is challenging be-

cause the function parameters that comprise the proto-
type are not explicitly defined in the binary code and
also because they need to be expressed using variables
and types, which do not exist in the binary code. Our
approach uses dynamic analysis to extract a parame-
ter abstraction at the binary level (an assembly param-
eter) and then translate the assembly parameters into the
formal parameters in the function’s prototype. To ex-
tract assembly parameters from a given execution trace,
our approach first identifies the inputs and outputs for
each function run, splits them into assembly parameters,
identifies important attributes such as the parameter type
(input, output, input-output) and the parameter location
(register, stack, table), and finally combines this infor-
mation across multiple function runs.

To extract the function’s body, i.e., the instructions
that constitute the assembly function, we use the obser-
vation that for reusing a binary code fragment a user of-
ten has no need to understand its inner workings. For
example, a security analyst may want to reuse the pro-
prietary cipher used by some malware, together with the
session keys, to decrypt some data, without worrying
about how the proprietary cipher works. For these ap-
plications, complex reverse-engineering or decompila-
tion methods are not necessary to recover the function’s
body as source code. We can leverage the support of cur-
rent C compilers for inline assembly [3, 11] and gener-
ate a function with a C prototype but an inline assembly
body. To extract the function’s body we use a combina-
tion of static and dynamic analysis that includes hybrid
disassembly [41], symbolic execution [35], jump table
identification [28], and type inference techniques.

Because the extracted binary code runs in the same
address space as a program that uses it, the same secu-
rity concerns apply to it as to an untrusted third-party
library: a malicious extracted function might attempt
to call other functions in memory or overwrite the ap-
plication’s data. If such attacks are a risk, an isolation
mechanism is needed to limit what the extracted code
can do. In this work we process the extracted code with
a software-based fault isolation (SFI) tool to insert run-
time checks that prevent the extracted code fragment
from writing or jumping outside designated memory re-
gions (separate from the rest of the program). We use
PittSFIeld [39], an SFI implementation for x86 assem-
bly code that enforces jump alignment to avoid overlap-
ping instructions and includes a separate safety verifier.

We design and implement BCR, a tool that extracts
code fragments from program binaries and wraps them
in a C prototype, so they can be reused by other C code.
We use BCR to extract the encryption and decryption
routines used by two spam botnets: MegaD and Kraken.
We show that these routines, together with appropriate
session keys, can be reused by a network proxy to de-



crypt encrypted traffic on the network. Further, we show
that the network proxy can also rewrite the malware’s
encrypted traffic by combining the extracted encryption
and decryption functions with the session keys and the
protocol grammar. To show that we can reuse code frag-
ments that are not complete functions as long as the code
fragments have a clean interface, we also extract the un-
packing functions from two samples of Zbot, a trojan,
and use an unpacking fragment from one sample as part
of the routine to unpack the other sample.

Other applications. In addition to the applications that
we examine in this paper, binary code reuse is useful for
many other applications. For example, it can be used
to automatically describe the interface of undocumented
functions. It often happens that malware uses undoc-
umented functions from the Windows API, which are
not described in the public documentation [10]. Projects
to manually document such functions [16] could bene-
fit from our approach to automatically identify the in-
terface of a binary code fragment. Extracted functions
could also be useful in the development of programs that
interoperate with other proprietary interfaces or file for-
mats, by allowing the mixture of code extracted from
previous implementations with re-implemented replace-
ments and new functionality. Another application is to
determine whether two pieces of binary code are func-
tionally equivalent, for example to determine whether a
vulnerability has been fixed in the most recent version.
Recent work has addressed this issue at the source code
level by fuzzing both pieces of source code and com-
paring the input-output pairs [34], but how to interface
with a binary code fragment to perform such fuzzing is
an open problem. Finally, a security analyst may want
to fuzz a well-contained, security-sensitive function in-
dependently of the program state in which it is used.

Contributions.

• We propose a novel technique to identify the in-
terface of a binary code fragment directly from the
program’s binary, without access to its source code.
The interface captures the inputs and outputs of the
code fragment and provides a higher level parame-
ter abstraction not available at the binary level.

• We design an approach to automatically extract a
code fragment from a program binary so that the
code fragment is self-contained and can be reused
by an external C program. The extracted code
fragment can be run independently of the rest of
the program’s functionality, can be easily instru-
mented, and can be shared with other users. We
implement BCR, a tool that uses our approach to
automatically extract an assembly function from a
given program binary.

• We reuse the encryption and decryption routines
used by two spam botnets in a network proxy that
can rewrite their encrypted C&C traffic, when pro-
vided with the session keys and the C&C proto-
col grammar. In addition, we extract the unpack-
ing function from a trojan horse program, and show
that a code fragment belonging to that function can
be reused by the unpacking function for a differ-
ent sample from the same family. Finally, we apply
software-based fault isolation [39] to the extracted
functions to prevent them from writing or jumping
outside their own isolated memory regions.

2 Overview and Problem Definition

In this section we give an overview of the binary code
reuse problem, formally define it, outline the scope of
our solution, and present an overview of our approach.

2.1 Overview

Binary code reuse comprises two tasks: 1) identify-
ing the interface of the code fragment and formatting
it as a prototype that can be invoked from other source
code; and 2) extracting the instructions and data depen-
dencies of the code fragment so that it is self-contained
and can be reused independently of the rest of the pro-
gram’s functionality.

The main challenge in binary code reuse is identify-
ing the interface of the code fragment, which specifies
its inputs and outputs. This is challenging because bi-
nary code has memory and registers rather than named
parameters, and has limited type and semantic informa-
tion, which must be converted into a high level proto-
type. It is also challenging because the code fragment
might have been created by any compiler or written by
hand, thus few assumptions can be made about its call-
ing convention. In addition, the extracted code fragment
needs to be self-contained, which in turn implies that
we need a recursive process that extracts any function
called from inside the code fragment that we want to ex-
tract (and from inside those callees), and that we need to
account for the possible side effects from the code frag-
ment and its callees. For example, we need to identify
and extract the data dependencies such as global vari-
ables and tables that the code fragment uses.

Previous work on binary code reuse is highly man-
ual [5, 6, 30]. As far as we know we are the first ones to
systematically study automatic binary code reuse. Our
goal is to automate the whole process, with a focus on
automatically identifying the code fragment’s interface.
There are two different representations for the extracted
binary code: decompiled source code [5,30] and assem-
bly instructions [6, 30]. In this work we use inline as-



sembly with a C prototype because inline assembly is
the most accurate representation of the code (it repre-
sents what gets executed) and because decompilation is
not needed for binary code reuse. The use of inline as-
sembly limits portability to the x86 architecture, and re-
quires compiler support, but the x86 architecture is still
by far the most important architecture in security appli-
cations, and commonly used compilers include rich sup-
port for inline assembly [3, 11].

To reuse a binary code fragment, the code should
have a clean interface and be designed to perform a well-
contained task, relatively independent of the remaining
code in the program. Otherwise, if the extracted code
interface is not clean or the code performs several in-
tertwined tasks and the user is only interested in one of
them, it becomes difficult to separate the relevant code
and interface with it. In structured programming, the
above characteristics are usually associated with func-
tions, which are the basic unit of (source) code reuse in
a program and reduce the development and maintenance
costs of a program by making the code modular. The
interface of a function is captured by its function proto-
type.

The source-level concept of a function may not be
directly reflected at the binary code level, since func-
tions at the source level can be inlined, split into non-
contiguous binary code fragments, or can exit using
jumps instead of return instructions (e.g., due to tail-call
optimizations). Despite this blurring, it is possible to de-
fine an assembly function abstraction at the binary level
for which an extracted prototype gives a clean interface
when the underlying functionality is well modularized.
Thus, we focus on identifying the interface and extract-
ing the body of such function abstractions, the details of
which we turn to next.

2.2 Problem Definition

To reuse functions from program binaries, we first
need a function abstraction that captures our definition
of what a function is in binary code.
Function abstraction. We define a basic block to be
a sequence of instructions with one entry point and one
exit point. Basic blocks are disjoint and partition the
code in an executable. We define an assembly function
to be a collection of basic blocks with a single entry
point, which is the target of the instruction that trans-
fers control from the external code into the assembly
function code, and one or more exit points, which are
instructions that transfer control to external code not be-
longing to the function. All code reachable from the
entry point before reaching an exit point constitutes the
body of the assembly function, except code reachable
only through call instructions before corresponding re-

turn instructions, which is instead part of the called func-
tion. In other words, the body of a function is assumed
to continue with the next instruction after a call instruc-
tion. An exit point can be a return or interrupt instruc-
tion. Our definition does not include assembly functions
with multiple entry points, which we treat as multiple
(partially overlapping) assembly functions, each includ-
ing all code reachable from one entry point to any exit
point.

If one assembly function jumps to another, this def-
inition considers the blocks following the jump target
to be part of the assembly function to extract. We can
further extend our definition of an exit point to include
jumps to the entry point of any other assembly function
in the program’s binary or in an external dynamic linked
library (DLL). For this we need a list of entry points for
other assembly functions, which can be given or approx-
imated by considering any target of a call instruction to
be an entry point.
Problem definition. The problem of assembly function
reuse is defined as: given the binary of a program and the
entry point of an assembly function in the binary, iden-
tify the interface and extract the instructions and data
dependencies that belong to the assembly function so
that it is self-contained and can be reused by external C
code. The extracted function consists of both an inline
assembly function with a C prototype and a header file
containing the function’s data dependencies. The prob-
lem definition when the code fragment is not an assem-
bly function is the same, except that it requires the exit
points to be given.

2.3 Scope

Reusing an arbitrary assembly function is extremely
challenging because the function interface can be con-
voluted and the function can have complex side effects.
To limit the scope of the problem we make the following
assumptions about the function to be extracted:

• The function entry point is known. For transforma-
tion functions, we automatically discover them us-
ing a previously proposed technique that flags func-
tions with a high ratio of arithmetic and bitwise op-
erations [24, 46].

• Since our approach uses dynamic analysis, we as-
sume that we can execute the function at least once.
If some specific input is needed to reach the func-
tion, we assume we are provided with such input.

• The function has a fixed parameter list. Thus, we
exclude functions with variable-length list of argu-
ments such as printf.

• The function is not passed complex recursive struc-
tures such as lists or trees (pointers to single-level
structures are supported).



Figure 1. Our assembly function reuse approach. The core of our approach is the function
extraction step implemented by BCR. The three dark gray modules in function extraction have
been specifically designed for this work. The execution monitor, disassembler, and semantics
inference module (light gray) are reused from previous systems.

• The function does not call system calls directly
(e.g., through interrupt or sysenter instructions)
but instead uses system calls only through well-
known functions that are available in the target sys-
tem where the function is reused (e.g., the standard
C library, or the Windows API if the target system
is Windows-based).

• The function contains no code that explicitly uses
its own location. For example, the code should not
check if it is loaded at a specific address or offset.
This restriction excludes most self-modifying code.
However, the function may still reference global
addresses through standard position-independent-
code and dynamic linking: relocatable and non-
relocatable code are both supported.

An important class of functions that usually satisfy
these constraints are transformation functions. Trans-
formation functions include encryption and decryption,
compression and decompression, code packing and un-
packing, checksums, and generally any function that en-
codes given data in a different format. Such functions
are usually well-contained, have clean interfaces, lim-
ited side effects, and are interesting for many security
applications.
Handling obfuscation. Our approach can be applied
to both benign code and malware. When applying it
to malware we need to consider the obfuscation tech-
niques that malware often uses. Common obfuscation
techniques used to hamper static analysis such as binary
packing, adding unnecessary instructions, or replacing
calls with indirect jumps do not affect our hybrid dis-

assembly approach because it uses dynamic analysis to
complement static disassembly. However, a premise of
our approach is that we can observe a sample’s execution
in our analysis environment (based on a system emula-
tor). Thus, like other dynamic approaches, our approach
can be evaded using techniques that detect virtualized
or emulated environments [27]. In addition, an adver-
sary may make its code hard to reuse, for example, by
mixing unrelated functionality, adding unnecessary pa-
rameters, or inlining functions. We have not seen such
obfuscations in our examples. We consider them another
instance of code that is hard to reuse and may require au-
tomated or manual analysis on top of our techniques.

2.4 Approach and System Architecture

Our assembly function reuse approach comprises
three steps: dynamic analysis, hybrid disassembly, and
function extraction. Figure 1 shows the three steps.
In the dynamic analysis step the program is run inside
the execution monitor, which is an emulator based on
QEMU [13, 44] that can produce execution traces con-
taining the executed instructions, the contents of the
instructions’ operands and optional taint information.
The execution monitor tracks when execution reaches a
given entry point and when it leaves the assembly func-
tion via an exit point. When an exit point is reached,
the execution monitor produces a memory dump, i.e.,
a snapshot of the process memory address space. This
step may be repeated to produce multiple execution
traces and memory dumps.



In the hybrid disassembly step, BCR recovers the in-
structions comprising the function’s body using a com-
bination of static and dynamic analysis. It first tries
to statically disassemble as much as possible from the
memory dump starting at the function’s entry point, us-
ing the IDA Pro commercial disassembler [4]. Then, it
uses the information from the execution traces generated
by the dynamic analysis to resolve indirect jumps and
calls, and invokes the static disassembler to disassem-
ble instructions at those locations. If the binary is not
packed, static disassembly can be performed directly on
the program binary, otherwise the memory dump pro-
duced during the dynamic analysis step is used. The hy-
brid disassembly step outputs the disassembled instruc-
tions belonging to the function body.

The core of our approach is the function extraction
step. It is implemented by BCR and consists of three
sub-steps. The interface identification module identifies
the function’s parameters and outputs (i.e., the function
prototype). The body extraction module arranges the
disassembled instructions into basic blocks, and rewrites
addresses in jumps and table accesses to use labels. Fi-
nally, the code generation module takes as input the
function prototype and the control flow graph of the as-
sembly function, and produces as output the C files with
the function and header files with its data dependencies.
The interface identification module, the body extrac-
tion module, and the code generation module have been
specifically designed and implemented in this work. The
execution monitor [13,44], disassembler [4], and seman-
tics inference module [24] are pre-existing tools. We de-
tail the interface identification module in Section 3, and
the body extraction module and code generation module
in Section 4.

2.5 Running Example

Figure 2 shows our running example. At the top is
the source code for the encode function, which reads
len characters from buffer src, transforms them using
the static table enc tbl, and writes them to the dst
buffer. Below it is the assembly function correspond-
ing to the encode function, extracted by BCR from
the program binary. The large boxes in the figure show
the C prototype produced by the interface identification
module, and the prologue and epilogue introduced by
the code generation module. The smaller boxes show
the additional elements in the body of the function that
have been rewritten or modified to make the function
stand-alone. The rest are the unmodified assembly in-
struction extracted by the body extraction module. Also
produced, but omitted from the figure, is a header file
defining a table called tbl 004000000, containing a
memory dump of the original module.

Figure 2. Running example. At the top is
the source code for the encode function
and below the extracted version of the as-
sembly function.



3 Function Prototype Identification

The goal of function prototype identification is to
build a C function prototype for the assembly function
so that it can be reused from other C code. The C pro-
totype comprises the function’s name and a list of its
formal parameters. However, formal parameters do not
directly appear at the binary code level, so BCR works
with a binary-level abstraction, which we term an as-
sembly parameter and describe next. At the same time,
we collect some additional information, such as the pa-
rameter length or its semantics. This information does
not directly appear in the prototype, but it is needed for
interfacing with the extracted code.

The interface identification module identifies the as-
sembly parameters using a dynamic analysis that takes
as input the execution traces produced by the execution
monitor. Thus, it can only extract parameters that have
been used by the function in the executions captured in
the given execution traces. To increase the coverage in-
side the function white-box exploration techniques that
work directly on binaries can be used [23, 31]. In prac-
tice, we have seen that few traces are needed to capture
the full prototype of the function and have not needed
such exploration techniques.

In the remainder of this section we describe how to
identify the prototype of an assembly function. The pro-
cess for identifying the prototype of an arbitrary binary
code fragment is analogous.

Parameter abstraction. An assembly parameter plays
a role for an assembly function analogous to a formal
parameter for a C function, specifying a location repre-
senting an input or output value. But instead of being
referred to by a human-written name, assembly param-
eters are identified with a location in the machine state.
To be specific, we define assembly parameters with five
attributes:

1. The parameter type captures whether it is only an
input to the function (IN), only an output from the
function (OUT) or both (IN-OUT). An example of
an IN-OUT parameter is a character buffer that the
assembly function converts in-place to uppercase.

2. The parameter location describes how the code
finds the parameter in the program’s state. A pa-
rameter can be found on the stack, in a register, or at
another location in memory. For stack parameters,
the location records the fixed offset from the value
of the stack pointer at the entry point; for a register,
it specifies which register. Memory locations can
be accessed using a fixed address or pointed by an-
other pointer parameter, perhaps with an additional
offset. BCR also specially classifies globals that are
accessed as tables via indexing from a fixed start-

ing address, recording the starting address and the
offset.

3. The parameter length can be either fixed or vari-
able. A variable length could be determined by the
value of another length parameter, or the presence
of a known delimiter (like a null character for a C-
style string).

4. The parameter semantics indicates how its value is
used. Parameters have pointer or length semantics
if they are used to identify the location and size of
other parameters, as previously described. Our pa-
rameter abstraction supports a number of semantic
types related to system operations, such as IP ad-
dresses, timestamps, and filenames. An “unknown”
type represents a parameter whose semantics have
not been determined.

5. The parameter value list gives the values BCR has
observed the parameter to take over all assembly
function executions. This is especially useful if the
parameter’s semantics are otherwise unknown: a
user can just supply a value that has been used fre-
quently in the past.

Overview. The interface identification module performs
three steps. For each assembly function execution, it
identifies a list of assembly parameters used by the as-
sembly function in that run (Section 3.1). Next, it com-
bines the assembly parameters from multiple runs to
identify missing parameters and generalizes the param-
eter attributes (Section 3.2). Finally, it identifies addi-
tional semantics by running the assembly function again
in the execution monitor using the parameter informa-
tion and a taint tracking analysis (Section 3.3). Later,
in Section 4.2, we will explain how the code generation
module translates the assembly parameters produced by
the interface identification module into the formal pa-
rameters and outputs the C function prototype.

3.1 Identifying the Assembly Parameters from
a Function Run

For each function run in the execution traces the inter-
face identification module identifies the run’s assembly
parameters. Because there are no variables at the binary
level (only registers and memory), this module intro-
duces abstract variables (sometimes called A-locs [22])
as an abstraction over the machine-level view to rep-
resent concepts such as buffers and stack parameters.
These variables must be sufficiently general to allow for
rewriting: for instance, the addresses of global variables
must be identified if the variable is to be relocated. A
final challenge is that because the code being extracted
might have been created by any compiler or written by
hand, BCR must make as few assumptions as possible
about its calling conventions.



In outline, our approach is that the interface identi-
fication module first identifies all the bytes in the pro-
gram’s state (in registers or memory) that are either an
input or an output of the assembly function, which we
call input locations and output locations, respectively. It
then generalizes over those locations to recognize ab-
stract locations and assembly parameters. To get the
best combination of precision and efficiency, we use
a combination of local detection of instruction idioms,
and whole-program dataflow analysis using tainting and
symbolic execution. In the remainder of this section we
refer to an assembly parameter simply as “parameter”
for brevity, and use the term “formal parameter” to re-
fer to the parameters in the C function prototype. Next,
we define a program location and what input and output
locations are.

Program locations. We define a program location to be
a one-byte-long storage unit in the program’s state. We
consider four types of locations: memory locations, reg-
ister locations, immediate locations, and constant loca-
tions. Each memory byte is a memory location indexed
by its address. Each byte in a register is a register loca-
tion; for example, the 32-bit register EAX has four lo-
cations EAX(0) through EAX(3), two of which are also
the registers AL and AH. An immediate location corre-
sponds to a byte from an immediate in the code section
of some module, indexed by the offset of the byte with
respect to the beginning of the module. Constant loca-
tions play a similar role to immediate locations, but are
the results of instructions whose outputs are always the
same. For example, one common idiom is to XOR a
register with itself (e.g., xor %eax, %eax), which sets
the register to zero.

Input locations. We define an input location to be a reg-
ister or memory location that is read by the function in
the given run before it is written. Identifying the input
locations from an execution trace is a dynamic dataflow-
based counterpart to static live-variables dataflow anal-
ysis [40], where input locations correspond to variables
live at function entry. Like the static analysis, the dy-
namic analysis conceptually proceeds backwards, mark-
ing locations as inputs if they are read, but marking the
previous value of a location as dead if it is overwritten.
(Since we are interested only in liveness at function en-
trance, we can use a forward implementation.) The dy-
namic analysis is also simpler because only one execu-
tion path is considered, and the addresses in the trace
can be used directly instead of conservative alias analy-
sis. This basic determination of input locations is inde-
pendent of the semantics of the location, but as we will
explain later not all input locations will be treated as pa-
rameters (for instance, a function’s return address will
be excluded).

Output locations. We define an output location to be
a register, memory, or constant location that is written
by the extracted function and read by the code that ex-
ecutes after the function returns. Extending the analogy
with compiler-style static analysis, this corresponds to
the intersection of the reaching definitions of the func-
tion’s code with the locations that are live in the subse-
quent code. Like static reaching definitions [40], it is
computed in a single forward pass through the trace.

Our choice of requiring that values be read later is
motivated by minimizing false positives (a false positive
output location translates into an extra parameter in the
C function prototype). This requirement can produce
false negatives on a single run, if an output value is not
used under some circumstances. However, our experi-
ence is that such false negatives can be well addressed
by combining multiple function runs, so using a strict
definition in this phase gives the best overall precision.

Approach. The input and output locations contain
all locations belonging to the assembly parameters and
globals used by the assembly function, without regard
to calling conventions. In addition to identifying them,
the interface identification module needs to classify the
input and output locations into higher level abstrac-
tions representing parameters. Also, it needs to identify
whether a parameter corresponds to a stack location, to
a global, or is accessed using a pointer. The overall pa-
rameter identification process from one function run is
summarized in Table 1 and described next.

For efficiency, the basic identification of parameters
is a single forward pass that performs only local analysis
of instructions in the trace. It starts at the entry point of
one execution of a function, and uses one mode to an-
alyze both the function and the functions it calls, with-
out discerning between them (for instance, a location is
counted as an input even if it is only read in a called
function), and another mode to analyze the remainder of
the trace after the function finishes. For each instruction,
it identifies the locations the instruction reads and writes.
For each location, it identifies the first and last times the
location is read and written within the function, as well
as the first time it is read or written after the function.
Based on this information, a location is classified as an
input location if it is read inside the function before be-
ing written inside the function, and as an output location
if it is written in the function and then read outside the
function before being written outside the function; ob-
serve that a location can be both an input and an output.

At the same time, the analysis identifies stack and ta-
ble accesses by a local matching of machine code id-
ioms. The ESP register is always considered to point to
the stack. The EBP register is only considered to point
to the stack if the difference between its value and that
of ESP at function entrance is a small constant, to sup-



Step Description
1 Identify stack and table accesses
2 Identify input and output locations
3 Remove unnecessary locations (e.g., saved registers, ESP, return address)
4 Identify input and input-output pointers by value
5 Split input locations into parameter instances using pointer, stack and table access information
6 Identify input parameter pointers by dataflow
7 Split output locations into parameter instances using pointer information
8 Identify output parameter pointers by dataflow

Table 1. Summary of parameter identification process for a function run.

port both code that uses it as a frame pointer and code
that uses it as a general-purpose integer register. Then, a
memory access is a stack access if it uses a stack regis-
ter as a starting address and has a constant offset. On the
other hand, a memory access is classified as a table ac-
cess if its starting address is a constant and the offset is a
non-stack register. The starting address and offset values
in stack and table accesses are recorded for future use.

Excluding unnecessary input locations. The input
locations given by the simple liveness-style definition
above include several kinds of locations with bookkeep-
ing roles in function calls which should not be con-
sidered parameters, so we next discuss how to exclude
them. To exclude the return address, the interface iden-
tification module ignores any memory locations written
by a call instruction or read by a return instruction dur-
ing the function execution. To exclude the stack pointer,
it ignores any access to ESP. When code calls functions
in a dynamically linked library, it fetches the real entry
point of the function from an export table, but we ex-
clude such loads.

Most complex is the treatment of saved registers. For
instance, we define a stack location to be used for saving
the register EBX if the contents of EBX are first saved in
that location with a push instruction, and later restored
to EBX with a pop instruction. But the location is not a
saved register location if the value is popped to a differ-
ent register than it was pushed from, if the stack value
is accessed before the pop, or if after the pop, the stack
value is read before being overwritten. Conventionally,
the stack is used to save certain registers designated by
the calling convention if a called function modifies them,
but our analysis is independent of the calling conven-
tion’s designation: it simply excludes any location used
only for saving a register.

Identifying pointers. A final building block in identify-
ing parameters is to identify locations that hold pointers.
The interface identification module uses a combination
of two approaches for this task: an inexpensive value-
based method that can be applied on all locations, and
a more expensive dataflow-based method that works by
creating a symbolic formula and is applied selectively.

To detect a pointer by value, BCR simply checks each
sequence of four consecutive input locations (pointers
are four bytes on our 32-bit architecture) to see if their
value forms an address of another input or output loca-
tion. However, this simple approach can fail to detect
some pointers (for instance, the address of a buffer that
was only accessed with non-zero indexes), so we also
implement a more sophisticated approach.

To identify more pointers, the interface identification
module uses a symbolic execution approach using our
Vine system [18] to analyze an indirect memory access.
The input locations to the function are marked as sym-
bolic variables, and the module computes a formula for
the value of the effective address of the access in terms
of them, using dynamic slicing [21]. It then performs al-
gebraic simplifications and constant folding on the for-
mula, and checks whether it has the form of a 32-bit
input plus a constant. If so, the input locations are con-
sidered a pointer, and the constant an offset within the
region the pointer points to. (The reverse situation of a
constant starting address and a variable offset does not
occur, because it would already have been classified as a
global table.) Though precise, this symbolic execution is
relatively expensive, so the interface identification mod-
ule uses it only when needed, as we will describe next.

Identifying assembly parameters from input and out-
put locations. Once the input and output locations
have been identified and unnecessary locations removed,
the interface identification module identifies input and
input-output pointers by value as explained above. Then
it uses the pointers, stack, and table accesses to classify
the input and output locations into assembly parameters.
Each parameter is a contiguous region in memory (or a
register), but two distinct parameters may be adjacent in
memory, so the key task is separating a contiguous re-
gion into parameters. The module considers a location
to be the start of a new parameter if it is the start of a
pointer, the address after the end of a pointer, or the lo-
cation of a pointer, stack, or table access. With the infor-
mation found so far, the interface identification module
determines the parameter type, location, and value, and
if the parameter has pointer semantics. The parameter
length is provisionally set to the length seen on this run.



Then, the interface identification module attempts to
further classify any parameters that are in memory but
are not on the stack and are not known globals by ap-
plying the dataflow-based pointer identification analysis.
Specifically, it checks whether the access to the start-
ing location of the parameter was a pointer access; if so,
it updates the type of the pointed-to parameter and the
semantics of the pointer parameter accordingly. After
classifying the input locations and pointers in this way,
the module classifies the output locations similarly, and
to identify and classify other pointers that point to them.

3.2 Combining Assembly Parameters from
Multiple Function Runs

The set of assembly parameters identified from a sin-
gle run may be incomplete, for instance if a parameter
is used only in a limited way on a particular execution
path, like src and dst in Figure 2. Therefore the in-
terface identification module further improves its results
by combining the information about parameters identi-
fied on multiple runs.

The final set of parameters identified is the union of
the parameters identified over all runs, where parameters
are considered the same if they have the same parameter
location. When parameters with the same location dif-
fer in other attributes between runs, those attributes are
merged as follows:

• The parameter type generalizes to input-output if it
was input in some runs and output in others.

• The parameter length generalizes to variable-length
if it was fixed-length in some runs and variable-
length in others, or if it had differing lengths across
runs.

• The parameter semantics generalizes to any non-
unknown value if it was a known value in some runs
and unknown in others (e.g., a parameter is consid-
ered a pointer if it was identified to be a pointer at
least once, even if it was considered unknown on
runs when it was NULL). On the other hand, the
semantics are replaced with unknown if they had
conflicting non-unknown values on different runs.

• The parameter value list is the union of all the ob-
served values.

3.3 Identifying Parameter Semantics

In addition to the declared type of a parameter in-
cluded in the C prototype, it is also common (e.g., in
MSDN documentation [10]) to provide additional infor-
mation in text or a comment that explains how the pa-
rameter is used; what we refer to as its semantics. For
instance, one int parameter might hold the length of a
buffer, while another is an IP address. We next describe

the techniques the interface identification module uses
to identify such parameter semantics.

Two kinds of semantics that occur frequently in trans-
formation functions as part of specifying other input and
output parameters are pointers and lengths. As described
above, the parameter identification process finds pointer
parameters at the same time it identifies the parameters
they point to. To identify length parameters, their tar-
gets, as well as variable-length parameters that use a
delimiter to mark the end of the parameter (e.g., null-
terminated strings), we leverage previously proposed
protocol reverse engineering techniques [26, 47] based
on taint tracking.

The interface identification module also builds on
taint tracking to detect semantics related to system op-
erations such as IP addresses, timestamps, ports, and
filenames, using a kind of type inference [24]. Certain
well-known functions take inputs or produce outputs of
a particular type, so BCR uses taint tracking to propa-
gate these types to the target function (the one being ex-
tracted) if an output of a well-known function is used as
an input to the target function, or an output of the target
function is an input to a well-known function. For in-
stance, the argument to the inet ntoa function is an
IP address, so an output parameter that is used to derive
that argument must itself be an IP address. Conversely,
if an input parameter is based on the return value of
RtlGetLastWin32Error, it must be an error code.
Currently, BCR supports 20 semantics, the 18 seman-
tics defined in [24], plus “pointer” and “unknown”. A
similar approach can be used at the instruction level to
select a more specific C type (such as float rather than
int) [33].

Taint-tracking-based semantics inference takes ad-
vantage of the execution monitor’s support for function
hooks, which are instrumentation code executed just be-
fore and/or just after the execution of a chosen func-
tion. Hooks added after the execution of well-known
functions and the target function taint their outputs, and
hooks before their execution check if their inputs are
tainted. Because such hooks can only be added to the
target function after its parameters have been identified,
semantics inference requires an extra run of the function
in the execution monitor.

4 Function Body Extraction and C Code
Generation

In this section we first present how the body extrac-
tion module extracts the instructions that form the body
of an assembly function, and then describe how the code
generation module produces a C function with an inline-
assembly body from the output of the interface identi-
fication module and the body extraction module. The



key challenges are disassembling all relevant instruc-
tions from the possibly stripped binary and adjusting the
extracted code if it uses a calling convention different
from what the C code expects. For brevity, we use “C
function” to refer to a function with a C prototype and
an inline-assembly body.

4.1 Function Body Extraction

Extracting the function body is a recursive process
that starts by extracting the body of the given function
and then recursively extracts the body of each of the
functions that are descendants of this function in the
function call graph. The body extraction module clas-
sifies descendant functions into two categories: well-
known functions that may be available in the system
where the C function is going to be recompiled, e.g.,
functions in the standard C library or in the Windows
Native API, and the rest, which we term internal func-
tions. The body extraction module extracts the body of
the given function and all internal descendant functions.
As an optimization, it avoids extracting well-known
functions. This increases portability: for example if
a function from a Windows executable uses strcpy
from the standard C library, it can be recompiled in a
Linux system making a call to the local strcpy func-
tion. In other cases, portability is not possible because
the function may not have a direct replacement in the
target OS (e.g., there is no direct replacement in Linux
for NtReadFile), so this optimization is not performed.
For instance, in our running example, shown in Figure 2,
the encode function calls memset; since it is part of
the C library, it is skipped.
Hybrid disassembly. The body extraction module uses
hybrid disassembly that combines static disassembly
from the program binary or a memory dump with dy-
namic information from execution traces [41].

In detail, the body extraction module supports three
modes of operation: purely static, purely dynamic, and
hybrid disassembly. In purely static mode, the body ex-
traction module statically disassembles the code start-
ing at the given function entry point, using the IDA
Pro [4] commercial disassembler. If the program binary
is not packed, then disassembly is performed directly
on the executable. For packed binaries disassembly is
performed on the memory dump taken by the execution
monitor at the exit point of the function. It is important
to take the dump at the end of the function’s execution to
maximize the code pages present in the dump, as pages
may not be loaded into memory till they are used. Purely
static disassembly provides good code coverage but may
not be able to disassemble code reachable through indi-
rect jumps or calls, or memory dumps if the instructions
are re-packed after being executed.

In purely dynamic mode, the body extraction module
extracts only instructions belonging to the function and
its descendants that appear in the given execution traces.
This mode has low code coverage but has no trouble
dealing with packed executables, or indirect jumps or
calls.

In hybrid disassembly mode, the body extraction
module combines both static disassembly with dynamic
information from the execution traces to obtain the best
of both modes. We have found that hybrid disassem-
bly works best and have set it to be the default mode
of operation. For hybrid disassembly, the body extrac-
tion module first uses static disassembly starting at the
given function entry point. In the presence of indirec-
tion, the static disassembler may miss instructions be-
cause it can not resolve the instructions’ targets. Thus,
the body extraction module collects the targets of all in-
direct jumps and calls seen in the execution traces and
directs the static disassembler to continue disassembling
at those addresses. For example, in Figure 2, the call to
the memset function was originally a direct call to a stub
that used an indirect jump into memset’s entry point in
a dynamic library. The body extraction module resolves
the target of the jump and uses the information about
exported functions provided by the execution monitor to
determine that the function is the standard memset. In
addition, the body extraction module uses a dataflow-
based approach to statically identify the targets of jump
tables, another class of indirect jumps often used to im-
plement switch statements [28].

There exist some situations where static disassembly
may not be possible even from a memory dump, for in-
stance if a program re-packs or deletes instructions right
after executing them: the code may be gone by the time
a dump is taken. In such a situation hybrid disassembly
smoothly falls back to be equivalent to purely dynamic
mode. To summarize, hybrid disassembly uses static
disassembly when possible and incorporates additional
dynamic information when it encounters indirection or
packed memory dumps. For each function, hybrid dis-
assembly stores the disassembled basic blocks, and re-
covers the control flow graph.

Rewriting call/jumps to use labels. Once the C func-
tion is recompiled it will almost certainly be placed at a
different address, so the body extraction module needs
to make the code relocatable. To enable this, it inserts
a label at the beginning of each basic block. Then, it
rewrites the targets of jump and call instructions to use
these labels. If the target of a jump instruction has not
been recovered by the hybrid disassembly, it is rewrit-
ten to use a unique missing block label that exits the
function with a special error condition. Figure 2 uses
small boxes to highlight the inserted block labels and the
rewritten call/jump instructions. Rewriting the call/jump



instructions to use labels also enables a user or a subse-
quent tool (like the SFI tool discussed in Section 5.5) to
instrument the function or alter its behavior by inserting
new instructions in the body.
Rewriting global and table accesses. The extracted
C function is composed of a C file with the assembly
function and a header file. The header file contains
a memory dump of the module containing the func-
tion to extract, taken at the function’s exit point on a
given run. The body extraction module rewrites instruc-
tions that access global variables or tables to point to
the corresponding offsets in the memory dump array.
This way the extracted function can access table off-
sets that have not been seen in the execution traces. In
our running example, the header file is not shown for
brevity, but the array with the contents from the mem-
ory dump is called tbl 004000000 and the instruc-
tion that accesses enc tbl has been rewritten to use
the label 0x3018+tbl 00400000 which is the first
byte of enc tbl in the memory dump. The memory
dump is taken at the function’s exit point, but if the inter-
face identification module discovers any input parame-
ters that are accessed using a fixed address and modified
inside the function, e.g., a global table that is updated
by the function, it ensures that the parameter values on
function entry are copied into the dump, so that they are
correct when the function is invoked again.

An alternative approach would be to create separate
C arrays and variables for each global parameter, which
would reduce the space requirements for the extracted
function. Though this would work well for scalar global
variables, it would be difficult to infer the correct size
for tables, since the binary does not contain bounds for
individual variables, and code compiled from C often
does not even have bounds checks. (An intermediate ap-
proach would be to estimate the size of a table by multi-
plying the largest observed offset by a safety factor; this
would be appropriate if it could be assumed that testing
covered at least a uniform fraction of the entries in each
table.)

4.2 C Code Generation

The code generation module writes the output C files
using the information provided by the interface identifi-
cation module and the body extraction module. To en-
code the function body the code generation module uses
GCC’s inline assembly feature [3]. It wraps the func-
tion body in an assembly block and then puts the assem-
bly block inside a function definition with a C function
prototype, as shown in Figure 2. In addition it creates
a C header file containing the memory dump as an ar-
ray. Though our current implementation is just for GCC,
the inline assembly features of Visual C/C++ [11] would

also be sufficient for our purposes. In fact, some of the
Visual C/C++ features, such as “naked” inline assembly
functions, for which the compiler does not generate a
prologue or epilogue, could simplify our processing.

The assembly block contains the assembly instruc-
tions in AT&T syntax, and the list of inputs, outputs, and
clobbered registers. These are filled using the parame-
ter information provided by the interface identification
module. When GCC compiles the function, it will add
prologue and epilogue code that affects the stack lay-
out, so even if the extracted function originally used a
standard calling convention, it would not find the stack
parameters where it expects. To overcome this problem,
the code generation module inserts wrapper code at the
beginning of the function that reads the parameters from
the C prototype (as inputs to the assembly block), puts
them in the stack or register locations expected by the
extracted function, and calls the extracted entry point.
After the call instruction it inserts a jump to the end of
the function so that the epilogue inserted by GCC is ex-
ecuted. The second box in Figure 2 shows this wrapper.

The C prototype comprises the function name and the
formal parameters of the function. The function name is
based on its entry point (func 00401000 in the run-
ning example), and each parameter’s C type is based on
its size and whether it is a pointer. Input and input-
output parameters located in the stack or registers ap-
pear first, with stack parameters appearing in order of
increasing offset (this means that if the extracted func-
tion used the most common C calling convention, their
order will match the original source). For each output
parameter returned using a register, the code generation
module adds an additional pointer formal parameter at
the end of the C prototype and uses the outputs list in
the assembly block to let GCC know that the register
needs to be copied to the pointed-to location. Addition-
ally, for output global or table parameters the code gen-
eration module adds a C variable corresponding to the
start address of the global or table in the memory dump.
This makes the function’s side effects available to other
C code.

Each formal parameter is also annotated with a com-
ment that gives information about the attribute values
for the corresponding assembly parameter such as the
parameter type and its semantics. These are useful for
a user that wants to reuse the function. In addition, it
prints the most common value seen for each parameter
during the multiple executions along with the percentage
of executions where the parameter showed that value.
This allows the user to select a value for the parameter
when the parameter semantics are unknown. The func-
tion prototype is shown in the first box in Figure 2.



5 Evaluation

This section describes the experiments we have per-
formed to demonstrate that our binary code reuse ap-
proach and implementation is effective for security ap-
plications such as rewriting encrypted malware network
traffic and static unpacking, that non-function fragments
can be extracted to give useful functions, and that ex-
tracted functions can be used safely even though they
come from an untrusted source.

5.1 Rewriting MegaD’s C&C Protocol

MegaD is a prevalent spam botnet that accounted
for 35.4% of all spam in the Internet in a December
2008 study [8], and still accounts for 9% as of Septem-
ber 2009 [9]. Recent work reverse-engineers MegaD’s
proprietary, encrypted, C&C protocol [24], and demon-
strates rewriting messages on the host by modifying a
buffer before encryption. In this section we show that
our assembly function reuse approach enables the same
C&C rewriting on a network proxy, by extracting the
bot’s key generation and encryption functions.

Function extraction. MegaD’s C&C protocol is pro-
tected using a proprietary encryption algorithm, and the
bot contains functions for block encryption, block de-
cryption, and a common key generator. We identify the
entry points of the three functions using previously pro-
posed techniques that flag functions with a high ratio of
arithmetic and bitwise operations [24, 46].

First, we use BCR to automatically extract the key
generation function. The identified prototype shows that
the function has two parameters and uses two global ta-
bles. The first parameter points to an output buffer where
the function writes the generated key. The second pa-
rameter is a pointer to an 8 byte buffer containing the
seed from which the key is generated. Thus, the func-
tion generates the encryption key from the given seed
and the two tables in the binary. Other attributes show
that all calls to the key generation function use the same
“abcdefgh” seed, and that the two tables are not modi-
fied by the function.

Although the entry points for the block encryption
and decryption functions are different, the first instruc-
tion in the block decryption function jumps to the entry
point of the block encryption function, so here we de-
scribe just the encryption function. The prototype ex-
tracted by BCR has 3 parameters and uses 6 global ta-
bles. The first parameter points to an input buffer con-
taining a key (as produced by the key generation func-
tion). The other two parameters are pointers to the same
8 byte input-output buffer that on entry contains the un-
encrypted data and on exit contains the encrypted data.

The technique to automatically detect transformation
functions identifies the functions with highest ratio of
arithmetic and bitwise operations, which for block ci-
phers is usually the functions that process a single block.
To encrypt or decrypt an arbitrary message, we would
like a function that encrypts or decrypts arbitrary length
data. Thus, when using this technique, after BCR ex-
tracts the detected transformation functions, we instruct
it to extract their parent functions as well. Then, we
compare the prototype of each detected function with
the one of the parent. If the parent’s prototype is similar
but accepts variable-length data, e.g., it has a length pa-
rameter, then we keep the parent function, otherwise we
manually write a wrapper for the block function.

For MegaD, the parent of the block encryption func-
tion has additional parameters, because it performs other
tasks such as setting up the network and parsing the mes-
sage. It contains no single loop that performs decryption
of a variable-length buffer; instead, decryption is inter-
leaved with parsing. Since we are not interested in the
parent function’s other functionality, we write our own
wrapper for the block encryption function.

To verify that the extracted encryption/decryption
function works correctly, we augment a grammar for the
unencrypted MegaD C&C protocol, reported in earlier
work [24], to use the extracted decryption function. This
augmented grammar serves as input to the BinPac parser
shipped with the Bro intrusion detection system [42].
Using the augmented grammar, Bro successfully parses
all the encrypted MegaD C&C messages found in our
network traces.

Network-based C&C rewriting. To perform network
rewriting we must deploy the encryption/decryption
function, as well as the session keys, in a network proxy.
Such a proxy will only be effective if the functions and
keys match those in the bots, so to estimate the rate at
which they change we repeated our analysis with an
older MegaD sample. According to malware analysis
online services [14, 19], our primary sample was first
seen in the wild in December 2008, and our older one in
February 2008. Although there are differences between
both samples, such as the older sample using TCP port
80 instead of 443 for its C&C, the parser, using the de-
cryption function and keys extracted from the December
sample, is able to successfully parse the C&C messages
from the February sample. In addition, we extract the
key generation and encryption functions from the Febru-
ary sample and compare them with the ones from the
December sample. Although there are syntactic differ-
ences, the versions are functionally equivalent, produc-
ing the same outputs on more than a billion randomly
generated inputs. Thus we conclude that the relevant al-
gorithms and keys, including the session key, have been
unchanged during the time span of our samples.



To show how our assembly function reuse approach
enables live rewriting on the network, we build a net-
work proxy that is able to decrypt, parse, modify and re-
encrypt MegaD C&C messages that it sees on the net-
work. To test the proxy we reproduce an experiment
from [24], but perform rewriting on the network rather
than on the host. The experiment proceeds as follows.
We run a live MegaD bot in a virtual environment that
filters all outgoing SMTP connections, for containment
purposes.

To start, suppose that no proxy is in use. The C&C
server sends a command to the bot ordering it to test its
ability to send spam by connecting to a test mail server.
Because the virtual environment blocks SMTP, the bot
sends a reply to the C&C server indicating that it cannot
send spam, and afterwards no more spam-related mes-
sages are received.

Next, we repeat the experiment adding a network
proxy that acts as a man-in-the-middle on traffic be-
tween the C&C server and the bot. For each message
sent by the bot, the proxy decrypts it and checks if it is a
message that it needs to rewrite. When the bot sends the
message indicating that it has no SMTP capability, the
proxy, instead of relaying it to the C&C server, creates a
different message indicating that the SMTP test was suc-
cessful, encrypts it, and sends it to the C&C server in-
stead. (It would not be sufficient for the proxy to replay
a previous encrypted success message, because the mes-
sage also includes a nonce value selected by the C&C
server at the beginning of each dialog.) With the proxy
in place, the bot keeps receiving spam-related messages,
including a spam template and lists of addresses to spam,
though it is unable to actually send spam.

5.2 Rewriting Kraken’s C&C Protocol

Kraken is a spam botnet that was discovered on April
2008 and has been thoroughly analyzed [2,5,6,12]. Pre-
vious analysis uncovered that Kraken (versions 315 and
316) uses a proprietary cipher to encrypt its C&C proto-
col and that the encryption keys are randomly generated
by each bot and prepended to the encrypted message
sent over the network [5, 12]. Researchers have manu-
ally reverse-engineered the decryption function used by
Kraken and provided code to replicate it [5]. In this pa-
per, we extract Kraken’s decryption function using our
automatic approach and verify that our extracted func-
tion is functionally equivalent to the one manually ex-
tracted in previous work. Specifically, when testing the
manually and automatically extracted function on mil-
lions of random inputs, we find their outputs are always
the same. In addition, we extract the corresponding en-
cryption function and a checksum function, used by the
bot to verify the integrity of the network messages.

Similarly to the MegaD experiment described in Sec-
tion 5.1, we build a network proxy that uses the ex-
tracted encryption, decryption, and checksum functions,
as well as the protocol grammar, and use it to rewrite a
C&C message to falsify the result of an SMTP capabil-
ity check. Unfortunately (for our purposes), none of our
Kraken samples connects to a live C&C server on the In-
ternet. Thus, to verify that the message rewriting works
we use a previously published Kraken parser [7]. The
rewritten message parses correctly and has the STMP
flag correctly modified (set to one).

5.3 Reusing Binary Code that is not an Assem-
bly Function

Next, we show that our approach enables reusing a
binary code fragment that does not correspond to a com-
plete assembly function, but has a clean interface and
performs an independent task. We extract unpacking
code from two versions of a trojan horse program Zbot
used primarily to steal banking and financial informa-
tion [20]. Zbot uses two nested layers of packing. The
samples, provided to us by an external researcher, rep-
resent a typical task in the course of malware analysis:
they have already had one layer of packing removed, and
we have been provided the entry points for a second,
more complex, unpacking routine.

The function prototype extracted by BCR is identi-
cal for both functions. It contains two pointer param-
eters: the ESI register points to an input-output buffer
containing packed data as input and a count of the num-
ber of bytes unpacked as output, while the EDI register
points to an output buffer for unpacked data. Since ESI
and EDI are not used for parameter passing in any of
the standard x86 calling conventions, this suggests these
functions were originally written in assembly code.

Although the prototypes are the same, the unpack-
ing functions are not functionally equivalent; they both
consist of two distinct loops, and we find that extract-
ing these loops separately captures more natural func-
tional units. Examining the extracted function bodies,
we find that both consist of two loops that are sepa-
rated by pusha and popa instructions that save and
restore processor state. Each loop makes its own pass
over the packed data, with the first pass applying a sim-
pler deciphering by subtracting a hardcoded key, and the
second pass performing a more complex instruction-by-
instruction unpacking. After extracting the two loops
into separate functions, we verify that the differences
between the versions are only in the first loop: the ex-
tracted version of the second loop can be reused across
the sample versions. This highlights the fact that as long
as a binary code fragment has a clean interface and per-
forms a well-separated task, it can be reused even if it



does not correspond to a complete function in the origi-
nal machine code.

5.4 Quantitative Summary of Function Ex-
traction

Table 2 summarizes the extraction results for all
functions mentioned in Section 5.1 through Section 5.3
and some additional functions that we extract from the
OpenSSL library for evaluation purposes. The General
section of the table shows the number of function runs
in the execution traces used as input to the function ex-
traction step, and the total time needed to extract the
function. The Code Extraction section has the number
of instructions in each extracted function, the number
of missed blocks and the number of indirect call and
jump instructions. The Parameter Identification section
shows the number of parameters in the C function proto-
type and the number of false positives (e.g., unnecessary
parameters in the prototype) and false negatives (e.g.,
missing parameters in the prototype). For the OpenSSL
functions, the false positives and negatives are measured
by comparison with the original C source code. For the
malware samples, no source is available, so we com-
pare with our best manual analysis and (for Kraken) with
other reported results.

The results show that a small number of executions is
enough to extract the complete function without miss-
ing blocks or parameters. For samples without indi-
rect jumps or calls, static disassembly recovers all ba-
sic blocks. For the samples with indirection, the dy-
namic information resolves the indirection and enables
the static disassembler to find all the instructions in the
function body. The Kraken checksum and MegaD en-
crypt samples are significantly slower to extract than the
other samples. This is because they have larger num-
ber of invocations of the dataflow-based pointer analy-
sis technique, which dominates the running time. The
parameter identification results show that no parameters
are missed: some runs do not identify all parameters,
but combining multiple executions (Section 3.2) gives
complete results. For the functions from OpenSSL, the
parameters include fields in a context structure that is
passed to the functions via a pointer. There are two
false positives in the Kraken functions (i.e., extra pa-
rameters are identified), both of which are output pa-
rameters reported as returned in the ECX register. These
are caused by a compiler optimization (performed by the
Microsoft compiler, for instance) that replaces the in-
struction sub $4,%esp to reserve a location on the
stack with the more compact instruction push %ecx,
which has the same effect on the stack pointer and also
copies a value from ECX that will later be overwrit-
ten. When this idiom occurs in the code following an

extracted function that uses ECX internally, the inter-
face identification module incorrectly identifies ECX as
a function output. Note that false positive parameters
are not a serious problem for usability: extra outputs
can simply be ignored, and extra inputs do not change
the extracted function’s execution.

5.5 Software-based Fault Isolation

If the extracted functions are to be used in a security-
sensitive application, there is a danger that a malicious
extracted function could try to hijack or interfere with
the operation of the application that calls it. To prevent
this, we use software-based fault isolation (SFI) [45] as
a lightweight mechanism to prevent the extracted code
from writing to or calling locations in the rest of the ap-
plication. SFI creates separate “sandbox” data and code
regions for the extracted function, so that it can only
write to its data region and it can only jump within its
code region. SFI works by adding checks just before
each store or jump instruction, but the extracted code
still runs in the same address space, so calls from the
application are still simple and efficient.

Specifically, we postprocess our extracted malware
functions using PittSFIeld, an implementation of SFI for
x86 assembly code [39]. PittSFIeld adds new instruc-
tions for checks, and to enforce additional alignment
constraints to avoid overlapping instructions. Thus,
BCR’s translation of jumps to use labels is necessary
for it to work. PittSFIeld was previously implemented
for use with the assembly code generated by GCC, so
in order to work with assembly code that could be gen-
erated by other compilers or hand-written, we general-
ize it to save and restore the temporary register used in
sandboxed operations, and to not assume that EBP is
always a pointer to the stack. We also make correspond-
ing changes to PittSFIeld’s separate verification tool, so
a user can check the safety of an extracted function with-
out trusting the person who extracted it.

6 Related Work

This section compares our approach with the manual
process it aims to replace, techniques for related extrac-
tion problems in other domains, and some other tasks
that require similar algorithms.

Manual code extraction. Code extraction is a common
activity in malware analysis, but it is usually performed
manually [5, 6, 30]. While this process can give the ana-
lyst a deep understanding of the malicious functionality,
it is also very time-consuming. Simple tool support can
make some of the repetitive tasks more convenient [1],
but existing approaches still require specialized skills.



General Code Extraction Parameter Identification
Function # Runs Run # Insn. # Missed # Indirect # Param. FP FN

time(sec) blocks call/jump
MegaD keygen 4 3 320 0 0 3 0 0
MegaD encrypt 6 257 732 0 0 4 0 0
Kraken encrypt 2 16 66 0 0 7 1 0
Kraken decrypt 1 2 66 0 0 6 0 0
Kraken checksum 1 179 39 0 0 4 1 0
Zbot v1151 2 15 98 0 0 2 0 0
Zbot v1652 2 17 93 0 0 2 0 0

MD5 Init 6 2 10 0 0 1 0 0
MD5 Update 6 38 110 0 1 3 0 0
MD5 Final 7 31 67 0 3 2 0 0
SHA1 Init 1 8 11 0 0 1 0 0
SHA1 Update 1 36 110 0 1 3 0 0
SHA1 Final 2 36 76 0 3 2 0 0

Table 2. Evaluation results. At the top are the functions extracted during the end-to-end appli-
cations and at the bottom some additional functions extracted from the OpenSSL library.

Our approach allows this task to be automated, when all
that is needed is to be able to execute the functionality
in another context.

Input-output relationship extraction. A variant on
the extraction problem is extracting the relationship be-
tween some given inputs and outputs of a computa-
tion. To extract such relationships, previous work has
used symbolic execution [25,36] or dynamic binary slic-
ing [36, 37]. When the functionality to be extracted
is sufficiently simple, it can be represented by a sin-
gle input-output symbolic formula. For instance, such
input-output formulas can be used for protocol dialog
replay [25], or as a malware signature [36]. However, a
single formula is not a practical representation for more
complex functionality that includes loops or other vari-
ant control-flow paths, or uses complex data structures.

Another alternative representation is a dynamic bi-
nary slice that captures the instructions needed to pro-
duce the output from the inputs in a given execution.
Dynamic binary slices are usually generated by apply-
ing modified versions of dynamic program slicing tech-
niques [21] on execution traces. For instance, Lanzi et
al. [37] produce dynamic binary slices using a combi-
nation of backwards and forward slicing, and use them
to analyze kernel malware. When it cannot extract an
exact input-output symbolic formula, the malware mod-
eling tool of Kolbitsch et al. [36] combines dynamic bi-
nary slicing with tainted scopes to capture control de-
pendencies. There are two main differences between
extracting input-output symbolic formulas or dynamic
binary slices and binary code reuse. First, our problem
is more difficult because the inputs and outputs must be
inferred. Second, by using a combination of dynamic

and static analysis to extract the body of the code frag-
ment we achieve better coverage than purely dynamic
techniques.

Other applications of interface extraction. Jiang and
Su [34] investigate the problem of automatic interface
extraction in C source code, to allow automated random
testing for fragments with equivalent behavior. Their
task of determining which variables constitute inputs
and outputs of a fragment is related to the one we tackle
in Section 3, but made easier by the availability of type
information. Extracting the code itself is also easier be-
cause in their scenario code fragments are restricted by
definition to contiguous statements.

Independently, Lin et al. [38] extract an interface to
functionality in a benign program in order to add mali-
cious functionality: for instance, to turn an email client
into a spam-sending trojan horse. Because the function-
ality runs in its original context, their interface need not
cover all the inputs and outputs of the code, only those
relevant to a particular use. Using techniques similar to
our output inference, they perform a side-effect analysis
to determine whether a function’s memory effects can
be reverted to hide it from the rest of an execution.

Liveness analysis. The analyses that our tool per-
forms to identify input and output variables are the dy-
namic analogues of static data-flow analyses performed
by compilers, such as live variable and reaching defini-
tions analysis [40]. Some of the same challenges we face
have also been addressed in purely static tools such as
link-time optimizers that, like our tool, must operate on
binary code. For instance, link-time optimizers [32, 43]
must also exclude saves of callee-saved registers from
the results of naive liveness analysis.



Binary rewriting. Many of the techniques required for
binary code reuse are used in binary rewriting and instru-
mentation applications. For instance, purely static dis-
assembly provides insufficient coverage for even benign
applications on Windows/x86 platforms, so state-of-the
art rewriting tools require a hybrid of static and dynamic
disassembly [41] much as we do. Cifuentes and Van
Emmerik [28] introduced the technique we adopt for
locating the jump table statements used to implement
switch statements.

7 Conclusion

This paper performs the first systematic study of au-
tomatic binary code reuse, which we define as the pro-
cess of automatically identifying the interface and ex-
tracting the instructions and data dependencies of a code
fragment from an executable program, so that it is self-
contained and can be reused by external code.

We have proposed a novel technique to identify the
prototype of an undocumented code fragment directly
from the program’s binary, without access to its source
code. We have designed an approach to automatically
extract a code fragment from a program binary so that
it is self-contained. The extracted code fragment can be
run independently of the rest of the program’s function-
ality in an external C program, and can be easily tested,
instrumented, or shared with other users.

We have implemented BCR, a tool that uses our ap-
proach to automatically extract an assembly function
from a program binary. We have used BCR to reuse
the cryptographic routines used by two spam botnets in
a network proxy that can rewrite the malware’s C&C
encrypted traffic. In addition, we have extracted an un-
packing function from a trojan horse program, and have
shown that a code fragment belonging to that function
can be reused by the unpacking function for a different
sample from the same family. Finally, we have applied
software-based fault isolation techniques [39] to the ex-
tracted functions to ensure they can be used safely even
though they come from an untrusted source.
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