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Abstract

In this thesis we develop techniques for analyzing security-relevant functionality in a program that

do not require access to the program’s source code, only to its binary form. Such techniques are

needed to analyze closed-source programs such as commercial-off-the-shelf applications and mal-

ware, which are prevalent in computer systems. Our techniques are dynamic: they extract informa-

tion from executions of the program. Dynamic techniques areprecise because they can examine the

exact run-time behavior of the program, without the approximations that static analysis requires.

In particular, we develop dynamic program binary analysis techniques to address three prob-

lems: protocol reverse-engineering, binary code reuse, and model extraction. We demonstrate our

techniques on a variety of security applications includingactive botnet infiltration, deviation detec-

tion, attack generation, vulnerability-based signature generation, and vulnerability discovery.

Protocol reverse-engineering techniques infer the grammar of undocumented program inputs,

such as network protocols and file formats. Such grammars areimportant for applications like

network monitoring, signature generation, or botnet infiltration. When no specification is available,

rich information about the protocol or file format can be reversed from a program that implements

it. We develop a new approach to protocol reverse-engineering based on dynamic program binary

analysis. Our approach reverses the format and semantics ofprotocol messages by monitoring how

an implementation of the protocol processes them. To demonstrate our techniques, we extract the

grammar of the previously undocumented C&C protocol used byMegaD, a prevalent spam botnet.

Binary code reuse techniques make a code fragment from a program binary reusable by external

source code. We propose a novel approach to automatic binarycode reuse that identifies the inter-

face of a binary code fragment and extracts its instructionsand data dependencies. The extracted

code is self-contained and independent of the rest of the functionality in the program. To demon-

strate our techniques, we use them to extract proprietary cryptographic routines used by malware

and show how those routines enable infiltrating botnets thatuse encrypted protocols.

Model extraction techniques build a model of the functionality of a code fragment. Closed-

source programs often contain undocumented, yet security-relevant, functionality such as filters or

proprietary algorithms. To reason about the security properties of such functionality we develop

model extraction techniques that work directly on program binaries. To produce models with high

coverage, we extend previous dynamic symbolic execution techniques to programs that use string

operations, programs that parse highly structured inputs,and programs that use complex functions

like encryption or checksums. We demonstrate the utility ofour techniques to discover vulnera-

bilities in malware and use the extracted models to automatically find subtle content-sniffing XSS

attacks on Web applications, to identify deviations between different implementations of the same

functionality, and to generate signatures for vulnerabilities in software.
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to AngelÁlvarez, Gerald Q. “Chip” Maguire Jr., and Jose Luis Fernández-Sánchez, for helping me

get into graduate school.

My life in Berkeley and Pittsburgh was brightened by many friends. Without you all, these six

years would not have been the same. I would particularly liketo thank Min, a great friend who

shared much time with me. I would also like to thank the peoplein Pata Negra and Iberia-Berkeley

for building great communities that make us feel at home while away. And, many thanks to all my

old friends. One of the toughest parts of graduate school wasto be away from you all.

Finally, I am indebted to my family. To my parents for their unwavering support, to my brother

Alejandro, a great mentor and confident, and to my lovely sister Macarena. I am fortunate to have

your support regardless of where I go.



Contents

I Introduction 1

1 Introduction 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Applications and Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Active Botnet Infiltration. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Deviation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Generating Filtering-Failure Attacks for Web Applications . . . . . . . . . 13

1.2.4 Protocol-Level Vulnerability-Based Signature Generation . . . . . . . . . 17

1.2.5 Finding Bugs in Malware. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Dynamic Program Binary Analysis 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Building Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Execution Logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Taint Propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Tracecap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Offline Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Trace-Based Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 IR-Based Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Protocol Reverse-Engineering 39

3 Protocol Reverse-Engineering 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Overview & Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



3.2.1 Automatic Protocol Reverse-Engineering. . . . . . . . . . . . . . . . . . 42

3.2.2 Protocol Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Message Format Extraction for a Received Message. . . . . . . . . . . . . . . . . 50

3.3.1 Identifying Delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Identifying Length Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Identifying Fixed-Length Fields. . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Message Format Extraction for a Sent Message. . . . . . . . . . . . . . . . . . . 57

3.4.1 Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Buffer Deconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Field Attributes Inference. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Field Semantics Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Handling Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.1 Evaluation on MegaD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.2 Evaluation on Open Protocols. . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.3 Detecting Encoding Functions. . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III Binary Code Reuse 81

4 Binary Code Reuse 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Overview & Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Interface Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Identifying the Assembly Parameters from a Function Run . . . . . . . . . 92

4.3.2 Combining Assembly Parameters from Multiple Function Runs . . . . . . 96

4.3.3 Identifying Parameter Semantics. . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Code Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



4.4.1 Body Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2 C Code Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Rewriting MegaD’s C&C Protocol. . . . . . . . . . . . . . . . . . . . . . 102

4.5.2 Rewriting Kraken’s C&C Protocol. . . . . . . . . . . . . . . . . . . . . . 105

4.5.3 Reusing Binary Code that is not an Assembly Function. . . . . . . . . . . 105

4.5.4 Quantitative Summary of Function Extraction. . . . . . . . . . . . . . . . 106

4.5.5 Software-based Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV Model Extraction 112

5 Deviation Detection 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Problem Definition & Approach Overview. . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Model Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.3 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Extracting Single-Path Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Building the Symbolic Path Predicate. . . . . . . . . . . . . . . . . . . . 120

5.3.2 Memory Reads and Writes using Symbolic Addresses. . . . . . . . . . . 121

5.4 Deviation Detection & Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Deviation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.2 Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1 Deviations in Web Servers. . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.2 Deviations in Time Servers. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Filtering-Failure Attack Generation 134

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Content-Sniffing XSS attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



6.2.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.2 Content-Sniffing XSS Attacks. . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Problem Definition and Approach Overview. . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.2 Running example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.3 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 String-Enhanced White-Box Exploration. . . . . . . . . . . . . . . . . . . . . . . 142

6.4.1 Generating the String-Enhanced Path Predicate. . . . . . . . . . . . . . . 143

6.4.2 The Abstract String Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.3 Solving the Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.4 Input Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5.2 Model Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.3 Coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.4 Finding Content-Sniffing XSS Attacks. . . . . . . . . . . . . . . . . . . . 154

6.5.5 Concrete Attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Protocol-Level Vulnerability Signature Generation 162

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Problem Definition and Approach Overview. . . . . . . . . . . . . . . . . . . . . 165

7.2.1 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.3 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.4 Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Extracting the Field Constraint Chain. . . . . . . . . . . . . . . . . . . . . . . . 170

7.3.1 The Field Condition Generator. . . . . . . . . . . . . . . . . . . . . . . . 171

7.3.2 The Field Condition Generalizer. . . . . . . . . . . . . . . . . . . . . . . 172

7.4 The Exploration Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.1 Merging Execution Paths into the Protocol-Level Exploration Graph. . . . 174

7.4.2 Generating a New Input. . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4.3 Extracting the Vulnerability Point Reachability Predicate . . . . . . . . . . 178

7.5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.1 Removing the Parsing Constraints. . . . . . . . . . . . . . . . . . . . . . 179



7.5.2 Exploration Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.5.3 Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8 Stitched Vulnerability Discovery 186

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.2 Problem Definition & Approach Overview. . . . . . . . . . . . . . . . . . . . . . 188

8.2.1 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3 Stitched Dynamic Symbolic Execution. . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.1 Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.2 Re-stitching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.3.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.4 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5.1 Identification of Encoding Functions and Their Inverses . . . . . . . . . . 200

8.5.2 Stitched vs. Non-Stitched. . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5.3 Malware Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.5.4 Bug Persistence over Time. . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.6.1 Applications and Ethical Considerations. . . . . . . . . . . . . . . . . . . 206

8.6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.7 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

V Conclusion 211

9 Conclusion 212

9.1 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.1.1 Evasion and the Malware Arms Race. . . . . . . . . . . . . . . . . . . . 212

9.1.2 Instruction-Level Execution Traces. . . . . . . . . . . . . . . . . . . . . 214

9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Appendices



A MegaD BinPac grammar 217



List of Tables

3.1 Field attributes used in this thesis. Each attribute captures a property of the field.. 44

3.2 Protocol Data Units (PDUs) for the different networkinglayers. . . . . . . . . . . 45

3.3 Field semantics identified by Dispatcher for both received and sent messages. Stored

data represents data received over the network andwritten to the filesystem or the

Windows registry, as opposed to dataread from those sources.. . . . . . . . . . . 66

3.4 Different programs used in our evaluation on open protocols. . . . . . . . . . . . . 72

3.5 Comparison of the message field tree for sent messages extracted by Dispatcher and

Wireshark 1.0.5. The ICQ client used is Pidgin.LW andLD are the set of leaf fields

output by Wireshark and Dispatcher respectively, whileHW andHD are the sets of

record (hierarchical) fields.EL
W andEL

D denote the set of errors in leaf field output

by Wireshark and Dispatcher, whileEH
W andEH

D denote the set of errors in record

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Comparison of the message field tree for received messages extracted by Dispatcher

and Wireshark 1.2.8. The ICQ client is TinyICQ.. . . . . . . . . . . . . . . . . . 74

3.7 Evaluation of the detection of encoding functions. Values in parentheses represent

the numbers of unique instances. False positives are computed based on manual

verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Summary of parameter identification process for a function run. . . . . . . . . . . 94

4.2 Evaluation results. At the top are the functions extracted during the end-to-end ap-

plications and at the bottom some additional functions extracted from the OpenSSL

library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Different server implementations used in our evaluation. . . . . . . . . . . . . . . 124

xii



5.2 Summary of deviations found for the HTTP servers, including the number of candi-

date input queries requested to the solver and the number of deviations found. Each

cell represents the results from one query to the solver and each query to the solver

handles half of the combined predicate for each server pair.For example Case 3

shows the results when querying the solver for(MM ∧ ¬MA) and the combined

predicate for the Apache-MiniWeb pair is the disjunction ofCases 1 and 3. . . . . 126

5.3 Execution time and predicate size obtained during the model extraction phase.. . . 130

5.4 Execution time needed to calculate a candidate deviation input for each server pair. 130

6.1 Abstract string syntax.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Translation of string constraints to the abstract string syntax. . . . . . . . . . . . . 147

6.3 Predicate translation. For simplicity, the negation ofthe above predicates is not shown.148

6.4 Model statistics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Number of MIME types for which a chameleon is possible forthe different combi-

nations of content-sniffing algorithms and upload filters.. . . . . . . . . . . . . . 155

7.1 Vulnerable programs used in the evaluation.. . . . . . . . . . . . . . . . . . . . . 179

7.2 Constraint extractor results for the first test, including the number of constraints

in the protocol-level path-predicate and the number of remaining constraints after

parsing constraints have been removed.. . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Exploration results, including whether all open edges in the protocol-level explo-

ration graph were explored and the number of constraints remaining in the vulnera-

bility point reachability predicate. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3 Performance evaluation. The generation time and the average test time are given in

seconds, and the trace size is given in Megabytes.. . . . . . . . . . . . . . . . . . 181

7.3 On the left, the format of the Gdi-wmf exploit file. On the right the vulnerability

point reachability predicate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.1 Summary of the applications on which we performed identification of encoding

functions. MTD stands for maximum taint degree.. . . . . . . . . . . . . . . . . . 200

8.2 Description of the bugs our tool finds in malware. The column “full” shows the

results using stitched dynamic symbolic execution, while the “vanilla” column gives

the results with traditional (non-stitched) dynamic symbolic execution. “>600”

means the tool run for 10 hours and did not find the bug.. . . . . . . . . . . . . . 202

8.3 Bug reproducibility across different malware variants. The shaded variants are the

ones used for exploration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



List of Figures

1.1 Techniques summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Applications summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Deviations occur when the inputs that produce states in an implementationP1 do

not exactly match the inputs that produce states in another implementationP2. . . 11

1.4 A chameleon PostScript document that Internet Explorer7 treats as HTML.. . . . 14

1.5 The vulnerability point reachability predicate (VPRP)captures the inputs that reach

the vulnerability point. A vulnerability-based signatureis the conjunction of the

VPRP and the vulnerability condition (VC).. . . . . . . . . . . . . . . . . . . . . 17

1.6 Common input processing. Current input generation techniques have trouble creat-

ing inputs that reach the processing stage.. . . . . . . . . . . . . . . . . . . . . . 21

2.1 Architecture of the execution monitor used to generate the execution logs. The

modules in gray were previously available.. . . . . . . . . . . . . . . . . . . . . . 28

2.2 Vine architecture. Gray modules were previously available. . . . . . . . . . . . . . 29

2.3 A snippet of x86 code corresponding to the handling of an HTTP response by the

Internet Explorer 7 Web browser.. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 The translation of the second instruction in Figure 2.3 into the Vine intermediate

language [19]. Each variable and constant value is followeda colon and its type.

The type indicates the size of the variable (e.g., reg8t for one byte and reg32t for

four bytes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Slicing example. On the left an extended version of the execution trace shown in

Figure 2.3. On the right, the slice for the ECX register at instruction 7, which

captures all instructions involved in producing the value of the ECX register at that

instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Formula for the symbolic branch condition corresponding to the conditional jump

in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xiv



3.1 Message field tree for the HTTP request on the upper left corner. The upper right

corner box shows the attribute list for one of the delimiters. . . . . . . . . . . . . . 44

3.2 Partial HTTP protocol grammar from RFC 2616 [65].. . . . . . . . . . . . . . . . 45

3.3 Message format extraction for received messages.. . . . . . . . . . . . . . . . . . 50

3.4 Partial token table for the HTTP request in Figure 3.1.. . . . . . . . . . . . . . . . 52

3.5 Partial message field tree generated by inserting the fields derived by identifying

delimiters using the token table in Figure 3.4 into an empty tree. . . . . . . . . . . 54

3.6 Length field example.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Message field tree for the MegaD Host-Information message. . . . . . . . . . . . . 57

3.8 Message format extraction for sent messages.. . . . . . . . . . . . . . . . . . . . 58

3.9 Buffer deconstruction for the MegaD message in Figure 3.7. Each box is a memory

buffer starting at addressBx with the byte length in brackets. Note the similarity

with the upside-down version of Figure 3.7.. . . . . . . . . . . . . . . . . . . . . 59

3.10 Dependency chain forB2 in Figure 3.9. The start address ofB2 is A. . . . . . . . . 62

3.11 The four server types that a MegaD bot communicates with. The figure shows for

each server the communication protocol used between the botand the server, the

main use of the server, and how the bot locates the server.. . . . . . . . . . . . . . 70

3.12 Message field tree for a simple HTTP response output by Wireshark. The dotted

nodes are fields that Wireshark does not output.. . . . . . . . . . . . . . . . . . . 74

4.1 BCR architecture. The core of BCR are the interface identification and code extrac-

tion modules in gray. The execution module and the disassembler are previously-

available building blocks described in Chapter 2. The semantics inference module

was detailed in Chapter 3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Running example. At the top, the source for theencode function. Below, the

extracted assembly function. The boxes indicate changes tothe assembly code.. . 89

4.3 Architecture of the code extraction module.. . . . . . . . . . . . . . . . . . . . . 97

5.1 On the left, the control-flow graph of a program. On the right, two different execu-

tion paths in the program that end up in the same output state.Since two different

paths can end up in the same output state, the validation phase checks whether the

new execution path truly ends up in a different state.. . . . . . . . . . . . . . . . . 118

5.2 Overview of our deviation detection approach.. . . . . . . . . . . . . . . . . . . . 119

5.3 One of the original HTTP requests we used to generate execution traces from all

HTTP servers, during the model extraction phase.. . . . . . . . . . . . . . . . . . 125



5.4 Example deviation found for Case 3, where MiniWeb’s predicate is satisfied while

Apache’s isn’t. The figure includes the candidate deviationinput being sent and the

responses obtained from the servers, which show two different output states.. . . . 126

5.5 Example deviation found for Case 4, where MiniWeb’s predicate is satisfied while

Savant’s isn’t. The output states show that MiniWeb acceptsthe input but Savant

rejects it with a malformed response.. . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Another example deviation for Case 4, between MiniWeb and Savant. The main

different is on byte 21, which is part of the Version string. In this case MiniWeb

accepts the request but Savant rejects it.. . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Example deviation obtained for the NTP servers. It includes the original request sent

in the model extraction phase, the candidate deviation input output by the solver,

and the responses received from the servers, when replayingthe candidate deviation

input. Note that the output states are different since NetTime does send a response,

while Ntpd does not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 An example content-sniffing XSS attack on Wikipedia and auser of Internet Ex-

plorer 7. The numbered boxes show the sequence of events: 1) the attacker uploads

a GIF/HTML chameleon to Wikipedia, 2) the user request the file, 3) the Web server

delivers the content, and 4) the browser treats the chameleon as HTML and runs the

attacker’s JavaScript.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Our running example, a simple content-sniffing algorithm that takes as input the

proposed MIME type and the raw data, and returns a suggested MIME type. . . . . 140

6.3 White-box exploration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 String-Enhanced White-box exploration. The gray modules have been modified

from the standard white-box exploration.. . . . . . . . . . . . . . . . . . . . . . . 142

6.5 A complete input with the input strings highlighted.. . . . . . . . . . . . . . . . . 150

6.6 String-enhanced white-box exploration versus byte-level white-box exploration on

the Safari 3.1 content-sniffing algorithm. Each curve represents the average number

of blocks discovered for 7 exploration runs each starting from a different seed and

running for 6 hours.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1 Our running example.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Elcano architecture overview. The darker color modulesare given, while the lighter

color components have been designed and implemented in thiswork. . . . . . . . . 170

7.3 Constraint Extractor Architecture. The darker color module is given, while the

lighter color components have been designed and implemented in this work. . . . . 171



7.4 Exploration module architecture. The darker color module is given, while the lighter

color components have been designed and implemented in thiswork. . . . . . . . . 174

7.5 An example exploration graph for our running example. Note that nodes B, C, and

D all have open edges because their false branches have not yet been explored. . . 175

7.6 Building the protocol-level exploration graph for our running example.. . . . . . . 177

8.1 A simplified example of a program that uses layered input processing, including

decryption (line 9) and a secure hash function for integrityverification (lines 10-12).189

8.2 Architectural overview of our approach. The gray modules comprise stitched dy-

namic symbolic execution, while the white modules are the same as in traditional

dynamic symbolic execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3 On the left a graphical representation of the decomposition of our running example

in Figure 8.1. The other two figures represent the two types ofdecomposition that

our approach supports: serial decomposition (B) and side-condition decomposition

(C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Part I

Introduction

1



Chapter 1

Introduction

1.1 Introduction

In this thesis, we develop dynamic program binary analysis techniques to extract the grammar of

undocumented program inputs and to model security-relevant functionality from program binaries.

We demonstrate that our techniques enable previously unsolved security applications, such as active

botnet infiltration through deep packet inspection and rewriting of encrypted protocols used by mal-

ware, and enable more accurate solutions for other important security applications such as detecting

deviations between implementations of the same functionality, finding attacks on Web applications,

vulnerability discovery, and generating signatures for intrusion detection systems.

The program binary analysis techniques presented in this thesis can be grouped into three main

modules of functionality:protocol reverse-engineering, binary code reuse, andmodel extraction.

Protocol reverse-engineering techniques infer the grammar of undocumented program inputs, such

as network protocols and file formats. They are necessary because many widely used protocols and

file formats, such as the Skype protocol [198] or the communication protocols used by malware,

have no publicly available specification. Protocol reverse-engineering is challenging because pro-

tocols can be highly structured; can include a variety of elements such as variable-length fields,

delimiters, length fields, and arrays; and can carry a variety of data such as timestamps, error codes,

filenames, file data, and IP addresses.

Binary code reuse techniques extract a fragment of binary code from a program binary, so that

it is self-contained and can be reused by external source code. Binary code reuse is necessary

when the code to be reused is only available in binary form. Itis specially useful when the code

fragment is complex but the application does not require a low level understanding of how the code

fragment works; it only requires reusing its functionality. For example, in this thesis we use our

binary code reuse techniques for extracting the cryptographic functions and keys used by malware

2



CHAPTER 1. INTRODUCTION 3

to protect its network protocols. Then, we deploy those functions and keys in a network intrusion

detection system (NIDS), enabling the NIDS to decrypt the encrypted traffic. Binary code reuse

is challenging because binary code is not designed to be reusable and lacks high-level abstractions

such as functions, variables, and types.

Model extraction techniques build a model of the functionality of a code fragment. Extracting

a model of security-sensitive code is important because such a model enables automatic reasoning

about the security properties of the code. For example, in this thesis we use such models to automat-

ically find subtle attacks on Web applications, to identify deviations between different implemen-

tations of the same functionality, and to generate signatures for vulnerabilities in software. Model

extraction is necessary because for most programs models oftheir security-sensitive functionality

are not available. Model extraction is challenging becausethe code to model may be complex and

comprise many execution paths. A critical challenge for model extraction techniques is to build

high-coverage models that cover many execution paths in thecode.

Dynamic program binary analysis for security applications. Our techniques work on program

binaries and do not require the availability of source code or any debugging information in the

binaries. This provides several benefits. First, our program binary analysis techniques are widely

applicable. They can be applied to programs even when the source code is not available, which is

important because closed-source programs are prevalent incomputer systems and only distributed in

binary form. They can also be applied independently of the programming language, programming

style, and compiler used to create the program.

Second, our techniques do not require cooperation from the program authors. This is impor-

tant because some program authors may not support the security analysis of their programs. For

example, malware is a large class of closed-source programswhere it is important not to rely on

the program authors. Another large class of closed-source programs is commercial-off-the-shelf

(COTS) applications. Our techniques enable users of COTS applications to analyze the programs

they are deploying for security issues. This is necessary because program authors may not be aware

of the existence of security issues in their programs, may bereluctant to document security-relevant

functionality, may be too slow to react to disclosed security issues, or may not provide security fixes

for legacy versions of their programs.

Third, our techniques have high fidelity because they analyze the binary, which is what gets

executed. Compared to the program source code, the program binary is a lower abstraction rep-

resentation of the program. This can be challenging, but it enables the analysis of security issues

that may be hidden by the abstractions provided by the programming language such as arithmetic

overflows and security issues related to the memory layout ofthe program.
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Figure 1.1: Techniques summary.

Our techniques are dynamic: they are applied over executions of the code. The main advantage

of dynamic analysis over static analysis is that dynamic analysis is precise because it can examine

the exact run-time behavior of the program, without approximations or abstractions. This property

provides several benefits to dynamic analysis: 1) it can analyze programs binaries that are encrypted

or packed because code and data will be decrypted or unpackedbefore being used; 2) there is no

control flow uncertainty as the executed instructions are revealed at run-time; 3) pointer aliasing is

simple as the accessed memory locations are known at run-time; 4) it can analyze the interactions

of the program with other elements in the run-time environment such as the operating system or ex-

ternal libraries. The main limitation of dynamic analysis is limited coverage, as an execution covers

only one path in the program. To address this limitation we use white-box exploration techniques

that execute many paths in the program. Then, we generalize the results from all the executed paths.

Application and technique summary. This thesis comprises both program binary analysis tech-

niques and their applications. Figure1.1 summarizes the techniques. It shows between the dashed

and dotted lines the four modules of functionality we have developed in this thesis. The three mod-

ules on the left: protocol reverse-engineering, binary code reuse, and model extraction comprise

the novel techniques proposed in this thesis, while the dynamic binary analysis module on the right

comprises previously proposed dynamic binary analysis techniques that we have implemented. On

top of each functionality module, above the dotted line, thefigure shows the techniques included

in the module. The main techniques developed in this thesis comprise the leftmost three columns.

The figure shows at the bottom, below the dashed line, some building blocks of functionality, which
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Figure 1.2: Applications summary.

were available a priori and are not a contribution of this thesis. Figure1.2 summarizes the appli-

cations covered in this thesis and shows which of the three main modules of functionality that we

have developed in this thesis enable them.

The author would like to emphasize the fact that the techniques presented in this thesis are gen-

erally applicable to programs in binary form. Our applications target two large classes of binary

programs: benign COTS applications and malware. It is important to note that when dealing with

malware there exists an additional hurdle in that malware authors are highly motivated to avoid

security analysis. Thus, there often exists an arms race between obfuscation techniques being de-

veloped by malware authors that take advantage of limitations in state-of-the-art analysis, and new

analysis techniques being deployed to fix those limitations. Throughout this thesis, and specially

on the two applications dealing with malware in this thesis,namely active botnet infiltration and

vulnerability discovery, we discuss potential steps that malware authors may try to defeat them.

1.2 Applications and Techniques

In this section, we introduce the security applications addressed in this thesis and the techniques

that we have developed to enable them.

1.2.1 Active Botnet Infiltration

Botnets, large distributed networks of infected computersunder the control of an attacker, are one

of the dominant threats in the Internet. The number of compromised computers in the Internet

belonging to botnets, (i.e., the number of bots) ranges in the millions and a single botnet can grow

to over 12 million bots [45]. They produce 85% of the all the spam in the Internet [205] and enable

a wide variety of other abusive or fraudulent activities, such as click fraud and distributed denial-of-

service attacks.
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At the heart of a botnet is its command-and-control (C&C) protocol, used by the botmaster to

coordinate malicious activity. Understanding the C&C protocol used by a botnet reveals a wealth

of information about the capabilities of its bots and the overall intent of the botnet. In addition,

it enables analysts to actively interact with the botnet, byintroducing new messages or rewriting

existing messages in the C&C channel, what we callactive botnet infiltration.

Active botnet infiltration can be used to track over time the operations of the botnet and the

botmaster (i.e., the attacker that controls the botnet). Some examples of active botnet infiltration

are equipping a network intrusion detection system (NIDS) to perform deep packet inspection and

rewriting of the encrypted C&C protocol used by a botnet, andbuilding a fake bot that joins the

botnet and simulates the network behavior of a real bot, without the nasty side effects (e.g., without

sending spam). Once the botnet is infiltrated we can monitor its activities over time.

Problem overview. The main challenges for active botnet infiltration are the lack of a protocol

specification for the C&C protocol and the use of encrypted C&C protocols. Imagine that our

goal is to enable a network intrusion detection system (NIDS) to perform deep packet inspection

and rewriting of the undocumented and encrypted C&C protocol used by a botnet. To rewrite

an encrypted message from the botnet’s C&C protocol, the NIDS needs to be able to decrypt the

message, parse it to extract the underlying field structure,modify some field values, and re-encrypt

the message. For this, the NIDS requires access to the cryptographic information and the protocol

grammar, which are not commonly available.

In this thesis we propose techniques for inferring the grammar of an undocumented protocol

and for extracting the cryptographic information used to protect the protocol. The cryptographic

information comprises the decryption and encryption functions, and the session keys, while the

protocol grammar captures the information about the different messages in the protocol, the format

or field structure of each of those messages, and the semantics of each of the message fields.

Protocol reverse-engineering techniques can be used to infer the protocol specification of un-

known or undocumented protocols and file formats. But, current protocol reverse-engineering tech-

niques cannot analyze encrypted protocols and for unencrypted protocols they are manual [210,148,

72] or take as input network traces, which contain limited protocol information [10,52].

To address the issue of limited information in network traces, in this thesis we propose a new ap-

proach for automatic protocol reverse-engineering that leverages the fact that we often have access to

the executable of a program that implements the protocol. Our approach leverages rich information

about how the program processes the protocol data, not available in network traces, producing more

accurate results than approaches purely based on network traces. Our protocol reverse-engineering

techniques extract the message format and the field semantics of messages on both directions of the

communication, even when only one endpoint’s implementation of the protocol is available. This is
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of fundamental importance when analyzing a botnet’s C&C protocol as often we have access to the

bot program but not to the executable of the C&C server.

To analyze encrypted protocols, in this thesis we propose the first approach for automatic binary

code reuse, the process of automatically identifying the interface and extracting the instructions

and data dependencies of a code fragment from a program binary, so that it is self-contained and

can be reused by external source code. Reusing binary code isuseful because for many programs,

such as commercial-off-the-shelf applications and malware, source code is not available. It is also

challenging because binary code is not designed to be reusable even if the source code it has been

generated from is. Binary code reuse enables automatic protocol reverse-engineering for encrypted

protocols by extracting the cryptographic information needed to access the unencrypted data.

Intuition and approach. The intuition behind our automatic protocol reverse-engineering ap-

proach is that in absence of a specification, the richest information about the protocol is available in

the programs that implement the protocol and that we can infer the protocol from the implementa-

tion by running the program on protocol messages and monitoring how it processes them.

Our automatic protocol reverse-engineering approach is based on dynamic program binary anal-

ysis. We execute the program in a monitored environment, feed it protocol messages and analyze

how the program processes those input messages and how it builds the output messages that it sends

in response. From one execution of the program on a given message, our techniques can extract the

message format and infer the field semantics for the input message, as well as the output message

that may be sent in response. Thus, our automatic protocol reverse-engineering techniques extract

the message format and the field semantics of messages on bothdirections of the communication,

even when only one endpoint’s implementation of the protocol is available. The message format

captures the field structure of the message while the field semantics capture the type of data in the

field such as an IP address, a port number, or a filename.

The intuition behind our binary code reuse approach is that in many circumstances we do not

need to understand the low level details of a piece of binary code, we just need to understand its

goal and be able to reuse its functionality. For example, if we are interested in the unencrypted data

of an encrypted C&C message, we may not need to understand theencryption algorithm used to

protect the message, as long as we can reuse the decryption function and decrypt the message.

Our binary code reuse approach comprise three types of techniques: a technique for identify-

ing the entry point of the interesting functionality (e.g.,of the decryption function), an interface

identification technique to infer a C prototype for the pieceof binary code to reuse so that other

C programs can interface with it, and a code extraction technique that extracts the instructions and

data dependencies in the piece of binary code to reuse so thatit can be made stand-alone, without

dependencies to the rest of the program’s functionality. Our entry point and interface identification
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techniques use dynamic program binary analysis. Our code extraction technique uses a combina-

tion of static and dynamic analysis that includes techniques for hybrid disassembly [156], symbolic

execution [106], and jump table identification [39].

We use our entry point identification technique to identify encoding functions, which include

functions such as encryption and decryption, compression and decompression, and other types of

encoding. Once the encryption and decryption functions arelocated, we can apply our automatic

protocol reverse-engineering techniques on the unencrypted data. For example, we can apply our

message format extraction techniques for received messages on the output of the decryption func-

tion, rather than on the output of the network receive function, so that the data has already been

decrypted by the program. Using our interface identification and code extraction techniques we

extract the encryption and decryption functions and the session keys from the binary so that we can

give them to a NIDS that can use it to decrypt and rewrite network traffic.

Results. As an end-to-end example of how our automatic protocol reverse-engineering and binary

code reuse techniques enable active botnet infiltration, wehave analyzed the previously undocu-

mented, encrypted, C&C protocol used by MegaD, a prevalent spam botnet. We extract the C&C

protocol grammar and the cryptographic routines used to protect it, and use them for active botnet

infiltration, by enabling a NIDS to rewrite a capability report sent by a MegaD bot to make the

botmaster believe that the bot can send spam, while all outgoing spam is blocked.

We have evaluated our protocol reverse-engineering techniques on 6 protocols: the C&C pro-

tocol used by the MegaD botnet, for which we have no specification, as well as 5 open protocols:

DNS, FTP, HTTP, ICQ, and SMB. For the open protocols, we compare our results with the output of

Wireshark [227], a popular network protocol analysis tool, which ships with many manually-crafted

protocol grammars. Our results show that our message formatextraction and field semantics tech-

niques are accurate and produce results comparable to Wireshark. More importantly, our techniques

operate without knowledge about the protocol specification, a pre-requisite for Wireshark.

We have evaluated our binary code reuse techniques by extracting the encryption and decryption

routines used by two spam botnets, MegaD and Kraken, as well as the MD5 and SHA1 functions

from the OpenSSL library [165]. To show that we can reuse code fragments that are not complete

functions we also extract the unpacking functions from two samples of Zbot, a trojan, and use an

unpacking fragment from one sample as part of the routine to unpack the other sample. Finally, we

have applied software-based fault isolation [134] to the extracted code to prevent it from writing or

jumping outside their own isolated memory regions.
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Contributions.

• A new approach for automatic protocol reverse-engineering. We present a new approach

for protocol reverse-engineering using dynamic program binary analysis. Our approach lever-

ages the availability of a program binary that implements the protocol and infers the protocol

by monitoring how the program processes the input messages and generates the output mes-

sages. Compared to previous approaches that take as input network traces, our approach

infers more accurate information and can analyze encryptedprotocols.

• Message format extraction techniques.We propose techniques for extracting the field struc-

ture for messages both received and sent by an application. Our techniques identify hard-

to-find protocol elements such as length fields, delimiters,variable-length fields, multiple

consecutive fixed-length fields, and protocol keywords.

• Field semantics inference techniques.We propose techniques for inferring field semantics.

Our field semantics inference techniques leverage the rich semantic information available in

the publicly available prototype of well-known functions and instructions. Our techniques

infer the type of data that fields in the received and sent messages carry such as filenames, IP

addresses, timestamps, and error codes.

• A binary code reuse approach. We propose the first approach for automatic binary code

reuse, which enables automatically identifying the interface and extracting the instructions

and data dependencies of a code fragment from an executable program, so that it is self-

contained and can be reused by external code.

• Interface Identification techniques. We propose techniques to identify the interface of a

binary code fragment, without access to its source code. Theinterface captures the inputs and

outputs of the code fragment and enables reuse from externalsource code.

• Code extraction technique.We design a code extraction technique to extract the instructions

and data dependencies of a binary code fragment so that it is self-contained and can be reused

independently of the rest of the program’s functionality. Our code extraction technique uses a

combination of static and dynamic analysis and produces code that runs independently of the

rest of the program, can be easily instrumented, and can be shared with other users.

• Enabling active botnet infiltration. We demonstrate how our protocol reverse-engineering

and binary code reuse techniques enable active botnet infiltration by analyzing MegaD, a

prevalent spam botnet that uses a previously undocumented,encrypted C&C protocol. We

use our techniques to infer the C&C protocol grammar and to extract the cryptographic func-

tions and keys used to protect the communication. We deploy the protocol grammar and the

cryptographic information on a NIDS, enabling the NIDS to perform deep packet inspection
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and rewriting on the encrypted C&C traffic. We use the modifiedNIDS to rewrite a capability

report sent by the bot to the C&C server to state that the bot isable to send spam, when in

reality all spam sent by the bot is being blocked.

1.2.2 Deviation Detection

Different implementations usually exist for the same specification. Due to the abundance of coding

errors and specification ambiguities, these implementations usually containdeviations, i.e., dif-

ferences in how they check and process some of their inputs. Automatically finding inputs that

demonstrate these deviations is important for two applications: 1)error detection, since a deviation

may indicate that at least one of the two implementations hasan error, and 2)fingerprint generation,

since an input that triggers a deviation, when given to two different implementations, will result in

different output states.

For example, deviation detection is important for testing implementations of network protocols.

The Internet Standards process requires that two independent implementations of a protocol from

different code bases have been developed and tested for interoperability before advancing a pro-

tocol to Draft Standard [18]. Deviation detection can be used for interoperability testing or after

the implementations are deployed, since experience shows that even after interoperability testing,

differences still exist on how different protocol implementations handle some of the protocol inputs.

Deviation detection can help identify errors in the implementations of the specification, as well as

areas of the specification that are underspecified. For externally observable deviations, the inputs

deviation detection finds can be used by fingerprinting toolslike Nmap [162] to remotely identify

the implementations.

Problem overview. We propose a novel approach to automatically discover deviations between

different implementations of the same specification. We aregiven two implementationsP1 andP2

of the same specification and wish to find inputs such that the same input, when given to the two

implementations, will cause each implementation to resultin a different output state.

Each implementation at a high level can be viewed as a mappingfunction from the input space

I to the output state spaceS. Let P1, P2 : I → S represent the mapping function of the two

implementations from inputsx ∈ I, to output statess ∈ S resulting from processing the given

input. Our goal is to find an inputx ∈ I such thatP1(x) 6= P2(x). Finding such an input through

random testing is usually hard. However, in general it is easy to find an inputx ∈ I such that

P1(x) = P2(x) = s ∈ S , i.e., most inputs will result in the same output states for different

implementations of the same specification.
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Figure 1.3: Deviations occur when the inputs that produce states in an implementationP1 do not
exactly match the inputs that produce states in another implementationP2.

For example, given two implementations of a Web server, e.g., Apache [4] and MiniWeb [147],

implementing the same HTTP protocol specification [65], it is easy to find inputs (e.g., HTTP

requests) for which both servers, if configured similarly, will produce the same output state (e.g.,

an “HTTP 200 OK” response). However, it is not so easy to find deviations, inputs for which both

servers will produce different protocol output states suchas one server accepting the request and

the other rejecting it, or one server accepting the request and the other crashing while processing it.

Our approach finds such deviations.

Intuition and approach. The intuition behind our deviation detection approach is that the map-

ping functionP : I → S can be seen as a conjunction of boolean models, one for each output

states ∈ S, representing the set of inputsx such thatM s
1 (x) = true ⇐⇒ P1(x) = s.

If we have two such models for the same output states, one for each of two implementations

of the same specification, then a deviation is just an input that satisfies the following predicate:

(M s
1 ∧¬M s

2 )∨ (¬M s
1 ∧M s

2 ). Such an input is a deviation because it produces an output states for

one of the implementations and another output stater 6= s for the other implementation. Figure1.3

illustrates this situation. To find deviations, we propose techniques to extract the modelsM s
1 and

M s
2 and then use a decision procedure to query for inputs that satisfy (M s

1 ∧¬M s
2)∨ (¬M s

1 ∧M s
2 ).

We observe that the above method can still be used even when the extracted modelM s
P is

incomplete, i.e., whenM s
1 (x) = true =⇒ P1(x) = s but the converse is not necessarily true.

In this case the model may not cover all possible inputs that reach states. We have observed that

we are able to find deviations, even when our models cover onlya single program execution path

leading to states. In that case, the modelM s
P represents the subset of inputs that would follow that

particular execution path and still reach the output states. Thus,M s
P (x) = true ⇒ P (x) = s,

since if an input satisfiesM s
P then for sure it will make programP go to states, but the converse

is not necessarily true—an input which makesP go to states may not satisfyM s
P . In our problem,
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this means that the difference betweenM s
1 andM s

2 may not necessarily result in a true deviation.

Instead, the difference betweenM s
1 andM s

2 is a good candidate to trigger a deviation. To verify

that the candidate input indeed triggers a deviation, our approach sends such candidate inputs to

the two programs and monitors their output states. If the twoprograms end up in two different

output states, then we have successfully found a deviation between the two implementations, and

the corresponding input that triggers the deviation.

The output state needs to be externally observable. We use two methods to observe the output

state: (a) monitoring the output of the program (e.g., the network traffic), and (b) supervising its

environment, which allows us to detect unexpected states such as program halt, reboot, crash, or

resource starvation. We may use some domain knowledge aboutthe application to determine when

two output states are different. For example, when finding differences between two Web servers we

may use the Status-Code in the HTTP response to identify the output state of the Web server after

processing a given HTTP request.

Results. We have designed and implemented model extraction techniques that produce models

covering a single execution path in the program, and found that such models are surprisingly effec-

tive at finding deviations between different implementations of the same functionality.

We have evaluated our approach using 3 HTTP server implementations and 2 NTP server im-

plementations. Our approach successfully identifies deviations between the different server imple-

mentations for the same protocol and automatically generates inputs that trigger different server

behaviors. These deviations include errors and differences in the interpretation of the protocol spec-

ification. For example it finds an HTTP request that is accepted by the MiniWeb Web server with a

“HTTP/1.1 200 OK” response, while it is rejected by the Apache Web server with a “HTTP/1.1 400

Bad Request” response. Such deviation is due to an error in the MiniWeb server that fails to verify

the value of the first byte in the URL. The evaluation shows that our approach is accurate: in one

case, the relevant part of the input that triggers the deviation is only three bits.

Contributions.

• A new approach for automatic deviation detection: We propose an approach to auto-

matically discover deviations in the way that two implementations of the same specification

process their inputs. Our approach automatically extractsmodels for each implementation

and then queries a solver to obtain inputs that will cause each implementation to result in

a different output state. One fundamental advantage of our approach is that it does not re-

quire a manually-generated model of the specification, which is often complex, tedious, and

error-prone to generate.
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• Single-path model extraction techniques: We propose dynamic symbolic execution tech-

niques to extract models that cover a single execution path in the program. Our model extrac-

tion techniques work directly on program binaries. By automatically building models from

an implementation, our models are precisely faithful to theimplementation.

• Enabling error detection and fingerprint generation using deviation detection: We im-

plement our deviation detection approach and use it to find deviations between multiple im-

plementations of two popular network protocols: HTTP and NTP. We show that such devi-

ations flag implementation errors that need to be fixed, as well as areas of the specification

that are underspecified. In addition, the inputs that trigger the deviation can be used as finger-

prints to remotely identify the different implementations. Compared to previous approaches,

our approach significantly reduces the number of inputs thatneed to be tested to discover a

deviation.

1.2.3 Generating Filtering-Failure Attacks for Web Applications

There exists a broad class of security issues where a filter, intended to block malicious inputs des-

tined for an application, incorrectly models how the application interprets those inputs. Afiltering-

failure attackis an evasion attack where the attacker takes advantage of those differences between

the filter’s and the application’s interpretation of the same input, to bypass the filter and still com-

promise the application.

One important class of filtering-failure attacks that we investigate in this thesis arecontent-

sniffing cross-site scripting attacks, a class of cross-site scripting (XSS) attacks in which the attacker

uploads some malicious content to a benign Web site (e.g., a research paper uploaded to a conference

management system). The malicious content looks benign to the content filter used by the Web site

(e.g., looks like a PostScript document) and is accepted by the Web site but, when the malicious

content is accessed by a user (e.g., a reviewer for the conference), it is interpreted as HTML by the

user’s Web browser (i.e., rather than as a PostScript document). We call such contentschameleon

documents and show an example in Figure1.4. Thus, the attacker can run JavaScript, embedded in

the malicious content, in the user’s Web browser in the context of the site that accepted the content.

For the conference management system example, this means that when the reviewer downloads

the research paper for evaluation, the research paper can automatically execute JavaScript, that the

malicious author embedded in it, on the reviewers’ computer. That JavaScript code can submit back

to the conference management system a high score review, without the reviewer’s knowledge. Thus,

an attacker can use a content-sniffing XSS attack to create research papers that review themselves.

Another example of a filtering-failure attack is a network intrusion detection system (NIDS),

which deploys a vulnerability signature to protect some unpatched application. If the signature
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%!PS-Adobe-2.0
%%Creator: <script> ... </script>
%%Title: attack.dvi

Figure 1.4: A chameleon PostScript document that Internet Explorer 7 treats as HTML.

incorrectly models which network inputs exploit the vulnerability in the application, then an attacker

can potentially construct a network input that is not matched by the NIDS’ signature but still exploits

the application.

Problem overview. Our goal is to automatically find content-sniffing XSS attacks, which are

inputs that if uploaded to a benign Web site that takes external content will be accepted by the filter

the Web site runs on all uploaded content. When the user downloads it from the Web site, the

user’s Web browser will interpret the content as privileged(e.g.,text/html). Thus, any executable

code (e.g., JavaScript) embedded by the attacker in the content will be executed by the user’s Web

browser in the context of the benign Web site.

For compatibility, every Web browser employs acontent-sniffing algorithmthat takes as input

the payload of an HTTP response, the URL of the request, and the response’sContent-Typeheader,

and produces as output a MIME type for the content in the HTTP response. That MIME type

may differ from the one provided by the server in theContent-Typeheader and is used by the Web

browser to invoke an application to handle the content such as the image viewer forimage/jpegor

Adobe’s PDF viewer plugin forapplication/pdf. The content-sniffing algorithm is needed because

approximately 1% of all HTTP responses either lack aContent-Typeheader or provide an incorrect

value in that header [9].

To find content-sniffing XSS attacks, we model the Web site’s upload filter as a boolean predi-

cate on an input (Maccepted
filter (x)), which returns true if the inputx is considered safe (i.e., accepted)

and false if the input is considered dangerous (i.e., rejected). We model the content-sniffing al-

gorithm in the user’s Web browser as a deterministic multi-class classifier that takes as input the

payload of an HTTP response, the URL of the request, and the response’sContent-Typeheader, and

produces as output a MIME type. This multi-class classifier can be split into binary classifiers, one

per MIME type returned by the content-sniffing algorithm. Each binary classifier is a boolean pred-

icate that returns true if the payload of the HTTP response isconsidered to belong to that MIME

type and false otherwise (e.g.,Mhtml
csa (x)). To find content-sniffing XSS attacks, we only need to

model the binary classifiers for MIME types that can contain active content. Thus, we can model

the Web browser’s content-sniffing algorithm as a binary classifier that returns true if the content is

consideredtext/html: Mhtml
csa (x). To find a content-sniffing XSS attack we construct the following
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query: Maccepted
filter (x) ∧ Mhtml

csa (x). If the solver returns an input that satisfies such query, then we

have found a content-sniffing XSS attack.

Intuition and approach. The intuition behind our approach is that different contents have dif-

ferent privilege levels in the Web browser withtext/htmlhaving the highest privilege since it can

execute script. An attack is possible because the website’supload filter has a different view than the

user’s Web browser about which content should be consideredprivileged. This discrepancy often

occurs due to a lack of information by the website’s developers about the content-sniffing algorithm

in the Web browser. In particular for Web browsers such as Internet Explorer and Safari, the content-

sniffing algorithm is closed-source and there is little documentation about its inner workings. Thus,

filter developers are forced to infer how the content-sniffing algorithm interprets different contents.

To overcome this problem we can extract models of the content-sniffing algorithm directly from

the Web browser’s binary, without access to its source code.Our model extraction approach builds

high-coverage models using white-box exploration techniques, which explore multiple execution

paths inside a program by feeding an input to the program, generating a path predicate for the

execution of the program on the input using dynamic symbolicexecution, querying a solver for an

input that traverses a different path, and iterating by sending the new input to the program so another

path is explored. We focus the exploration on a fragment of binary code (e.g., the content-sniffing

algorithm) rather than the whole program and produce a modelthat is the disjunction of all the path

predicates.

An important characteristic of many security applications, such as the content-sniffing algorithm

in a Web browser, an IDS signature matching engine, or a host filter to block inappropriate Web

content, is that they rely heavily on string operations. Current white-box exploration techniques [78,

33, 79] are not efficient at dealing with such applications becausethey contain a large number of

loops, potentially unbounded if they depend on the input. Each loop iteration introduces a number

of constraints in the path predicate, which can grow very large, creating a huge exploration space.

To improve the coverage of the exploration per unit of time, we proposestring-enhanced white-box

exploration, an extension to current white-box exploration techniquesthat increases the coverage

for programs that heavily use strings operations by reasoning directly about strings, rather than

individual bytes that form the strings.

In a nutshell, our string-enhanced white-box exploration comprises four steps. First, it replaces

constraints generated inside string functions with constraints on the output of those string functions.

Then, the constraints on the output of the string functions are translated into abstract string operators.

Next, it translates the abstract string operators into a representation that is understood by an off-the-

shelf solver that supports a theory of arrays and integers. Finally, it uses the answer of the solver to

build an input that starts a new iteration of the exploration.
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Results. We generate content-sniffing XSS attacks by extracting high-coverage models of four

applications: the content-sniffing algorithms used by two popular Web browsers, Internet Explorer 7

and Safari 3.1, and the upload filters used by two popular Web applications: MediaWiki [135], an

open-source wiki application used by many sites including Wikipedia [224], and HotCRP [87], an

open-source conference management application. We extract the model of both upload filters using

manual analysis of the source code. For Internet Explorer 7 and Safari 3.1, which use closed-source

content-sniffing algorithms, we extract the model using ourstring-enhanced white-box exploration

technique on the Web browsers’ binaries.

Using these models we are able to identify previously unknown content-sniffing XSS attacks

affecting both MediaWiki and HotCRP. For MediaWiki, we find that there exists at least 6 different

MIME types for which an attacker could build achameleondocument that will be accepted by

MediaWiki as being from a safe MIME type, but interpreted as HTML by Internet Explorer 7.

Similarly, there exists 6 MIME types for which content-sniffing XSS attacks are possible if the user

downloads the content using Safari 3.1. We have disclosed these issues to MediaWiki’s developers,

which have confirmed and fixed them. Furthermore, we find that the attacks are due to the use by

MediaWiki’s upload filter of the MIME detection functions ofPHP, which means that other sites

that also use PHP’s MIME detection functions in their uploadfilter could also be affected. For

HotCRP, we find that an attacker could build chameleon PostScript or PDF documents that would

be accepted by the HotCRP Web application and interpreted asHTML by Internet Explorer 7. Thus,

an attacker could create a research paper that reviews itself.

Contributions.

• Multi-path model extraction using string-enhanced white-box exploration: We propose

a new approach to generate high-coverage models for a fragment of binary code. Our ap-

proach uses string-enhanced white-box exploration, an extension to white-box exploration

that significantly increases the coverage that the exploration achieves per unit of time on

programs that heavily use string operations. The coverage increase is obtained by reason-

ing directly about the string operations performed by the program, rather than the byte-level

operations that comprise them.

• Enabling finding content-sniffing XSS attacks: We implement our multi-path model ex-

traction technique and use it to extract models of the closed-source content-sniffing algorithms

for two popular Web browsers: Internet Explorer 7 and Safari3.1. Using those models we per-

form the first systematic study of content-sniffing XSS attacks and find previously unknown

attacks that affect two popular Web applications: MediaWiki and HotCRP.
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Figure 1.5: The vulnerability point reachability predicate (VPRP) captures the inputs that reach
the vulnerability point. A vulnerability-based signatureis the conjunction of the VPRP and the
vulnerability condition (VC).

1.2.4 Protocol-Level Vulnerability-Based Signature Generation

Software vulnerabilities are prevalent with over 4,500 newpublicly disclosed vulnerabilities in

2009 [205,56]. One popular defense mechanism for software vulnerabilities, widely deployed in in-

trusion protection and detection systems, issignature-based input filtering, which matches program

inputs against a set of signatures, flagging matched inputs as attacks.

Compared to software patches, signature-based input filtering can respond to attacks faster,

within minutes instead of the hours, days, or even years it can take to generate and test a software

patch. For example, Symantec reports that 14% of all new vulnerabilities in Web browsers found

in 2009, and 18% of all new vulnerabilities in Web browsers found in 2008, remain unpatched

as of April 2010 [205]. Moreover, for legacy systems where patches are no longer provided by

the manufacturer, or critical systems where any changes to the code might require a lengthy re-

certification process, signature-based input filtering is often the only practical solution to protect the

vulnerable program.

Problem overview. Many different approaches for signature-based input filtering have been pro-

posed. Particularly attractive arevulnerability-based signatures[218, 47, 21], which are based on

the properties of the vulnerability, rather than on the properties of the exploits for the vulnerability.

This is important because many different inputs may exploita vulnerability and there exists tools

like Metasploit [137] that can automatically generate exploit variants for a vulnerability.

A vulnerability is a point in a program where execution might“go wrong”. We call this point

thevulnerability point. A vulnerability is only exploited when a certain condition, thevulnerability

condition (VC), holds on the program state when the vulnerability point is reached. Thus, for an

input to exploit a vulnerability, it needs to satisfy two conditions: (1) it needs to lead the program
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execution to reach the vulnerability point, and (2) the program state needs to satisfy the vulnerability

condition at the vulnerability point. We call the conditionthat denotes whether an input message

will make the program execution reach the vulnerability point thevulnerability point reachability

predicate(VPRP). Figure1.5 illustrates the VPRP and VC for a vulnerability. Thus, the problem

of automatically generating a vulnerability-based signature can be decomposed into two: identi-

fying the vulnerability condition and identifying the vulnerability point reachability predicate. A

vulnerability-based signature is simply the conjunction of the two.

We call a vulnerability-based signature that captures all inputs that would exploit the vulner-

ability complete. Such a signature produces zero false negatives, i.e., it matches all exploits for

the vulnerability. We call a vulnerability-based signature that only matches inputs that exploit the

vulnerability sound. Such a signature produces zero false positives, i.e., it does not match benign

inputs. Aperfectvulnerability-based signature is a signature that is both complete and sound. The

goal of a vulnerability-based signature generation methodis to produce perfect signatures. In ad-

dition to producing perfect signatures, given the rate at which vulnerabilities are discovered and

that manual signature generation is slow and error-prone, vulnerability-based signature generation

methods also need to be automated.

Vulnerability-based signature generation methods work bymonitoring the program execution

and analyzing the actual conditions needed to exploit the vulnerability and can guarantee a zero

false positive rate [47,21,46]. Early approaches are limited in that they only capture a single path

to the vulnerability point (i.e., theirvulnerability point reachability predicatecontains only one

path). However, the number of paths leading to the vulnerability point can be very large, sometimes

infinite. Thus, such signatures are easy to evade by an attacker with small modifications of the

original exploit message, such as changing the size of variable-length fields, changing the ordering

of the fields (e.g., permuting the order of the HTTP headers),or changing field values that drive the

program through a different path to the vulnerability point.

Recognizing the importance of enhancing the coverage of vulnerability-based signatures, recent

work tries to incorporate multiple paths into the vulnerability point reachability predicate either by

static analysis [23], or by black-box probing [46,55]. However, due to the challenge of precise static

analysis on binaries, the vulnerability point reachability predicates generated using static analysis

are too big [23]. And, black-box probing techniques [46,55], which perturb the original exploit input

using heuristics such as duplicating or removing parts of the input message or sampling certain field

values to try to discover new paths leading to the vulnerability point, are highly inefficient and

limited in their exploration. Hence, they generate vulnerability point reachability predicates with

low coverage.
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Thus, a key open problem for generating vulnerability-based signatures is how to generate vul-

nerability point reachability predicates with high coverage and in a compact form. In this thesis, we

proposeprotocol-level constraint-guided exploration, a new approach to generate high-coverage,

yet compact, VPRPs, which capture many paths to the vulnerability point.

Intuition and approach. To create high-coverage VPRPs, our protocol-level constraint-guided

exploration approach leverages white-box exploration. But, programs that parse complex, highly-

structured inputs are challenging for white-box exploration techniques because the parsing intro-

duces a large number of execution paths. Thus, the exploration spends an enormous amount of time

exploring those paths, and it does not effectively explore the program state after the parsing has

finished. To address this problem, previous work proposed a compositional approach that generates

higher-level path predicates that work on symbolic grammartokens returned by the parser, instead

of symbolic input bytes [77].

Such approach works well with programs where the parsing of the inputs is well-separated

from the remaining functionality such as compilers and interpreters. But, programs that parse net-

work and file specifications often do not have well-separatedparsing and processing stages. The

intuition behind our protocol-level constraint-guided exploration approach is that when such clean

separation does not exist, the protocol specification (publicly available or extracted using protocol

reverse-engineering techniques) can be used to identify the constraints introduced by the parsing

process, i.e., theparsing constraints. The parsing constraints can be removed from the path predi-

cate, introducing field symbols as the output of those parsing constraints, so that the generated path

predicates operate on field symbols, rather than byte symbols.

In addition to the reduction in the number of paths to be explored, lifting the byte-level path

predicates to field-level path predicates solves another important problem for vulnerability-based

signatures. Path predicates that operate on byte symbols match only inputs that have exactly the

same format than the input used to collect the path predicate. Without lifting the byte-level path

predicates to field-level path predicates, the resulting signature would be very easy to evade by an

attacker by applying small variations to the format of the exploit message. For example, without

lifting the path predicates, the resulting VPRP would not match exploit variants where the variable-

length fields have a different size.

In addition to using the protocol information, our approachalso merges execution paths to

further reduce the exploration space. As the exploration progresses, new discovered paths that reach

the vulnerability point need to be added to the VPRP. A simpledisjunction (i.e., an enumeration)

of all paths leading to the vulnerability point would introduce many duplicated constraints into

the VPRP, where every duplicated constraint effectively doubles the exploration space. Thus, the

exploration space could increase exponentially. To avoid this we construct an exploration graph as
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the exploration progresses and use it to identify potentialmerging points. As a side benefit, merging

paths also reduces the size of the resulting VPRP.

Results. We have used our approach to generate signatures for 6 vulnerabilities on real-world

programs. The vulnerable programs take as input file formatsas well as network protocols, run on

multiple operating systems, and encompass both open-source and closed programs. Our approach

is successful at removing the parsing constraints. In the four vulnerable programs that include

variable-length strings, the removed parsing constraintsaccounted for 92.4% to 99.8% of all con-

straints in the byte-level path predicates.

The generated signatures achieve perfect or close-to-perfect results in terms of coverage. Using

a 6 hour time limit for the exploration, our approach discovered all possible paths to the vulnerability

point for 4 out of 6 vulnerabilities, thus generating a complete VPRP. For those four signatures, the

generation time ranges from under one minute to 23 minutes. In addition, the number of constraints

in the resulting VPRP is in most cases small. The small numberof constraints in the VPRP and the

fact that in many cases those constraints are small themselves, makes most of the signatures easy

for humans to analyze.

Contributions.

• Extracting vulnerability point reachability predicates u sing protocol-level constraint-

guided exploration: We propose a new approach for automatically generating vulnerability

point reachability predicates that capture many paths to the vulnerability point. Our approach

uses protocol-level constraint-guided exploration, a technique that leverages the availability

of a protocol specification to lift byte-level path predicates to field-level path predicates. In

addition, it merges program paths to avoid an explosion in the exploration space. Our ap-

proach significantly reduces the number of paths that need tobe explored and enables the

generation of harder to evade signatures.

• Enabling high-coverage vulnerability-based signature generation: We implement our

protocol-level constraint-guided exploration techniqueand use it to generate vulnerability-

based signatures for 6 real-world vulnerabilities. Our signatures have high coverage, achiev-

ing perfect coverage in 4 out of 6 cases. The increase in coverage translates into signatures

that are more difficult to evade by attackers. In addition, the generated signatures are often

small and can be analyzed by humans more easily than the signatures generated by previous

approaches.
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Figure 1.6: Common input processing. Current input generation techniques have trouble creating
inputs that reach the processing stage.

1.2.5 Finding Bugs in Malware

Given the prevalence of software defects, vulnerability discovery has become a fundamental secu-

rity task. It identifies software bugs that may be remotely exploitable and creates program inputs

that demonstrate their existence. So far, vulnerability discovery has focused onbenignprograms and

little research has addressed vulnerabilities inmalwareprograms that the attacker installs in compro-

mised computers. However, malware vulnerabilities have a great potential for different applications

such as malware removal, malware genealogy, as a capabilityfor law enforcement agencies, or as a

strategic resource in state-to-state cyberwarfare.

For example, some malware programs such as botnet clients are deployed at a scale that rivals

popular benign applications: the recently-disabled Mariposa botnet was sending messages from

more than 12 million unique IP addresses at the point it was taken down, and stole data from more

than 800,000 users [45]. A vulnerability in a botnet client could potentially be used to notify the user

of infection, to terminate the bot, or even to clean the infected host. However, some of the potential

applications of malware vulnerabilities raise ethical andlegal concerns that need to be addressed

by the community. While our goal in this research is demonstrating that finding vulnerabilities

in widely-deployed malware such as botnet clients is technically feasible, we also hope that this

work helps in raising awareness and spurring discussion in the community about the positives and

negatives of the different uses of malware vulnerabilities.

Problem overview. Dynamic symbolic execution techniques [106] have recently been used for

automatic generation of inputs that explore the execution space of a program for a variety applica-
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tions such as vulnerability discovery [78,33,79] and automatic exploit generation [22,104]. How-

ever, traditional dynamic symbolic execution (as well as other input generation techniques such as

mutation fuzzing [63, 145] or taint-directed fuzzing [74]) is ineffective in the presence of certain

operations such as the decryption and decompression of data, and the computation of checksums

and hash functions; we call theseencoding functions. Encoding functions can generate symbolic

models that are difficult to solve, which is not surprising, given that some of these functions, e.g.,

cryptographic hash functions, are designed to be infeasible to invert.

Encoding functions are used widely in malware as well as benign applications. For example,

malware will often decrypt the received network traffic, decompress its contents, and verify the

integrity of the data using a checksum. This process is illustrated in Figure1.6. In dynamic sym-

bolic execution, those operations are expanded into a complex combination of constraints that mix

together the influence of many input values and are hard to reason about [59]. The solver cannot

easily recognize the high-level structure of the computation, such as that the internals of the decryp-

tion and checksum functions are independent of the message parsing and processing that follows.

To address the challenges posed by the encoding functions, we proposestitched dynamic symbolic

execution, a new approach to perform input generation in the presence of hard-to-reason operations.

Intuition and approach. The intuition behind our stitched dynamic symbolic execution approach

is that it is possible to avoid the problems caused by encoding functions, by identifying and bypass-

ing them to concentrate on the rest of the program execution.Stitched dynamic symbolic execution

first decomposes the symbolic constraints from the execution, separating the (hard) constraints gen-

erated by each encoding function from the (easier) constraints in the rest of the execution. The

solver does not attempt to solve the constraints introducedby the encoding functions. It solves

the constraints from the remainder of the execution and thenre-stitches the solver’s output, using

the encoding functions (e.g., computing the checksum for the partial input) or their inverses (e.g.,

encrypting the partial input), into a complete program input.

In a nutshell, our approach proceeds in two phases. As a first phase, it identifies encoding

functions and their inverses (if applicable). For identifying encoding functions, we perform a type

of dynamic taint analysis that detects functions that highly mix their input, i.e., where an output byte

depends on many input bytes. The intuition is that high mixing is what makes constraints difficult

to solve. To identify the inverses, we use the intuition thatencoding functions and their inverses

are often used in concert, so their implementations can often be found in the same binaries or in

widely-available libraries (e.g., OpenSSL [165] or zlib [240]). We propose a technique that given

an encoding function tests whether its inverse is present ina set of functions.

Then in the second phase, our approach augments traditionalwhite-box exploration by adding

decomposition and re-stitching. On each iteration of exploration, we decompose the generated
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constraints to separate those related to encoding functions, and pass the constraints unrelated to

encoding functions to a solver. The constraint solution represents a partial input; the approach then

re-stitches it, with concrete execution of encoding functions and their inverses, into a complete input

used for a future iteration of exploration.

Results. We have implemented our approach and have used it to perform the first automated study

of vulnerabilities in malware. Our approach finds 6 bugs in 4 prevalent malware families that include

botnet clients (Cutwail, Gheg, and MegaD) and trojans (Zbot). A remote network attacker can use

these bugs to terminate or subvert the malware. We demonstrate that at least one of the bugs can

be exploited to take over the compromised host. We also find aninput that cleanly exits a MegaD

bot. Suchkill commands may not be bugs but can still be used to disable the malware. They are

specially interesting because their use could raise fewer ethical and legal questions than the use of

an exploit would.

To confirm the value of our approach, we show that traditionaldynamic symbolic execution is

unable to find most of the bugs we report without our decomposition and re-stitching techniques, and

that it takes significantly longer for those it finds. In addition, we use an array of variants from each

of the malware families to test how prevalent over time the vulnerabilities are. The bugs reproduce

across all tested variants. Thus, the bugs have persisted across malware revisions for months, and

even years. These results are important because they demonstrate that there are components in bot

software, such as the encryption functions and the C&C parsing code that tend to evolve slowly over

time and thus could be used to identify the family to which an unknown binary belongs.

Contributions.

• A new approach for input generation in the presence of hard-to-reason operations: We

propose stitched dynamic symbolic execution, a new approach to enable input generation

in the presence of encoding functions that introduce hard-to-solve constraints. We describe

techniques to identify the encoding functions and their inverses, to decompose a symbolic

execution separating the hard constraints from the encoding functions from the easier con-

straints from the rest of the execution, and to re-stitch thepartial input output by the solver

into a complete program input.

• Enabling finding bugs in malware: We implement our approach and use it to perform the

first automated study of vulnerabilities in malware. We find 6bugs in 4 prevalent malware

families that a remote attacker can use to terminate or subvert the malware. At least one of the

bugs can be exploited to take over the compromised host. We show that traditional dynamic

symbolic execution is unable to find most of these bugs and that it takes significantly longer
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for those it finds. In addition, we show that the bugs persist across malware revisions for

months, and even years.

1.3 Thesis Outline

This thesis is organized in five parts. PartI introduces the problems addressed in this thesis. It

comprises this introductory chapter as well as Chapter2, which presents background information

on dynamic program binary analysis and the blocks that this thesis builds upon. Our techniques are

described in three parts that correspond to the main modulesof functionality we have developed.

In PartII , we describe our protocol reverse-engineering techniques, which comprise techniques for

message format extraction, field semantics inference, and grammar extraction. Then, in PartIII , we

describe our binary code reuse techniques, which comprise techniques for interface identification

and code extraction.

Next, in PartIV, we describe our model extraction techniques. This part comprises four chap-

ters. Chapter5 presents single-path model extraction techniques for deviation detection. Chapter6

describes string-enhanced white-box exploration, an extension to previous white-box exploration

techniques for extracting models of programs that use string operations, and applies those multi-

path model to finding content-sniffing XSS attacks. Chapter7 details protocol-level constraint-

guided exploration, an extension to white-box explorationfor extracting models of programs that

parse highly structured inputs, and applies it to generating high-coverage vulnerability point reacha-

bility predicates. Chapter8 presents stitched dynamic symbolic execution, an approachthat enables

dynamic symbolic execution in the presence of complex encoding functions such as encryption and

hashing, and applies it for finding bugs in real-world malware that uses such encoding functions.

We finalize in PartV where we provide further discussion and our concluding remarks.



Chapter 2

Dynamic Program Binary Analysis

2.1 Introduction

In this thesis we develop dynamic program binary analysis techniques. Dynamic program analysis

is the process of automatically analyzing the behavior of a program from its execution on a set of

inputs, called test cases. Dynamic program analysis uses white-box techniques that monitor the pro-

gram’s internals, as opposed to black-box techniques that also run the program on inputs but focus

on input-output relationships without any knowledge of theprogram’s inner workings. Dynamic

program analysis leverages the program’s internals to achieve finer-grained and more accurate anal-

ysis than black-box techniques.

Program analysis requires access to the program in either source code or binary form. In this

thesis, we focus in the common scenario where the program source code is not available but the

program binary is. Malware and commercial-off-the-shelf (COTS) programs are two large classes

of programs where an external analyst only has access to the program binary. In addition to not

requiring access to the program’s source code, other benefits of using the program binary are that

the analysis is independent of the programming language, programming style, and compiler used

to create the program; it has high fidelity because the program binary is what gets executed; and it

does not require cooperation from the program authors.

Binary analysis. Binary code is different than source code. Thus, we need to adapt and develop

program analysis techniques and tools that are suitable forbinary code. One challenging difference

is that binary code lacks high-level abstractions present in source code such as:

• Functions. The source-level concept of a function is not directly reflected at the binary code

level, since functions at the source level can be inlined, split into non-contiguous binary code

25
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fragments, or can exit using jumps instead of return instructions (e.g., due to tail-call opti-

mizations).

• Variables. There are no variables at the binary level. Thereare only registers and memory.

Some limited size information can be obtained from the length of the instructions operands

(8, 16, 32, 64 bit) but there is no explicit information aboutlarger structures.

• Types. Data at the binary level has no explicit type information. At the binary level type

information needs to be inferred from external information. For example, strings do not exist

at the binary level. Furthermore, there is no concept of a source-level buffer at the binary

level. A buffer at the binary level is just a contiguous sequence of bytes in memory and the

only real boundaries in memory are pages. This makes concepts such as buffer overflows

hard to define without knowledge about higher-level semantics given by the source code.

Dynamic analysis. The main advantage of dynamic program binary analysis over static program

binary analysis (dynamic analysis and static analysis, forshort) is that dynamic analysis can exam-

ine the exact run-time behavior of the program, without approximations or abstractions. Dynamic

analysis has access to the executed instructions as well as the content of the instruction’s operands.

Thus, there is no control flow uncertainty even if the programis packed, encrypted or heavily uses

indirection, and there is no uncertainty on which memory addresses are accessed (i.e., no mem-

ory aliasing). In addition, dynamic analysis can analyze the interactions of the program with the

operating system and external libraries.

The main limitation of dynamic analysis is that an executioncovers only one path in the pro-

gram. To address this limitation the program must be executed on a variety of test cases that make

the program exhibit its full behavior. The extent of the program’s behavior exhibited on the test cases

over the program’s set of possible behaviors is calledcoverage. Coverage can be measured using

different metrics such as the percentage of all instructionor paths executed [11]. In Section2.4we

introduce white-box exploration techniques, which automatically generate test cases that increase

the coverage of the program.

This thesis deals predominantly with dynamic analysis. However, dynamic and static analysis

have properties that complement each other. Static analysis can give more complete results as it

covers different execution paths and dynamic analysis can address many of the challenges of static

analysis such as pointer aliasing or indirect jumps. Thus, at times we combine them together to

leverage the benefits of both. We expect that the combinationof dynamic and static analysis will

become prevalent in the near future.
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Offline analysis. Dynamic analysis techniques can work online, as the programexecutes, or of-

fline, on information logs collected during execution. All the novel dynamic binary analysis tech-

niques proposed in this thesis work offline. We present the different information logs we collect

during program execution in Section2.3. The most important of these execution logs areexecution

traces, which capture instruction-level information. Offline dynamic analysis has the benefit that all

needed information is recorded during execution. This enables the analysis to be rerun many times

over the same execution logs without new non-deterministicbehavior being introduced in each exe-

cution. In addition, execution logs can be easily shared with other analysts. The main disadvantages

compared to online analysis is that the logs collected during program execution can grow very large

and that their collection can significantly slow down execution.

Architecture. Although we design our dynamic program binary analysis techniques to be as gen-

eral as possible, the focus on this thesis is on the x86 (32-bit) architecture, by far the most prevalent

architecture for personal computers (PCs), with over one billion installed PCs worldwide [196] and

over a million new ones being shipped each day [51]. Our techniques work on x86 binaries and do

not require the availability of source code or any debugginginformation in the binaries.

The remainder of this chapter is structured as follows. Section 2.2 presents the previously-

available building blocks used in this thesis. Section2.3presents the execution logs gathered during

program execution, which are the input to the offline dynamicanalysis techniques. Finally, Sec-

tion 2.4provides background information on previously-proposed dynamic program binary analysis

techniques that our techniques build on.

2.2 Building Blocks

In this section we provide background information on the four previously-available building blocks,

shown at the bottom of Figure1.1, that this thesis builds on: an emulator with taint propagation

capabilities (TEMU) [238], an static analysis platform that provides a translation from x86 instruc-

tions to an intermediate representation (Vine) [19], a set of static disassemblers [230, 90], and a

constraint solver [73].

TEMU. TEMU is a dynamic analysis platform that enables user-defined, instruction-level execu-

tion monitoring and instrumentation [238]. TEMU is implemented on top of the QEMU open-source

whole-system emulator and virtualizer [180]. As a whole-system emulator, QEMU uses dynamic

translation to run an entire guest system, including the operating system and applications, made for

one architecture (e.g. ARM) on a different host architecture (e.g. x86). As a virtualizer, QEMU can
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Figure 2.1: Architecture of the execution monitor used to generate the execution logs. The modules
in gray were previously available.

be used to run an unmodified guest operating system (e.g., Windows) inside another host operating

system (e.g., Linux) providing good isolation between the host and the guest systems.

TEMU provides three main components on top of QEMU. First, itprovides an introspection

module for extracting information from the operating system of the guest system such as the pro-

cess and thread identifiers for the current instruction, thebase address and size of a module that has

been loaded in memory (i.e., an executable or dynamically linked library), and the list of processes

running in the guest system. Currently, TEMU can extract information from Windows 2000, Win-

dows XP, and Linux operating systems. Second, TEMU providesa module that implements taint

propagation [38,47,49,160,204]. Taint propagation is a data-flow technique where data froma taint

source (e.g, network data, a keystroke, or a file) is marked with additional taint information that is

propagated along with the data, as the data moves through thesystem (e.g., into memory, registers,

or the file system). TEMU’s taint propagation module supports taint across different processes as

well as tainting across memory swapping and the file system. Third, TEMU provides a clean inter-

face (API) for user-defined activities. Using this API, users can write custompluginsthat monitor or

instrument the execution including the kernel as well as thedifferent user-level processes. The API

provides the plugin with important functionality for monitoring and instrumenting the execution

such as reading or writing the system’s registers and memory, querying the operating system infor-

mation provided by the introspection module, saving and restoring the state of the emulated system,

defining new taint sources, and querying or setting the taintinformation of memory and registers. It

also provides callback functions for different system events such as a new block or instruction being

executed, a new process being created, or a process loading amodule in its address space.

The plugin architecture makes TEMU an extensible platform for monitoring and instrumenting

the execution of a system. In this thesis we develop a plugin called Tracecapthat enables saving

detailed information about the execution for offline analysis. The execution logs produced by Trace-

cap include execution traces with instruction-level information, process state snapshots taken at a

some point in the execution, and logs of the heap allocationsrequested by a process. We use the
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Figure 2.2: Vine architecture. Gray modules were previously available.

termexecution monitorthroughout this thesis to refer to the combination of TEMU and Tracecap.

Figure2.1presents the architecture of the execution monitor. We describe Tracecap’s functionality

in Section2.3. A more detailed description of TEMU is available at [199].

Vine. Vine is a static analysis platform that can translate assembly to a formally specified inter-

mediate representation (IR), called the Vine intermediatelanguage, and provides a set of common

static analysis techniques that operate on the Vine intermediate language such as creating control

flow graphs (CFGs) [151], transforming statements from the Vine language into Single Static As-

signment (SSA) form [151], symbolic execution [106], value set analysis (VSA) [8], computing

weakest pre-conditions [61], and data-flow analysis [151]. Figure2.2 shows the Vine architecture.

In this thesis, our main use of Vine is as a symbolic executionengine for our string-enhanced and

protocol-level white-box exploration techniques, which are part of our model extraction module.

We describe symbolic execution in Section2.4.2and refer the reader to [199] for a more detailed

description of Vine.

Disassemblers. A disassembler is a program that translates machine code into assembly language.

In this thesis, we use an external disassembler for two different purposes. Tracecap uses a disassem-

bler while logging the execution trace to identify the list of operands of an instruction and associated

information such as the operand length and the type of accessto the operand (e.g., read or write).

Currently, Tracecap uses the XED disassembler [230]. In addition, our binary code reuse module

uses the commercial IDA Pro disassembler [90] to disassemble code sections in the process state

snapshots that Tracecap can generate during the execution of a process.

Constraint solver. In this thesis the constraint solver is a decision procedure, which performs

reasoning on symbolic expressions. We use the solver in our model extraction module to determine

if a symbolic expression is satisfiable and to generate a counterexample if it is not. We interface
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with the solver through Vine, which contains a transformation from Vine expressions into a common

language understood by different solvers, which makes it convenient to benefit from any advances

on decision procedures. Currently, our constraint solver is STP [73], a complete decision procedure

incorporating the theories of arrays and bit-vectors.

2.3 Execution Logs

In this section we present the information we collect duringprogram execution. This information

enables our offline dynamic analysis techniques. We use two main online components: the taint

propagation module included in TEMU, andTracecap, a TEMU plugin that we have developed to

collect execution logs. Next, we provide some background information on taint propagation and

describe the different execution logs that Tracecap can collect.

2.3.1 Taint Propagation

Taint propagation is a data-flow technique where data from a taint source is marked with additional

taint information that is propagated along with the data, asthe data moves through the system [38,

47,49,160,204]. Using taint propagation usually comprises three steps: defining the taint sources,

propagating the taint information, and checking the taint information at the taint sinks. The taint

propagation module in TEMU provides functionality to definetaint sources and takes care of the

taint propagation as the program executes. Defining taint sinks is left up to plugin.

Using the TEMU API, a plugin can introduce taint at sources such as the keyboard, network

interface, and the file system; as well as directly taint memory or registers during the execution.

TEMU implements a whole-system taint propagation module inwhich taint is propagated through

kernel and across different user-level processes, even if the tainted data is swapped out of memory

or written to a file. TEMU uses a shadow memory to store the taint information for each byte

of physical memory, registers, the hard disk and the networkinterface buffer. More details about

TEMU’s taint propagation module can be found in [199].

Each byte in a taint source is assigned a unique taint identifier. For convenience, the taint

identifier comprises three parts: a taint source identifier,a taint origin, and a taint offset. The taint

source identifier is coarse and captures the high level source of the taint such as the network, the

keyboard, the file system, or memory. The taint origin provides finer-granularity and is used to

group together related bytes in the taint source. For example, if the taint source is the network

each TCP flow is assigned a different origin, and if the taint source is the file system each file is

assigned a different origin. Finally, the taint offset captures the position of the byte in the taint

stream identified by the pair of the taint source identifier and the taint origin. For example, offset
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78061321: mov (%eax),%al // (%eax) tainted, %al untainted
78061323: cmp $0x48,%al // %al tainted
78061325: jne 0x780a8a4c

Figure 2.3: A snippet of x86 code corresponding to the handling of an HTTP response by the
Internet Explorer 7 Web browser.

zero is assigned to the first byte in a TCP flow or in a tainted file, offset one to the second byte

and so on. Breaking the unique taint identifier into three components makes it easier to understand

where the taint information comes from when analyzing it at the taint sinks.

Our use of taint propagation in this thesis is to define taint sources and to log into the execution

trace the taint information for each operand of an instruction executed by the program. For example,

Figure 2.3 shows the first three instructions executed by a Web browser that receives an HTTP

response. The memory location pointed by the EAX register when the first instruction executes

contains the first byte in the HTTP response. If the user has defined the network as a taint source then

the location pointed by EAX is tainted. When the first instruction executes, the taint information

for the first byte in the HTTP response is copied to the shadow memory corresponding to the lowest

byte in EAX. When these instructions are written to the execution trace, the taint information for

each operand is recorded. We detail execution traces in the next section.

2.3.2 Tracecap

Tracecap can collect different execution logs for a programexecution: execution traces, process

state snapshots, function hooks logs, and exported functions logs. We explain each of them next.

Execution traces. Execution traces are instruction-level logs of the execution. An execution trace

usually contains the instructions executed by a single user-level process, but it can optionally include

the kernel instructions and multiple user-level processes.

The format of an execution trace has evolved over the duration of this thesis and is currently

in its seventh version. The current execution trace format has three elements: the header, the body,

and an optional trailer. The header contains general trace information like the version, as well as

the address and size of each module loaded by a process in the trace. The body of the trace is a

sequence of executed instructions. The optional trailer contains additional module information for

each process. This module information is often more complete than the one stored in the header,

since modules can be loaded during execution and thus their information is not available when the

header is written. Storing the module information for an execution is important because a module

(e.g., DLL) could be loaded at an address different from its default.
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For each executed instruction, the execution trace records, among others, the instruction’s ad-

dress, the identifiers for the process and thread that executed the instruction, the size of the instruc-

tion and its raw bytes, and a list of operands accessed by the instruction. For each operand in an

instruction, it records, among others, the operand type (e.g., register, memory, immediate), the size,

the address (i.e., memory address or unique identifier for each register), the access type (e.g., read

or write), the content of the operand before the instructionexecutes, and the taint information for

the operand. For each tainted byte in an operand, it includesa list of taint records, where each taint

record comprises the taint source identifier, the taint origin, and the taint offset.

The execution trace uses variable-length encoding to minimize the space needed to record each

instruction. Currently, our execution traces are not compressed. We plan to add support for com-

pressed execution traces in the future, as the benefits of trace compression have been demonstrated

in related work [13].

Process state snapshots.Tracecap can take snapshots of the state of a process at a desired point

in the execution. A process state snapshot includes the content of all memory pages in the address

space of the process that are not currently swapped out to disk. It can optionally include the content

of all registers, as well as the taint information for both registers and memory addresses. To generate

the process state snapshot Tracecap uses the TEMU API to walkthe process page table and retrieve

the content and taint information for each page.

Hook logs. The TEMU API enables specifying callbacks that are executedwhen a certain program

point (i.e., value of the EIP register) is reached. We call those callbackshooks. Hooks can be global

or local. A global hook is executed whenever a process reaches the program point while a local hook

is only triggered when a specific process reaches it. Afunction hookis a hook that executes at the

entry point of a given function ( before any instruction in the function is executed)1. A function hook

can also define areturn hook, another callback that is executed when the function returns (after the

function’s return instruction is executed). Function hooks can be used to perform different actions

such as logging the parameters and output values of the function or tainting the output values of the

function. Function hooks require access to the function’s prototype, so that the callback can locate

the parameters of the function in the stack and the output values of the function if a return hook is

defined. We have developed over a hundred function hooks for Tracecap. The hooked functions

have publicly available prototypes and cover functionality such as file and network processing, heap

allocation, Windows registry accesses, string processing, and time operations.

1The TEMU API supports specifying the functions by name, to avoid having to update the function’s start address
when the module that contains the function is loaded at an address that is not the default one. The system also supports
specifying the function by ordinal if it is not exported by name.
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Tracecap can create function hooks logs with information about the invocations of hooked func-

tions. For example, Tracecap can produce heap allocation logs with information about the calls to

heap allocation and free functions invoked by a program during execution. For each heap allocation,

the log provides information such as the current instruction counter in the trace, the start address

of the heap buffer, the buffer size, and whether the buffer size was tainted. For each heap free

operation, the log specifies the instruction counter and thestart address of the buffer being freed.

Exported functions log. TEMU parses the header of PE (Windows) binaries that are loaded into

memory and extracts the exported symbol names and offsets. Tracecap dumps this information to a

file, so that offline analysis can use it to determine functionentry points and function names.

2.4 Offline Dynamic Analysis

Offline dynamic analysis techniques work on information logs collected from program executions.

All the novel dynamic binary analysis techniques proposed in this thesis operate offline, taking

as input execution traces. In addition to execution traces,some of our techniques also take as

input other logs from the execution such as the process statesnapshots and the heap allocation logs

described in the previous section. Although the input is always execution traces, we classify the

techniques intotrace-basedif they operate on sequences of assembly instructions (i.e., directly on

execution traces) andIR-basedif they operate on sequences of statements from an intermediate

representation (i.e., the execution traces are first translated into the Vine intermediate language).

Converting the execution trace to an intermediate representation (IR) enables more precise anal-

ysis but is expensive. Techniques that can operate on eitheran execution trace or an IR, e.g., dynamic

program slicing [2] described in Section2.4.2, often produce more accurate results when operating

on an IR because the IR enables precise reasoning about the instruction semantics and makes in-

struction side-effects such as setting the processor’s status flags explicit. For example, Figure2.4

shows the list of IR statements resulting from translating the second instruction in Figure2.3 into

the Vine intermediate language. Here, one x86 instruction is translated into 10 IR statements with

all side effects (i.e., AF, CF, OF, PF, SF, and ZF status flags)made explicit. However, not all anal-

ysis techniques require such precise reasoning. For example, tracking the call stack at any point in

the execution provides important contextual information but there is no benefit from translating the

execution trace into an IR for callstack tracking. It is moreefficient to perform it directly on the

execution trace. In addition, our execution traces may contain taint information. Thus, techniques

that rely on taint information can operate directly on execution traces. On the other hand, formal

analysis like symbolic execution greatly benefits from operating on an IR.
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label pc_0x78061323_2:
/ * cmp $0x48,%al * /
T_8t0_283:reg8_t = cast(R_EAX_5:reg32_t)L:reg8_t;
T_32t3_286:reg32_t = cast(T_8t0_283:reg8_t)U:reg32_t;
T_0_288:reg32_t = T_32t3_286:reg32_t - 0x48:reg32_t & 0xf f:reg32_t;
R_CF_10:reg1_t = T_32t3_286:reg32_t < 0x48:reg32_t;
T_1_289:reg8_t = cast(T_0_288:reg32_t)L:reg8_t;
R_PF_11:reg1_t =

!cast(((T_1_289:reg8_t >> 7:reg32_t ˆ T_1_289:reg8_t >> 6 :reg32_t) ˆ
(T_1_289:reg8_t >> 5:reg32_t ˆ T_1_289:reg8_t >> 4:reg32_ t)) ˆ
((T_1_289:reg8_t >> 3:reg32_t ˆ T_1_289:reg8_t >> 2:reg32 _t) ˆ
(T_1_289:reg8_t >> 1:reg32_t ˆ T_1_289:reg8_t)))L:reg1_ t;

R_AF_12:reg1_t = 1:reg32_t ==
(0x10:reg32_t & (T_0_288:reg32_t ˆ

(T_32t3_286:reg32_t ˆ 0x48:reg32_t)));
R_ZF_13:reg1_t = T_0_288:reg32_t == 0:reg32_t;
R_SF_14:reg1_t = 1:reg32_t == (1:reg32_t & T_0_288:reg32_ t >> 7:reg32_t);
R_OF_15:reg1_t = 1:reg32_t ==

(1:reg32_t & ((T_32t3_286:reg32_t ˆ 0x48:reg32_t)
& (T_32t3_286:reg32_t ˆ T_0_288:reg32_t)) >> 7:reg32_t);

Figure 2.4: The translation of the second instruction in Figure 2.3 into the Vine intermediate lan-
guage [19]. Each variable and constant value is followed a colon and its type. The type indicates
the size of the variable (e.g., reg8t for one byte and reg32t for four bytes).

In this thesis we present both trace-based and IR-based techniques. Our protocol reverse-

engineering and binary code reuse techniques, presented inChapter3 and Chapter4 respectively, are

trace-based, while our model extraction techniques in Chapters5–8 are IR-based. In the remainder

of this section we provide some background information on previous dynamic analysis techniques

that we leverage in this thesis.

2.4.1 Trace-Based Techniques

To enable trace-based techniques we have developed a parsing module that reads an execution trace

and provides a clean API to access its information. Similarly, we have developed parsers and APIs

to access the process state snapshots and the heap allocation logs that Tracecap also produces. Next,

we introduce some trace-based techniques used in this thesis.

Loop detection. The loop detection module extracts the loops present in an execution trace. It

supports two different detection methods: static and dynamic. The static method first extracts loop

information (e.g., the addresses of the loop head and the loop exit conditions) from control flow

graphs, using one of the standard loop detection techniquesimplemented in Vine [201]. Then,
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it uses the loop information in a pass over the execution trace to detect the loops present in the

execution. The dynamic method does not require any static processing and extracts the loops from

a single pass on the execution trace, using techniques that detect loop backedges as instructions that

appear multiple times in the same function [107]. The output of both loop detection methods is a

list of loops present in the execution trace. The information for each loop includes the position of

the loop in the execution trace as well as information about all the iterations of a loop (i.e., loops in

an execution trace are unrolled). Both methods have pros andcons. The static method is often more

accurate because it can precisely identify loop entry and exit points, but it requires analyzing all the

modules (i.e., program executable and dynamically link libraries it uses, including operating system

libraries) used by the application, may miss loops that contain indirection, and cannot be applied if

the unpacked binary is not available. On the other hand, the dynamic method cannot detect loops

that do not complete an iteration, needs heuristics to identify loop exit conditions, but requires no

setup and can be used on any execution trace.

Callstack tracking. The call stack tracking module iterates over the execution trace, replicating

the function stack for each thread in a given process. Note that the source-level concept of a func-

tion may not be directly reflected at the binary code level as explained in Section2.1. We use an

assembly functionabstraction at the binary level, where all code reachable from the assembly func-

tion entry point before reaching an exit point constitutes the body of the assembly function. Note

that code reachable only through another entry point (i.e.,through a call instruction) belongs to the

body of the callee function, rather than to the caller’s body. Source-level functions that are inlined

by the compiler are considered part of the assembly functionwhere they were inlined. We define

exit points to be return instructions. We define entry pointsto be the target addresses of call instruc-

tions2, as well as the addresses of exported functions provided in the exported function log. Using

the exported function log is important to defeat a common obfuscation used by malware where an

external function is not invoked using a call instruction, instead the malware program writes the

return address into the stack and jumps into the entry point of the function. Note that this deobfus-

cation only works for external functions. An internal function that the program jumps into, without

using a call instruction, will look as part of the caller function to our callstack tracking.

The call stack tracking module makes a pass on the execution trace monitoring entry and exit

points. It can handle some special cases such as calls without returns and returns without calls

by monitoring the expected return addresses. For example, when faced with the Unixlongjmp

function, a non-local goto used for unstructured control flow, it is able to identify to which call

the return instruction that follows thelongjmp invocation belongs to. The call stack tracking

2We also consider a call instruction followed by an indirect jump, an idiom commonly used in Windows binaries.
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module provides an API so that a program can identify the ranges of the execution trace that belong

to a function run and can execute functionality (e.g., collecting statistics) on each function run.

After iterating over the execution trace it outputs a function that given an instruction counter in the

execution trace, returns the function nesting at that pointof the execution.

Execution trace indexing. An execution trace can only be accessed sequentially, i.e.,iterating

from the top. To enable random access to the execution trace we provide a tool that builds an

execution trace index that stores the file pointer offset foreach instruction. The execution trace

index is used, among others, by techniques that iterate backwards on the trace.

2.4.2 IR-Based Techniques

In this thesis, IR-based techniques work on the Vine intermediate language representation of an

execution trace, which we simply refer to as the IR. Next, we provide background information

on three previously proposed IR-based techniques that we use throughout this thesis: symbolic

execution, white-box exploration, and dynamic slicing.

Dynamic symbolic execution. In symbolic execution, the values of variables are replacedwith

symbols and the program’s execution on those symbols produces formulas, rather than concrete

values [106]. Dynamic symbolic execution performs both concrete and symbolic execution along

an execution path [110, 78, 32]. To fix the execution path on which to perform dynamic symbolic

execution, an input (e.g., test case) is given to the programand symbolic execution is performed

along the concrete execution of the program on the given input. One advantage of dynamic symbolic

execution is that if a symbolic formula falls outside the theory of constraints that can be solved, e.g.,

AB ≤ 25 when the solver does not support exponentiation, the formula can be replaced with the

corresponding values from the concrete execution. For example, we can replaceAB ≤ 25 with

A = 3 ∧ B = 2 ∧ (9 ≤ 25) if A andB had values 3 and 2 respectively in the execution. This

limits the generality of the expression, i.e., A and B are fixed to the values seen in the execution, but

maintains the correctness of the formula.

In dynamic symbolic execution, when the program reaches a branch predicate that uses some

of the symbols, a symbolic branch condition is created. The conjunction of all symbolic branch

conditions forms thepath predicate, a predicate on the symbolic program inputs that captures all

the inputs that would follow the same execution path in the program.

In this thesis, we perform offline dynamic symbolic execution on an execution trace. For this,

we lift the execution trace into the Vine intermediate language, transform the IR into Single Static

Assignment (SSA) form, and replace the program’s input (e.g., the value of the EAX register and
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/ * Execution trace * / / * Slice for ECX at 7 * /
0) 78061321: mov (%eax),%al 78061330: push $0x5
1) 78061323: cmp $0x48,%al 78061332: pop %ecx
2) 78061325: jne 0x780a8a4c
3) 7806132b: cmp %ecx,-0x4(%ebp)
4) 7806132e: je 0x7806135c
5) 78061330: push $0x5
6) 78061332: pop %ecx
7) 78061333: cmp %ecx,-0x4(%ebp)
8) 78061336: jb 0x780a8a8f

Figure 2.5: Slicing example. On the left an extended versionof the execution trace shown in Fig-
ure2.3. On the right, the slice for the ECX register at instruction 7, which captures all instructions
involved in producing the value of the ECX register at that instruction.

the contents of the buffer returned by therecv function) with symbols. Optionally, we can taint

the variables that we want to be symbolic during program execution and then lift to the Vine inter-

mediate language only those instructions that operate on tainted data.

White-box exploration. Dynamic analysis techniques cover a single execution path in a program.

White-box exploration is a technique that leverages dynamic symbolic execution to automatically

generate inputs (i.e., test cases) that execute different paths in a program [78, 32]. White-box ex-

ploration can be used to increase the coverage of dynamic analysis techniques. It works by first

obtaining a path predicate for one execution. Then, it negates one of the symbolic branch condi-

tions in the path predicate and produces a modified path predicate that includes all branch conditions

in the original predicate up to the negated condition, plus the negated condition. Then, it queries a

constraint solver for an input that satisfies the modified path predicate. If the solver returns an input,

that input is fed to the program to generate a new execution that follows a different program path.

By repeating this process, white-box exploration can automatically find inputs to explore different

execution paths in a program, increasing the coverage of theanalysis.

Dynamic program slicing. Dynamic program slicing takes as input an execution of a program

and a variable occurrence in that execution, e.g., the valueof the EAX register at the beginning of

a particular instruction since EAX is used in many instructions, and extracts all statements in the

execution that had some effect on the value of the variable occurrence [111,2]. Dynamic program

slicing is the dynamic counterpart of program slicing [223]. The output of slicing a variable oc-

currence (variable for short) is called aslice. Dynamic data slices contain only data dependencies

while full dynamic slices contain both data and control dependencies.
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OUT:reg1_t = (cast(INPUT_10000_0000:reg8_t)U:reg32_t +
0xffffffb8:reg32_t & 0xff:reg32_t) == 0:reg32_t;

Figure 2.6: Formula for the symbolic branch condition corresponding to the conditional jump in
Figure2.3.

We have implemented a slicing algorithm proposed by Zhang etal. [239], which is precise, i.e.,

only statements with dependencies to the variable are included in the slice. The algorithm works

bottom to top on the execution log (slicing can be performed on the execution trace or the IR) and

can generate multiple slices (i.e., one per variable) in a single pass. Figure2.5 shows an example

slice. On the left it presents an extended version of the execution trace shown in Figure2.3. On the

right, it shows the slice for the ECX register at instruction7, which captures all instructions involved

in producing the value of the ECX register at that instruction.

In this thesis we use dynamic program slicing as a first step tocreating small formulas for

symbolic branch conditions. Given a branch condition variable in the IR, we first slice the branch

condition variable over the IR, producing a slice that is often much smaller than the complete IR.

Then, we create a formula by combining all the statements in aslice together and simplifying the re-

sulting statement using different techniques such as constant folding and constant propagation. The

output of this simplification is a formula (often small), which captures how the symbolic program

inputs influence the branch condition. For example, Figure2.6shows the formula for the symbolic

branch condition corresponding to the conditional jump in Figure 2.3, which in short states that

INPUT == 0x48.
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Chapter 3

Protocol Reverse-Engineering

3.1 Introduction

Protocol reverse-engineering techniques extract the specification of unknown or undocumented net-

work protocols and file formats. Protocol reverse-engineering techniques are needed because many

protocols and file formats, especially at the application layer, are closed (i.e., have no publicly

available specification). For example, malware often uses undocumented network protocols such as

the command-and-control (C&C) protocols used by botnets tosynchronize their actions and report

back on the nefarious activities. Commercial off-the-shelf applications also use a myriad of un-

documented protocols and file formats. Closed network protocols include Skype’s protocol [198];

protocols used by instant messaging clients such as AOL’s ICQ [88], Yahoo!’s Messenger [235],

and Microsoft’s MSN Messenger [140]; and update protocols used by antivirus tools and browsers.

Closed file formats include the DWG format used by Autodesk’sAutoCAD software [7] and the

PSD format used by Adobe’s Photoshop software [1].

A detailed protocol specification can enable or enhance manysecurity applications. For exam-

ple, in this chapter we enable active botnet infiltration by extracting the specification of a botnet’s

C&C protocol and using it for deep packet inspection and rewriting of the botnet’s communication.

In Chapter7 we show that a protocol specification enables generating protocol-level vulnerability-

based signatures for intrusion detection systems, which are harder to evade than byte-level signa-

tures. Protocol specifications are also the input for generic protocol parsers used in network moni-

toring [17,173] and can be used to build protocol-aware fuzzers that explore deeper execution paths

than random fuzzers can [176], as well as to generate accurate fingerprints required by fingerprinting

tools that remotely distinguish among implementations of the same specification [162].

Currently, protocol reverse-engineering is mostly a time-consuming and error-prone manual

task. Protocol reverse-engineering projects such as the ones targeting the MSN Messenger and SMB

40
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protocols from Microsoft [148, 210] 1, the Yahoo! Messenger protocol [121], or the OSCAR and

ICQ protocols from AOL [72,89], have all been long term efforts lasting years. In addition, protocol

reverse-engineering is not a once-and-done effort, since existing protocols are often extended to

support new functionality. Thus, to successfully reverse engineer a protocol in a timely manner and

keep up the effort through time, automatic protocol reverse-engineering techniques are needed.

Previous work on automatic protocol reverse-engineering proposes techniques that take as input

network data [10, 52, 116]. Those techniques face the issue of limited protocol information avail-

able in network traces and cannot address encrypted protocols. To address those limitations, in this

thesis we present a new approach for automatic protocol reverse-engineering, which leverages the

availability of a program that implements the protocol. Ourapproach uses dynamic program bi-

nary analysis techniques and is based on the intuition that monitoring how the program parses and

constructs protocol messages reveals a wealth of information about the message structure and its

semantics.

Compared to network traces, program binaries contain richer protocol information because they

represent the implementation of the protocol, which is the most detailed description of the protocol

in absence of the specification. Understanding the protocolimplementation can be beneficial even

for protocols with a publicly available specification, because implementations often deviate from

the specification. In addition, for encrypted protocols, the program binary knows the cryptographic

information required to decrypt and encrypt protocol data.Thus, we can wait until the program

decrypts the received network data to start our analysis andstop it before the program encrypts the

network data to be sent in response, thus revealing the structure and semantics of the underlying

protocol.

Our work in context. This chapter comprises work published in two conference articles. The

first article appeared in the proceedings of the 14th ACM Conference on Computer and Commu-

nications Security (CCS 2007). It presented a system calledPolyglot [30], which implemented the

first approach for automatic protocol reverse-engineeringusing dynamic binary analysis. Polyglot

uses the intuition that monitoring the execution of a program that implements the protocol reveals a

wealth of information about the protocol. Polyglot extracts only the message format of a received

message. The second article appeared in the proceedings of the 16th ACM Conference on Computer

and Communications Security (CCS 2009). It presented a system calledDispatcher[26], which in

addition to the techniques introduced in Polyglot, implemented techniques to extract the message

format for a sent message. It also implemented semantics inference techniques for both sent and

received messages, which we had previously introduced in a Technical Report in 2007 [28].

1Microsoft has since publicly released the specification of both protocols as part of their Open Specification initia-
tive [139]



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 42

After the publication of Polyglot, other research groups published automatic protocol reverse-

engineering techniques that used dynamic binary analysis for extracting the protocol grammar [229,

124,54] and the protocol state-machine [44]. The works that focus on protocol grammar extraction

use the approach we introduced in Polyglot of monitoring theexecution of a program that imple-

ments the protocol. Their techniques target two issues: 1) they consider the message format to be

hierarchical [229,124,54], rather than flat as considered in Polyglot, and 2) they extend the problem

scope from extracting the message format as done in Polyglot, to extracting the protocol grammar

by combining information from multiple messages [229,54]. In Dispatcher we still focus only on

message format extraction because it is a pre-requisite forboth protocol grammar and state-machine

extraction, but we consider the hierarchical structure of the protocol messages. In this chapter, we

present a unified view of the techniques introduced in Polyglot and Dispatcher that considers the

hierarchical structure of protocol messages. We also unifythe protocol nomenclature used across

the different protocol reverse-engineering works.

3.2 Overview & Problem Definition

In this section we introduce automatic protocol reverse-engineering and its goals, describe the scope

of the problem we address, introduce common protocol elements and terminology, formally define

the problem, and provide an overview of our approach.

3.2.1 Automatic Protocol Reverse-Engineering

The goal of automatic protocol reverse-engineering is given an undocumented protocol or file for-

mat to extract theprotocol grammar, which captures the structure of all messages that comprise

the protocol, and theprotocol state machine, which captures the sequences of messages that repre-

sent valid sessions of the protocol. In this thesis we focus on reversing application layer protocols

because those comprise the majority of all protocols and aremore likely to be undocumented. In

addition, we consider file formats a simple instance of a protocol where there are no sessions and

each file corresponds to a single message.

Extracting the protocol grammar usually comprises two steps. First, given a set of input mes-

sages, extract themessage formatof each individual message. Second, combine the message format

from multiple messages of the same type to identify complex message properties such as field al-

ternation and optional fields. In this thesis we address the first step of protocol grammar extraction:

extracting the message format for a given message. Extracting the message format is a pre-requisite

for extracting both the protocol grammar and the protocol state-machine. The message format cap-

tures the field structure and the field semantics of the message, which we describe next.
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Message format. The message format has two components: themessage field treeand afield

attribute list for each node in the tree. The message field tree2 is a hierarchical tree structure where

each node represents a field in the message and is tagged with a[start:end] range of offsets where

the field appears in the message, where offset zero is the firstbyte in the message. A child node

represents a subfield of its parent, and thus corresponds to asubrange of the parent field in the

message. The children of a parent have non-overlapping ranges and are ordered using the lowest

offset in their range. The root node represents the completemessage, the internal nodes represent

records3, and the leaf nodes representleaf fields4, the smallest semantic units in a protocol. Note

that leaf fields are sometimes referred to simply as fields. Inthis thesis, when we refer to fields in

plural, we mean any node in the message field tree, which includes both records and leaf fields.

In addition to the range, a node contains a field attribute list, where each attribute captures a

property of the field. Table3.1 shows the field attributes that we consider in this thesis. The field

boundary attribute captures how the recipient locates the boundary between the end of this field

and the beginning of the next field in the message. For fixed-length fields the receiver can find the

boundary using the constant field length value, which is known a priori. For variable-length fields

the receiver can use adelimiter, i.e., a constant value that marks the end of the field, or alength field.

The field dependencies attributes captures inter-field relationships such as this field being the length

of another field or this field being the checksum of multiple other fields in the message. The field

semantics attribute captures the type of data that a field carries. We explain the different protocol

elements in more detail in the next section.

Note that the message field tree with the associated field ranges perfectly describes the structure

of a given message. However, without the attribute list we cannot learn anything from this message

that can be applied to other instances of the same message type (e.g., from one HTTP GET request

to another).

Field semantics. One important field attribute is the field semantics, i.e, thetype of data that

the field contains. Typical field semantics include timestamps, hostnames, IP addresses, ports, and

filenames. Field semantics are fundamental to understand what a message does and are important

for both text and binary protocols. For example, an ASCII-encoded integer in a text-based protocol

can represent among others a length, a port number, a sleep timer, or a checksum value. Field

semantics are critical for many applications, e.g., they are needed in active botnet infiltration to

identify interesting fields in a message to rewrite.

2Also called protocol field tree [124].
3Also called hierarchical fields [124,26] and complex fields [229].
4Also called finest-grained fields [124].



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 44

Figure 3.1: Message field tree for the HTTP request on the upper left corner. The upper right corner
box shows the attribute list for one of the delimiters.

Attribute Value
Field Range Start and end offsets in message
Field Boundary Fixed-length(l), Variable-length(Length), Variable-length(Delimiter)
Field Dependencies Length(xi), Delimiter(xi), Checksum(xi, . . . , xj)
Field Semantics The type of data the field carries. A value from Table3.3

Table 3.1: Field attributes used in this thesis. Each attribute captures a property of the field.

HTTP running example. Figure3.1, captures the message field tree for an HTTP request. The

HTTP request message is shown on the upper left corner and thebox on the upper right corner

shows the attribute list for one of the nodes. The root node inFigure3.1 represents the complete

HTTP request, which is 68 bytes long. There are four records:the Headers, the Request-Line,

the User-Agentheader, and theHostheader. HTTP mostly uses delimiters to mark the end of the

variable-length fields. The field attribute list for the CRLFfield shown in the figure, shows in the

field semantics attribute that theCRLFfield is a delimiter and in the field dependencies field that its

target is theRequest-Line. The HTTP specification is publicly available [65] and Figure3.2shows

a partial HTTP grammar, taken from the specification, that covers most production rules related to

our example HTTP request.

3.2.2 Protocol Elements

In this section we describe some elements commonly used in protocols and how they are represented

in the message field tree and field attribute list.
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HTTP-message = Request | Response
Request = generic-message
Response = generic-message
generic-message = start-line

* (message-header CRLF)
CRLF
[ message-body ]

start-line = Request-Line | Status-Line
message-header = field-name ":" [ field-value ]

Figure 3.2: Partial HTTP protocol grammar from RFC 2616 [65].

Layer PDU
Physical Layer bit
Data Link Layer frame
Network Layer packet
Transport Layer segment
Application Layer message

Table 3.2: Protocol Data Units (PDUs) for the different networking layers.

Message. We define a message to be the Protocol Data Unit (PDU) of the application layer, where

a PDU is the information that is delivered as a unit among peerentities in a networking layer.

Table3.2 shows the PDUs for different networking layers. We separatethe application layer PDU

with a horizontal line because there is no defined PDU for layers above the Transport layer [203].

Fixed-length and variable-length fields. Each field, regardless if a record or a leaf field, is either

fixed-length or variable-length. The length value of a fixed-length field is static, i.e., it does not

change across multiple instances of the same field. The length value for a fixed-length field is part

of the protocol specification and known a priori to the implementations of the protocol. In contrast,

the length of a variable-length field is dynamic, i.e., it canchange across multiple instances of the

same field. Protocol specifications need to describe how an implementation identifies the length or

the boundary of a variable-length field. The main protocol elements used for this task are length

fields and delimiters, which we describe next. The field boundary attribute captures whether a field

is fixed-length or variable-length and for the latter whether it uses a delimiter or a length field. In

our HTTP running example, all fields except the delimiters themselves are variable-length, while in

our MegaD running example only theMSG, Host-Info, andPaddingfields are variable-length, the

rest are fixed-length.

Length fields. A length field captures the size of atarget variable-length field, which can be a

record or a leaf field. A length field always precedes its target field in a message, but it does not



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 46

need to be its immediate predecessor. The length field can usedifferent units. For example, in

Figure 3.7 the Msg-Lengthfield encodes the total length of the message in 64-bit units,but the

Lengthfield encodes the length of theHost-Info record in bytes. The value of the length field is

often the output of a formula that may use the real length of the target field plus or minus some

known constant. For example, a record may have three child fields: a fixed-length type field, a

fixed-length length field, and a variable-length payload. Inthis case the length field can capture the

payload length or the record length which includes the fixed-length of both the type field and the

length field itself. The field dependencies attribute captures whether a field is a length field and what

the target variable-length field is. The field boundary attribute captures for a target variable-length

field whether its boundary is located using a particular length field.

Delimiters. A delimiter5 is a constant used to mark the boundary of a target variable-length field.

Delimiters are fields themselves and are always the successor of the target variable-length field

they delimit. Delimiters are part of the protocol specification and known to the implementations

of the protocol. Delimiters can be used in binary, text or mixed protocols, e.g., delimiters are used

in HTTP, which is mainly a text protocol, and also in SMB, which is mainly a binary protocol.

They can be formed by one or more bytes. For example, in Figure3.1, the Carrier-Return plus

Line-Feed two-byte sequence (CRLF) is used as a delimiter tomark the end of the start-line and

the different message headers [65], while SMB uses a single null byte to separate dialect strings

inside aNegotiate Protocol Request[186]. Protocols can have multiple delimiters. For example,

in Figure3.1, in addition to the CRLF delimiter to separate headers, there is also the space (SP)

delimiter that marks the end of theMethodandURI fields, as well as the semicolon plus space (CS)

delimiter that separates theNamefrom theValuein each header field. As shown in the field attribute

list in Figure3.1, the field dependencies attribute captures whether a field isa delimiter and which

field is its target. The field boundary attribute captures fora target variable-length field whether its

boundary is located using a particular delimiter.

Field Sequences. Field sequences, or sequences for short, are lists of consecutive fields with the

same type. Sequences are used in file formats such as WMF, AVI or MPEG, and also in network

protocols such as HTTP. A sequence is always variable-length, regardless if the fields that form the

sequence are fixed-length or variable-length. The end of a sequence is marked using a delimiter

or a special length field called a counter field. For example, in Figure3.1, theHeadersfield is a

sequence and an empty line (CRLF) delimiter is used to mark its end. Note that an array is a special

case of a sequence where each field in the sequence has fixed-length. A sequence is simply a record

5In our early protocol reverse-engineering work [30] we referred to delimiters as separators. Since then, we have
adopted the term delimiter because it has been more commonlyused in follow-up work.
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in the message field tree with a field semantics attribute value that indicates so. All children of a

sequence are of the same type.

Keywords. Keywords are protocol constants that appear in the protocolmessages. Keywords

are part of the protocol specification and known a priori to the implementations. Not all protocol

constants are keywords, since there are protocol constantsthat never appear in a message, such

as the maximum length of a field. Keywords can appear in binary, text, and mixed protocols and

can be strings or numbers. For example, in Figure3.1 the “GET”, “HTTP”, “User-Agent”, and

“Host” strings are all keywords, while in Figure3.7the version number is also a keyword. The field

semantics attribute captures whether a field carries a keyword. A field can carry different keywords

in different instances of the field. For example, theMethodfield in Figure3.1 carries the “GET”

keyword but in other HTTP requests it could carry the “POST” or “HEAD” keywords. Note that

according to this definition delimiters are also keywords. We differentiate delimiters from other

keywords because of their particular use.

Dynamic fields. Dynamic fields have been defined by previous work to be fields whose value

may change across different protocol dialogs [53]. According to that definition almost any field in a

protocol is dynamic. There are very few fields in protocols whose value never changes because they

can encode very little information. In this thesis, we definedynamic fields to be fields that carry

protocol-independent information, which means fields thatnever carry a protocol keyword.

3.2.3 Problem Definition

In this thesis we develop protocol reverse-engineering techniques to address two problems:mes-

sage format extractionandfield semantics inference. Message format extraction is the problem of

extracting the message field tree for one message of the protocol. It can be applied to a messagere-

ceivedby the application, as well as to a messagesentby the application in response to a previously

received message. Field semantics inference is the problemof given a message field tree, tagging

each field in the tree with a field semantics attribute specifying the type of data the field carries.

The input to our message format extraction and field semantics inference techniques is execution

traces taken by monitoring an application that implements the protocol, while it is involved in a

network dialog using the unknown protocol. The execution traces can be obtained by monitoring a

live dialog, where the application communicates with another entity somewhere on the Internet, or

an offline dialog, where we replay a previously captured dialog from the unknown protocol to the

application. In both cases the application runs inside the execution monitor presented in Chapter2,

which produces execution traces.
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3.2.4 Approach

We design message format extraction and protocol inferencetechniques for both messages received

and sent by an application. Thus, our approach can analyze both sides of the communication of

an unknown protocol, even when an analyst has access only to the application implementing one

side of the dialog. This is important because there are scenarios where access to applications that

implement both sides of a dialog is difficult, such as reversing a botnet’s C&C protocol where the

binary of the C&C server is rarely available or reversing a proprietary instant-messaging protocol

(e.g., Yahoo’s YMSG or Microsoft’s MSNP) where client implementations are publicly available,

but server implementations are not.

To extract the format ofreceivedmessages we use the following intuition: by monitoring how a

program parses a received message we can learn the message format because in order to access the

information in the leaf fields, the program first needs to find those fields by extracting the hierar-

chical structure of the message. By monitoring the parsing process, we can learn what the program

already knows, e.g., the length of fixed-length fields and thevalues used as delimiters, as well as

what the program has to discover, e.g., the boundaries of thevariable-length fields. We present our

message format extraction techniques for received messages in Section3.3.

To extract the format ofsentmessages we use the following intuition: programs store fields in

memory buffers and construct the messages to be sent by combining those buffers together. We

define theoutput bufferto be the buffer that contains the message about to be sent at the time that

the function that sends data over the network is invoked. As aspecial case, for encrypted proto-

cols the output buffer contains the unencrypted data at the time the encryption routine is invoked.

Our intuition is that the structure of the output buffer represents the inverse of the structure of the

sent message. We proposebuffer deconstruction, a technique to build the message field tree of a

sent message by analyzing how the output buffer is constructed from other memory buffers in the

program. We present our message format extraction techniques for sent messages in Section3.4.

Our techniques to extract the message format differ for received and sent messages. For received

messages, our techniques focus on how the program parses themessage and leverage taint propaga-

tion, a data-flow technique that allows us to follow how the received message is handled throughout

the parsing. For sent messages, our techniques focus on how the program builds the message from

its individual fields and leverage buffer deconstruction, which analyzes how the different memory

buffers are used to fill the output buffer. Note that we do not leverage taint propagation for extract-

ing the message field tree of sent messages, because only a fraction of all possible sources of taint

information during message creation (e.g., output of system calls and data sections in the program)

is actually used to build the sent message.



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 49

To infer the field semantics, we use type-inference-based techniques that leverage the observa-

tion that many functions and instructions used by programs contain known semantic information

that can be leveraged for field semantics inference. When a field in the received message is used to

derive the arguments of those functions or instructions (i.e., semantic sinks), we can infer its seman-

tics. When the output of those functions or instructions (i.e., semantic sources) are used to derive

some field in the output buffer, we can infer its semantics. Wepresent our field semantic inference

techniques for both received and sent messages in Section3.5.

One limitation of our message format extraction and field inference techniques is that they work

at the byte level. Thus, they currently cannot handle fields smaller than 8-bit, such as the QR (query

or response) bit or the 4-bit Opcode (kind of query) in a DNS request [149]. While our techniques

can be extended to operate at the bit-level with some engineering effort, an end-to-end solution

requires the building blocks we use e.g., taint propagation, to also operate at the bit level.

Encrypted protocols. To handle encrypted protocols such as MegaD’s C&C protocol,we use the

intuition that the program binary knows the cryptographic information (e.g., cryptographic routines

and keys) required to decrypt and encrypt the protocol messages. Thus, we can wait until the pro-

gram decrypts the received message to start our analysis andstop the analysis before the program

encrypts the message to be sent in response. Compared to previous work, we propose extensions to a

recently proposed technique to identify the buffers holding the unencrypted received message [221].

Our extensions generalize the technique to support implementations where there is no single bound-

ary between decryption and protocol processing, and to identify the buffers holding the unencrypted

sent message. We present our handling of encrypted protocols in Section3.6.

Per-message execution traces.An execution trace may contain the processing of multiple mes-

sages sent and received by the application during the network dialog. To separately analyze each

message we need to split the execution trace into per-message traces. This is challenging when two

consecutive messages are sent on the same direction of the communication. For example, MegaD

uses a TCP-based C&C protocol. In a C&C connection the bot sends a request to the C&C server

and receives one or more consecutive responses with the sameformat. At that point the question

is whether to consider the response from the server a single message in which case there is a sin-

gle message field tree where the child of the root node corresponds to a sequence with two child

records, or to consider the response as two messages, in which case there are two separate message

field trees.

Some work defines a message to be all data received by a peer before a response is sent, i.e.,

before the application calls the function that writes data to the socket [44]. This makes the response

from MegaD’s C&C server to be a single message. In this thesiswe use a different definition
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Figure 3.3: Message format extraction for received messages.

of what a message is and split the execution trace into two traces every time that the program

makes a successful call to write data to a socket (e.g.,send) and every time that the program makes

a successful call to read data from a socket (e.g.,recv), except when the argument defining the

maximum number of bytes to read is tainted. In this case, the read data is considered part of the

previous message and the trace is not split. This handles thecase of a program reading a field

conveying the length of the message payload and using this value to read the payload itself.

3.3 Message Format Extraction for a Received Message

The input for extracting the message format for a received message is an execution trace of the

program while it parses the protocol message that we want to extract the format for. We have

introduced execution trace logging and taint propagation in Chapter2. Here, the execution monitor

taints each byte of the received message with a different taint offset where offset zero corresponds to

the first byte in the message. The execution trace contains for each instruction operand whether the

operand is tainted. If tainted, it contains the taint offsets for each byte in the operand. We refer to the

taint offsets aspositionsin the received message. The output of this process is the message format

as a message field tree with an attribute list for each node. This message field tree has no semantics

attribute. In Section3.5we show how to extract the values for the field semantics attribute.

Figure3.3 illustrates the message format extraction process for a received message. It shows

that the execution trace is the input to three modules: delimiter identification, length identifica-

tion, and fixed-length field identification. The delimiter and length identification modules focus on

variable-length fields that use delimiters and length fieldsto mark their boundaries. In addition to the

execution trace, the length identification module also takes as input the loop information provided

by the loop detection module we introduced in Chapter2. We present the delimiter identification

module in Section3.3.1and the length identification module in Section3.3.2. The fixed-length



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 51

identification focuses on fixed-length fields and is presented in Section3.3.3. The fields identified

by those three modules are added to the message field tree by the tree construction module.

3.3.1 Identifying Delimiters

In Section3.2.2 we defined a delimiter to be a constant used to mark the boundary of a target

variable-length field. Delimiters are part of the protocol specification and known to the programs

that implement the protocol. The intuition to identify delimiters is that when parsing a received

message, programs search for the delimiter by comparing thedifferent bytes in the message against

the delimiter. When a successful comparison happens, the program knows it has found a delimiter

and therefore the boundary of the target variable-length field that precedes the delimiter.

For example, a Web server that receives the HTTP request in Figure3.1knows that the Carrier-

Return plus Line-Feed (CRLF) sequence is the delimiter usedto mark the end of theRequest-Line

field. The server compares the bytes in the request from the beginning (position zero) until finding

the CRLF value at positions [24:25]. At that point the program knows that the range of theRequest-

Line is [0:23]. Similarly, the program knows that the space character (SP) is the delimiter used to

mark the end of theMethodand URI fields inside theRequest-Line. Thus, the server compares

the bytes in theRequest-Linerange with the space character until it finds it at position 3.At that

point, it knows that theMethodfield comprises range [0:2]. Then, it continues scanning forthe next

occurrence of the space character, which is found at position 15. At that point it knows that theURI

field comprises the range [4:14] and that the remainder of theRequest-Line(range [16:23]) has to

correspond to theVersionfield.

In a nutshell, our delimiter identification technique scansthe execution trace looking for com-

parison operations between bytes from the received message(i.e., tainted bytes) and constant values

(i.e., untainted bytes). For each comparison operation found, it stores for each tainted byte involved

in the comparison, the position of the tainted byte, the constant value it was compared against, and

the result of the comparison (i.e., success or failed). Then, it searches for tokens (i.e., byte-long

constants) that are compared against multiple consecutivepositions in the input message.

The detailed process comprises 4 steps: 1) generate atoken tablethat summarizes all compar-

isons between tainted and untainted data in the execution trace, 2) use the token table to identify

byte-long delimiters, 3) extend byte-long delimiters intomulti-byte delimiters, and 4) add the de-

limiters and their target-fields to the message field tree. Wedescribe these steps below.

Our delimiter identification technique has two important properties. First, it makes no assump-

tions about the constants used as delimiters. Instead, it identifies delimiters by the way they are

used. Second, it does not assume that the program searches for the delimiter in an ascending posi-

tion order. All byte-comparisons between tainted and untainted data are recorded in the token table
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Figure 3.4: Partial token table for the HTTP request in Figure 3.1.

in the first step, before delimiters are identified. Thus, it does not matter the order in which the

comparisons are done by the program, which is important because some programs like the Apache

Web server scan backwards to find delimiters.

Generating the token table. The token table summarizes all comparisons between taintedand

untainted data in the execution trace. Each row in the token table represents a token (i.e., a byte-

long constant value) that at some point in the execution was compared against tainted data. Thus,

the token table can have at most 256 rows. Each column represents a position in the received

message from zero to the message size minus one. Each entry inthe table represents whether the

comparison between the token and the position in the received message was successful (S) or failed

(F). Figure3.4 shows a partial token table for the comparisons that a Web server performs on the

first 51 bytes of the HTTP request in Figure3.1. For brevity, we limit the table to only 8 tokens.

To populate the token table, the delimiter identification module scans the execution trace for

comparison operations that involve tainted and untainted data. It breaks each comparison operation

into one-byte comparisons and for each one-byte comparisonit extracts the position of the tainted

byte, the token it was compared against, and the result of thecomparison. It adds a new entry with

this information into the token table. Only equality comparisons are added to the table and compari-

son operations include not only compare (cmp) instructions but also other operations that compilers

use to compare operands such as string comparison (scas ) instructions ortest instructions with

identical operands (used to cheaply compare if an operand has zero value).

Extracting byte-long delimiters. To extract byte-long delimiters the delimiter identification mod-

ule scans each row of the token table in ascending position order to find all sequences of consecutive

positions that were compared against the token. A new sequence is started every time the current

position is not consecutive with the previous one and every time a successful comparison is found.

The reason to break a sequence at a successful comparison is that a successful comparison marks

the presence of the delimiter and thus the end of the field it delimits. Once the list of all sequences

for a token has been extracted, any sequence shorter than 3 positions is removed to avoid including
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spurious comparisons. We call each sequence of consecutivepositions ascopeand the output of

this step is a list of byte-long delimiters with the associated scopes where the delimiter was used.

For example, from the token table in Figure3.4 this step outputs two one-byte delimiters: the

Line-Feed (LF) token with scopes [0:25] and [26:50], and thespace (SP) token with scopes [0:3]

and [4:15]. This shows that each one-byte delimiter can havemultiple scopes and that different one-

byte delimiters may have overlapping scopes since the scopes for the SP token are a subrange of the

scope for the LF token. Thus, the delimiter scope hierarchy captures the hierarchical relationship

between theRequest-Lineand theMethodandURI fields. Note that two one-byte delimiters cannot

have identical scopes since we require a successful comparison to mark the end of a scope.

Extending delimiters. When a delimiter consists of multiple bytes, e.g., the CRLF delimiter,

the program can use different ways to find it such as searchingfor the complete delimiter or only

searching for one byte in the delimiter and when it finds it, checking if the remaining bytes in the

delimiter are also present. For multi-byte delimiters, theprevious step identifies only one byte in

the delimiter or all the bytes but as independent byte-long delimiters. For example, the token table

in Figure3.4corresponds to a Web server that scans for the LF character and once found, it checks

if the CR character is present in the previous position. In this case, the previous step identifies only

the LF token as a one-byte delimiter.

In this last step, we try to extend each one-byte delimiter byanalyzing the comparisons at the

positions before and after all occurrences of the delimiter, i.e., the comparisons at the predecessor

and successor positions for the last position in each scope.If the token table shows a successful

comparison with the same token for all predecessor positions, we extend the delimiter with that

token. If the token table shows a successful comparison withthe same token for all successor

positions, we extend the delimiter with that token and increase all scopes by one. The process

recurses on each delimiter that was extended, until no more delimiters are extended. At that point,

any duplicate scopes for a delimiter are removed. The outputof this step is a list of multi-byte

delimiters with the scopes where they are used.

For example, the one-byte LF delimiter identified in the previous step has scopes [0:25] and

[26:50]. This step first checks the successor positions 26 and 51, finding no successful comparisons

with the same token at those positions. Then, it checks the predecessor positions 24 and 49, finding

that they all have a successful comparison against the CR token. Thus, the one-byte LF delimiter is

extended to be a two-byte CRLF delimiter with identical scopes. The same process for the one-byte

SP delimiter produces no extensions and the output of this step is two delimiters: CRLF with scopes

[0:25] and [26:50], and SP with scopes [0:3] and [4:15].
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Figure 3.5: Partial message field tree generated by inserting the fields derived by identifying delim-
iters using the token table in Figure3.4 into an empty tree.

Adding the delimiters and target fields to the message field tree. Once the delimiters have

been identified, each scope is used to create two fields: a delimiter field with a range that covers

the bytes in the delimiter and a variable-length field that covers the remainder of the scope. Both

fields are added to the message field tree. For example, the [0:25] scope for the CRLF delimiter

produces a delimiter field with range [24:25] and variable-length field with range [0:23]. Note that,

the operation that inserts new nodes into the message field tree uses the field ranges to determine the

correct position of the field in the tree. For example, Figure3.5 shows the message field tree after

inserting the fields derived by the delimiter identificationprocess using the token table in Figure3.4

into an empty tree. Note that the message field tree has a gap atdepth 2 for the range [16:23], which

corresponds to theVersionfield in Figure3.1. Once the length and fixed-length field identification

terminates, the tree construction module fills the gaps withfields.

3.3.2 Identifying Length Fields

The intuition behind our techniques for length field detection is the following. The application data

is stored in a memory buffer before it is accessed (it might bemoved from disk to memory first).

Then a pointer is used to access the different positions in the buffer. Now when the program has

located the beginning of a variable-length field, whose length is determined by a length field, it

needs to use some value derived from the length field to advance the pointer to the end of the field.

Thus, we identify length fields when they areusedto increment the value of a pointer to the tainted

data. For example, in Figure3.6 we identify the length field at positions 12-13 when it is usedto

access positions 18-20.

We consider two possibilities to determine whether a field isbeing used as a length field: 1) the

program computes the value of the pointer increment from thelength field and adds this increment

to the current value of the pointer using arithmetic operations; or 2) the program increments the

pointer by one or some other constant increment using a loop,until it reaches the end of the field,

indicated by a stop condition.
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Figure 3.6: Length field example.

Incrementing the pointer using arithmetic operations. For the first case, the program performs

an indirect memory access where the effective address has been computed from some tainted data.

Thus, when we find an indirect memory access that: 1) accessesa tainted memory location, and 2)

where the effective address has been computed from tainted data (i.e., the base or index registers

used to compute the address were tainted), we mark all the consecutive positions used to compute

the effective address as part of a length field. In addition, we mark the smallest position in the

effective address as the end of the target field. For example,in Figure 3.6 if the instruction is

accessing positions 18-20, and the address of the smallest position (i.e., 18) was calculated using

taint data coming from positions 12-13, then we mark position 12 as the start of a length field with

length 2, and position 18 as the end of the target field. If a length field is used to access multiple

positions in the buffer, we only record the smallest position being accessed. For example, if we have

already found the length field in Figure3.6directs to position 18, and it appears again in an indirect

memory access to position 27, we still consider the end of thetarget field to be position 18.

Incrementing the pointer using a loop. For the second case, since the pointer increment is not

tainted (i.e., it is a constant) then the previous approach does not work. In this case we assume that

the stop condition for the pointer increment is calculated using a loop. The length identification

module uses the loop information provided by the dynamic loop module presented in Chapter2 to

identify loops in the trace that have a tainted exit condition. After extracting the loops we check if

the loop stop condition is generated from tainted data, if sowe flag the loop as tainted. Every time

the program uses a new position, we check if the closest loop was tainted. If so, we flag a length

field. Our techniques are not complete because there are other possibilities in which a program can

indirectly increment the pointer, for example using switchstatements or conditionals. But, these are

hardly used since the number of conditions could potentially grow very large, up to maximum value

of the length field.

Variable-length fields. Length fields are used to locate the end of a variable-length target field. To

determine the start of the target variable-length field, without assuming any field encoding, we use

the following approach. Length fields need to appear before their target field, so they can be used to

skip it. Most often, as mentioned in [53] they precede the target field in the field sequence. After we
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locate a length field, we consider that the sequence of bytes between the last position belonging to

the length field and the end of the target field, corresponds toa variable-length field. For example,

in Figure3.6, when the length field at positions 12-13 is used to access positions 18-20, we identify

everything in between (i.e., 14-17) to be a variable-lengthfield. Thus, if a fixed-length field follows

the variable-length field and is not used by the program either because the field is not needed or not

supported by the program, then we will include the fixed-length field as part of the variable-length

field.

Note that our approach detects length fields by looking at pointer increments and thus, it is

independent of the encoding used in the length field. In contrast, previous work uses techniques for

identifying length fields that assume the length is encoded using some pre-defined encoding, such as

the number of bytes or words in the field [52,53]. Thus, those techniques would miss length fields

if they use other encodings, which do not belong to the set of pre-defined encodings being tested.

3.3.3 Identifying Fixed-Length Fields

In Sections3.3.1and3.3.2we have presented our techniques to identify the boundariesof variable-

length fields. In this section we present our techniques to identify the boundaries of fixed-length

fields. The intuition behind our fixed-length field identification technique is that fields are semantic

units and programs take decisions based on the value of a fieldas a whole. Thus, when a field

comprises multiple bytes, those bytes need to be used together in arithmetic operations, comparisons

or other tasks. In addition, most fields are independent of other fields, so bytes belonging to different

fields rarely are used in the same instruction. The exceptionto this rule are special relationships such

as length fields, pointer fields or checksums.

Our approach for identifying multiple bytes belonging to the same field is the following. Ini-

tially, we consider each byte received from the network as independent. Then, for each instruction,

we extract the list of positions that the taint data involvedin the instruction comes from. Next, we

check for special relationships among bytes, specifically in this paper we check for length fields,

using the techniques explained in Section3.3.2. If no length field is found, then we create a new

fixed field that encompasses those positions. For example if an instruction uses tainted data from

positions 12-14 and those positions currently do not belongto a length field, then we create a fixed

field that starts at position 12 and has length 3.

If a later instruction shows a sequence of consecutive tainted positions that overlaps with a

previously defined field, then we extend the previously defined field to encompass the newly found

bytes. One limitation is that fixed-length fields longer thanthe system’s word size (four bytes for

32-bit architectures, eight for 64-bit architectures) cannot be found, unless different instructions

overlap on their use. Note that fields larger than 4 bytes are usually avoided for this same reason,
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Figure 3.7: Message field tree for the MegaD Host-Information message.

since most systems have 32-bit architectures where longer fields need several instructions to be

handled. For fields longer than 4 bytes, our message format truncates them into four-byte chunks.

Note that this does not affect variable-length fields which are identified by finding the delimiters

and the length fields.

Even with this limitation, our approach is an improvement over previous work [52], where each

binary-encoded byte is considered a separate field. Using that approach, two consecutive fixed-

length fields, each of length 4 bytes, would be considered to be 8 consecutive byte-long fixed-length

fields.

3.4 Message Format Extraction for a Sent Message

The input for extracting the message format for a sent message is an execution trace of the program

while it constructs the response to a given message. The output of this process is the message format

as a message field tree with an attribute list for each node. This message field tree has no semantics

attribute. In Section3.5we show how to extract the values for the field semantics attribute.

Our techniques to extract the message format for sent messages do not leverage taint propagation

in the same way than the techniques for received messages do.For sent messages our techniques

mostly work backwards (i.e., bottom-to-top) on the execution trace, while taint propagation is a

forward (i.e., top-to-bottom) technique. Here, we leverage taint propagation in a different way

by tainting the memory regions where the program under analysis and all dynamic libraries (DLLs)

shipped with the program are loaded. Intuitively, protocolconstants known to the program are stored

in the data sections of those modules. Taint propagation allows us to track how those constants are

used to build the sent message. This is needed to identify delimiters and keywords, which are

constants as explained in Section3.2.2.
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Figure 3.8: Message format extraction for sent messages.

MegaD running example. The MegaD botnet is one of the most prevalent spam botnets in use at

the time of writing [130,99]. MegaD uses an encrypted, binary (under the encryption), previously

undocumented C&C protocol. Figure3.7, corresponds to a message constructed by a MegaD bot

to communicate back to the C&C server information about the bot’s host. We use the message

in Figure3.7 as a running example throughout this section. The message is58 bytes long and is

partially encrypted. TheMsg-Lengthfield represents the total length of the message in 4-bit units

and is unencrypted. TheEncrypted Payloadrecord corresponds to the encrypted part of the message.

The other record contains the host information such as the CPU identifier and the IP address of the

host.

Approach overview. The process of extracting the message format of a sent message is illus-

trated in Figure3.8. It comprises three steps. Thepreparationstep consists of a forward pass over

the execution trace to extract information about the execution. This step uses four of the mod-

ules introduced in Chapter2: the loop detection module, the execution trace indexing module, the

heap allocation monitor, and the call stack tracking module. We present the preparation step in

Section3.4.1.

The core of the process is thebuffer deconstructionstep. The intuition behind buffer deconstruc-

tion is that the message field tree for the sent message is the inverse of the structure of the output

buffer, which holds the message when is about to be sent on thenetwork. Thus, deconstructing the

output buffer into the memory buffers that were used to fill itwith data reveals the message field tree

of the sent message. This happens because programs store fields in memory buffers and construct

the messages to be sent by combining those buffers together.Figure3.9 shows the deconstruction

of the output buffer holding the message in Figure3.7. Note how Figure3.9 is the upside-down

version of Figure3.7. Buffer deconstruction is implemented as a backward pass over an execution

trace. It outputs a message field tree with an empty field attribute list for each node (except the field

range). We present buffer deconstruction in Section3.4.2.
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Figure 3.9: Buffer deconstruction for the MegaD message in Figure 3.7. Each box is a memory
buffer starting at addressBx with the byte length in brackets. Note the similarity with the upside-
down version of Figure3.7.

Finally, the field attribute inferencestep identifies length fields, delimiters, field sequences,

variable-length fields, and fixed-length fields. The information on those protocol elements is used to

fill the field attributes in the message field tree. We present field attribute inference in Section3.4.3.

3.4.1 Preparation

During preparation, a forward pass over the execution traceis made collecting information needed

by buffer deconstruction and field attribute inference. Preparation uses four of the modules intro-

duced in Chapter2: the execution trace indexing module, the call stack tracking module, the loop

detection module, and the heap allocation monitor. It uses the trace indexing module to build a trace

index that enables random access to the execution trace, needed by buffer deconstruction to scan

the execution trace backwards. It uses the call stack tracking module to produce a function that

given a instruction in the trace returns the function nesting when the instruction was executed, also

needed by buffer deconstruction. It uses the loop detectionmodule to extract information about the

loops in the execution trace, needed by field attribute inference. Buffer deconstruction also needs

information on whether two different writes to the same memory address correspond to the same

memory buffer, since memory locations in the stack (and occasionally in the heap) may be reused

for different buffers. Buffer liveness information is gathered during preparation using the heap al-

location monitor for heap buffers, and using the call stack tracking module to extract information

about which memory locations in the stack are freed when the function returns.

3.4.2 Buffer Deconstruction

Buffer deconstruction is a recursive process. In each iteration it deconstructs a given memory buffer

into a list of other memory buffers that were used to fill it with data. The process starts with the
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output buffer and recurses until there are no more buffers todeconstruct. Each memory buffer that

forms the output buffer (and, recursively, the memory buffers that form them) corresponds to a field

in the message field tree. At the end of each iteration, for each memory buffer used to construct

the current buffer, a field is added into the message field tree. For example, the output buffer in

Figure3.9 holds the message in Figure3.7 before it is sent over the network. Deconstructing this

output buffer returns a sequence of two buffers that were used to fill it with data: a 2-byte buffer

starting at offset zero in the output buffer (B1) and a 56-byte buffer starting at offset 2 in the output

buffer (B2). Correspondingly, a field with range [0:1] and another one with range [2:57] are added

to the message field tree. These two fields correspond to theMsg-Lengthand theEncrypted Payload

fields in Figure3.7.

Note that buffer deconstruction works at the binary level where a memory buffer is just a se-

quence of consecutive memory locations that were allocatedin the same execution context. Thus,

when any variable (e.g., an integer) is moved into memory (e.g., passed by value in a function

call) it becomes a memory buffer. Buffer deconstruction hastwo parts. First, for each byte in the

given buffer it builds adependency chain. Then, using the dependency chains and the information

collected in the preparation step, it deconstructs the given buffer. The input to each buffer decon-

struction iteration is a buffer defined by its start address in memory, its length, and the instruction

number in the trace where the buffer was last written. The start address and length of the output

buffer are obtained from the arguments of the function that sends the data over the network (or the

encryption function). The instruction number to start the analysis corresponds to the first instruc-

tion in the send (or encrypt) function. In the remainder of this section we introduce what program

locations and dependency chains are and present how they areused to deconstruct the output buffer.

Program locations. We define aprogram locationto be a one-byte-long storage unit in the pro-

gram’s state. We consider four types of locations:memory locations, register locations, immediate

locations, andconstant locations, and focus on the address of those locations, rather than on its

content. Each memory byte is a memory location indexed by itsaddress. Each byte in a register

is a register location, for example, there are 4 locations (i.e., bytes) in the 32-bit EAX register: the

lowest byte is EAX(0) and corresponds to the AL register, EAX(1) corresponds to the AH register,

and EAX(2) and EAX(3) correspond to the higher two bytes in the register. An immediate location

corresponds to a byte from an immediate in the code section ofsome module, indexed by the offset

of the byte with respect to the beginning of the module. Constant locations represent the output

of some instructions that have constant output. For example, one common instruction is to XOR

one register against itself (e.g.,xor %eax, %eax), which clears the register. Dispatcher recognizes a

number of such instructions and makes each byte of its outputa constant location.
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Dependency chains. A dependency chain for a program location is the sequence ofwrite oper-

ations that produced the value of the location at a certain point in the program. A write operation

comprises the instruction number at which the write occurred, the destination location (i..e, the lo-

cation that was written), the source location (i.e., the location that was read), and the offset of the

written location with respect to the beginning of the outputbuffer. Figure3.10shows the depen-

dency chains for theB2 buffer (the one that holds the encrypted payload) in Figure3.9. In the

figure, each box represents a write operation, and each sequence of vertical boxes represents the

dependency chain for one location in the buffer.

The dependency chain is computed in a backward pass startingat the given instruction number.

We stop building the dependency chain at the first write operation for which the source location is:

1) an immediate location, 2) a constant location, 3) a memorylocation, or 4) an unknown location.

We describe these four stop conditions next.

If the source location is part of an immediate or part of the output from some constant output

instruction, then there are no more dependencies and the chain is complete. This is the case for the

first four bytes ofB2 in Figure3.10. The reason to stop at a source memory location is that we

want to understand how a memory buffer has been constructed from other memory buffers. After

deconstructing the given buffer, Dispatcher recurses on the buffers that form it. For example, in

Figure3.10the dependency chains for locationsMem(A+4) throughMem(A+11) contains only one

write operation because the source location is another memory location. Dispatcher will then create

a new dependency chain for bufferMem(B)throughMem(B+7). When building the dependency

chains, Dispatcher only handles a small subset of x86 instructions which simply move data around,

without modifying it. This subset includes move instructions (mov,movs), move with zero-extend

instructions (movz), push and pop instructions, string stores (stos), and instructions that are used

to convert data from network to host order and vice versa suchas exchange instructions (xchg),

swap instructions (bswap), or right shifts that shift entire bytes (e.g.,shr $0x8,%eax). When a

write operation is performed by any other instruction, the source is considered unknown and the

dependency chain stops. Often, it is enough to stop the dependency chain at such instructions,

because the program is at that point performing some operation on the field (e.g., an arithmetic

operation) as opposed to just moving the content around. Since programs operate on leaf fields, not

on records, then at that point of the chain we have already recursed up to the corresponding leaf

field in the message field tree. For example, in Figure3.10the dependency chains for the last two

bytes stop at the sameadd instruction. Thus, both source locations are unknown. Notethat those

locations correspond to the length field in Figure3.7. The fact that the program is increasing the

length value indicates that the dependency chain has already reached a leaf field.
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Figure 3.10: Dependency chain forB2 in Figure3.9. The start address ofB2 is A.

Extracting the buffer structure. We call the source location of the last element in the dependency

chain of a buffer location itssource. We say that two source locations belong to the same source

buffer if they are contiguous memory locations (in either ascending or descending order) and the

liveness information states that none of those locations has been freed between their corresponding

write operations. If the source locations are not in memory (e.g., register, immediate, constant or

unknown location), they belong to the same buffer if they were written by the same instruction (i.e,

same instruction number).

To extract the structure for the given buffer Dispatcher iterates on the buffer locations from the

buffer start to the buffer end. For each buffer location, Dispatcher checks whether the source of

the current buffer location belongs to the same source buffer as the source of the previous buffer

location. If they do not, then it has found a boundary in the structure of the buffer. The structure of

the given buffer is output as a sequence of ranges that form it, where each range states whether it

corresponds to a source memory buffer.

For example, in Figure3.10the source locations forMem(A+4) andMem(A+5) are contiguous

locationsMem(B)and Mem(B+1) but the source locations forMem(A+11) and Mem(A+12) are

not contiguous. Thus, Dispatcher marks locationMem(A+12) as the beginning of a new range.

Dispatcher finds 6 ranges inB2. The first four are shown in Figure3.10and marked with arrows

at the top of the figure. Since only the third range originatesfrom another memory buffer, that is

the only buffer that Dispatcher will recurse on to reconstruct. The last two ranges correspond to the

Host InfoandPaddingfields in Figure3.7and are not shown in Figure3.10.

Once the buffer structure has been extracted, Dispatcher uses the correspondence between

buffers and fields in the analyzed message to add one field to the message field tree per range in

the buffer structure using the offsets relative to the output buffer. In Figure3.10 it adds four new
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fields that correspond to theVersion, Type, Bot ID, andLengthin Figure3.7. Note that buffer de-

construction focuses on the source and tail of the dependency chain, ignoring the possibly multiple

instructions that may move a byte of data across different registers before writing it to a memory

location. There are two reasons why we ignore those internalinstructions in the chain. One is

that registers are only temporary storage locations, the other one is that general-purpose registers

have a maximum length (i.e., 4 bytes in a 32-bit architecture) that is smaller than the size of many

variable-length fields. Thus, if those intermediate instructions where accounted for, the technique

would split large fields into multiple smaller fields.

3.4.3 Field Attributes Inference

The message field tree built by buffer deconstruction captures the hierarchical structure of the out-

put message, but does not contain field attributes other thanthe field range. Field attributes convene

information that can be generalized from this message to other messages of the same type such as

if a field is fixed-length or variable-length or inter-field relationships such as if a field represents the

length of another target variable-length field. Similar to the need for buffer deconstruction, new field

attribute inference techniques are also needed for sent messages. Next, we propose field attribute

inference techniques designed to identify different protocol elements in sent messages. These tech-

niques differ but share common intuitions with the techniques used for received messages: both try

to capture fundamental properties of the protocol elements.

Length fields. We use three different techniques to identify length fields in sent messages. The

intuition behind the techniques is that length fields can be computed either by incrementing a counter

as the program iterates on the field, or by subtracting pointers to the beginning and the end of the

buffer. The intuition behind the first two techniques is thatthose arithmetic operations translate into

an unknown source at the end of the dependency chains for the buffer locations corresponding to the

length field. When a dependency chain ends in an unknown source, Dispatcher checks whether the

instruction that performs the write is inside a known function that computes the length of a string

(e.g.,strlen) or is a subtraction of pointers to the beginning and end of the buffer. The third technique

tries to identify counter increments that do not correspondto well-known string length functions.

For each buffer it uses the loop information to identify if most writes to the buffer6 belong to the

same loop. If they do, then it uses the techniques in [188] to extract the loop induction variables.

For each induction variable it computes the dependency chain and checks whether it intersects the

dependency chains from any output buffer locations that precede the locations written in the loop

6Many memory move functions are optimized to move 4 bytes at a time in one loop and use separate instructions or
loops to move the remaining bytes.
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(since a length field always precedes its target field). Any intersecting location is part of the length

field for the field processed in the loop.

Delimiters. Delimiters are constants and it is difficult to differentiate them from other constants

in the sent message. The technique to identify delimiters looks for constants that appear multiple

times in the same message or appear at the end of multiple messages in the same session (three

appearances are required). Constants are identified using the taint information introduced by tainting

the memory regions containing the program and DLLs shipped it. If the delimiters come from the

data section, they can also be identified by checking whetherthe source address of all instances of

the constant comes from the same buffer.

Variable-length fields. Fields that precede a delimiter and target fields for previously identified

length fields are marked as variable-length fields. Fields derived from semantic sources that are

known to be variable-length such as file data are also marked as variable-length. All other fields

are marked as fixed-length. Note that some fields that a protocol specification would define as

variable-length may encode always the same fixed-length data in a specific implementation. For

example theServerheader is variable-length based on the HTTP specification. However, a given

HTTP server implementation may have hard-coded theServerstring in the binary, making the field

fixed-length for this implementation. Leveraging the availability of multiple implementations of the

same protocol could help identify such cases.

Field sequences. The intuition behind identifying field sequences is that they are written in loops,

one field at a time. The technique to identify sequences searches for loops that write multiple

consecutive fields. For each loop, it adds to the message fieldtree one record field with the range

being the combined range of all the consecutive fields written in the loop and with aSequencefield

semantics value. It also adds one field per range of bytes written in each iteration of the loop.

3.5 Field Semantics Inference

In this section we present our techniques to identify the field semantics of both received and sent

messages. The intuition behind our type-inference-based techniques is that many functions and

instructions used by programs contain rich semantic information. We can leverage this information

to infer field semantics by monitoring if received network data is used at a point where the semantics

are known (i.e., semantics sinks), or if data to be sent to thenetwork has been derived from data

with known semantics (i.e., semantics sources). Such semantics inference is very general and can

be used to identify a broad spectrum of field semantics including timestamps, filenames, hostnames,
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ports, IP addresses, and many others. The semantic information of those functions and instructions

is publicly available in their prototypes, which describe their goal as well as the semantics of its

inputs and outputs. Function prototypes can be found, for example, at the Microsoft Developer

Network [138] or the standard C library documentation [93]. For instructions, one can refer to the

system manufacturers’ manuals.

Techniques. For receivedmessages, Dispatcher uses taint propagation to monitor if asequence

of bytes from the received message is used in the arguments ofsome selected function calls and

instructions, for which the system has been provided with the function’s prototype. The sequence

of bytes in the received message can then be associated with the semantics of the arguments as

defined in the prototype. For example, when a program calls the connectfunction Dispatcher uses

the function’s prototype to check if any of the arguments on the stack is tainted. The function’s

prototype tells us that the first argument is the socket descriptor, the second one is an address struc-

ture that contains the IP address and port of the host to connect to, and the third one is the length

of the address structure. If the memory locations that correspond to the IP address to connect to in

the address structure are tainted from four bytes in the input, then Dispatcher can infer that those

four bytes in the input message (identified by the offset in the taint information) form a field that

contains an IP address to connect to. Similarly, if the memory locations that correspond to the port

to connect to have been derived from two bytes in the input message, it can identify the position of

the port field in the input message.

For sentmessages, Dispatcher taints the output of selected functions and instructions using a

unique source identifier and offset pair. For each tainted sequence of bytes in the output buffer,

Dispatcher identifies from which taint source the sequence of bytes was derived. The semantics of

the taint source (return values) are given by the function’sor instruction’s prototype, and can be

associated to the sequence of bytes. For example, if a program uses therdtsc instruction, we can

leverage the knowledge that it takes no input and returns a 64-bit output representing the current

value of the processor’s time-stamp counter, which is placed in registers EDX:EAX [91]. Thus, at

the time of execution when the program usesrdtsc, Dispatcher taints the EDX and EAX registers

with a unique source identifier and offset pair. This pair uniquely labels the taint source to be from

rdtsc, and the offsets identify each byte in therdtscstream (offsets 0 through 7 for the first use).

A special case of this technique iscookieinference. A cookie represents data from a received

message that propagates unchanged to the output buffer (e.g., session identifiers). Thus, a cookie is

simultaneously identified in the received and sent messages.

Implementation. To identify field semantics Dispatcher uses an input set of function and instruc-

tion prototypes. By default, Dispatcher includes over one hundred functions and a few instructions
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Field Semantics Received Sent
Cookies yes yes
IP addresses yes yes
Error codes no yes
File data no yes
File information no yes
Filenames yes yes
Hash / Checksum yes yes
Hostnames yes yes
Host information no yes
Keyboard input no yes
Keywords yes yes
Length yes yes
Padding yes no
Ports yes yes
Sequences no yes
Registry data no yes
Sleep timers yes no
Stored data yes no
Timestamps no yes

Table 3.3: Field semantics identified by Dispatcher for bothreceived and sent messages. Stored data
represents data received over the network andwritten to the filesystem or the Windows registry, as
opposed to dataread from those sources.

for which we have already added the prototypes by searching online repositories. To identify new

field semantics and their corresponding functions, we examine the external functions called by the

program in the execution trace. Table3.3 shows the field semantics that Dispatcher can infer from

received and sent messages using the predefined functions.

Keywords. An important field semantic is keywords. Keywords are protocol constants that ap-

pear in network messages and are known a priori to the implementation. They are useful to create

protocol signatures to detect services running on non-standard ports and mapping traffic to applica-

tions [84,131]. Our intuition to identify keywords in received messages is that similar to delimiters,

the program compares the keywords against the received application data. Dispatcher locates the

keywords in the received message by analyzing thesuccessful comparisonsbetween tainted and

untainted data, using comparison operations as the semantics sinks. The technique comprises two

steps. The first step is identical to the first step in the delimiter identification technique presented

in Section3.3.1, that is, to populate the token table. The second step differs in that it focuses on

the successful comparisons, rather than all the comparisons. It consists of scanning in ascending

position order the columns in the token table. For each position, if we find a successful compar-
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ison, then we concatenate the token that was compared to the position to the current keyword. If

no successful comparison is found at the current position, we store the current keyword and start

a new keyword. We also break the current keyword and start a new one if the keyword crosses a

field boundary as defined by the message field tree. This technique is general, in that it does not

assume that the multiple bytes that form the keyword appear together in the code or that they are

used sequentially. For example, using the token table shownin Figure3.4, Dispatcher identifies two

HTTP keywords: “GET” at positions [0:2] and “HTTP” at positions [16:19].

To identify keywords in sent messages, Dispatcher taints the memory region that contains the

module (and DLLs shipped with the main binary) with a specifictaint source, effectively tainting

both immediates in the code section as well as data stored in the data section. Locations in the

output buffer tainted from this source are considered keywords.

3.6 Handling Encryption

Our protocol reverse-engineering techniques work on unencrypted data. Thus, when reversing en-

crypted protocols we need to address two problems. First, for received messages, we need to identify

the buffers holding the unencrypted data at the point that the decryption has finished since buffers

may only hold the decrypted data for a brief period of time. Second, for sent messages, we need to

identify the buffers holding the unencrypted data at the point that the encryption is about to begin.

Once the buffers holding the unencrypted data have been identified, protocol reverse-engineering

techniques can be applied on them, rather than on the messages received or about to be sent.

Recent work has looked at the problem of reverse-engineering the format of received encrypted

messages [221, 128]. Since the application needs to decrypt the data before using it, those ap-

proaches monitor the application’s processing of the encrypted message and locate the buffers that

contain the decrypted data at the point that the decryption has finished by identifying the output

buffers of functions with a high ratio of arithmetic and bitwise instructions. Those approaches do

not address the problem of finding the buffers holding the unencrypted data before it is encrypted,

which is also required in our case. We have developed two different approaches to identify encoding

functions. In this section we present extensions to the technique presented in ReFormat [221], which

flags encoding functions as functions with a high ratio of arithmetic and bitwise instructions. Then,

in Chapter8 we present a different technique to identify encoding functions, which flags encoding

functions as functions that highly mix their inputs.

Next, we describe our two extensions to the technique presented in ReFormat [221]. First, Re-

Format can only handle applications where there exists a single boundary between decryption and

normal protocol processing. However, multiple such boundaries may exist. As shown in Figure3.7
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MegaD messages comprise two bytes with the message length, followed by the encrypted payload.

After checking the message length, a MegaD bot will decrypt 8bytes from the encrypted payload

and process them, then move to the next 8 bytes and process them, and so on. In addition, some

messages in MegaD also use compression and the decryption and decompression operations are

interleaved. Thus, there is no single program point where all data in a message is available unen-

crypted and uncompressed. Consequently, we extend the technique to identify everyinstanceof

encryption, hashing, compression, and obfuscation, whichwe generally termencoding functions.

Second, ReFormat was not designed to identify the buffers holding the decoded (unencrypted) data

before encoding (encryption). Thus, we extend the technique to also cover this case. We present the

generalized technique next.

Identifying encoding functions. To identify every instance of an encoding function we have sim-

plified the process in ReFormat by removing the cumulative ratio of arithmetic and bitwise instruc-

tions for the whole trace (since we are interested in the ratio for each function), the use of tainted

data, and the concept of leaf functions. The extended technique applies the intuition in ReFormat

that the decryption process contains an inordinate number of arithmetic and bitwise operations to

encoding functions. It makes a forward pass over the input execution trace using the call stack track-

ing module. For each function instance, it computes the ratio between the number of arithmetic and

bitwise operations over the total number of instructions inthe function. The ratio includes only

the function’s own instructions. It does not include instructions belonging to any called functions.

Any function instance that executes a minimum number of instructions and has a ratio larger than a

pre-defined threshold is flagged as an instance of an encodingfunction. The minimum number of in-

structions is needed because the ratio is not meaningful forfunctions that execute few instructions.

In our experiments we set the minimum number of instructionsto 20. We have experimentally

set the threshold to 0.55 by training with a number of known encoding functions and selecting a

threshold that minimizes the number of false negatives. We evaluate the technique in Section3.7.3.

Identifying the buffers. To identify the buffers holding the unencrypted data beforeencryption

we compute theread setfor the encryption routine, the set of locations read insidethe encryption

routine before being written. The read set for the encryption routine includes the buffers holding

the unencrypted data, the encryption key, and any hard-coded tables used by the routine. We can

differentiate the buffers holding the unencrypted data because their content varies between multiple

instances of the same function. To identify the buffers holding the unencrypted data after decryption

we compute thewrite setfor the decryption routine, the set of locations written inside the decryption

routine and read later in the trace. We detail the read and write set extraction as part of our interface

identification technique in Chapter4.
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3.7 Evaluation

In this section we evaluate our techniques on the previouslyundocumented C&C protocol used by

the MegaD botnet, as well as a number of open protocols. MegaDis a prevalent spamming botnet

first observed in 2007 and credited at its peak with responsibility for sending a third of the world’s

spam [129]. We use MegaD’s proprietary and encrypted C&C protocol as areal-world test of our

techniques. We use the open protocols to evaluate our techniques against a known ground truth.

3.7.1 Evaluation on MegaD

MegaD uses a proprietary, encrypted, binary protocol that has not been previously analyzed. Our

MegaD evaluation has two parts. We first describe the information obtained by Dispatcher on the

C&C protocol used by MegaD, and then show how the informationextracted by Dispatcher can be

used to rewrite a C&C dialog.

MegaD C&C Protocol. The MegaD C&C protocol uses TCP for transport on either port 80 or

4437. It employs a proprietary encryption algorithm instead of the SSL routines for HTTPS com-

monly used on port 443. Some MegaD bots use port 80 and others use 443 but the encryption and

protocol grammar are identical regardless of the port.

A MegaD bot communicates with four types of C&C servers:Master Servers (MS), Drop

Servers (DS), Template Servers (TS), andSMTP Servers (SS). The four server types are illustrated in

Figure3.11. The botmaster uses the master servers to distribute commands to the bots. Bots locate

a master server using a rendezvous algorithm, based on domain names hard-coded in the bot bina-

ries. A bot employs pull-based communication using MegaD’sC&C protocol to periodically probe

the master server with a request message to which the server replies with a sequence of messages

carrying authentication information and a command. The botperforms the requested action and

returns the results to the master server. Drop servers distribute new binaries. A bot locates a drop

server by receiving a message from its master server containing a URL specifying a file to download

through HTTP. Template servers distribute the spam templates that bots use to construct spam. A

bot locates a template server via a message from the master server specifying the address and port

to contact. Again, communication proceeds in a pull-based fashion using MegaD’s custom C&C

protocol. SMTP servers play two distinct roles. First, botscheck their spam-sending capabilities

by sending them a test email using the standard SMTP protocol. A bot locates the SMTP server for

this testing via a message from the master server specifyingthe server’s hostname. Second, bots

notify an SMTP server after downloading a new spam template and prior to commencing to spam.

7Malware often uses TCP ports 80 and 443 for their communication because those ports are often open in firewalls to
enable Web browsing.
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Figure 3.11: The four server types that a MegaD bot communicates with. The figure shows for each
server the communication protocol used between the bot and the server, the main use of the server,
and how the bot locates the server.

A bot locates the SMTP server used for template download notification via a control parameter in

the spam template. The notification uses a modified SMTP protocol. Instead of sending the usual

SMTP “HELO <hostname>” message, the bot sends a special “HELO 1” message and closesthe

connection.

Message format. We capture two MegaD C&C network traces by running the binaryin a con-

tained environment that forwards C&C traffic but blocks any other traffic from the bot (e.g., spam

traffic). Our MegaD C&C traces contain 15 different messages(7 received and 8 sent by the bot).

Using Dispatcher, we have extracted the message field tree for messages on both directions, as well

as the associated field semantics. All 15 messages follow thestructure shown in Figure3.7 with a

2-byte message length followed by an encrypted payload. Thepayload, once decrypted, contains a

2-byte field that we term “version” as it is always a keyword ofvalue 0x100 or 0x1, followed by a

2-byte message type field. The structure of the remaining payload depends on the message type. To

summarize the protocol grammar we have used the output of Dispatcher to write a BinPac gram-

mar [173] that comprises all 15 messages. Field semantics are added as comments to the grammar.

AppendixA presents the MegaD protocol grammar.

To the best of our knowledge, we are the first to document the C&C protocol employed by

MegaD. Thus, we lack ground truth to evaluate our grammar. Toverify the grammar’s accuracy,

we use another execution trace that contains a different instance of one of the analyzed dialogs. We
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dump the content of all unencrypted messages and try to parsethe messages using our grammar.

For this, we employed a stand-alone version of the BinPac parser included in Bro [175]. Using our

grammar, the parser successfully parses all MegaD C&C messages in the new dialog. In addition,

the parser throws an error when given messages that do not follow the MegaD grammar.

Field attribute inference. The 15 MegaD messages contain no delimiters or arrays. They contain

two variable-length fields that use length fields to mark their boundaries: the compressed spam-

related information (i.e., template and addresses) received from the spam server, and the host infor-

mation field in Figure3.7. Both the length fields and variable-length fields are correctly detected by

Dispatcher. The only attributes that Dispatcher misses arethe message length fields on sent mes-

sages because they are computed using complex pointer arithmetic that Dispatcher cannot reason

about. In particular, the message length is computed by subtracting the pointers to the end and

beginning of the message, but then this result goes through asequence of arithmetic and bitwise

instructions that encodes the final number of bytes in value in the field.

Field semantics. Dispatcher identifies 11 different field semantics over the 15 messages: IP ad-

dresses, ports, hostnames, length, sleep timers, error codes, keywords, cookies, stored data, padding

and host information. There are only two fields in the MegaD grammar for which Dispatcher does

not identify their semantics. Both of them happen in received messages: one of them is the message

type, which we identify by looking for fields that are compared against multiple constants in the

execution and for which the message format varies dependingon its value. The other corresponds

to an integer whose value is checked by the program but apparently not used further. Note that we

identify some fields in sent messages as keywords because they come from immediates and con-

stants in the data section. We cannot identify exactly what they represent because we do not see

how they are used by the C&C server.

Rewriting a MegaD dialog. To show how our grammar enables live rewriting, we run a live

MegaD bot inside our analysis environment, which is locatedin a network that filters all outgoing

SMTP connections for containment purposes. In a first dialog, the C&C server sends the command

to the bot ordering to test for spam capability using a given Spam test server. The analysis network

blocks the SMTP connection causing the bot to send an error message back to the C&C server, to

communicate that it cannot send spam. No more spam-related messages are received by the bot.

Then, we start a new dialog where at the time the bot calls the encrypt function to encrypt the

error message, we stop the execution, rewrite the encryption buffer with the message that indicates

success, and let the execution continue8. After the rewriting the bot keeps receiving the spam-related

8The size of both messages is the same once padding is accounted for, thus we can reuse the allocated buffer.
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Program Version Protocol Type Guest OS
Apache [4] 2.2.1 HTTP Server Windows XP
BIND [14] 9.6.0 DNS Server Windows XP
FileZilla [67] 0.9.31 FTP Server Windows XP
Pidgin [177] 2.5.5 ICQ Client Windows XP
Sambad [186] 3.0.24 SMB Server Linux Fedora Core 5
TinyICQ [208] 1.2 ICQ Client Windows XP

Table 3.4: Different programs used in our evaluation on openprotocols.

Wireshark Dispatcher Errors
Protocol Message Type |LW | |HW | |LD| |HD| |EL

W
| |EL

D
| |EH

W
| |EH

D
|

HTTP GET reply 11 1 22 0 11 1 0 1
POST reply 11 1 22 0 11 1 0 1

DNS A reply 27 4 28 0 1 0 0 4
FTP Welcome0 2 1 3 1 1 0 0 0

Welcome1 2 1 3 1 1 0 0 0
Welcome2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1

ICQ New connection 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0

Total 123 30 154 22 34 5 0 8

Table 3.5: Comparison of the message field tree for sent messages extracted by Dispatcher and
Wireshark 1.0.5. The ICQ client used is Pidgin.LW andLD are the set of leaf fields output by
Wireshark and Dispatcher respectively, whileHW and HD are the sets of record (hierarchical)
fields. EL

W andEL
D denote the set of errors in leaf field output by Wireshark and Dispatcher, while

EH
W andEH

D denote the set of errors in record fields.

messages, including the spam template and the addresses to spam, despite the fact that it cannot send

any spam messages. Note that simply replaying the message that indicates success from a previous

dialog into the new dialog does not work because the success message includes a cookie value that

the C&C selects and may change between dialogs. In Chapter4 we present our binary code reuse

techniques and apply them to the cryptographic routines used to protect MegaD’s C&C protocol.

Using the extracted cryptographic routines in combinationwith MegaD’s protocol grammar, we can

perform this same rewriting experiment on a Network Intrusion Detection System (NIDS), rather

than inside the execution monitor where the bot runs.
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3.7.2 Evaluation on Open Protocols

In this section we evaluate our techniques on five open protocols: DNS, FTP, HTTP, ICQ, and SMB.

To this end, we compare the output of Dispatcher with that of Wireshark [227] when processing

17 messages belonging to those 5 protocols. For each protocol we select at least one application

that implements it, which we present in Table3.4. For each protocol, we select a set of protocol

messages. For HTTP we evaluate how the Apache server [4] processes aHTTP GETrequest for

the file “index.html” and the reply generated by the server. For DNS we evaluate an A query to

resolve the IP address of the domain “test.example.com” send to the BIND name server [14] and its

corresponding reply. For FTP we analyze the sequence of messages sent by the FileZilla server [67]

in response to a connection, as well as the messages sent whenthe username and password are

received. For ICQ we analyze the messages in a login connection sent by the Pidgin client tool [177]

and the responses from the server interpreted by the TinyICQclient tool [208]. For SMB, we analyze

aNegotiate Protocol Request received by the Sambad open source server [186].

Message format. Wireshark is a network protocol analyzer containing manually written gram-

mars (called dissectors) for a large variety of network protocols. Although Wireshark is a mature

and widely-used tool, its dissectors have been manually generated and therefore are not completely

error-free. Wireshark dissectors parse a message into a message field tree. The internal message

field tree is not output in a visual representation by Wireshark but is accessible through the library

functions. To compare the accuracy of the message format automatically extracted by Dispatcher

to the manually written ones included in Wireshark, we analyze the message field tree output by

both tools and manually compare them to the protocol specification. Thus, we can classify any

differences between the output of both tools to be due to errors in Dispatcher, Wireshark, or both.

We denote the set of leaf fields and the set of records in the message field tree output by Wire-

shark asLW (L stands for leaf) andHW (H stands for hierarchical), respectively.LD andHD are

the corresponding sets for Dispatcher. Table3.5shows the evaluation results for sent messages and

Table3.6for received messages. For each protocol and message the tables show the number of leaf

fields and records in the message field tree output by both tools as well as the result of the manual

classification of its errors. Here,|EL
W | and |EL

D| represent the number of errors on leaf fields in

the message field tree output by Wireshark and Dispatcher respectively. Similarly,|EH
W | and|EH

D |

represent the number of errors on records.

The results show that Dispatcher outperforms Wireshark when identifying leaf fields. This result

is mainly due to the inconsistencies between the different dissectors in Wireshark when identifying

delimiters. Some dissectors do not add delimiters to the message field tree, some concatenate them

to the variable-length field for which they mark the boundary, while others treat them as separate
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Figure 3.12: Message field tree for a simple HTTP response output by Wireshark. The dotted nodes
are fields that Wireshark does not output.

Wireshark Dispatcher Errors
Protocol Message Type |LW | |HW | |LD| |HD| |EL

W
| |EL

D
| |EH

W
| |EH

D
|

HTTP GET request 13 2 40 10 27 2 8 0
DNS A query 14 3 13 1 1 0 0 2
ICQ New connection 38 11 36 11 0 2 0 0

Close connection 13 3 10 3 0 3 0 0
SMB Negotiate Protocol 48 16 39 11 9 6 0 5

Request

Total 126 35 138 36 37 13 8 7

Table 3.6: Comparison of the message field tree for received messages extracted by Dispatcher and
Wireshark 1.2.8. The ICQ client is TinyICQ.

fields. After checking the protocol specifications, we believe that delimiters should be treated as

their own fields in all dissectors. Figure3.12illustrates some of the errors made by Wireshark. It

shows the message field tree for a simple HTTP response outputby Wireshark. The dotted nodes

are missing nodes that Wireshark does not output, which include delimiters, the reason field and the

children of theServer header field.

The results also show that Wireshark outperforms Dispatcher when identifying records. For

sent messages, this is due to the program not using loops to write the arrays because the number

of elements in the array is known or is small enough that the compiler has unrolled the loop. For

example, if an array has only two elements, the source-levelloop that processes the field iterates

only twice and the compiler may decide to unroll the two iterations at the binary-level. Thus, at the

binary level there is no loop that handles both records in thearray and Dispatcher will flag them as

separate fields rather than as two records of an array. For received messages it is often due to the

loop that processes the record being missed by the detectionbecause it executed only one iteration9.

9Here we are using the dynamic loop detection method (See Section 2.4.1), which can only detect loops that complete
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The two main sources of errors for Dispatcher when analyzingsent messages are: consecutive

fields that are stored as a single string in the program binaryand arrays that are not written using

a loop. An example of consecutive fields stored as a unit by theapplication is the error in the

Status-Linerecord of the HTTP reply message. The HTTP/1.1 specification[65] states that its

format is: Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF, but Dispatcher

considers theStatus-Code, the delimiter, and theReason-Phraseto belong to the same field because

all three fields are stored as a single string in the server’s data section, which is copied as a whole

into the sent message. An example of a program processing an array without a loop is theBIND

server processing separately theQueries, Answers, Authoritative, andAdditional sections in the

DNS reply. This introduces four errors in the results because Dispatcher cannot identify that they

form an array.

The two main sources of errors for Dispatcher when analyzingreceived messages are: fields

smaller than one byte and unused fields. An example of fields smaller than one byte are the fields

that comprise the flags records in the DNS and SMB messages. Since Dispatcher works at the

byte level it currently does not identify fields smaller thanone byte. Unused fields are fields that

the program only moves without performing any other operation on them. When two consecutive

unused fixed-length fields are found, Dispatcher groups themas a single field introducing an error.

For example, in the SMBNegotiate Protocol Requestmessage, theProcess ID High, Signature,

Reserved, Tree ID, andProcess IDfields are all grouped together by Dispatcher into a single unused

field. These errors in sent and received messages highlight the fact that the message field tree

extracted by Dispatcher is limited to the quality of the protocol implementation in the binary, and

may differ from the specification.

Overall, Dispatcher and Wireshark achieve similar accuracy. Note that we do not claim that

Dispatcher will always be as accurate as Wireshark, since weare only evaluating a limited number

of protocols and messages. However, the results show that the accuracy of the message format

automatically extracted by Dispatcher can rival that of Wireshark, without requiring a manually

generated grammar.

Field Attribute Inference. The 17 messages contain 34 length fields, 73 delimiters, 133 variable-

length fields, and 6 arrays. We have analyzed in detail the errors in the field attribute inference for

sent messages. Dispatcher misses 8 length fields because their value is hard-coded in the program.

Thus, their target variable-length fields are considered fixed-length. Out of the 43 delimiters in sent

messages Dispatcher only misses one, which corresponds to anull byte marking the end of a cookie

string that was considered part of the string. Dispatcher correctly identifies all other variable-length

a full iteration, i.e., where the backedge is taken.
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Number of traces Number of functions False Positives False Positive Rate
20 3,467,458 (16,852) 87 (9) 0.002%

Table 3.7: Evaluation of the detection of encoding functions. Values in parentheses represent the
numbers of unique instances. False positives are computed based on manual verification.

fields in sent messages. Out of 3 arrays, Dispatcher misses one formed by theQueries, Answers,

Authoritative, and Additional sections in the DNS reply, which BIND processes separately and

therefore cannot be identified by Dispatcher.

Field semantics. Dispatcher correctly identifies all semantics in Table3.3except the 3 pointers in

the DNS reply, used by the DNS compression method, which are computed using pointer arithmetic

that Dispatcher cannot reason about.

3.7.3 Detecting Encoding Functions

To evaluate the detection of encoding functions presented in Section3.6 we perform the following

experiment. We obtain 25 execution traces from multiple programs that handle network data. Five

of these traces process encrypted and compressed functions, four of them are from MegaD sessions

and the other one is from Apache while handling an HTTPS session. MegaD uses its own encryp-

tion algorithm and thezlib library for compression and Apache uses SSL with AES and SHA-110.

The remaining 20 execution traces are from a variety of programs including three browsers pro-

cessing the same plain HTTP response (Internet Explorer 7, Safari 3.1, and Google Chrome 1.0), a

DNS server processing a received request (BIND), a Web server processing an HTTP GET request

(AtpHttpd), the Microsoft SQL server processing a request for database information (MSSQL), as

well as the RPC service embedded in Windows handling a directory listing. For all these 15 traces

the inputs do not contain any checksums, encrypted or compressed data, so we believe they are free

of encoding functions.

Dispatcher flags any function instances in the execution traces with at least 20 instructions and

a ratio of arithmetic and bitwise instructions greater than0.55 as encoding functions. To evaluate

false negatives, we run Dispatcher on the Apache-SSL trace.Dispatcher correctly identifies all

encoding functions. To evaluate false positives, we run Dispatcher on the 20 traces that do not

contain encoding functions. The results are shown in Table3.7. The 20 execution traces contain

over 3.4 million functions calls from over 16,852 unique functions. Dispatcher flags 87 function

instances as encoding functions, belonging to nine unique functions. Using function names and

debugging information, we have been able to identify two outof those nine functions:memchr

10TLS-DHE-RSA with AES-CBC-256-SHA-1
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andcomctl32.dll::TrueSaturateBits . Based on these results, our technique correctly

identifies all known encoding functions and has a false positive rate of 0.002%.

Next, we run Dispatcher on the four MegaD execution traces. Four unique encoding functions

are identified. Three of them appear in all four execution traces: the decryption routine, the encryp-

tion routine, and a key generation routine that generates the encryption and decryption keys from

a seed value in the binary before calling the encryption or decryption routines. In addition, in one

execution trace Dispatcher flags a fourth function that corresponds to theinflate function in thezlib

library, which is statically linked into the MegaD binary.

3.8 Related Work

Protocol reverse-engineering projects that enable interoperability of open solutions with proprietary

protocols have existed for a long time. Those projects relied on manual techniques, which are slow

and costly [148,210,121,72,89]. Automatic protocol reverse-engineering techniques canbe used,

among other applications, to reduce the cost and time associated with these projects.

Protocol format. Early work on automatic protocol format reverse-engineering takes as input net-

work traffic. Among these approaches, the Protocol Informatics project pioneers the use of sequence

alignment algorithms [10] and Discoverer proposes a related, but improved, technique that first to-

kenizes messages into a sequence of binary and text tokens, then clusters similar token sequences

and finally merges similar sequences using type-based sequence alignment [52]. Approaches based

on network traffic are useful when a program that implements the protocol is not available. How-

ever, they cannot reverse encrypted protocols and are limited by the lack of protocol information

in network traffic. Leveraging a program that implements theprotocol significantly improves the

quality of the reversed-engineered format.

Lim et al. [123] use static analysis on program binaries to extract the format from files and

application data output by a program. Their approach requires the user to input the prototype of the

functions that write data to the output buffer. This information is often not available, e.g., when the

functions used to write data are not exported by the program.Their static analysis approach requires

sophisticated analysis to deal with indirection and cannothandle packed binaries such as MegaD.

Also, they do not extract the format of received messages or infer field semantics.

In Polyglot, we propose a dynamic binary analysis approach for extracting the message for-

mat of received messages that does not require any a priori knowledge about the program or

the protocol and can effectively deal with indirection and packed binaries [30]. Dynamic binary

analysis techniques are also used in follow-up work that extracts the hierarchical message for-

mat [229,124,54,125]. We detail those works next.
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In Autoformat, the authors propose techniques to extract the message field tree of received mes-

sages and to identify field sequences [124]. Their technique groups together consecutive positions

in the input message that are processed by the same function.However, a function may parse mul-

tiple fields, e.g., when parsing two consecutive fixed-length fields in a binary protocol. Their output

message field tree captures the hierarchical structure of the message but contains no field attributes.

Thus, it cannot be used to generalize across multiple instances of the same message. To identify

field sequences their technique looks for input positions that with similar execution history, i.e., that

have been processed by the same functions.

Wondracek et al. propose techniques to extract the message format of received messages and use

hierarchical sequence alignment to identify optional fields, alternation, and sequences of identically-

structured records [229]. Their message format captures the hierarchical field structure and contains

field attributes such as length fields and delimiters, which can be used to generalize across messages.

When identifying leaf fields, they break an input chunk that is not a delimiter, length field, or

variable-length field, into individual bytes and thus may miss identifying multi-byte fixed-length

fields.

In Tupni the authors propose techniques to identify field sequences and to aggregate information

from multiple messages [54]. Their field sequence identification technique groups together input

positions that are handled in the same loop iteration. Tupniidentifies fields with the same type

across different messages by comparing the set of instructions that operate on the fields. Then, it

aligns fields based on their types using the technique in [52].

Lin and Zhang develop techniques to extract the input syntaxtree of inputs with top-down or

bottom-up grammars [125]. Their technique for top-down grammars has the same scope as the

works above and assumes that program control dependence follows program parsing. However,

many programs may not satisfy this assumption, e.g., they may backtrack to previously scanned

fields or they may perform error checks that do not reveal input structure but modify the program’s

control dependence. Their input syntax tree represents thehierarchical structure of the input but does

not allow to generalize to other inputs, similar to a messagefield tree with no field attributes. They

also propose a technique for inputs with bottom-up grammars, commonly used in programming

languages.

In Dispatcher, we propose message format extraction techniques for sent messages and field

semantics inference techniques for both received and sent messages. Compared to the above ap-

proaches, Dispatcher is able to extract the message format for received and sent messages from the

same binary. This is important in scenarios where only the program that implements one side of the

dialog is available such as when analyzing the C&C protocolsused by botnets and instant messag-

ing protocols. In addition, Dispatcher extracts fine-grained field semantics, which are important to
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understand what a message does, as well as for identifying fields with the same type across multiple

messages.

State-machine. In addition to extracting the protocol grammar, protocol reverse-engineering also

includes inferring the protocol’s state-machine. ScriptGen infers the protocol state-machine from

network data [117]. Due to the lack of protocol information in network data it is difficult for Script-

Gen to determine whether two network messages are two instances of the same message type. This

is needed when converting messages into alphabet symbols. ScriptGen outputs a state-machine

that captures only previously-seen sessions, without generalization. Prospex uses execution trace

similarity metrics to cluster messages of the same type so they can be assigned the same symbol

from the alphabet [44]. Then, it extracts a tree that captures previously-seen sessions, labels the tree

nodes using heuristics, and applies an algorithm to infer the minimal consistent DFA. Techniques to

extract the message format like the ones presented in this chapter are a prerequisite for techniques

that extract the protocol state-machine.

Protocol specification languages. Previous work has proposed languages to describe protocol

specifications [17, 50, 173]. Such languages are useful to store the results from protocol reverse-

engineering and enable the construction of generic protocol parsers. In this thesis, we use the

BinPac language to represent our MegaD C&C protocol specification and the generic BinPac parser

to analyze MegaD messages given that specification [173].

Other related work. Previous work has targeted protocol reverse-engineering for specific appli-

cations like protocol replay or inferring connections thatbelong to the same application session.

RolePlayer [53] and ScriptGen [117, 116] address the problem of replaying previously captured

network sessions. Such systems perform limited protocol reverse-engineering from network traffic

only to the extent necessary for replay. Their focus is to identify the dynamic fields, i.e., fields that

change value between sessions, such as cookies, length fields or IP addresses. Our field semantics

inference techniques leverage the richer semantics available in protocol implementations compared

to network traffic, accurately extracting a wide range of field semantics for dynamic fields. Replayer

uses dynamic binary analysis to replay complete program executions that correspond to network di-

alogs [158]. Previous work also addresses the related problem of identifying multiple connections

that belong to the same application session from network traffic [102].
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3.9 Conclusion

In this chapter, we have proposed a new approach for automatic protocol reverse-engineering that

uses dynamic program binary analysis. Our approach takes asinput execution traces obtained by

running a program that implements the protocol, while it processes a received message and builds

the corresponding response. Compared to previous approaches that take as input network traces,

our approach infers more complete protocol information andcan analyze encrypted protocols.

We have develop techniques to extract the message format andthe field semantics of messages

on both directions of the communication, even when only one endpoint’s implementation of the pro-

tocol is available. Our message format extraction techniques identify the field structure of a message

as well as hard-to-find protocol elements in the message suchas length fields, delimiters, variable-

length fields, and multiple consecutive fixed-length fields.Our field semantics inference techniques

identify a wealth of field semantics including filenames, IP addresses, timestamps, ports, and error

codes. In addition, we have shown how to apply our techniquesto encrypted protocols by identi-

fying the buffers that hold the unencrypted received message after decryption and the unencrypted

message to be sent before encryption.

We have implemented our techniques in a tool called Dispatcher and have used it to extract the

grammar of the previously undocumented, encrypted, C&C protocol of MegaD, a prevalent spam

botnet. We have shown how the protocol grammar enables active botnet infiltration by rewriting a

message that the bot sends to the C&C server. Furthermore, wehave evaluated our techniques on a

variety of open protocols and compared Dispatcher’s outputwith the output of Wireshark, a state-

of-the-art protocol analyzer. Dispatcher achieves similar accuracy as Wireshark, without requiring

access to the protocol grammar.
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Chapter 4

Binary Code Reuse

4.1 Introduction

Often a security analyst wishes to reuse a code fragment thatis available in a program’s binary, what

we callbinary code reuse. For example, a piece of malware may use proprietary compression and

encryption algorithms to encode the data that it sends over the network and a security analyst may

be interested in reusing those functions to decode the network messages. Further, the analyst may

be interested in building a network proxy that can monitor and modify the malware’s compressed

and encrypted protocol on the network. Also, for dialog replay if some field of a network protocol

is changed, other dependent fields such as length or checksumfields may need to be updated [53].

If those fields use proprietary or complex encodings, the encoding functions can be extracted and

deployed in the network proxy so that the rewritten message is correctly formatted. Another ap-

plication is the creation of static unpacking tools for a class of malware samples [212]. Currently,

creating a static unpacker is a slow, manual process. Frameworks have emerged to speed the pro-

cess [209], but a faster approach would be to extract the unpacking function from the malware

sample and reuse it as a static unpacker.

At the core of these and other security applications is binary code reuse, an important problem

for which current solutions are highly manual [60,122,194]. In this thesis we conduct the first sys-

tematic study ofautomatic binary code reuse, which can be defined as the process of automatically

identifying the interface and extracting the instructionsand data dependencies of a code fragment

from an executable program, so that it is self-contained andcan be reused by external code. Reusing

binary code is useful because for many programs, such as COTSapplications and malware, source

code is not available. It is also challenging because binarycode is not designed to be reusable even

if the source code it has been generated from is.

82
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Binary code reuse encompasses two main challenges:interface identification, i.e., inferring the

prototype of the code fragment so that other source code can interface with it, andcode extraction,

i.e., extracting the instructions and data dependencies ofthe code fragment so that it is self-contained

and independent of the rest of the program’s functionality.Interface identification is challenging be-

cause the code fragment may not have a prototype available, e.g., it was intended only for internal

use. A prototype for the binary code fragment enables reuse of the code by generating and passing

appropriate inputs. Interface identification is challenging because theparametersthat comprise the

prototype are not explicitly defined in the binary code and also because they need to be expressed

using variables and types, which do not exist in the binary code. Our approach uses dynamic analy-

sis to extract a parameter abstraction at the binary level (an assembly parameter) and then translate

the assembly parameters into the formal parameters in the prototype. Interface identification takes

as input a set of execution traces. It identifies the inputs and outputs for each function run present

in the execution traces, splits them into assembly parameters, identifies important attributes such as

the parameter type (input, output, input-output) and the parameter location (register, stack, table),

and finally combines this information across the multiple function runs.

In addition to the prototype, we want to extract the code fragment itself, i.e., its instructions and

data dependencies, so that it is self-contained and can be reused by other code, independently of the

rest of the functionality in the program. The self-contained code fragment can easily be shared with

other users and can be statically instrumented or rewritten, e.g., for profiling or to enforce a safety

policy on its memory accesses if it is untrusted. Our code extraction technique uses the observation

that for reusing a binary code fragment a user often has no need to understand its inner workings.

For example, a security analyst may want to reuse the proprietary cipher used by some malware,

together with the session keys, to decrypt some data, without worrying about how the proprietary

cipher works. For these applications, complex reverse-engineering or decompilation methods are

not necessary to recover the source code. We can leverage thesupport of current C compilers for

inline assembly [75,142] and generate a function with a C prototype but an inline assembly body.

Thus, the output of our approach is a source code function even if the binary code fragment to reuse

does not correspond to an assembly function. Code extraction uses a combination of static and

dynamic analysis that includes hybrid disassembly [156], symbolic execution [106], and jump table

identification [39] techniques.

Not all binary code can be reused. To reuse a binary code fragment, the fragment should have

a clean interface and be designed to perform a specific well-contained task, mostly independent of

the remaining code in the program. In this paper we mostly focus on reusing binary code fragments

that correspond to functions at the source code level, what we callassembly functions, because in

structured programming a function is the base unit of sourcecode reuse. Functions are usually
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designed to perform an independent, well-contained task and have a well-defined interface, the

function prototype. In addition, we show that a code fragment that does not correspond to a complete

assembly function, but has a clean interface and performs a well-contained task, can also be reused.

Reusing an arbitrary assembly function can be extremely challenging because the function interface

can be convoluted and the function can have complex side effects. Our approach handles common

side effects such as an assembly function modifying one of its parameters or accessing a global

variable, and also handles calls to internal and standard library functions. But we exclude functions

with a variable-length argument list or functions that are passed recursive structures such as trees.

We refer the reader to Section4.2.3for a more detailed description of the problem’s scope.

In this chapter, we design and implement BCR, a tool that extracts code fragments from program

binaries and wraps them in a C prototype, so they can be reusedby other C code. We use BCR to

extract the encryption and decryption routines used by two spam botnets: MegaD and Kraken. We

show that these routines, together with appropriate session keys, can be reused by a network proxy to

decrypt encrypted traffic on the network. Further, we show that the network proxy can also rewrite

the malware’s encrypted traffic by combining the extracted encryption and decryption functions

with the session keys and the protocol grammar. To show that we can reuse code fragments that do

not correspond to complete assembly functions we also extract the unpacking functions from two

samples of Zbot, a trojan, and use an unpacking fragment fromone sample as part of the routine to

unpack the other sample.

Other applications. In addition to the applications that we examine in this thesis, binary code

reuse is useful for many other applications. For example, itcan be used to automatically describe

the interface of undocumented functions. It often happens that malware uses undocumented func-

tions from the Windows API, which are not described in the public documentation [138]. Projects to

manually document such functions [163] could benefit from our approach to automatically identify

the interface of a binary code fragment. Extracted functions could also be useful in the development

of programs that interoperate with other proprietary interfaces or file formats, by allowing the mix-

ture of code extracted from previous implementations with re-implemented replacements and new

functionality. Another application is to determine whether two pieces of binary code are function-

ally equivalent, i.e., given the same inputs they produce the same outputs even if the instructions

in both pieces of binary code may differ. Recent work has addressed this issue at the source code

level by fuzzing both pieces of source code and comparing theinput-output pairs [97], but how

to interface with a binary code fragment to perform such fuzzing is an open problem. Finally, a

security analyst may want to fuzz a well-contained, security-sensitive function independently of the

program state in which it is used.
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4.2 Overview & Problem Definition

In this section we give an overview of binary code reuse, formally define it, outline the scope of our

solution, and present an overview of our approach.

4.2.1 Overview

Binary code reuse comprises two tasks: 1)interface identification, i.e., identifying the interface of

the code fragment and formatting it as a prototype that can beinvoked from other source code; and

2) code extraction, i.e., extracting the instructions and data dependencies of the code fragment so

that it is self-contained and can be reused independently ofthe rest of the program’s functionality.

The interface of the code fragment specifies its inputs and outputs. Interface identification is

challenging because binary code has memory and registers rather than named parameters, and has

limited type and semantic information, which must be converted into a source level prototype. It

is also challenging because the code fragment might have been created by any compiler or written

by hand, thus few assumptions can be made about its calling convention. In addition, the extracted

code fragment needs to be self-contained, so we need a recursive process that extracts any function

called from inside the code fragment that we want to extract (and from inside those callees) and we

need to account for the possible side effects from the code fragment and its callees. For example,

we need to identify and extract the data dependencies such asglobal variables and tables that the

code fragment uses.

Previous work on binary code reuse is highly manual [60, 122, 194]. As far as we know we

are the first ones to systematically study automatic binary code reuse. Our goal is to automate the

whole process, with a focus on automatically identifying the code fragment’s interface. There are

two different representations for the extracted binary code: decompiled source code [60, 122] and

assembly instructions [60, 194]. In this work we use inline assembly with a C prototype because

inline assembly is the most accurate representation of the code (it represents what gets executed)

and because decompilation is not needed for binary code reuse. The use of inline assembly limits

portability to the x86 architecture, and requires compilersupport, but the x86 architecture is still by

far the most important architecture in security applications, and commonly used compilers include

rich support for inline assembly [75,142].

To reuse a binary code fragment, the code fragment should have a clean interface and be de-

signed to perform a well-contained task, relatively independent of the remaining code in the pro-

gram. Otherwise, if the fragment’s interface is not clean orthe code performs several intertwined

tasks and the user is only interested in one of them, it becomes difficult to separate the relevant code

and interface with it. In structured programming, the abovecharacteristics are usually associated
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with functions, which are the basic unit of (source) code reuse in a program and reduce the devel-

opment and maintenance costs of a program by making the code modular. Thus, it makes sense

to focus on reusing binary code that corresponds to a function at the source level since that code

was designed to be modular in the first place. However, the source-level concept of a function may

not be directly reflected at the binary level, since functions at the source level can be inlined, split

into non-contiguous binary code fragments, or can exit using jumps instead of return instructions

(e.g., due to tail-call optimizations). Despite this blurring, it is possible to define anassembly func-

tion abstraction at the binary level for which an inferred prototype gives a clean interface when the

underlying functionality is well modularized. We describeour function abstraction next.

4.2.2 Problem Definition

To reuse functions from program binaries, we first need a function abstraction that captures our

definition of what a function is in binary code.

Function abstraction. A basic blockis a sequence of instructions that has one entry point, one

exit point, and contains no instructions that perform control-flow transfer1. Basic blocks are disjoint

and partition the code in an executable. We define anassembly functionto be a collection of basic

blocks with a single function entry point, which is the target of the instruction that transfers control

from the external code into the assembly function code, and one or more function exit points, which

are instructions that transfer control to external code notbelonging to the function. All code reach-

able from the function entry point before reaching a function exit point constitutes the body of the

assembly function, except code reachable only through callinstructions before corresponding return

instructions, which is instead part of the called function.In other words, the body of a function is

assumed to continue with the next instruction after a call instruction. A function exit point can be

a return or interrupt instruction. Our definition does not include assembly functions with multiple

entry points, which we treat as multiple (partially overlapping) assembly functions, each including

all code reachable from one function entry point to any function exit point.

If one assembly function jumps to another, i.e., without using a call function as mentioned

in Section2.4.1, this definition considers the blocks following the jump target to be part of the

assembly function to extract. We can further extend our definition of a function exit point to include

jumps to the entry point of any other assembly function in theprogram’s binary or in an external

dynamic linked library (DLL). For this we need a list of entrypoints for other assembly functions

such as the one provided by the exported function log produced by the execution monitor.

1Call instructions are a special case that is often not considered to end a basic block because the callee often returns
to the instruction following the call instruction.



CHAPTER 4. BINARY CODE REUSE 87

Figure 4.1: BCR architecture. The core of BCR are the interface identification and code extraction
modules in gray. The execution module and the disassembler are previously-available building
blocks described in Chapter2. The semantics inference module was detailed in Chapter3.

Problem definition. The problem of binary code reuse is defined as: given the binary of a program

and the entry point of an assembly function in the binary, identify the interface and extract the

instructions and data dependencies that belong to the assembly function so that it is self-contained

and can be reused by external C code. The extracted function consists of both an inline assembly

function with a C prototype and a header file containing the function’s data dependencies. The

problem definition when the code fragment does not correspond to a complete assembly function,

i.e., for an arbitrary code fragment, is similar except thatit requires the exit points to be given,

because a return instruction can no longer be considered an exit point.

4.2.3 Scope

To reuse a binary code fragment, the fragment should have a clean interface and be designed to

perform a specific well-contained task, mostly independentof the remaining code in the program.

Our binary code reuse approach focuses on reusing assembly functions because they correspond

to functions at the source code level, which are the base unitof source code reuse in structured

programming. However, we also show that a code fragment thatdoes not correspond to a complete

assembly function, but has a clean interface and performs a well-contained task, can also be reused.

Reusing an arbitrary assembly function can be extremely challenging because the function in-

terface can be convoluted and the function can have complex side effects. Our approach handles

common side effects such as an assembly function modifying one of its parameters or accessing a

global variable, and also handles calls to internal and standard library functions, but it excludes other

complex cases such as functions with a variable-length argument list or functions that are passed

recursive structures such as trees. An important class of functions that we extract in this thesis

areencoding functions, which we introduced in Section3.6and include encryption and decryption,
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compression and decompression, code packing and unpacking, checksums, and generally any func-

tion that encodes data. Encoding functions are usually well-contained, have clean interfaces, limited

side effects, and are interesting for many security applications. Next, we detail the assumptions we

make to limit the scope of the problem:

• The function entry point is known. For encoding functions, we can identify the entry point

using the techniques in Section3.6 that flag functions with a high ratio of arithmetic and

bitwise operations, as well as the techniques in Section8.3that flag functions that highly mix

their inputs.

• Since our approach uses dynamic analysis, we assume that we can execute the function at

least once. If some specific input is needed to reach the function, we assume we are provided

with such input.

• The function has a fixed parameter list. Thus, we exclude functions with variable-length list

of arguments such asprintf .

• The function is not passed complex recursive structures such as lists or trees (pointers to

single-level structures are supported).

• The function does not call system calls directly (e.g., through interrupt orsysenter instruc-

tions) but instead uses system calls only through well-known functions that are available in

the target system where the function is reused (e.g., the standard C library, or the Windows

API if the target system is Windows-based).

• The function contains no code that explicitly uses its own location. For example, the code

should not check if it is loaded at a specific address or offset. This restriction excludes most

self-modifying code. However, the function may still reference global addresses through

standard position-independent-code and dynamic linking:relocatable and non-relocatable

code are both supported.

4.2.4 Approach

Figure 4.1 illustrates our binary code reuse approach implemented in our BCR tool. First, the

program is run inside theexecution monitor, which was described in Chapter2. The execution

monitor outputs an execution trace of the run, as well as a process state snapshot when the exit

point of the binary code fragment is reached. To produce the process state snapshot, the execution

monitor tracks when execution reaches the given entry pointof the code fragment and when it leaves

the code fragment via an exit point (e.g., a return instruction). When the execution reaches an exit

point, the execution monitor produces a process state snapshot.
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Figure 4.2: Running example. At

the top, the source for theencode

function. Below, the extracted as-

sembly function. The boxes indi-

cate changes to the assembly code.

In this chapter we refer to the process state snapshot as a

memory dump since we do not use the register and taint infor-

mation that the snapshot may also contain. It is important to

take the memory dump at the end of the function’s execution

to maximize the code pages present in the dump, as pages may

not be loaded into memory till they are used. The program

may be run multiple times to produce a collection of execution

traces and memory dumps.

The interface identification module takes as input the exe-

cution traces generated during program execution and outputs

the prototype, which captures how external source code can

interface with the code fragment. Interface identificationcom-

prises three steps. First, it identifies the inputs and outputs

for each function run present in the execution traces. Then,it

splits the inputs and outputs for each function run into assem-

bly parameters and identifies important attributes such as the

parameter type (input, output, input-output) and the parameter

location (register, stack, table). It also identifies the parameter

semantics using the semantics inference techniques presented

in Chapter3. Finally, it combines the assembly parameters

found in the multiple function runs into the formal parameters

for the function prototype.

The code extraction module extracts the instructions and

data dependencies of the code fragment. It takes as input the

execution traces, the memory dumps, and the prototype output

by the interface identification module. It produces as output

C code corresponding to the body of the code fragment, and

header files with its data dependencies (e.g., with the tables

and constants used by the code fragment). Code extraction

comprises three steps. First, it recovers the instructionsthat

form the body of the code fragment using hybrid disassem-

bly [156]. Hybrid disassembly combines the best of static and

dynamic disassembly. It addresses the problem of resolving

indirection in static disassembly using information from the

execution traces, and it can disassemble instructions thatmay
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not have been executed during the program runs. Hybrid disassembly outputs the disassembled in-

structions belonging to the code fragment. Then, the code extraction module makes the assembly

code relocatable by arranging the disassembled instructions into basic blocks and rewriting table ac-

cesses, as well as the target addresses of call and jump instructions, to use labels. Finally, it encodes

the body as an inline-assembly block inside a function definition that uses the C prototype output

by the interface identification module. In addition, it creates a C header file containing the memory

dump as an array.

Isolation. Because the extracted code runs in the same address space as the program that uses it,

the same security concerns apply to it as to an untrusted third-party library: a malicious extracted

function might attempt to call other functions in memory or overwrite the application’s data. An

isolation mechanism is needed to limit what the extracted code can do. In this work we process the

extracted code with a software-based fault isolation (SFI)tool to insert runtime checks that prevent

the extracted code fragment from writing or jumping outsidedesignated memory regions (separate

from the rest of the program). We use PittSFIeld [134], an SFI implementation for x86 assembly

code that enforces jump alignment to avoid overlapping instructions and includes a separate safety

verifier, which can be used by a third party to verify that the code has been correctly rewritten.

Running example. Figure4.2 shows our running example. At the top is the source code for the

encode function, which readslen characters from buffersrc , transforms them using the static

tableenc tbl , and writes them to thedst buffer. Below it is the assembly function corresponding

to theencode function, extracted by BCR from the program binary. The large boxes in the figure

show the C prototype produced by the interface identification module, and the prologue and epilogue

introduced by the code generation module. The smaller boxesshow the additional elements in the

body of the function that have been rewritten or modified to make the function stand-alone. The rest

are the unmodified assembly instructions extracted by the body extraction module. Also produced,

but omitted from the figure, is a header file that contains a memory dump of the original module.

This header file contains the module’s data that the extracted code may access, e.g., the contents of

the tabletbl 004000000 needed by the boxed instruction that accesses the table.

Next, we detail the interface identification module in Section4.3and the code extraction module

in Section4.4. For simplicity, we focus the discussion on the case where the binary code fragment

to reuse corresponds to an assembly function. Later in Section4.5we show an example of applying

BCR to a code fragment that does not correspond to an assemblyfunction.
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4.3 Interface Identification

The goal of the interface identification module is to build a Cfunction prototype for the assembly

function so that it can be reused from other C code. The C prototype comprises the function’s name

and a list of itsformal parameters. However, formal parameters do not directly appear at the binary

code level, so BCR works with a binary-level abstraction, which we term anassembly parameter

and describe next. At the same time, we collect some additional information, such as the parameter

length or its semantics. This information does not directlyappear in the prototype, but it is needed

for interfacing with the extracted code.

The interface identification module identifies the assemblyparameters using a dynamic analysis

that takes as input the execution traces produced by the execution monitor. Thus, it can only extract

parameters that have been used by the function in the executions captured in the given execution

traces. To increase the coverage inside the function we can use the white-box exploration tech-

niques we describe in Chapters6–8. In our experiments, we achieve no false negatives in interface

identification with less than 8 runs for any function and havenot needed such exploration.

In the remainder of this section we describe how to identify the prototype of an assembly func-

tion. The process for identifying the prototype of an arbitrary binary code fragment is analogous.

Parameter abstraction. An assembly parameter plays a role for an assembly function analogous

to a formal parameter for a C function, specifying a locationrepresenting an input or output value.

But, instead of being referred to by a human-written name, assembly parameters are identified with

a location in the machine state. To be specific, we define assembly parameters with five attributes:

1. Theparameter typecaptures whether it is only an input to the function (IN ), only an out-

put from the function (OUT) or both (IN-OUT ). An example of anIN-OUT parameter is a

character buffer that the assembly function converts in-place to uppercase.

2. Theparameter locationdescribes how the code finds the parameter in the program’s state.

A parameter can be found on the stack, in a register, or at another location in memory. For

stack parameters, the location records the fixed offset fromthe value of the stack pointer at

the entry point; for a register, it specifies which register.Memory locations can be accessed

using a fixed address or pointed by another pointer parameter, perhaps with an additional

offset. BCR also specially classifies globals that are accessed as tables via indexing from a

fixed starting address, recording the starting address and the offset.

3. Theparameter lengthcan be either fixed or variable. A variable length could be determined

by the value of another length parameter, or the presence of aknown delimiter (like a null

character for a C-style string).
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4. Theparameter semanticsindicates how its value is used. Parameters have pointer or length

semantics if they are used to identify the location and size of other parameters, as previously

described. Our parameter abstraction supports a number of semantic types related to system

operations, such as IP addresses, timestamps, and filenames. An “unknown” type represents

a parameter whose semantics have not been determined.

5. Theparameter value listgives the values BCR has observed the parameter to take over all

assembly function executions. This is especially useful ifthe parameter’s semantics are oth-

erwise unknown: a user can just supply a value that has been used frequently in the past.

Overview. The interface identification module performs three steps. For each assembly func-

tion execution, it identifies a list of assembly parameters used by the assembly function in that run

(Section4.3.1). Next, it combines the assembly parameters from multiple runs to identify missing

parameters and generalizes the parameter attributes (Section 4.3.2). Finally, it identifies additional

semantics by running the assembly function again in the execution monitor using the parameter in-

formation and a taint tracking analysis (Section4.3.3). Later, in Section4.4.2, we will explain how

the code generation module translates the assembly parameters produced by the interface identifi-

cation module into the formal parameters and outputs the C function prototype.

4.3.1 Identifying the Assembly Parameters from a Function Run

For each function run in the execution traces the interface identification module identifies the run’s

assembly parameters. Because there are no variables at the binary level (only registers and memory),

this module introduces abstract variables (sometimes called A-locs [8]) as an abstraction over the

machine-level view to represent concepts such as buffers and stack parameters. These variables

must be sufficiently general to allow for rewriting: for instance, the addresses of global variables

must be identified if the variable is to be relocated. A final challenge is that because the code being

extracted might have been created by any compiler or writtenby hand, BCR must make as few

assumptions as possible about its calling conventions.

In outline, our approach is that the interface identification module first identifies all the bytes in

the program’s state (in registers or memory) that are eitheran input or an output of the assembly

function, which we callinput locationsandoutput locations, respectively. It then generalizes over

those locations to recognize abstract locations and assembly parameters. To get the best combination

of precision and efficiency, we use a combination of local detection of instruction idioms, and

whole-program dataflow analysis using tainting and symbolic execution. In the remainder of this

section we refer to an assembly parameter simply as a parameter for brevity, and use the term formal

parameter to refer to the parameters in the C function prototype. Next, we define what input and
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output locations are. Note that, as introduced in Section3.4.2, a program location is a one-byte-long

storage unit in the program’s state (memory, register, immediate or constant).

Input locations. We define an input location to be a register or memory locationthat is read by

the function in the given run before it is written. Identifying the input locations from an execution

trace is a dynamic dataflow-based counterpart to static live-variables dataflow analysis [151], where

input locations correspond to variables live at function entry. Like the static analysis, the dynamic

analysis conceptually proceeds backwards, marking locations as inputs if they are read, but marking

the previous value of a location as dead if it is overwritten.(Since we are interested only in liveness

at function entrance, we can use a forward implementation.)The dynamic analysis is also simpler

because only one execution path is considered, and the addresses in the trace can be used directly

instead of conservative alias analysis. This basic determination of input locations is independent of

the semantics of the location, but as we will explain later not all input locations will be treated as

parameters (for instance, a function’s return address willbe excluded).

Output locations. We define an output location to be a register, memory, or constant location that

is written by the extracted function and read by the code thatexecutes after the function returns.

Extending the analogy with compiler-style static analysis, this corresponds to the intersection of the

reaching definitions of the function’s code with the locations that are live in the subsequent code.

Like static reaching definitions [151], it is computed in a single forward pass through the trace.

Our choice of requiring that values be read later is motivated by minimizing false positives

(a false positive output location translates into an extra parameter in the C function prototype).

This requirement can produce false negatives on a single run, if an output value is not used under

some circumstances. However, our experience is that such false negatives can be well addressed

by combining multiple function runs, so using a strict definition in this phase gives the best overall

precision.

Approach. The input and output locations contain all locations belonging to the assembly param-

eters and globals used by the assembly function, without regard to calling conventions. In addition

to identifying them, the interface identification module needs to classify the input and output lo-

cations into higher level abstractions representing parameters. Also, it needs to identify whether a

parameter corresponds to a stack location, to a global, or isaccessed using a pointer. The overall

parameter identification process from one function run is summarized in Table4.1 and described

next.

For efficiency, the basic identification of parameters is a single forward pass that performs only

local analysis of instructions in the trace. It starts at theentry point of one execution of a func-
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Step Description
1 Identify stack and table accesses
2 Identify input and output locations
3 Remove unnecessary locations (e.g., saved registers, ESP,return address)
4 Identify input and input-output pointers by value
5 Split input locations into parameter instances using pointer, stack and table access information
6 Identify input parameter pointers by dataflow
7 Split output locations into parameter instances using pointer information
8 Identify output parameter pointers by dataflow

Table 4.1: Summary of parameter identification process for afunction run.

tion, and uses one mode to analyze both the function and the functions it calls, without discerning

between them (for instance, a location is counted as an inputeven if it is only read in a called func-

tion), and another mode to analyze the remainder of the traceafter the function finishes. For each

instruction, it identifies the locations the instruction reads and writes. For each location, it identifies

the first and last times the location is read and written within the function, as well as the first time

it is read or written after the function. Based on this information, a location is classified as an input

location if it is read inside the function before being written inside the function, and as an output

location if it is written in the function and then read outside the function before being written outside

the function; observe that a location can be both an input andan output.

At the same time, the analysis identifies stack and table accesses by a local matching of machine

code idioms. The ESP register is always considered to point to the stack. The EBP register is only

considered to point to the stack if the difference between its value and that of ESP at function

entrance is a small constant, to support both code that uses it as a frame pointer and code that uses

it as a general-purpose register. Then, a memory access is a stack access if it uses a stack register

as a starting address and has a constant offset. On the other hand, a memory access is classified as

a table access if its starting address is a constant and the offset is a non-stack register. The starting

address and offset values in stack and table accesses are recorded for future use.

Excluding unnecessary input locations. The input locations given by the simple liveness-style

definition above include several kinds of locations with bookkeeping roles in function calls which

should not be considered parameters, so we next discuss how to exclude them. To exclude the return

address, the interface identification module ignores any memory locations written by a call instruc-

tion or read by a return instruction during the function execution. To exclude the stack pointer, it

ignores any access to ESP. When code calls functions in a dynamically linked library, it fetches the

real entry point of the function from an export table, but we exclude such loads.

Most complex is the treatment of saved registers. For instance, we define a stack location to be

used for saving the register EBX if the contents of EBX are first saved in that location with a push
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instruction, and later restored to EBX with a pop instruction. But the location is not a saved register

location if the value is popped to a different register than it was pushed from, if the stack value is

accessed before the pop, or if after the pop, the stack value is read before being overwritten. Con-

ventionally, the stack is used to save certain registers designated by the calling convention if a called

function modifies them, but our analysis is independent of the calling convention’s designation: it

simply excludes any location used only for saving a register.

Identifying pointers. A final building block in identifying parameters is to identify locations that

hold pointers. The interface identification module uses a combination of two approaches for this

task: an inexpensive value-based method that can be appliedon all locations, and a more expensive

dataflow-based method that works by creating a symbolic formula and is applied selectively. To

detect a pointer by value, BCR simply checks each sequence offour consecutive input locations

(pointers are four bytes on our 32-bit architecture) to see if their value forms an address of another

input or output location. However, this simple approach canfail to detect some pointers (for in-

stance, the address of a buffer that was only accessed with non-zero indexes), so we also implement

a more sophisticated approach.

To identify more pointers, the interface identification module uses a symbolic execution ap-

proach using our Vine system [19] to analyze an indirect memory access. The input locations to

the function are marked as symbolic variables, and the module computes a formula for the value

of the effective address of the access in terms of them, usingdynamic slicing and simplification as

explained in Section2.4.2. It then checks whether the resulting formula has the form ofa 32-bit

symbolic input plus a constant. If so, the input locations are considered a pointer, and the constant

an offset within the region the pointer points to. (The reverse situation of a constant starting address

and a variable offset does not occur, because it would already have been classified as a global ta-

ble.) Though precise, this symbolic execution is relatively expensive, so the interface identification

module uses it only when needed, as we will describe next.

Identifying assembly parameters from input and output locations. Once the input and output

locations have been identified and unnecessary locations removed, the interface identification mod-

ule identifies input and input-output pointers by value as explained above. Then it uses the pointers,

stack, and table accesses to classify the input and output locations into assembly parameters. Each

parameter is a contiguous region in memory (or a register), but two distinct parameters may be ad-

jacent in memory, so the key task is separating a contiguous region into parameters. The module

considers a location to be the start of a new parameter if it isthe start of a pointer, the address after

the end of a pointer, or the location of a pointer, stack, or table access. With the information found

so far, the interface identification module determines the parameter type, location, and value, and if
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the parameter has pointer semantics. The parameter length is provisionally set to the length seen on

this run.

Then, the interface identification module attempts to further classify any parameters that are

in memory but are not on the stack and are not known globals by applying the dataflow-based

pointer identification analysis. Specifically, it checks whether the access to the starting location of

the parameter was a pointer access; if so, it updates the typeof the pointed-to parameter and the

semantics of the pointer parameter accordingly. After classifying the input locations and pointers in

this way, the module classifies the output locations similarly, and then identifies and classifies other

pointers that point to them.

4.3.2 Combining Assembly Parameters from Multiple Function Runs

The set of assembly parameters identified from a single run may be incomplete, for instance if an in-

put pointer is first checked not to be null and if null, the function returns without further processing.

This is the case with thesrc anddst parameters of theencode function in Figure4.2. Therefore

the interface identification module further improves its results by combining the information about

parameters identified on multiple runs.

The final set of parameters identified is the union of the parameters identified over all runs, where

parameters are considered the same if they have the same parameter location. When parameters with

the same location differ in other attributes between runs, those attributes are merged as follows:

• The parameter type generalizes to input-output if it was input in some runs and output in

others.

• The parameter length generalizes to variable-length if it was fixed-length in some runs and

variable-length in others, or if it had differing lengths across runs.

• The parameter semantics generalizes to any non-unknown value if it was a known value in

some runs and unknown in others (e.g., a parameter is considered a pointer if it was identified

to be a pointer at least once, even if it was considered unknown on runs when it was NULL).

On the other hand, the semantics are replaced with unknown ifthey had conflicting non-

unknown values on different runs.

• The parameter value list is the union of all the observed values.

4.3.3 Identifying Parameter Semantics

In addition to the declared type of a parameter included in the C prototype, it is also common (e.g.,

in MSDN documentation [138]) to provide additional information in text or a comment that explains

how the parameter is used; what we refer to as itssemantics. For instance, one integer parameter
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Figure 4.3: Architecture of the code extraction module.

might hold the length of a buffer, while another is an IP address. We next describe the techniques

that the interface identification module uses to identify parameter semantics.

Two kinds of semantics that occur frequently in encoding functions as part of specifying other

input and output parameters are pointers and lengths. As described above, the parameter identifica-

tion process finds pointer parameters at the same time it identifies the parameters they point to. To

identify length parameters, their targets, as well as variable-length parameters that use a delimiter to

mark their end (e.g., null-terminated strings), we leverage the message format extraction techniques

introduced in Chapter3.

The interface identification module uses the semantics inference techniques presented in Chap-

ter 3 to detect semantics related to system operations such as IP addresses, timestamps, ports, and

filenames. In a nutshell, certain well-known functions takeinputs or produce outputs of a particu-

lar type, so BCR uses taint tracking to propagate these typesto the target function (the one being

extracted) if an output of a well-known function is used as aninput to the target function, or an

output of the target function is an input to a well-known function. For instance, the argument to

the inet ntoa function is an IP address, so an output parameter that is usedto derive that argu-

ment must itself be an IP address. Conversely, if an input parameter is based on the return value of

RtlGetLastWin32Error , it must be an error code. Currently, BCR supports the semantics de-

fined in Table3.3plus “pointer” and “unknown”. A similar approach can be usedat the instruction

level to select a more specific C type (e.g.,float rather thanint ) [82].

Semantics inference leverages the execution monitor’s support for function hooks, which we

introduced in Section2.3.2. Hooks added after the execution of well-known functions and the

target function taint their outputs, and hooks before theirexecution check if their inputs are tainted.

Because a function hook can only be added to the target function after its parameters have been

identified, semantics inference requires an extra run of thefunction in the execution monitor.
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4.4 Code Extraction

In this section we describe the code extraction module. The main challenges for code extraction are

identifying all instructions from the assembly function toreuse and producing a properly formatted

C function that can be reused by external code. Figure4.3 shows the architecture of the code ex-

traction module, which comprises two sub-modules:body extractionandC code generation. First,

the body extraction module uses hybrid disassembly to disassemble all instructions that comprise

the body of the assembly function. In addition, it makes the assembly code relocatable by rewriting

the assembly instructions to use labels for the targets of call and jump instructions, as well as for

absolute memory addresses. Then, the C code generation module formats the assembly function as

an inline-assembly block, creates a C function prototype from the prototype output by the interface

identification module, and adjusts the function’s prologueand epilogue so that it conforms to the

calling convention expected by the C code. For brevity, in this section we use “C function” to refer

to a function with a C prototype and an inline-assembly body.

4.4.1 Body Extraction

Extracting the body of an assembly function to reuse is a recursive process that starts by extracting

the body of the given assembly function and then recursivelyextracts the body of each of the assem-

bly functions that are descendants of this function in the function call graph. The body extraction

module classifies descendant functions into two categories: well-known functionsthat may be avail-

able in the system where the C function is going to be recompiled, e.g., functions in the standard

C library or in the Windows Native API, and the rest, which we term internal functions. The body

extraction module extracts the body of the given function and all internal descendant functions. As

an optimization, it avoids extracting well-known functions. This increases portability: for example

if a function from a Windows executable usesstrcpy from the standard C library, it can be re-

compiled in a Linux system making a call to the localstrcpy function. In other cases, portability

is not possible because the function may not have a direct replacement in the target OS (e.g., there

is no direct replacement in Linux forNtReadFile ), so this optimization is not performed and we

use instead a compatibility layer [226]. For instance, in our running example, shown in Figure4.2,

theencode function callsmemset; since it is part of the C library and thus likely available inthe

target system,memset is not extracted.

Hybrid disassembly. The body extraction module useshybrid disassembly, a technique that com-

bines static and dynamic disassembly [156]. The body extraction module supports three disassem-

bly modes of operation: purely static, purely dynamic, and hybrid disassembly. In purely static
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disassembly, the body extraction module statically disassembles the code starting at the given entry

point, using the IDA Pro commercial disassembler [90]. If the program binary is not packed, then

disassembly is performed directly on the executable. For packed binaries disassembly is performed

on the memory dump taken by the execution monitor at the code’s exit point. Purely static disas-

sembly provides good code coverage but may not be able to disassemble code reachable through

indirect jumps or calls, as well as code intertwined with data.

In purely dynamic disassembly, the body extraction module disassembles only instructions be-

longing to the function and its descendants that appear in the given execution traces. For this, it

uses the call stack tracking module presented in Chapter2 to identify which instructions belong to

each function. Purely dynamic disassembly has low code coverage but has no trouble dealing with

packed executables, or indirect jumps or calls.

In hybrid disassembly, the body extraction module combinesboth static disassembly with dy-

namic information from the execution traces to obtain the best of both modes. We have found that

hybrid disassembly works best and have set it to be the default mode of operation. For hybrid disas-

sembly, the body extraction module first uses static disassembly starting at the given function entry

point. In the presence of indirection, the static disassembler may miss instructions because it can

not resolve the instructions’ targets. Thus, the body extraction module collects the targets of all

indirect jumps and calls seen in the execution traces and directs the static disassembler to continue

disassembling at those addresses. For example, in Figure4.2, the call to thememset function was

originally a direct call to a stub that used an indirect jump into memset’s entry point in a dynamic

library. The body extraction module resolves the target of the jump and uses the information in

the exported functions log, output by the execution monitor, to determine that the function is the

standardmemset. In addition, the body extraction module uses a dataflow-based approach to stat-

ically identify the targets of jump tables, another class ofindirect jumps often used to implement

switch statements [39]. This technique can find additional targets of jump tables,not seen during

the execution. In the presence of code intertwined with data, the static disassembler may also miss

instructions. Hybrid disassembly collects the addresses of all executed instructions and directs the

static disassembler to continue disassembling at those addresses. Using this approach, hybrid disas-

sembly is able to identify more instructions that belong to the function body but that do not appear

in the execution traces.

There exist some situations where static disassembly may not be possible even from a memory

dump, for instance if a program re-packs or deletes instructions right after executing them: the code

may be re-packed by the time the memory dump is taken. In such asituation hybrid disassembly

smoothly falls back to be equivalent to purely dynamic disassembly. To summarize, hybrid disas-

sembly uses static disassembly when possible and incorporates additional dynamic information to
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further extend disassembly. For each function, hybrid disassembly stores the disassembled basic

blocks, and recovers the control flow graph.

Rewriting call/jumps to use labels. Once the C function is recompiled it will almost certainly

be placed at a different address, so the body extraction module needs to make the code relocatable.

To enable this, it inserts a label at the beginning of each basic block. Then, it rewrites the targets

of jump and call instructions to use these labels. If the target of a jump instruction has not been

recovered by the hybrid disassembly, it is rewritten to use aunique missing block label that exits the

function with a special error condition. Figure4.2 uses small boxes to highlight the inserted block

labels and the rewritten call/jump instructions. Rewriting the call/jump instructions to use labels

also enables a user or a subsequent tool (like the SFI tool discussed in Section4.5.5) to instrument

the function or alter its behavior by inserting new instructions in the body.

Rewriting global and table accesses. The extracted C function is composed of a C file with the

assembly function and a header file. The header file contains amemory dump of the module con-

taining the function to extract, taken at the function’s exit point on a given run. The body extraction

module rewrites instructions that access global variablesor tables to point to the corresponding off-

sets in the memory dump array. This way the extracted function can access table offsets that have

not been seen in the execution traces. In our running example, the header file is not shown for

brevity, but the array with the contents from the memory dumpis calledtbl 004000000 and the

instruction that accessesenc tbl has been rewritten to use the label0x3018+tbl 00400000

which is the first byte ofenc tbl in the memory dump. The memory dump is taken at the func-

tion’s exit point, but if the interface identification module discovers any input parameters that are

accessed using a fixed address and modified inside the function, e.g., a global table that is updated

by the function, it ensures that the parameter values on function entry are copied into the dump, so

that they are correct when the function is invoked again.

An alternative approach would be to create separate C arraysand variables for each global

parameter, which would reduce the space requirements for the extracted function. Though this

would work well for scalar global variables, it would be difficult to infer the correct size for tables,

since the binary does not contain bounds for individual variables, and code compiled from C often

does not even have bounds checks. (An intermediate approachwould be to estimate the size of a

table by multiplying the largest observed offset by a safetyfactor; this would be appropriate if it

could be assumed that testing covered at least a uniform fraction of the entries in each table.)
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4.4.2 C Code Generation

The code generation module writes the output C files using theinformation provided by the interface

identification module and the body extraction module. To encode the function body, the code gen-

eration module uses GCC’s inline assembly feature [75]. It wraps the function body in an assembly

block and then puts the assembly block inside a function definition with a C function prototype,

as shown in Figure4.2. In addition it creates a C header file containing the memory dump as an

array. Though our current implementation is just for GCC, the inline assembly features of Visual

C/C++ [142] would also be sufficient for our purposes. In fact, some of the Visual C/C++ features,

such as “naked” inline assembly functions, for which the compiler does not generate a prologue or

epilogue, could simplify our processing.

The assembly block contains the assembly instructions and the list of inputs, outputs, and clob-

bered registers. These are filled using the parameter information provided by the interface iden-

tification module. When GCC compiles the function, it will add prologue and epilogue code that

affects the stack layout, so even if the extracted function originally used a standard calling conven-

tion, it would not find the stack parameters where it expects.To overcome this problem, the code

generation module inserts wrapper code at the beginning of the function that reads the parameters

from the C prototype (as inputs to the assembly block), puts them in the stack or register locations

expected by the extracted function, and calls the extractedentry point. After the call instruction it

inserts a jump to the end of the function so that the epilogue inserted by GCC is executed. The

second box in Figure4.2shows this wrapper.

The C prototype comprises the function name and the formal parameters of the function. The

function name is based on its entry point (func 00401000 in the running example), and each

parameter’s C type is based on its size and whether it is a pointer. Input and input-output parameters

located in the stack or registers appear first, with stack parameters appearing in order of increasing

offset (this means that if the extracted function used the most common C calling convention, their

order will match the original source). For each output parameter returned using a register, the code

generation module adds an additional pointer formal parameter at the end of the C prototype and

uses the outputs list in the assembly block to let GCC know that the register needs to be copied

to the pointed-to location. Additionally, for output global or table parameters the code generation

module adds a C variable corresponding to the start address of the global or table in the memory

dump. This makes the function’s side effects available to other C code.

Each formal parameter is also annotated with a comment that gives information about the at-

tribute values for the corresponding assembly parameter such as the parameter type and its seman-

tics. These are useful for a user who wants to reuse the function. In addition, it prints the most

common value seen for each parameter during the multiple executions along with the percentage
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of executions where the parameter showed that value. This allows the user to select a value for the

parameter when the parameter semantics are unknown. The function prototype is shown in the first

box in Figure4.2.

4.5 Evaluation

This section describes the experiments we have performed todemonstrate that our binary code

reuse approach and implementation is effective for security applications such as rewriting encrypted

malware network traffic and static unpacking, that non-function fragments can be extracted to give

useful functions, and that extracted functions can be used safely even though they come from an

untrusted source.

4.5.1 Rewriting MegaD’s C&C Protocol

In Chapter3 we introduced MegaD, a prevalent spamming botnet first observed in 2007 and credited

at its peak with responsibility for sending a third of the world’s spam [129]. In that chapter we

reverse-engineered MegaD’s proprietary, encrypted, C&C protocol and demonstrated how to rewrite

C&C messages on the host by modifying a buffer before encryption. In this section we show that

our binary code reuse approach enables the same C&C rewriting on a network proxy, by extracting

the bot’s key generation and encryption functions.

Function extraction. MegaD’s C&C protocol is protected using a proprietary encryption algo-

rithm, and the bot contains functions for block encryption,block decryption, and a common key

generator. We identify the entry points of the three functions using the techniques presented in

Section3.6 that flag functions with a high ratio of arithmetic and bitwise operations.

First, we use BCR to automatically extract the key generation function. The identified prototype

shows that the function has two parameters and uses two global tables. The first parameter points to

an output buffer where the function writes the generated key. The second parameter is a pointer to

an 8 byte buffer containing the seed from which the key is generated. Thus, the function generates

the encryption key from the given seed and the two tables in the binary. Other attributes show that

all calls to the key generation function use the same “abcdefgh” seed, and that the two tables are not

modified by the function.

Although the entry points for the block encryption and decryption functions are different, the

first instruction in the block decryption function jumps to the entry point of the block encryption

function, so here we describe just the encryption function.The prototype extracted by BCR has

3 parameters and uses 6 global tables. The first parameter points to an input buffer containing a
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key (as produced by the key generation function). The other two parameters are pointers to the

same 8 byte input-output buffer that on entry contains the unencrypted data and on exit contains the

encrypted data.

The technique to automatically detect encoding functions identifies the functions with highest

ratio of arithmetic and bitwise operations, which for blockciphers is usually the functions that

process a single block. To encrypt or decrypt an arbitrary message, we would like a function that

encrypts or decrypts arbitrary length data. Thus, when using this technique, after BCR extracts the

detected encoding functions, we instruct it to extract their parent functions as well. Then, we com-

pare the prototype of each detected function with the one of the parent. If the parent’s prototype

is similar but accepts variable-length data, e.g., it has a length parameter, then we keep the parent

function, otherwise we manually write a wrapper for the block function. For MegaD, the parent

of the block encryption function has additional parameters, because it performs other tasks such as

setting up the network and parsing the message. It contains no single loop that performs decryption

of a variable-length buffer; instead, decryption is interleaved with parsing. Since we are not inter-

ested in the parent function’s other functionality, we write our own wrapper for the block encryption

function.

Note that in the process of extracting the encoding functions we also identify the keys that each

function invocation uses. We do this by looking for input parameters to the encoding functions that

are fixed-length, are not derived from the input, and have no other semantics (i.e., are not a pointer or

a length). For MegaD all invocations of the encryption/decryption function use the same key, which

corresponds to the output of the key generation function. Asmentioned earlier, the key generation

function takes as input a hard-coded seed value “abcdefgh”,thus generating the same key in each

invocation.

To verify that the extracted encryption/decryption function works correctly, we augment the

grammar for the unencrypted MegaD C&C protocol, presented in AppendixA, to use the extracted

decryption function. This augmented grammar serves as input to the BinPac parser shipped with

the Bro intrusion detection system [173]. Using the augmented grammar, Bro successfully parses

all the encrypted MegaD C&C messages found in our network traces.

Network-based C&C rewriting. To perform network rewriting we must deploy the encryp-

tion/decryption function, as well as the session keys, in a network proxy. Such a proxy will only

be effective if the functions and keys match those in the bots, so to estimate the rate at which they

change we repeat our analysis with other MegaD samples. In total we have analyzed four MegaD

samples, who were first seen in the wild between February 2008and February 2010. Although there

are differences between the samples, such as some samples using TCP port 80 instead of 443 for its

C&C, the parser, using the decryption function and keys extracted from the December 2008 sample,
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is able to successfully parse the C&C messages from all othersamples. In addition, we extract the

key generation and encryption functions from the oldest sample (February 2008) and compare them

with the ones from the December 2008 sample. Although there are syntactic differences, i.e., short

sequences of instructions have been replaced with equivalent ones possibly by recompiling with

different options or by obfuscating the code, the versions are functionally equivalent, producing the

same outputs on more than a billion randomly generated inputs. Thus we conclude that the relevant

algorithms and keys, including the session key, have been unchanged during the two year time span

of our samples.

To show how our binary code reuse approach enables live rewriting on the network, we build a

network proxy that is able to decrypt, parse, modify and re-encrypt MegaD C&C messages that it

sees on the network. To test the proxy we reproduce the experiment in Section3.7.1, but perform

rewriting on the network rather than on the host. The experiment proceeds as follows.

We run a live MegaD bot inside a network that filters all outgoing SMTP connections for con-

tainment purposes, but allows the C&C protocol through. To start, suppose that no proxy is in use.

The bot probes the C&C server for a command and the C&C server sends in response a message

that orders the bot to test its ability to send spam by connecting to a test mail server. Because the

firewall at the border of the network blocks SMTP, the connection to the test mail server fails and

the bot sends a reply to the C&C server indicating that it cannot send spam, and afterward no more

spam-related messages are received.

Next, we repeat the experiment adding a network proxy that acts as a man-in-the-middle on

traffic between the C&C server and the bot. For each message sent by the bot, the proxy decrypts it

and checks if it is a message that it needs to rewrite. When thebot sends the message indicating that

it has no SMTP capability, the proxy, instead of relaying it to the C&C server, creates a different

message indicating that the SMTP test was successful, encrypts it, and sends it to the C&C server

instead. Note that the fail and success messages were identified as part of our reverse engineering of

MegaD’s C&C protocol grammar, presented in Chapter3, by observing the differences in the output

message that is sent right after the SMTP connection succeeded or failed. Also, it would not suffice

for the proxy to replay a previously captured success message, because the message also includes a

nonce value selected by the C&C server at the beginning of each dialog. With the proxy in place,

the bot keeps receiving spam-related C&C messages, even if it is unable to actually send spam. The

spam-related C&C messages include a command to download a spam template, which contains all

the information about the spam operations such as the formatof the messages, the spam URLs, and

the list of addresses to spam.
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4.5.2 Rewriting Kraken’s C&C Protocol

Kraken is a spam botnet that was discovered on April 2008 and has been thoroughly analyzed [178,

122,194]. Previous analysis uncovered that Kraken (versions 315 and 316) uses a proprietary cipher

to encrypt its C&C protocol and that the encryption keys are randomly generated by each bot and

prepended to the encrypted message sent over the network [178,122]. Researchers have manually

reverse-engineered the decryption function used by Krakenand have provided code to replicate

it [122]. In this thesis, we extract Kraken’s decryption function using our automatic approach and

verify that our extracted function is functionally equivalent to the one manually extracted in previous

work. Specifically, when testing the manually and automatically extracted function on millions of

random inputs, we find their outputs are always the same. In addition, we extract the corresponding

encryption function and a checksum function, used by the botto verify the integrity of the network

messages.

Similarly to the MegaD experiment described in Section4.5.1, we build a network proxy that

uses the extracted encryption, decryption, and checksum functions, as well as the protocol grammar,

and use it to rewrite a C&C message to falsify the result of an SMTP capability check. Unfortunately

(for the purpose of this experiment), none of our Kraken samples connects to a live C&C server on

the Internet. Thus, to verify that the message rewriting works we use a previously published Kraken

parser [122]. The rewritten message parses correctly and has the STMP flag correctly modified.

4.5.3 Reusing Binary Code that is not an Assembly Function

Next, we show that our approach enables reusing a binary codefragment that does not correspond

to a complete assembly function, but has a clean interface and performs an independent task. We

extract unpacking code from two versions of a trojan horse programZbot used primarily to steal

banking and financial information [202]. Zbot uses two nested layers of packing. The samples,

provided to us by an external researcher, represent a typical task in the course of malware analysis:

they have already had one layer of packing removed, and we have been provided the entry points

for a second, more complex, unpacking routine.

The function prototype extracted by BCR is identical for both functions. It contains two pointer

parameters: the ESI register points to an input-output buffer containing packed data as input and a

count of the number of bytes unpacked as output, while the EDIregister points to an output buffer

for unpacked data. Since ESI and EDI are not used for parameter passing in any of the standard x86

calling conventions, this suggests these functions were originally written in assembly code.

Although the prototypes are the same, the unpacking functions are not functionally equivalent;

they both consist of two distinct loops, and we find that extracting these loops separately captures

more natural functional units. Examining the extracted function bodies, we find that both consist of
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General Code Extraction Parameter Identification
Function Runs Runtime # Insn. # Missed # Indirect # Param. FP FN

(sec) blocks call/jump
MegaD keygen 4 3 320 0 0 3 0 0
MegaD encrypt 6 257 732 0 0 4 0 0
Kraken encrypt 2 16 66 0 0 7 1 0
Kraken decrypt 1 2 66 0 0 6 0 0
Kraken checksum 1 179 39 0 0 4 1 0
Zbot v1151 2 15 98 0 0 2 0 0
Zbot v1652 2 17 93 0 0 2 0 0

MD5 Init 6 2 10 0 0 1 0 0
MD5 Update 6 38 110 0 1 3 0 0
MD5 Final 7 31 67 0 3 2 0 0
SHA1 Init 1 8 11 0 0 1 0 0
SHA1 Update 1 36 110 0 1 3 0 0
SHA1 Final 2 36 76 0 3 2 0 0

Table 4.2: Evaluation results. At the top are the functions extracted during the end-to-end applica-
tions and at the bottom some additional functions extractedfrom the OpenSSL library.

two loops that are separated bypusha andpopa instructions that save and restore processor state.

Each loop makes its own pass over the packed data, with the first pass applying a simpler deciphering

by subtracting a hard-coded key, and the second pass performing a more complex instruction-by-

instruction unpacking. After extracting the two loops intoseparate functions, we verify that the

differences between the versions are only in the first loop: the extracted version of the second loop

can be reused across the sample versions. This highlights the fact that as long as a binary code

fragment has a clean interface and performs a well-separated task, it can be reused even if it does

not correspond to a complete function in the original machine code.

4.5.4 Quantitative Summary of Function Extraction

Table4.2summarizes the extraction results for all functions in Section 4.5.1through Section4.5.3

and the MD5 and SHA1 hash functions that we extract from the OpenSSL library for evaluation

purposes. Note that, in OpenSSL obtaining the hash of a valuerequires calling three separate func-

tions: Init, Update, and Final. TheGeneralsection of the table shows the number of function runs in

the execution traces used as input to the function extraction step, and the total time needed to extract

the function. TheCode Extractionsection has the number of instructions in each extracted function,

the number of missed blocks and the number of indirect call and jump instructions. We approximate

the number of missed blocks by counting the number of conditional jumps for which we have not

seen the code that follows each of its branches. Note that when the function has indirect calls or

jumps this method is not enough. However, in this case only the OpenSSL functions, for which we
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have the source code, present indirect calls or jumps. TheParameter Identificationsection shows

the number of parameters in the C function prototype and the number of false positives (e.g., unnec-

essary parameters in the prototype) and false negatives (e.g., missing parameters in the prototype).

For the OpenSSL functions, the false positives and negatives are measured by comparison with the

original C source code. For the malware samples, no source isavailable, so we compare with our

manual analysis and (for Kraken) with other reported results.

The results show that a small number of executions is enough to extract the complete function

without missing blocks or parameters. For samples without indirect jumps or calls, static disassem-

bly recovers all basic blocks. For the samples with indirection, the dynamic information resolves

the indirection and enables the static disassembler to find all the instructions in the function body.

The Kraken checksum and MegaD encrypt samples are significantly slower to extract than the other

samples. This is because they have larger number of invocations of the dataflow-based pointer anal-

ysis technique, which dominates the running time. The parameter identification results show that

no parameters are missed. Some runs do not identify all parameters, e.g., when the function first

checks if a pointer has NULL value and if NULL it exist withoutfurther processing of the other

parameters. However, combining multiple executions (Section 4.3.2) gives complete results. For

the functions from OpenSSL, the parameters include fields ina context structure that is passed to the

functions via a pointer. There are two false positives in theKraken functions (i.e., extra parameters

are identified), both of which are output parameters reported as returned in the ECX register. These

are caused by a compiler optimization (performed by the Microsoft compiler, for instance) that re-

places the instructionsub $4,%esp to reserve a location on the stack with the more compact

instructionpush %ecx , which has the same effect on the stack pointer and also copies a value

from ECX that will later be overwritten. When this idiom occurs in the code following an extracted

function that uses ECX internally, the interface identification module incorrectly identifies ECX as

a function output. Such common idioms could be specially handled during interface identification

or identified through bottom-to-top live analysis since theECX value is dead. More generally, false

positive parameters are not a serious problem for usability: extra outputs can simply be ignored, and

extra inputs do not change the extracted function’s execution.

4.5.5 Software-based Fault Isolation

If the extracted functions are to be used in a security-sensitive application, there is a danger that

a malicious extracted function could try to hijack or interfere with the operation of the application

that calls it. To prevent this, we use software-based fault isolation (SFI) [217] as a lightweight

mechanism to prevent the extracted code from writing to or calling locations in the rest of the

application. SFI creates separate “sandbox” data and code regions for the extracted function, so
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that it can only write to its data region and it can only jump within its code region. SFI works by

adding checks just before each store or jump instruction, but the extracted code still runs in the same

address space, so calls from the application are still simple and efficient.

Specifically, we post-process our extracted malware functions using PittSFIeld, an implemen-

tation of SFI for x86 assembly code [134]. PittSFIeld adds new instructions for checks, and to

enforce additional alignment constraints to avoid overlapping instructions. Thus, BCR’s translation

of jumps to use labels is necessary for it to work. PittSFIeldwas previously implemented for use

with the assembly code generated by GCC, so in order to work with assembly code that could be

generated by other compilers or hand-written, we generalize it to save and restore the temporary

register used in sandboxed operations, and to not assume that EBP is always a pointer to the stack.

We also make corresponding changes to PittSFIeld’s separate verification tool, so a user can check

the safety of an extracted function without trusting the person who extracted it.

4.6 Related Work

This section compares our approach with the manual process it aims to replace, other automatic

approaches, techniques for related problems in other domains, and some other tasks that require

similar algorithms.

Manual code extraction. Code extraction is a common manual activity in malware analysis [60,

122,194]. While this process can give the analyst a deep understanding of the malicious functional-

ity, it is also very time-consuming. Simple tool support canmake some of the repetitive tasks more

convenient, but existing approaches still require specialized skills. Our approach allows this task to

be automated, when all that is needed is to be able to execute the functionality in another context.

Other binary code reuse approaches Kolbitsch et al. have since proposed a different approach

for binary code reuse and implemented it in a tool called Inspector Gadget [109]. Their approach

is based in identifying a sink in an execution where interesting behavior happens (e.g., a call to a

function that writes to disk) and then apply dynamic programslicing to identify the instructions and

data dependencies related to that behavior in the execution. The slice is the basis of a gadget: the

binary code to be reused. There are significant differences between BCR and Inspector Gadget.

First, BCR requires as input the entry point of the code to reuse while Inspector Gadget requires

as input a point in the execution where the desired behavior manifests, e.g., a call to a function like

gethostbyname or WriteFile . Second, Inspector Gadget has been designed to extract behav-

iors that may include multiple steps (e.g., download a file, decrypt it, execute it), while BCR has

been designed to extract individual functionalities (e.g., the decryption function). While Inspector
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Gadget can extract full behaviors at once, full behaviors limit the possibilities in which an analyst

can reuse the code: an analyst can only interface with the gadget by changing the values returned

by external functions that the gadget invokes. In contrast,BCR performs interface identification

and is able to generate a valid C function that comprises onlysome specific functionality (e.g., an

algorithm) that any other C program can invoke. For example,it is not clear how to use Inspector

Gadget to enable a NIDS to decrypt C&C messages that are seen on the network, as presented in

Section4.5, or how to build a signature that identifies botnet traffic by first decrypting the traffic

and then checking for some pattern in the decrypted code. Those are not behaviors that the bot

implements but an analyst may still want to reuse the decryption function and implement its own

functionality on top. While the decryption function may be present in a gadget extracted from the

bot, it may not be easy to interface with it.

Third, gadgets only contain instructions that appear during the single execution trace used as

input to Inspector Gadget. This is an important limitation because branches that were not taken

during execution may need to be executed during code reuse, i.e., when the input changes the

program may take a different path. In such a situation, a gadget would crash. To address this issue

Inspector Gadget modifies the slice to include additional instructions that force the branch to take

the path that was observed during the execution. This solution is problematic since the gadget no

longer behaves as the original program and the results may not be meaningful. In contrast, BCR

addresses this issue using hybrid disassembly, which combines static and dynamic disassembly to

increase the number of relevant instructions extracted. Hybrid disassembly includes all instructions

from the code fragment that appear in the (possibly multiple) input execution traces, and in addition,

it is often able to disassemble many more instructions that were not executed (i.e., do not appear in

the execution traces).

Finally, it is difficult to obtain a slice that matches exactly the desired functionality. Dynamic

slicing tends to be conservative and that results in slices that are larger than needed. One example

is when slicing a variable (e.g., the content of the EAX register), that was popped from the stack.

The stack pointer (i.e., the ESP register) is a dependency ofthe pop instruction. If the stack pointer

is included in the slice, then all previous instructions that use the stack, regardless if related to the

behavior under analysis, will also need to be included in theslice. This is the conservative approach

and the resulting slice includes much unrelated functionality. On the other hand, if the stack pointer

is not included in the slice, then the slice is not complete and rerunning the slice would produce a

crash if the stack layout is not correct. These slicing details are not mentioned in [109]. However,

in previous work [108] the authors decide not to include the stack pointer in the slices and propose

heuristics tofix the stack, which are not guaranteed to work and require knowledge about compiler-

specific mechanisms for handling procedures and stack frames.
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Input-output relationship extraction. A variant on the extraction problem is extracting the re-

lationship between some given inputs and outputs of a computation. To extract such relationships,

previous work has used symbolic execution [28,108] or dynamic binary slicing [108,114]. When

the functionality to be extracted is sufficiently simple, itcan be represented by a single input-output

symbolic formula. For instance, such input-output formulas can be used for protocol dialog re-

play [28], or as a malware signature [108]. However, a single formula is not a practical representa-

tion for more complex functionality that includes loops or other variant control-flow paths, or uses

complex data structures.

Another alternative representation is a dynamic binary slice that captures the instructions needed

to produce the output from the inputs in a given execution. Dynamic binary slices are usually gener-

ated by applying modified versions of dynamic program slicing techniques [2] on execution traces.

For instance, Lanzi et al. [114] produce dynamic binary slices using a combination of backwards

and forward slicing, and use them to analyze kernel malware.When it cannot extract an exact input-

output symbolic formula, the malware modeling tool of Kolbitsch et al. [108] combines dynamic

binary slicing with tainted scopes to capture control dependencies. There are two main differences

between extracting input-output symbolic formulas or dynamic binary slices and binary code reuse.

First, our problem is more difficult because the inputs and outputs must be inferred. Second, by

using a combination of dynamic and static analysis to extract the body of the code fragment we

achieve better coverage than purely dynamic techniques.

Other applications of interface extraction. Jiang and Su [97] investigate the problem of auto-

matic interface extraction in C source code, to allow automated random testing for fragments with

equivalent behavior. Their task of determining which variables constitute inputs and outputs of a

fragment is related to the one we tackle in Section4.3, but made easier by the availability of type

information. Extracting the code itself is also easier because in their scenario code fragments are

restricted to contiguous statements.

Lin et al. [126] extract an interface to functionality in a benign program in order to add malicious

functionality: for instance, to turn an email client into a spam-sending trojan horse. Because the

functionality runs in its original context, their interface need not cover all inputs and outputs of the

code, only those relevant to a particular use. Using techniques similar to our output inference, they

perform a side-effect analysis to determine whether a function’s memory effects can be reverted.

Liveness analysis. The analysis that our tool performs to identify input and output variables are

the dynamic analogues of static data-flow analysis performed by compilers, such as live variable and

reaching definitions analysis [151]. Some of the same challenges we face have also been addressed

in purely static tools that, like our tool, must operate on binary code. For instance, link-time opti-
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mizers [81,189] must also exclude saves of callee-saved registers from theresults of naive liveness

analysis.

Binary rewriting. Many of the techniques required for binary code reuse are used in binary

rewriting and instrumentation applications. For instance, purely static disassembly provides insuffi-

cient coverage for even benign applications on Windows/x86platforms, so state-of-the art rewriting

tools require a hybrid of static and dynamic disassembly [156] much as we do. Cifuentes and Van

Emmerik [39] introduced the technique we adopt for locating the jump table statements used to

implement switch statements.

4.7 Conclusion

This chapter performs the first systematic study of automatic binary code reuse, which we define

as the process of automatically identifying the interface and extracting the instructions and data

dependencies of a code fragment from an executable program,so that it is self-contained and can

be reused by external code.

We have proposed a novel interface identification techniqueto extract the prototype of an undoc-

umented code fragment directly from the program’s binary, without access to its source code. We

have designed a code extraction approach to automatically extract a code fragment from a program

binary so that it is self-contained. The extracted code fragment can be run independently of the rest

of the program’s functionality in an external C program, andcan be easily tested, instrumented, or

shared with other users.

We have implemented BCR, a tool that uses our approach to automatically extract an assembly

function from a program binary. We have used BCR to reuse the cryptographic routines used by two

spam botnets in a network proxy that can rewrite the malware’s C&C encrypted traffic. In addition,

we have extracted an unpacking function from a trojan horse program, and have shown that a code

fragment belonging to that function can be reused by the unpacking function for a different sample

from the same family. Finally, we have applied software-based fault isolation techniques [134] to

the extracted functions to ensure they can be used safely even though they come from an untrusted

source.
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Chapter 5

Deviation Detection

5.1 Introduction

Many different implementations usually exist for the same specification. Due to the abundance of

coding errors and specification ambiguities, these implementations usually containdeviations, i.e.,

differences in how they check and process some of their inputs. As a result, the same inputs can

cause different implementations to behave differently. For example, an implementation may not per-

form sufficient input checking to verify if an input is well-formed as indicated in the specification.

Thus, for some inputs, it might exhibit a deviation from another implementation, which follows the

specification and performs the correct input checking.

Automatically finding deviations between implementationsof the same specification, what we

call deviation detection, is important for several applications. For example, deviation detection is

important for testing implementations of network protocols. The Internet Standards process requires

that two independent implementations of a protocol from different code bases have been developed

and tested for interoperability before advancing a protocol to Draft Standard [18]. Deviation detec-

tion could be used to enhance interoperability testing since experience shows that even after current

manual testing, differences still exist on how different protocol implementations handle some of the

protocol inputs. In this thesis we show how to automaticallyfind deviations between two imple-

mentations of the same protocol specification and how to apply the discovered deviations to two

particular applications:error detectionandfingerprint generation.

First, deviations are important for error detection because a deviation often indicates that at least

one of the two implementations has an error or that the specification is underspecified. Finding such

errors is important to guarantee that the specification is correctly implemented, to ensure proper

interoperability with other implementations, to make certain that the specification is unambiguous,

and to enhance system security since errors often representvulnerabilities that can be exploited.

113



CHAPTER 5. DEVIATION DETECTION 114

Enabling error detection by automatically finding deviations between two different implementations

is particularly attractive because it does not require a manually written model of the specification.

These models are usually complex, tedious, and error-proneto generate. Note that deviations do

not necessarily flag an error in one of the two implementations or the specification. For example, it

could happen that the specification allows for optional functionality that is provided by only one of

the implementations. However, deviation detection is a good way to automatically find candidate

implementation errors and to detect ambiguities in the specification.

Second, such deviations naturally give rise tofingerprints, which are inputs that, when given to

two different implementations, will result in different output states. Fingerprints can be used to dis-

tinguish between the different implementations and we callthe discovery of such inputsfingerprint

generation. Fingerprinting has been in use for more than a decade [43] and is an important tool

in network security for remotely identifying which implementation of an application or operating

system a remote host is running. Fingerprinting tools [162,181,6] need fingerprints to operate and

constantly require new fingerprints as new implementations, or new versions of existing implemen-

tations, become available. Thus, the process of automatically finding these fingerprints, i.e., the

fingerprint generation, is crucial for these tools.

Deviation detection is a challenging task— deviations usually happen in corner cases, and dis-

covering deviations is often like finding needles in a haystack. Previous work in related areas is

largely insufficient. For example, the most commonly used technique is a variant of fuzz testing

where random or semi-random inputs are generated and set to different implementations to observe

if they trigger a difference in outputs [29,63,145]. The obvious drawback of this approach is that it

may take many such random inputs before finding a deviation.

In this thesis we propose a novel approach to automatically discover deviations in input checking

and processing between different implementations of the same protocol specification. We are given

two programs in binary formP1 andP2, which implement the same protocol specification and wish

to find inputs such that the same input, when sent to the two implementations, will cause each

implementation to result in a different output state. At a high level, we build two models,M1 and

M2, which capture how each implementation processes a single input. Then, we check whether the

predicate(M1 ∧ ¬M2) ∨ (¬M1 ∧ M2) is satisfiable, using a solver such as a decision procedure.

If the predicate is satisfiable, it means that we can find an input, which will satisfyM1 but not

M2 or vice versa, what we call a deviation because such input leads the two program executions

to different output states. Note that such inputs are only deviations for certain if the models have

perfect accuracy and coverage. Otherwise, the returned inputs are only good candidates to trigger a

deviation. Since our models may not include all possible execution paths, we verify such candidate

inputs by sending them to the two programs and monitoring their output states. If the two programs
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end up in two different output states, then we have successfully found a deviation between the two

implementations, and the corresponding input that triggers the deviation.

We have designed and implemented model extraction techniques that produce models covering

a single execution path in the program, and found that such models are surprisingly effective at

finding deviations between different implementations of the same functionality. We have evaluated

our approach using 3 HTTP server implementations and 2 NTP server implementations. Our ap-

proach successfully identifies deviations between the different server implementations for the same

protocol and automatically generates inputs that trigger different server behaviors. These deviations

include errors and differences in the interpretation of theprotocol specification. For example it auto-

matically finds an HTTP request that is accepted by the MiniWeb Web server with a “HTTP/1.1 200

OK” response, while it is rejected by the Apache Web server with a “HTTP/1.1 400 Bad Request”

response. Such deviation is due to an error in the MiniWeb server that fails to verify the value of the

first byte in the URL. The evaluation shows that our approach is accurate: in one case, the relevant

part of the input that triggers the deviation is only three bits. Our approach is also efficient: we find

deviations using a single request in about one minute.

The remainder of this chapter is organized as follows. Section 5.2 introduces the problem and

presents an overview of our approach. Section5.3 describes our model extraction technique. Sec-

tion 5.4 presents how to generate candidate deviation inputs and howto validate that they truly

trigger a deviation. Our evaluation results are presented in Section5.5. We discuss enhancements

to our approach in Section5.6. Finally, we present the related work in Section5.7and conclude in

Section5.8.

5.2 Problem Definition & Approach Overview

In this section, we first introduce the intuition behind our model extraction techniques. Then, we

formally define the deviation detection problem with respect to the extracted models. Finally, we

provide an overview of our deviation detection approach.

5.2.1 Model Extraction

Our model extraction techniques use the intuition that a program can be seen as a mapping function

P : I → S from the input spaceI to the output spaceS. A program accepts an inputx ∈ I and

then processes the input resulting in a particularoutput states ∈ S, i.e.,P (x) = s. Note that we

say an output state rather than an output because we are interested in programs that process highly

structured inputs (e.g., files or network traffic) and many different inputs may produce the same

output state. For example, consider a network protocol thatincludes a timestamp in every message
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such as theDate header in an HTTP response. Every HTTP request received by a Web server may

produce a different HTTP response because theDate value in the response constantly changes, but

many of those HTTP responses will produce an equivalent output state, i.e., they will return “HTTP

200 OK” and serve back a file hosted in the Web server.

Our model extraction techniques consider output states that are disjoint and extract amodelfor

each different output state. Our models are boolean predicates that capture all inputs to the program

x ∈ I that cause the program to reach a particular output states: M s
P (x) = true ⇐⇒ P (x) = s.

Thus, the program can be seen as a conjunction of the models for each output state. Such models

could be generated in different ways (e.g., statically or dynamically, from the program’s source code

or from its binary). In this thesis, we describe dynamic approaches for model extraction that take as

input the program in binary form.

Two important properties of models are correctness and completeness. A modelM s
P is correct

if it returns true only for inputs that reach the output states. It is complete if returns true for all

inputs that can possibly reach the output states. Our models are correct by construction because

they only contain paths that have been executed and have reached the output state. To be complete a

model needs to cover all paths that can possibly reach the output state. Thus, a critical challenge for

model extraction techniques is to build high-coverage models that capture many execution paths in

the code. In this thesis we have evolved our model extractiontechniques to progressively increase

their coverage. In this chapter we show that even models thatcover a single execution path are

useful to find deviations. Then, in Chapter6 we present techniques for extracting multi-path models

that are the disjunction of multiple execution paths that reach an output state. Finally, in Chapter7

we show how to refine those multi-path models by merging common parts of the execution, so that

the resulting model has higher coverage and is smaller.

An output state is a pair that comprises a program point and a boolean predicate on the program

state that needs to be satisfied at that program point. It can similarly comprise a set of such pairs.

Thus, the model can be seen as a conjunction of areachability predicate, which captures the inputs

that make the program execution reach the program point in the output state definition, and the

boolean predicate that needs to hold on the program state when that point is reached.

The semantics of an output state, i.e., what the program point and the predicate in the output state

represent, are application-dependant. For example, when finding deviations between Web servers,

an output state for a Web server could be that an input HTTP request causes a successful delivery of

a webpage in an output HTTP response. Here, the output state could be defined with a pair where

the program point is the call site that invokes thesend function, and the boolean predicate states

whether the message to be sent has a 200 status code, which indicates success. If there are multiple

call sites for thesend function, a set of pairs could be used instead.
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5.2.2 Problem Definition

Deviation detection is the problem of automatically findingprogram inputs that cause two imple-

mentations of the same specification to reach different output states. We call those program inputs

deviationsand focus on finding deviations between two implementationsof the same protocol spec-

ification.

We are given two implementations of the same protocol specification in binary formP1 and

P2. As explained in Section5.2.1each implementation at a high level can be viewed as a mapping

functionP1, P2 : I → S from the protocol input spaceI to the protocol output spaceS. Our goal

is to find inputsx ∈ I such thatP1(x) 6= P2(x). Finding such inputs through random testing is

usually hard. However, in general it is easy to find inputsx ∈ I such thatP1(x) = P2(x) = s ∈ S,

i.e., most inputs will result in the same output states for different implementations of the same

specification.

For example, given two implementations of a Web server, e.g., Apache [4] and MiniWeb [147],

implementing the same HTTP protocol specification [65], it is easy to find inputs (e.g., HTTP

requests) for which both servers, if configured similarly, produce the same output state (e.g., an

“HTTP 200 OK” response). However, it is not so easy to find deviations, inputs for which both

servers produce different output states such as one server accepting the request with a “HTTP/1.1

200 OK” response, while the other one rejecting it with a “HTTP/1.1 400 Bad Request” response.

Our approach automatically finds such deviations.

Output states. The output states for deviation detection need to be externally observable. We use

two methods to observe such states: (a) monitoring the network traffic output by the program, and

(b) supervising its environment, which allows us to detect unexpected states such as program halt,

reboot, crash, or resource starvation. However, we cannot simply compare the complete output from

both implementations, since the output may be different butequivalent. For example, many proto-

cols contain sequence numbers, and we would expect the output from two different implementations

to contain two different sequence numbers. However, the output messages may still be equivalent.

Thus, we may use some domain knowledge about the specific protocol being analyzed to determine

when two output states are different. For example, many protocols such as HTTP include a status

code in the response to provide feedback about the status of the request. We use this information

to determine if two output states are equivalent or not. In other cases, we observe the effect of a

particular query in the program, such as program crash or reboot. Clearly these cases are different

from a response being emitted by the program.
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Figure 5.1: On the left, the control-flow graph of a program. On the right, two different execution
paths in the program that end up in the same output state. Since two different paths can end up in
the same output state, the validation phase checks whether the new execution path truly ends up in
a different state.

5.2.3 Approach

The intuition behind our deviation detection approach is that if we have a model for the output state

s for each of the two implementations of the same specification: M s
P1

,M s
P2

, then a deviation is just

an input that satisfies the following predicate:(M s
P1

∧ ¬M s
P2

) ∨ (¬M s
P1

∧ M s
P2

). Such an input is

a deviation because it produces an output states for one of the implementations and another output

statet 6= s for the other implementation.

Given the above intuition, the main challenge is creating a model M s
P that captures all the

program inputs that reach the output states. Furthermore, we observe that the above method can

still be used even if our model does not consider the entire program and only considers asingle

execution path. In that case, the modelM s
P represents the subset of protocol inputs that follow

the same execution path and still reach the output states. Thus,M s
P (x) = true ⇒ P (x) = s,

since if an input satisfiesM s
P then by definition it will make programP go to states, but the

converse is not necessarily true—an input which makesP go to states may not satisfyM s
P . For

example, Figure5.1a shows the control flow graph of a programP with two paths that reach the

Success state. If the post-condition for theSuccess state is always true and the model for the

Success state contains only the path in5.1b, then there exists an input, i.e., the one that produces

the execution in5.1c, which makesP go to theSuccess state but does not satisfy the model

for 5.1b.

In our problem, this means that the difference betweenM s
P1

andM s
P2

may not necessarily result

in a true deviation. Instead, the difference betweenM s
P1

andM s
P2

is a good candidate, which we

can then test to validate whether it is a true deviation. We discuss models with multiple execution

paths in Section5.6.
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Figure 5.2: Overview of our deviation detection approach.

Our approach is an iterative process, and each iteration consists of three phases, as shown in

Figure5.2. First, in themodel extractionphase, we are given two binariesP1 andP2 implementing

the same protocol specification, such as HTTP, and an inputx, such as an HTTP GET request. For

each implementation, we log an execution trace of the binaryas it processes the input, and record

what output states it reaches, such as halting or sending a reply. For this, we use the execution

monitor introduced in Chapter2. We start monitoring the execution before sending a messageto the

program and stop the trace when we observe a response from theprogram. We use a no-response

timer to stop the trace if no answer is observed from the server after a configurable amount of time.

We assume that the execution from both binaries reaches equivalent output states; otherwise we

have already found a deviation! For each implementationP1 andP2, we then use this information

to produce a model (a symbolic predicate) over the input,M s
1 andM s

2 respectively, each of which

is satisfied for inputs that cause each binary to follow the same path than the original input did in

each program and still reach the same output states as the original input did.

Next, in thedeviation detectionphase, we use a solver (such as a decision procedure) to find

differences between the two modelsM s
1 andM s

2 . In particular, we ask the solver if(M s
1 ∧¬M s

2 )∨

(M s
2 ∧ ¬M s

1 ) is satisfiable. When satisfiable the solver will return an example satisfying input. We

call these inputs thecandidate deviation inputs.

Finally, in thevalidationphase we evaluate the candidate deviation inputs obtained in the model

extraction phase on both implementations and check whetherthe implementations do in fact reach

different output states. This phase is necessary because the symbolic predicate might not include all

possible execution paths, then an input that satisfiesM s
1 is guaranteed to makeP1 reach the same
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equivalent output state as the original inputx but an input that does not satisfyM s
1 may also make

P1 reach a equivalent output state. Hence, the generated candidate deviation inputs may actually

still cause both implementations to reach equivalent output states.

If the implementationsdo reach different output states, then we have found a deviation triggered

by that input. This deviation is useful for two things: (1) itmay represent an implementation error

in at least one of the implementations, which can then be checked against the protocol specification

to verify whether it is truly an error; (2) it can be used as afingerprint to distinguish between the

two implementations.

Iteration. We can iterate this entire process to examineother input types. Continuing with the

HTTP example, we can compare how the two implementations process other types of HTTP re-

quests, such as HEAD and POST, by repeating the process on those types of requests. In Sec-

tion 5.6 we discuss how to use white-box exploration techniques to automate this iteration, so that

many different inputs types can be tested and rarely used paths can be covered.

5.3 Extracting Single-Path Models

In this section, we describe the model extraction phase. Thegoal of the model extraction phase is

that given an inputx such thatP1(x) = P2(x) = s, wheres is the output state when executing

inputx with the two given programs, we would like to compute two models, M s
1 andM s

2 , such that,

M s
1 = true ⇒ P1(x) = s andM s

2 = true ⇒ P2(x) = s. Each model is a boolean predicate

that captures the set of inputs that would reach the output states by following the same execution

path that the program followed during the execution. Each model is the conjunction of the symbolic

path predicate obtained by executing the program on symbols, rather than concrete inputs, and the

boolean predicateQs that defines the output state.

5.3.1 Building the Symbolic Path Predicate

In our design, we build the symbolic predicate in two distinct steps. We first execute the program on

the original input, while recording a trace of the (concrete) execution, using the execution monitor

introduced in Chapter2. We then use this execution trace as input to the dynamic symbolic execution

process that builds the symbolic predicate.

In this section we explain how to generate the symbolic path predicate from an execution trace.

In dynamic symbolic execution, the input to the program (e.g., the network message received by the

program) is converted into a sequence of symbols (one symbolper input byte) and the program is

run on a combination of symbols and concrete values. When theprogram reaches a branch predicate
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that uses some of the input symbols, a symbolic branch condition is created. The conjunction of all

symbolic branch conditions forms the path predicate, a predicate on the symbolic program inputs

that captures all the inputs that would follow the same execution path in the program than the

original input. The symbolic path predicate can be generated using different methods like forward

symbolic execution or weakest pre-condition [78,33,20,21].

In this thesis we compute the symbolic predicate using the technique ofweakest pre-condition[23,

61]. To compute the weakest pre-condition we use the Vine platform [19], which was introduced

in Chapter2. The weakest pre-condition, denotedwp(P,Q), is a boolean predicatef over the in-

put spaceI of programP such that iff(x) = true, thenP (x) will terminate in a state satisfying

Q. In our setting, the post-condition is the predicateQs that defines the output states. Thus, the

weakest pre-condition computed over the execution trace with the post-conditionQs is exactly the

model that captures the set of inputs that would reach the output states by following the same exe-

cution path that the program followed during the execution.In an nutshell, to generate the symbolic

predicate, we perform the following steps:

1. Record the execution trace of the program on the original input, which sets the program path.

2. Translate the execution trace into a programB, written in the intermediate representation (IR)

offered by the Vine intermediate language. As an optimization the taint information from the

execution trace can be used to include in the IR program only instructions that operate on data

derived from the input.

3. TranslateB into a single assignment (SSA) form.

4. Calculate the weakest pre-conditionwp(B,Qs) using the algorithm proposed by Brumley et

al. [21]. The weakest pre-condition on a single-path program starts with the post-condition

and further constrains it to follow the same program path taken in the trace, by adding asser-

tions for the symbolic branches encountered during the execution.

5.3.2 Memory Reads and Writes using Symbolic Addresses

If an instruction accesses memory using an address that is derived from the input, then in the path

predicate the address will be symbolic. A symbolic address could access different memory locations

and we must analyze the set of possible locations it may access. To create a sound path predicate, we

add an assertion to the path predicate to only consider executions that would calculate an address

within this set. The size of this set with respect to the set ofall possible locations that may be

accessed influences the generality of the path predicate. The larger the set, the more general the

path predicate is at the cost of more analysis.



CHAPTER 5. DEVIATION DETECTION 122

Memory reads. When reading from memory using a symbolic address, the path predicate must

include initialization statements for the set of memory locations that could be read. In some cases,

we achieve good results considering only the address that was actually used in the logged execution

trace and adding the corresponding constraints to the path predicate to preserve soundness. To

increase the generality of the path predicate we use two other techniques. We use range analysis

to estimate the range of symbolic memory addresses that could be accessed [8]. Range analysis is

conservative but costly. In addition, we add special handling for the common case of static tables,

which are present in the data section of the program and are read, but not written, by the program.

For this, we extract the constraints leading to the table access and query the solver for possible offset

values in the table. If the solver returns an input, we add it (negated) to the path predicate, e.g., if

it returns INPUT = 5, then we add to the path predicate the constraint INPUT != 5. This forces

the solver to return a different answer the next time we queryit. We repeat this process until the

solver fails to return an input. This method identifies the different locations in the table that may be

accessed. Then, our system extracts the contents of those locations from a memory dump and adds

concrete initializers to the path predicate.

Memory writes. We need not transform writes to memory locations that use a symbolic address.

Instead we record the set of possibly accessed addresses, and add the corresponding constraint to

the path predicate to preserve soundness. These constraints force the solver to reason about any

potential alias relationships. As part of the weakest pre-condition calculation, subsequent memory

reads that could use one of the addresses being considered are transformed to a conditional state-

ment handling these potential aliasing relationships. As with memory reads, we often achieve good

results by only considering the address that was actually used in the logged execution trace. This

reduces the coverage of the path predicate but maintains itsaccuracy. Again, we could generalize

the predicate to consider more values, by selecting a largerset of addresses to consider.

5.4 Deviation Detection & Validation

In this section we present the deviation detection and validation phases. The deviation detection

phase takes as input the models for each implementation produced by the model extraction phase,

presented in Section5.3, and outputs candidate inputs to trigger a deviation. Then,the validation

phase verifies whether those candidate deviation inputs truly trigger a deviation.
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5.4.1 Deviation Detection

The deviation detection phase uses a solver to find candidateinputs, which may cause deviations.

This phase takes as input the modelsM s
1 andM s

2 generated for the programsP1 andP2 in the

model extraction phase. We rewrite the variables in each predicate so that they refer to the same

input, but each to their own internal states. We then query the solver whether the combined predicate

(M s
1∧¬M s

2 )∨(¬M s
1∧M s

2 ) is satisfiable, and if so, to provide an example that satisfiesthe combined

predicate. If the solver returns an example, then we have found an input that satisfies one program’s

model, but not the other. If we had perfectly and fully modeled each program, and perfectly specified

the post-condition to be that “the input results in an equivalent output state”, then this input would

be guaranteed to produce an equivalent output state in one program, but not the other.

However, since the models extracted in Section5.3 only consider one execution path, then, as

illustrated in Figure5.1, it is possible that while an input does not satisfy the symbolic predicate

generated for a server, it actually does result in an identical or equivalent output state, thus not

triggering a deviation. This means that the input returned by the solver is only acandidate deviation

input and we need an additional validation phase to check whether those candidate deviation inputs

trigger a deviation. Note that we can query the solver for multiple candidate deviation inputs, each

time requiring the new candidate input to be different than the previous ones.

5.4.2 Validation

The validation phase checks each candidate deviation inputto determine whether it actually drives

both implementations to different output states. To check whether a deviation has been found, each

candidate deviation input is sent to the implementations being examined, and the outputs of the

execution are compared to determine whether they result in equivalent or different output states.

Determining if two output states are equivalent may requiresome domain knowledge about the

protocol implemented by the programs. We use two methods to compare output states: monitoring

the network traffic output by the program, and supervising its environment to detect unexpected

states such as program crash.

For protocols that contain some type of status code in the response, such as HTTP in the Status-

Line [65], each different value of the status code represents a different output state for the server.

For those protocols that do not contain a status code in the response, such as NTP [146], we define a

genericvalid stateand consider the server to have reached that state, as a consequence of an input,

if it sends any well-formed response to the input, independently of the values of the fields in the

response.

In addition, we define three special output states: afatal statethat includes any behavior that is

likely to cause the server to stop processing future queriessuch as a crash, reboot, halt or resource
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Server Version Type Binary Size
Apache [4] 2.2.4 HTTP server 4,344 kB
MiniWeb [147] 0.8.1 HTTP server 528 kB
Savant [187] 3.1 HTTP server 280 kB
NetTime [157] 2.0 beta 7 NTP server 3,702 kB
Ntpd [164] 4.1.72 NTP server 192 kB

Table 5.1: Different server implementations used in our evaluation.

starvation, ano-response statethat indicates that the server is not in the fatal state but still did not

respond before a configurable timer expired, and amalformed statethat includes any response from

the server that is missing mandatory fields. This last state is needed because servers might send

messages back to the client that do not follow the guidelinesin the corresponding specification. For

example several HTTP servers, such as Apache or Savant, might respond to an incorrect request with

a raw message written into the socket, such as the string “IOError” without including the expected

Status-Line such as “HTTP/1.1 400 Bad Request”.

5.5 Evaluation

We have evaluated our deviation detection approach on two different protocols: HTTP and NTP.

We selected these two protocols as representatives of two large families of protocols: text protocols

(HTTP) and binary protocols (NTP). In particular, we use three HTTP server implementations and

two NTP server implementations, as shown in Table5.1. All the implementations are Windows

binaries.

The original inputs, which we send to the servers during the model extraction phase were ob-

tained by capturing a network trace from one of our workstations and selecting all the HTTP and

NTP requests that it contained. For each HTTP request in the network trace, we send it to each of

the HTTP servers, running inside the execution monitor, andoutput an execution trace that captures

how the server processed the request. The execution monitoralso records the output state observed

at the end of the execution. If an input produces the same output state for all HTTP servers then we

use the execution traces for each server as input to the modelextraction phase. Otherwise we have

already found a deviation! We proceed similarly for each NTPrequest. In Section5.5.1, we show

the deviations we discovered in the Web servers, and in Section 5.5.2, the deviations we discovered

in the NTP servers.
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Original request:
0000:   47 45 54 20  2F 69 6E 64  65 78 2E 68  74 6D 6C 20  GET /index.html
0010:   48 54 54 50  2F 31 2E 31  0D 0A 48 6F  73 74 3A 20  HTTP/1.1..Host:
0020:   31 30 2E 30  2E 30 2E 32  31 0D 0A 0D  0A           10.0.0.21....

Figure 5.3: One of the original HTTP requests we used to generate execution traces from all HTTP
servers, during the model extraction phase.

5.5.1 Deviations in Web Servers

This section shows the deviations we found among three Web server implementations: Apache,

MiniWeb, and Savant. We show results for a specific HTTP query, which we find to be specially

important because it discovered deviations between different server pairs. Figure5.3 shows this

query, which is an HTTP GET request for the file/index.html . The post-condition used to

identify the output state is based on the Status-Code in the HTTP reply and some additional special

states as explained in Section5.4.2. The output state for all three servers from the original input is:

Status-Code == 200, which means that the Web Server returned the requested webpage.

Deviations detected. For each server we first extract the model from the execution trace, which

represents how the server handled the original HTTP requestshown in Figure5.3. We call these

models: M200
A , M200

S , M200
M for Apache, Savant and MiniWeb respectively. For simplicity, we

remove the output state and useMA, MS , MM to identify the models. Then, for each of the three

possible server pairs: Apache-MiniWeb, Apache-Savant andSavant-MiniWeb, we calculate the

combined predicate as explained in Section5.4.1. For example, for the Apache-MiniWeb pair, the

combined predicate is(MA ∧ ¬MM ) ∨ (MM ∧ ¬MA). To obtain more detailed information, we

break the combined predicate into two separates queries to the solver, one representing each side

of the disjunction. For example, for the Apache-MiniWeb pair, we query the solver twice: one for

(MA ∧ ¬MM) and another time for(MM ∧ ¬MA).

Table5.2 summarizes the deviations found for the three Web servers. Each cell of the table

represents a different query to the solver, that is, half of the combined predicate for each server pair.

Thus, the table has six possible cells. For example, the combined predicate for the Apache-MiniWeb

pair, is shown as the disjunction of Cases 1 and 3. Out of the six possible cases, the solver returned

unsatisfiable for three of them (Cases 1, 5, and 6). For the remaining cases, where the solver was

able to generate at least one candidate deviation input, we show two numbers in the format X/Y. The

X value represents the number of different candidate deviation inputs we obtained from the solver,

and the Y value represents the number of these candidate deviation inputs that actually generated

different output states when sent to the servers in the validation phase. Thus, the Y value represents

the number of inputs that triggered a deviation.
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¬MA ¬MM ¬MS

MA N/A Case 1: unsatisfiable Case 2: 5/0
MM Case 3: 5/5 N/A Case 4: 5/5
MS Case 5: unsatisfiable Case 6: unsatisfiable N/A

Table 5.2: Summary of deviations found for the HTTP servers,including the number of candidate
input queries requested to the solver and the number of deviations found. Each cell represents the
results from one query to the solver and each query to the solver handles half of the combined
predicate for each server pair. For example Case 3 shows the results when querying the solver for
(MM ∧¬MA) and the combined predicate for the Apache-MiniWeb pair is the disjunction of Cases
1 and 3.

Candidate deviation input:
0000:   47 45 54 20  E8 69 6E 64  65 78 2E 68  74 6D 6C 20  GET .index.html
0010:   B4 12 02 12  90 04 02 04  0D 0A 48 6F  A6 4C 08 20  ..........Ho.L.
0020:   28 D0 82 91  12 E0 84 0C  35 0D 0A 0D  0A           (.......5....

Miniweb response:                                      Apache response:                        

Server: Miniweb               Date: Sat, 03 Feb 2007 05:33:55 GMT
Cache−control: no−cache       Server: Apache/2.2.4 (Win32)       
[...]                         [...]                              

HTTP/1.1 200 OK               HTTP/1.1 400 Bad Request           

Figure 5.4: Example deviation found for Case 3, where MiniWeb’s predicate is satisfied while
Apache’s isn’t. The figure includes the candidate deviationinput being sent and the responses
obtained from the servers, which show two different output states.

In Case 2, none of the five candidate deviation inputs returned by the solver were able to generate

different output states when sent to the servers, that is, nodeviations were found. For Cases 3 and

4, all candidate deviation inputs triggered a deviation when sent to the servers during the validation

phase. In both cases, the MiniWeb server accepted some inputthat was rejected by the other server.

We analyze these cases in more detail next.

Applications to error detection and fingerprint generation. Figure5.4shows one of the devia-

tions found for the Apache-MiniWeb pair. It presents one of the candidate deviation inputs obtained

from the solver in Case 3, and the responses received from both Apache and MiniWeb when that

candidate input was sent to them during the validation phase. The key difference is on the fifth

byte of the candidate deviation input, whose original ASCIIvalue represented a slash, indicating

an absolute path. In the generated candidate deviation input, the byte has value 0xE8. We have

confirmed that MiniWeb does indeed accept any value on this byte. So, this deviation reflects an

error by MiniWeb: it ignores the first character of the requested URI and assumes it to be a slash,

which is a deviation from the URI specification [12].
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Candidate deviation input:
0000:   47 45 54 20  08 69 6E 64  65 78 2E 68  74 6D 6C 20  GET .index.html
0010:   09 09 09 09  09 09 09 09  0D 0A 48 6F  FF FF FF 20  ..........Ho...
0020:   09 09 09 09  09 09 09 09  09 0D 0A 0D  0A           .............

Miniweb response:                                       Savant response:
HTTP/1.1 200 OK               File not found  
Server: Miniweb
Cache−control: no−cache
[...]

Figure 5.5: Example deviation found for Case 4, where MiniWeb’s predicate is satisfied while
Savant’s isn’t. The output states show that MiniWeb acceptsthe input but Savant rejects it with a
malformed response.

Candidate deviation input:
0000:   47 45 54 20  2F 69 6E 64  65 78 2E 68  74 6D 6C 20  GET /index.html
0010:   48 54 54 50  2F 08 2E 31  0D 0A 48 6F  FF FF FF 20  HTTP/..1..Ho...
0020:   09 09 09 09  09 09 09 09  09 0D 0A 0D  0A           .............

Miniweb response:                             Savant response:                                
HTTP/1.1 200 OK           HTTP/1.1 400 Only 0.9 and 1.X requests supported
Server: Miniweb           Server: Savant/3.1                              
Cache−control: no−cache   Content−Type: text/html                         
[...]                     [...]                                           

Figure 5.6: Another example deviation for Case 4, between MiniWeb and Savant. The main differ-
ent is on byte 21, which is part of the Version string. In this case MiniWeb accepts the request but
Savant rejects it.

Figure5.5 shows one of the deviations found for the Savant-MiniWeb pair. It presents one of

the candidate deviation inputs obtained from the solver in Case 4, including the responses received

from both Savant and MiniWeb when the candidate deviation input was sent to them during the

validation phase. Again, the candidate deviation input hasa different value on the fifth byte, but in

this case the response from Savant is only a raw “File not found” string. Note that this string does

not include the HTTP Status-Line, the first line in the response that includes the response code, as

required by the HTTP specification and can be considered malformed [65]. Thus, this deviation

identifies an error though in this case both servers (i.e. MiniWeb and Savant) are deviating from the

HTTP specification.

Figure5.6 shows another deviation found in Case 4 for the Savant-MiniWeb pair. The HTTP

specification mandates that the first line of an HTTP request must include a protocol version string.

There are 3 possible valid values for this version string: “HTTP/1.1”, “HTTP/1.0”, and “HTTP/0.9”,

corresponding to different versions of the HTTP protocol. However, we see that the candidate
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1 1 1 0 0 0 1 1

0 0 0 0 0 0 1 1

0000:   e3 00 04 fa 00 01 00 00 00 01 00 00 00 00 00 00
0020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040:   00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

0000:   03 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00
0020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040:   00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

LI VN

LI

MD

MDVN

Original request:                                   

Candidate deviation input:

NetTime response: 
0000:   04 0f 00 fa 00 00 00 00 00 00 00 00 00 00 00 00 
0020:   c9 6e 72 6c a0 c4 9a ec c9 6e 6b 7a ca e2 a8 00 
0040:   c9 6e 72 95 25 60 41 5e c9 6e 72 95 25 60 41 5e

Ntpd response:
No response

Figure 5.7: Example deviation obtained for the NTP servers.It includes the original request sent
in the model extraction phase, the candidate deviation input output by the solver, and the responses
received from the servers, when replaying the candidate deviation input. Note that the output states
are different since NetTime does send a response, while Ntpddoes not.

deviation input produced by the solver uses instead a different version string, ”HTTP/\b.1”. Since

MiniWeb accepts this answer, it indicates that MiniWeb is not properly verifying the values received

on this field. On the other hand, Savant is sending an error to the client indicating an invalid HTTP

version, which indicates that it is properly checking the value it received in the version field. This

deviation shows another error in MiniWeb’s implementation.

To summarize, in this section we have shown that our approachis able to discover deviations

between multiple real-world HTTP Web servers. We have presented detailed analysis of three of

them, and confirmed the deviations they trigger as errors. Out of the three deviations analyzed

in detail, two of them can be attributed to be MiniWeb’s implementation errors, while the other

one was an implementation error by both MiniWeb and Savant. The discovered inputs that trigger

deviations can potentially be used as fingerprints to differentiate among these implementations.

5.5.2 Deviations in Time Servers

In this section we show the deviations found on the two NTP servers analyzed: NetTime [157]

and Ntpd [164]. Again, for simplicity, we focus on a single request that weshow in Figure5.7.

This request represents a simple query for time synchronization from a client. The request uses

the Simple Network Time Protocol (SNTP) Version 4 protocol,which is a subset of NTP [146].

The output state for both servers on the original input shownin Figure5.7 is the valid state that

we presented in Section5.4.2, which represents that the server sends a well-formed response to the

input, independently of the values of the fields in the response.
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Deviations detected. First, we generate the models for both servers:MT andMN for NetTime

and Ntpd respectively from the execution traces captured using the original request shown in Fig-

ure5.7. Since we have one server pair, we need to query the solver twice. In Case 7, we query the

solver for(MN ∧ ¬MT ) and in Case 8 we query it for(MT ∧ ¬MN ). The solver returns unsatisfi-

able for Case 7. For Case 8, the solver returns 4 candidate deviation inputs. One of these candidate

inputs triggers a deviation during the validation phase andis shown in Figure5.7. It presents the

candidate deviation input returned by the solver, and the response obtained from both NTP servers

when that candidate deviation input was sent to them during the validation phase.

Applications to error detection and fingerprint generation. The results in Figure5.7show that

the candidate deviation input returned by the solver in Case8 has different values at bytes 0, 2 and

3. First, bytes 2 and 3 have been zeroed out in the candidate deviation input. This is not relevant

since these bytes represent the “Poll” and “Precision” fields and are only significant in messages

sent by servers, not in the queries sent by the clients, and thus are ignored by the servers.

The important difference is on byte 0, which is presented in detail on the right hand side of

Figure5.7. Byte 0 contains three fields: “Leap Indicator” (LI), “Version” (VN) and “Mode” (MD)

fields. The difference with the original request is in the Version field. The candidate deviation input

has a decimal value of 0 for this field (note that the field length is 3 bits), instead of the original

decimal value of 4. When this candidate deviation input was sent to both servers, Ntpd ignored it,

choosing not to respond, while NetTime responded with a version number with value 0. Thus, this

candidate deviation input leads the two servers into different output states.

We check the specification for this case to find out that a zero value for the Version field is re-

served, and according to the latest specification should no longer be supported by current and future

NTP/SNTP servers [146]. However, the previous specification states that the server should copy

the version number received from the client in the request, into the response, without dictating any

special handling for the zero value. Since both implementations seem to be following different ver-

sions of the specification, we cannot definitely assign this error to one of the specifications. Instead,

this example shows that we can identify inconsistencies or ambiguity in protocol specifications. In

addition, we can use this query as a fingerprint to differentiate between the two implementations.

5.5.3 Performance

In this section, we measure the execution time and the outputsize at different steps in our approach.

The results from the model extraction phase and the deviation detection phase are shown in Table5.3

and Table5.4, respectively. In Table5.3, the column “Trace-to-IR time” shows the time spent in

converting an execution trace into our IR program. The values show that the time spent to convert
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Program Trace-to-IR time % of Symbolic Inst. IR-to-predicate time Model Size
Apache 7.6s 3.9% 31.9s 49,786

MiniWeb 5.6s 1.0% 14.9s 25,628
Savant 6.3s 2.2% 15.2s 24,789
Ntpd 0.073s 0.1% 5.3s 1,695

NetTime 0.75s 0.1% 4.3s 5,059

Table 5.3: Execution time and predicate size obtained during the model extraction phase.

Input Calculation Time
Apache - MiniWeb 21.3s
Apache - Savant 11.8s

Savant - MiniWeb 9.0s
NetTime - Ntpd 0.56s

Table 5.4: Execution time needed to calculate a candidate deviation input for each server pair.

the execution trace is significantly larger for the Web servers, when compared to the time spent on

the NTP servers. This is likely due to a larger complexity of the HTTP protocol, specifically a larger

number of conditions affecting the input. This is shown in the second column as the percentage of all

instructions that operate on symbolic data, i.e., on data derived from the input. The “IR-to-predicate

time” column shows the time spent in generating a symbolic path predicate from the IR program.

Finally, the “Model Size” column shows the size of the generated models, measured by the number

of expressions that they contain. The model size shows againthe larger complexity in the HTTP

implementations, when compared to the NTP implementations.

In Table5.4, we show the time used by the solver in the deviation detection phase to produce a

candidate deviation input from the combined symbolic predicate. The results show that our approach

is very efficient in discovering deviations. In many cases, we can discover deviations between two

implementations in approximately one minute. Fuzz testingapproaches are likely to take much

longer, since they usually need to test many more examples.

5.6 Discussion

In this section we discuss extensions to the work presented in this chapter, as well as the relationship

with the work that we present in the subsequent chapters of this thesis.

Covering rarely used paths. Some errors are hidden in rarely used program paths and finding

them can take multiple iterations in our approach. For each iteration, we need an input that drives
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both implementations to equivalent output states. In this chapter, these protocol inputs were obtained

from a network trace. Thus, the more different inputs contained in the network trace, the more paths

we could potentially cover. In Chapter6, we present white-box exploration techniques that enable

automatically generating inputs that explore different execution paths in the program, starting from

a single input seed. We could use those input generation techniques on both implementations to

automatically find inputs that drive both implementations to the same output state. Those inputs

could then be used as input to the deviation detection process.

Creating models that include multiple paths. In this chapter, we have presented techniques

to generate models that contain a single execution path. Although such models have proved to

be effective at finding deviations between protocol implementations, we expect higher coverage

models to find a larger number of deviations. In Chapter6, we present a model extraction technique

based on white-box exploration that can produce models covering multiple execution paths. Then,

in Chapter7, we further refine our model extraction techniques to merge execution paths that share

common constraints. High-coverage models that merge paths, when used for deviation detection,

can identify a larger number of deviations and reduce the number of candidate inputs that do not

pass the validation phase.

Addressing other protocol interactions. In this chapter we have evaluated our deviation detec-

tion approach over server implementations for protocols that use request/response interactions (e.g.

HTTP, NTP), where we examine the request being received by a server program. Our approach ap-

plies to other scenarios as well. For example, with clients programs we could analyze the response

being received by the client. In protocol interactions involving multiple steps, we could consider

the output state to be the state of the program after the last step is finished.

5.7 Related Work

Symbolic execution & weakest pre-condition. Symbolic execution [106] has been used for a

wide variety of problems including generating vulnerability signatures [21], automatic test case

generation [78, 190], proving the viability of evasion techniques [113], and finding bugs in pro-

grams [33, 236]. Weakest pre-condition was originally proposed for developing correct programs

from the ground up [61]. It has been used for different applications including finding bugs in pro-

grams [68] and for sound replay of application dialog [158].

Model checking. Chen et al. [36] manually identify rules representing ordered sequences of

security-relevant operations, and use model checking techniques to detect violations of those rules
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in software. There is also a line of research using model checking to find errors in protocol im-

plementations. Udrea et al. [211] use static source code analysis to check if a C implementation

of a protocol matches a manually specified rule-based specification of its behavior. Musuvathi

et.al. [154,153] use a model checker that operates directly on C and C++ code and use it to check

for errors in TCP/IP and AODV implementations. Chaki et al. [35] build models from implemen-

tations and check them against a specification model. Compared to our approach, these approaches

need reference models to detect errors. Although these techniques are useful, our approach is quite

different. Instead of comparing an implementation to a manually defined model, we compare im-

plementations against each other. Another significant difference is that our approach works directly

on binaries, and does not require access to the source code.

Protocol error detection. There has been considerable work on testing network protocol imple-

mentations, with heavy emphasis on tools for automaticallydetecting errors in network protocols

using fuzz testing [92,94,132,176,200,228,100]. Fuzz testing [145] is a technique in which ran-

dom or semi-random inputs are generated and fed to the program under study, while monitoring

for unexpected program output, usually an unexpected final state such as program crash or reboot.

Compared to fuzz testing, our approach is more efficient for discovering deviations since it requires

testing far fewer inputs. It can detect deviations by comparing how two implementations process

the same input, even if this input leads both implementationto equivalent states.

Protocol fingerprinting. There has also been previous research on protocol fingerprinting [43,

174] but available fingerprinting tools [162, 181, 6] use manually extracted fingerprints. More re-

cently, automatic fingerprint generation techniques, working only on network input and output,

have been proposed [29]. Our approach is different in that we use binary analysis toautomatically

generate the candidate inputs.

5.8 Conclusion

In this chapter we have presented a novel approach for deviation detection, the process of automat-

ically finding deviations in the way that two different implementations of the same specification

process their input. Our approach can automatically find an input that when sent to both implemen-

tations it drives them to different output states. It can be iterated to find multiple such inputs.

Our deviation detection approach enables and automates twoimportant applications: error de-

tection and fingerprint generation. It has several advantages over current solutions. First, it auto-

matically builds models from the programs that implement the specification and finds deviations by

comparing those models, without requiring access to a manually written model of the specification.
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Second, it works directly on program binaries, without access to the source code of the implemen-

tations. Finally, because our models capture the internal processing of the implementations, our

approach can find the needle (deviation) in the haystack (input space) without having to check each

straw (input) individually. Thus, it can find deviations significantly faster than techniques that focus

on random or semi-random probing.

We have built a prototype system to evaluate our techniques,and have used it to automatically

discover deviations in multiple implementations of two different protocols: HTTP and NTP. Our

results show that our approach successfully finds deviations after a few minutes. Those deviations

include errors in at least one of the implementations and differences in the interpretation of the

specification. Those deviations produce different, externally observable, output states in each im-

plementation and can thus be used as fingerprints.



Chapter 6

Filtering-Failure Attack Generation

6.1 Introduction

There exists a broad class of security issues where a filter, intended to block malicious inputs des-

tined for an application, incorrectly models how the application interprets those inputs. Afiltering-

failure attackis an evasion attack where the attacker takes advantage of those differences between

the filter’s and the application’s interpretation of the same input to bypass the filter and still com-

promise the application.

One important class of filtering-failure attacks arecontent-sniffing XSS attacks. Content-sniffing

XSS attacks are a class of cross-site scripting (XSS) attacks in which the attacker uploads some

malicious content to a benign web site (e.g., a picture uploaded to Wikipedia, or a paper uploaded to

a conference management system). The malicious content is accessed by a user of the web site, and

is interpreted astext/htmlby the user’s browser. Thus, the attacker can run JavaScript, embedded in

the malicious content, in the user’s browser in the context of the site that accepted the content. Such

attacks are possible because the web site’s upload filter hasa different view than the user’s browser

about which content should be consideredtext/html. This discrepancy often occurs due to a lack

of information or understanding by the web site’s developers about thecontent-sniffing algorithm

that runs in the browser and decides what MIME type to associate to some given content. For

instance, some content that the web site’s upload filter accepts because it interprets it as a PostScript

document might be interpreted as HTML by the browser of the user downloading the content. There

are other examples of filtering-failure attacks. For example, an Intrusion Detection System (IDS)

may deploy a vulnerability signature to protect some unpatched application in the internal network.

If the signature incorrectly models which inputs exploit the vulnerability in the application, then an

attacker can potentially construct an input that is not matched by the IDS’ signature but still exploits

the application.

134
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An important security problem is how to automatically find filtering-failure attacks and obtain

inputs that demonstrate the attacks. Armed with such an attack input, one can demonstrate to the

filter’s developer the necessity of improving the filter so that it accurately resembles the application’s

behavior. In this chapter we propose an approach to automatically generate filtering-failure attacks.

Our approach compares a model of the filter with a model of the application’s functionality that the

filter is designed to protect and automatically finds inputs that the filter considers benign but can

still compromise the application.

To extract the models of the filter and the application, we canuse model extraction techniques

like the ones we introduced in Chapter5. However, the single-path models that we used to find

deviations in that chapter have limited coverage. In this chapter we propose a technique to extract a

model of a fragment of binary code that captures multiple execution paths inside the code fragment.

These multi-path models have significantly higher coveragethan the single-path models that we

used in Chapter5. To extract multi-path models, we designstring-enhanced white-box exploration.

String-enhanced white-box exploration is similar in spirit to previous white-box exploration tech-

niques used for automatic test case generation [33, 78, 79]. Unlike previous work, our technique

incrementally builds a model from the explored paths and reasons directly about string operations,

which provides a significant performance boost for programsthat heavily use string operations.

An important characteristic of many security applications, such as an IDS signature matching

engine and a content-sniffing algorithm in a browser, is thatthey rely heavily on string operations.

Current white-box exploration techniques [78, 33, 79] are not efficient at dealing with such appli-

cations because they contain a large number of loops (potentially unbounded if they depend on

the input). The intuition behind our string-enhanced white-box exploration technique is that we

can enhance the exploration of programs that use strings, byreasoning directly about string oper-

ations, rather than reasoning about the individual byte-level operations that comprise those string

operations. Reasoning directly about string operations significantly increases the coverage that the

exploration achieves per unit of time.

In this chapter we demonstrate our approach to construct filtering-failure attacks by finding

inputs that trigger content-sniffing XSS attacks. We use ourstring-enhanced white-box explo-

ration technique to obtain a model for the closed-source content-sniffing algorithms of two different

browsers: Internet Explorer 7 and Safari 3.11. Then, we compare those models with the model of

a web site’s upload filter to automatically find content-sniffing XSS attacks. We use two different

web site’s upload filters: the one used by MediaWiki [135], an open-source wiki application used

by many sites including the Wikipedia encyclopedia [224], and the one used by the HotCRP [87], a

popular conference management Web application.

1Though much of Safari is open-source as part of the WebKit project [222], the content-sniffing algorithm in Safari is
part of the closed-sourceCFNetworklibrary.
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The MediaWiki filter is based on the MIME detection functionsprovided in PHP, which other

sites may also use. Our approach finds 6 MIME types that an attacker can use to build content-

sniffing XSS attacks against sites that use MediaWiki when the user accesses the site using Internet

Explorer 7, and a different set of 6 MIME types that the attacker can use against users that employ

Safari 3.1. For HotCRP, it finds that an attacker can use PostScript and PDF chameleon documents

to launch content-sniffing XSS attacks against users that employ Internet Explorer 7.

The remainder of this chapter is organized as follows. In Section 6.2 we provide an overview

of content-sniffing XSS attacks. Then, in Section6.3we formally define the problem of generating

filtering-failure attacks and present an overview of our approach. Next, in Section6.4 we detail

our string-enhanced white-box exploration technique. We evaluate our approach in Section6.5and

describe the related work in Section6.6. Finally, we conclude in Section6.7.

6.2 Content-Sniffing XSS attacks

For compatibility, every Web browser employs acontent-sniffing algorithmthat inspects the con-

tents of HTTP responses and occasionally overrides the MIMEtype provided by the server. For

example, these algorithms let browsers render the approximately1% of HTTP responses that lack a

Content-Typeheader. In a competitive browser market, a browser that guesses the “correct” MIME

type is more appealing to users than a browser that fails to render these sites. Once one browser ven-

dor implements content sniffing, the other browser vendors are forced to follow suit or risk losing

market share.

If not carefully designed for security, a content-sniffing algorithm can be leveraged by an at-

tacker to launchcontent-sniffing XSS attacks, a type of cross-site scripting (XSS) attacks. We il-

lustrate content-sniffing XSS attacks by describing an attack against the HotCRP conference man-

agement system. Suppose a malicious author uploads a paper to HotCRP in PostScript format. By

carefully crafting the paper, the author can create achameleondocument that both is valid PostScript

and contains HTML (see Figure1.4). HotCRP accepts the chameleon document as PostScript, but

when a reviewer attempts to read the paper using Internet Explorer 7, the browser’s content-sniffing

algorithm treats the chameleon as HTML, letting the attacker run a malicious script in HotCRP’s

security origin. The attacker’s script can perform actionson behalf of the reviewer, such as giving

the paper a glowing review and a high score.

6.2.1 Background

In this section, we provide background information about how servers identify the type of content

included in an HTTP response. We do this in the context of a Website that allows its users to upload
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content that can later be downloaded by other users, such as in a photograph sharing or a conference

management site.

Content-Type. HTTP identifies the type of content in uploads or downloads using theContent-

Typeheader. This header contains aMIME type2 such astext/plainor application/postscript. When

a user uploads a file using HTTP, the server typically stores both the file itself and a MIME type.

Later, when another user requests the file, the Web server sends the stored MIME type in the

Content-Typeheader. The browser uses this MIME type to determine how to present the file to

the user or to select an appropriate plug-in.

Some Web servers (e.g., old versions of Apache [5]) send the wrong MIME type in theContent-

Typeheader. For example, a server might send a GIF image with aContent-Typeof text/htmlor text/-

plain. Some HTTP responses lack aContent-Typeheader entirely or contain an invalid MIME type,

such as*/* or unknown/unknown. To render these Web sites correctly, browsers usecontent-sniffing

algorithms that guess the “correct” MIME type by inspectingthe contents of HTTP responses.

Upload filters. When a user uploads a file to a Web site, the site has three options for assigning

a MIME type to the content: (1) the Web site can use the MIME type received in theContent-Type

header; (2) the Web site can infer the MIME type from the file’sextension; (3) the Web site can

examine the contents of the file. In practice, the MIME type intheContent-Typeheader or inferred

from the extension is often incorrect. Moreover, if the useris malicious, neither option (1) nor

option (2) is reliable. For these reasons, many sites chooseoption (3).

6.2.2 Content-Sniffing XSS Attacks

When a Web site’s upload filter differs from a browser’s content-sniffing algorithm, an attacker

can often mount acontent-sniffing XSS attack. In a content-sniffing XSS attack, the attacker up-

loads a seemingly benign file to an honest Web site. Many Web sites accept user uploads. For

example, photograph sharing sites accept user-uploaded images and conference management sites

accepts user-uploaded research papers. After the attackeruploads a malicious file, the attacker

directs the user to view the file. Instead of treating the file as an image or a research paper, the

user’s browser treats the file as HTML because the browser’s content-sniffing algorithm overrides

the server’s MIME type. The browser then renders the attacker’s HTML in the honest site’s security

origin, letting the attacker steal the user’s credentials for the site or transact with the site on behalf

of the user.
2Multipurpose Internet Mail Extensions (MIME) is an Internet standard [70,71,150] originally developed to let email

include non-text attachments, text using non-ASCII encodings, and multiple pieces of content in the same message.
MIME defines MIME types, which are used by a number of protocols, including HTTP.
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Figure 6.1: An example content-sniffing XSS attack on Wikipedia and a user of Internet Explorer 7.
The numbered boxes show the sequence of events: 1) the attacker uploads a GIF/HTML chameleon
to Wikipedia, 2) the user request the file, 3) the Web server delivers the content, and 4) the browser
treats the chameleon as HTML and runs the attacker’s JavaScript.

To mount a content-sniffing XSS attack, the attacker must craft a file that will be accepted

by the honest site and be treated as HTML by the user’s browser. Crafting such a file requires

exploiting a mismatch between the site’s upload filters and the browser’s content-sniffing algorithm.

A chameleondocument is a file that both conforms to a benign file format (such as PostScript)

and contains HTML. Most file formats admit chameleon documents because they contain fields

for comments or metadata (such as EXIF [95]). Site upload filters typically classify documents

into different MIME types and then check whether that MIME type belongs to the site’s list of

allowed MIME types. These sites typically accept chameleondocuments because they are formatted

correctly. The browser, however, often treats a well-crafted chameleon as HTML.

The existence of chameleon documents has been known for sometime [182]. Recently, security

researchers have suggested using PNG and PDF chameleon documents to launch XSS attacks [115,

80, 86], but these researchers have not determined which MIME types are vulnerable to attack,

which browsers are affected, or whether existing defenses actually protect sites.

6.3 Problem Definition and Approach Overview

In this section, we first define the problem of finding filtering-failure attacks, then we present our

running example, and finally we give an overview of our approach.

6.3.1 Problem Definition

Given a filter and the application that the filter tries to model, a filtering-failure attack is an input that

is considered safe by the filter and can potentially be harmful for the application. Thus, a filtering-
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failure attack is an evasion attack that bypasses the filter and still can compromise the application.

A filter can be modeled as a boolean predicate (M safe
filter(x)) on an inputx, which returns true if

the inputx is considered safe and false if the input is considered dangerous. In our approach the

application’s processing of the input is also modeled as a boolean predicate that captures all inputs

to the programx ∈ I that cause the program to reach a particular output state. The exact semantics

of the output state depend on the application. We explain howto model the application for a content-

sniffing XSS attack next.

The content-sniffing algorithm (CSA) in the user’s browser can be modeled as a deterministic

multi-class classifier that takes as input the payload of an HTTP response, the URL of the request,

and the response’sContent-Typeheader, and produces as output a MIME type for use by the browser.

This multi-class classifier can be split into binary classifiers, one per MIME type returned by the

content-sniffing algorithm, where each binary classifier isa model that returns true if the payload

of the HTTP response is considered to belong to that MIME typeand false otherwise (for instance

M
text/html
csa (x), or Mhtml

csa (x) for brevity).

For a content-sniffing XSS attack, we seek inputs that are accepted by the web site’s upload filter

and for which the content-sniffing algorithm of the browser outputs a MIME type that can contain

active content, such astext/html3. Thus, we can model the browser’s content-sniffing algorithm as

a binary classifier that returns true if the HTTP payload is considered HTML,Mhtml
csa (x). To find a

content-sniffing XSS attack that is accepted by the web site’s upload filter and interpreted as HTML

by the browser, we construct the following query:M safe
filter(x) ∧ Mhtml

csa (x). If the solver returns an

input that satisfies such query, then we have found a content-sniffing XSS attack.

6.3.2 Running example

Figure 6.2 shows an example content-sniffing algorithm (sniff) that takes as input the proposed

MIME type (ct) and the content (data), and returns a suggested MIME type. It sniffs an HTML

document when the proposed MIME type istext/plainand JPEG and GIF images if the proposed

MIME type is application/octet-stream. A possible content-sniffing XSS attack for this algorithm

would require a Content-Type oftext/plainand the content to contain the string<html>, because

that is the only option to return a MIME type that can contain active code. An attacker could use

the following input to try to bypass an upload filter in a website and run JavaScript in the browser:

CT: text/plain

DATA: GIF89a<html><script>alert("XSS");</script></ht ml>

3Other MIME types that can run active content areapplication/pdf, application/x-msdownload, andapplication/x-
shockwave-flash. For simplicity, we focus on content-sniffing XSS attacks, where the attacker embeds JavaScript in some
content that the content-sniffing algorithm interprets as HTML. To consider multiple MIME types we can simply create
a disjunction of the models:Mhtml

csa (x) ∨ Mflash
csa (x) ∨ Mpdf

csa (x).
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1 const char * text_mime="text/plain",binary_mime="application/oct et-stream";
2 const char * html_mime="text/html",gif_mime="image/gif",jpeg_mim e="image/jpeg";
3

4 const char * sniff(char * ct, char * data) {
5 // Sniff HTML from text/plain
6 if (strcmp(ct,text_mime) == 0) {
7 if (strstr(data,"<html>") != 0) return html_mime;
8 else return text_mime;
9 }

10 // Sniff GIF, JPEG from application/octet-stream
11 if (strcmp(ct,binary_mime) == 0) {
12 if ((strncasecmp(data,"GIF87a",6)==0) || (strncasecmp( data,"GIF89a",6)==0))
13 return gif_mime;
14 if ((data[0] == 0xFF) && (data[1] == 0xD8))
15 return jpeg_mime;
16 }
17 return NULL;
18 }

Figure 6.2: Our running example, a simple content-sniffing algorithm that takes as input the pro-
posed MIME type and the raw data, and returns a suggested MIMEtype.

6.3.3 Approach

In this section we provide an overview of our filtering-failure attack generation approach. We do so

in the context of context-sniffing XSS attacks. Content-sniffing XSS attacks are particular to a web

site and the browser that the user employs to access that web site. Our approach to generate content-

sniffing XSS attacks is to first build a model of the web site’s upload filter and the content-sniffing

algorithm (CSA) in the user’s browser. The model for the web site’s upload filterM safe
filter(x) is a

boolean predicate that returns true if the inputx is considered safe and accepted by the web site and

false if the input is considered dangerous and rejected. Themodel of the content-sniffing algorithm

in the browser is a boolean predicateMhtml
csa that captures all contents in an HTTP response that are

classified as HTML. Armed with both models, we find content-sniffing XSS attacks by querying a

solver for an input that satisfiesM safe
filter(x)∧Mhtml

csa (x). If the solver returns such an input we have

found a content-sniffing XSS attack, that is, an input that isaccepted by the web site but interpreted

as HTML by the user’s browser.

The main challenge is creating high coverage models for the filter and the content-sniffing algo-

rithm. To extract those models we employstring-enhanced white-box exploration. String-enhanced

white-box exploration is similar in spirit to previous white-box exploration techniques used for au-

tomatic test case generation [33,78,79]. Unlike previous work, our technique incrementally builds

a model from the explored paths and reasons directly about string operations. By reasoning directly

about string operations, we increase the coverage achievedby the exploration per unit of time and

improve the fidelity of our models.
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Figure 6.3: White-box exploration.

In this chapter, we use string-enhanced white-box exploration to extract models for the closed-

source content-sniffing algorithms of two browsers: Internet Explorer 7 and Safari 3.1. For the

upload filters used by MediaWiki and HotCRP, we manually extract their models from their publicly

available source code. Next, we briefly describe the standard white-box exploration and introduce

string-enhanced white-box exploration.

White-box exploration. White-box exploration is an iterative process that incrementally explores

new execution paths in the program by generating new inputs that traverse those paths. Figure6.3

illustrates the process. In each iteration, also called around or a test, an input is sent to the pro-

gram under analysis, running inside an execution monitor. From this execution a path predicate

is produced that captures all the inputs that would follow the same execution path in the program

than this input. Given the path predicate, theinput generatorproduces a new input by negating

one constraint in the path predicate and asking a solver to produce an input that satisfies the new

predicate with the negated constraint. This process can be repeated for each constraint in the path

predicate, generating from a single execution many new inputs. Since many inputs can be generated

from each path predicate, and many path predicates will be generated during the exploration, the

prioritization moduleis in charge of assigning priorities to the newly generated inputs and selecting

the input with the highest priority to start a new round of theiterative process. In our white-box

exploration approach the path predicate is extracted offline, from an execution trace, as presented in

Section5.3. Another possibility is to extract it during execution using forward symbolic execution

in addition to the concrete run [78,32]. This iterative process starts with an initialseedinput, and

runs until there are no more paths to explore, or a user-specified maximum run-time is reached.

String-enhanced white-box exploration. String-enhanced white-box exploration improves white-

box exploration in two ways: 1) it includes string constraints in the path predicate, so that it can

reason about string operations, and 2) it produces a model asthe exploration progresses that is

the disjunction of all the path predicates that reach the desired output state. Figure6.4 illustrates

string-enhanced white-box exploration and highlights thechanges with respect to standard white-

box exploration.
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Figure 6.4: String-Enhanced White-box exploration. The gray modules have been modified from
the standard white-box exploration.

In string-enhanced white-box exploration the path predicate contains constraints on the output

of the string functions invoked by the program (e.g.,strlen or strcmp), which replace the byte-

level constraints that those string functions would otherwise introduce. This string-enhanced path

predicate enables reasoning directly about the string operations, which in turn increases the coverage

that the exploration achieves per unit of time. The increasein coverage is due to eliminating the

time spent exploring inside the string functions.

String-enhanced white-box exploration excludes well-known string functions from the explo-

ration and replaces the constraints generated inside thosestring functions with constraints on their

output. This approach resembles the use of uninterpreted functions in compositional white-box

exploration [3]. String functions are a sweet spot for composition in that 1) they appear in many

programs, 2) some types of programs use them heavily (e.g., content-sniffing algorithms, parsers

or filters), 3) they contain loops, which may be unbounded or have a very large bound since they

depend on the function’s input, 4) their prototype is usually known, or can be obtained with limited

work, and 5) they are easy to reason about (as compared for example to system calls where one

might have to reason about the underlying operating system or even the hardware). Rather than cre-

ating function summaries for the string functions as they are executed as in [76,3], string-enhanced

white-box exploration simply replaces them with string operators in an abstract syntax and then

relies on a solver with support for a theory of strings to reason about those constraints.

6.4 String-Enhanced White-Box Exploration

This section details how our string-enhanced white-box exploration technique works. Overall, our

string processing comprises four steps. First, we create a string-enhanced path predicate where

constraints generated inside string functions have been replaced with constraints on the output of

those string functions (Section6.4.1). Then, the constraints on the output of the string functions
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are translated into an abstract string syntax (Section6.4.2). Next, the system solves the constraints

using a two-step approach that first represents each string as an array of some maximum length and

a length variable, and then translates the abstract string operators into a representation that is under-

stood by an off-the-shelf solver that supports theory of arrays and integers (Section6.4.3). Finally,

the answer from the solver is used to build an input that starts a new iteration of the exploration

(Section6.4.4).

Our string handling is designed to abstract the underlying representation of the strings so that

it can be used with programs written in different languages.For example, in this chapter we apply

it to the content-sniffing algorithm of Internet Explorer 7,which uses C strings (where strings are

often represented as null-terminated character arrays), as well as to the content-sniffing algorithm

of Safari 3.1, which uses a C++ string library (where stringsare represented as objects containing

a character array and an explicit length). One important characteristic of C/C++ strings is that one

can operate with them using string functions such asstrlen or strcmp, but also directly access the

underlying array of characters. Thus, the string-enhancedpath predicate may contain constraints on

the output of string functions and constraints on the individual bytes that comprise them.

6.4.1 Generating the String-Enhanced Path Predicate

In this section, we present how the string-enhanced path predicate is generated. In a nutshell,

adding string support to the path predicate comprises threesteps: 1) introducing string symbols,

which requires identifying the memory locations that hold the inputs strings when the function to

model is invoked, 2) turning off symbolic execution inside the string functions, and 3) introducing

string constraints by creating new symbols for the output ofthe string functions. For simplicity,

we introduce this processing in the context of a symbolic execution monitor that performs both

symbolic and concrete execution and outputs the string-enhanced path predicate. In reality, our

implementation breaks this processing in two. First, the execution monitor collects the execution

trace, as well as information about the string functions that were invoked during the run. Then, the

path predicate extraction takes as input the execution trace and the string information and outputs

the string-enhanced path predicate.

Introducing string symbols. The symbolic execution monitor uses the function hooks introduced

in Chapter2. To start the symbolic execution, the system sets a functionhook for the function to

be explored (i.e., thesniff function in our running example). When the function is called, the code

stub performs the following operations: 1) reads the parameters of the function from the stack, 2)

determines the length of the user-defined input strings (i.e., thect anddataparameters of thesniff

function in our running example), 3) adds to the symbolic context the memory locations comprising
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each input string, and 4) sets a return hook. When the function returns, the return hook logs the

return values of the function (i.e., the suggested MIME type) and stops the symbolic execution.

When creating a new string symbol, the representation of thestring is abstracted. In particular,

the function hook uses the function’s prototype to determine whether the input strings are null-

terminated arrays of characters or objects containing an array and an explicit length variable. If the

string is null-terminated the location of the null-character does not become symbolic. If the string

is an object with an explicit length variable then, in addition to the memory locations that comprise

the string, the length variable also becomes a symbol.

Introducing string constraints. To introduce string constraints the system uses function hooks

for some predefined string functions. The function hooks forthe string functions differ from the

functionality described above. To distinguish between both types of function hooks, we term the

function hooks for string functions,string function hooks. A string function hook performs the

following operations: 1) reads the parameters of the function from the stack, 2) checks if any of the

parameters of the function is symbolic; if none are symbolicthen it returns, 3) turns off symbolic

execution inside the function, so that no constraints will be generated inside the string function, 4)

sets up a return hook. When the string function returns, the return hook makes the return values of

the function symbolic.

Currently, the execution monitor provides hooks for over 100 string functions for which proto-

types are publicly available. The prototypes of those string functions can be found, among others,

at the Microsoft Developer Network [138], the WebKit documentation [222], or the standard C

library [93].

The user is expected to provide a string function hook for anyfunction that is currently not avail-

able in the framework. When a program to be explored uses functions that have no publicly available

prototype, some manual reverse engineering of the binary isneeded to extract the function’s proto-

type. For example, the content-sniffing algorithm in Internet Explorer 7 uses two string functions

that have no publicly available prototype:shlwapi.dll::Ordinal 151andshlwapi.dll::Ordinal 1534.

Our analysis found thatshlwapi.dll::Ordinal 151 is a case sensitive comparison of some maximum

length, which can use the existing string function hook formsvcrt.dll::strncmp. Our analysis of

shlwapi.dll::Ordinal 153uncovered that it is a case insensitive version ofshlwapi.dll::Ordinal 151,

which can use the existing string function hook formsvcrt.dll::strncasecmp. The time spent doing

such analysis was close to an hour per function. Once obtained, the string function hooks are added

to the framework so that they can be reused in the future.

4shlwapi.dll is the Shell Light Weight Utility Library, a Windows librarythat contains functions for URL paths,
registry entries, and color settings.
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String function classes. String functions are grouped into classes, where two stringfunctions in

the same class would generate the same path predicate if the specific function called in the source

code was replaced with any other function in the same class. For example,msvcrt.dll::strstr and

msvcr71.dll::strstrboth belong to the sameSTRSTRclass. Grouping string functions into classes

and assigning the same symbol type to the output of all function in the same class reduces the num-

ber of different constraints that the system needs to translate into the abstract string syntax. Cur-

rently, the framework supports 14 classes of string functions: STRSTR, STRCPY, STRNCPY, STR-

CMP, STRCASECMP, STRNCMP, STRLEN, STRNCASECMP, COMPARESTRING, CFEQUAL,

STRCHR, MEMCHR, WCTOMB5, andMBTOWC6.

To generate the string-enhanced path predicate, every timeone of the predefined string functions

is called during execution, the symbolic execution monitorintroduces new symbols for the output

of the string function. Then, when the program uses those symbols (e.g., in a comparison) a string

constraint is introduced in the path predicate. The path predicate output by the execution monitor

contains a mixture of string constraints (i.e., on the output of the string functions), and constraints

on some of the bytes of the input strings, which can be generated by either functions that are not

hooked or when the program directly accesses the bytes in thestring, as shown in line 14 of our

running example.

6.4.2 The Abstract String Syntax

We have designed an intermediate syntax that abstracts the representation of the strings and defines

a common set of functions and predicates that operate on strings. Thisabstract string syntaxrep-

resents the minimal interface we would like a solver, using strings as first-order types, to provide.

Table6.1presents the functions and predicates that comprise our abstract string syntax. The strings

in the abstract string syntax are immutable. Thus, operations such as modifying a string, copying a

string, translating the string to upper case or concatenating two strings, always return a new string.

In our abstract string syntax each string can be seen as a variable-length array, where each el-

ement of the array has no encoding and is of fixed length7. Having no string encoding enables

support for both binary and text strings. For simplicity, weterm each element of the array acharac-

ter, even if they may represent binary data. For text strings, anelement of the array can be seen as

a Unicode code-point8. Case-insensitive operators rely on thechrupperfunction, which forms the

5Converts a wide character to a multi-byte character
6Converts a multi-byte character to a wide character
7Our implementation uses 16-bit integers to represent a character. Although a 16-bit integer is not enough to hold

all Unicode code points, it is enough for the applications weconsider. Each character could be represented as a 32-bit
integer if all Unicode code points are needed.

8A Unicode code-point is different from agrapheme, which is closer to what end-users consider as characters. For
example a character with a dieresis (e.g., ä) is a grapheme,but could be encoded as two Unicode code points.
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Functions
(strlen String) S → I (strlens) returns the length ofs
(substr String Int Int) S × I × I → S (substrs i j) returns the substring ofs starting at positioni and

ending at positionj (inclusive)
(strcat String String) S × S → S (strcats1 s2) returns the concatenation ofs1 ands2

(strupper String) S → S (struppers) returns an uppercase version ofs
(strncopy String Int) S × I → S (strncopys i) returns a string of lengthi

that equals the firsti characters ofs
(strfromwide String) S → S (strfromwides) returns a narrow character version ofs
(strtostring Char) C → S (strtostringc) returns a string containing only the characterc
(chrat String Int) S × I → C (chrats i) returns the character at positioni in strings
(chrupper Char Char) C → C (chrupperc) returns an uppercase version ofc
Predicates
(strcontains String String) S × S → B (strcontainss1 s2) returns true ifs2 is a substring ofs1 at any position
(strcontainsat String String Int) S × S × I → B (strcontainsats1 s2) returns true ifs2 is contained ins1

starting at positioni in s1

(= String String) S × S → B (= s1 s2) returns true ifs1 is equal tos2

(distinct String String) S × S → B (distincts1 s2) returns true ifs1 is not equal tos2

(strlt String String) S × S → B (strlt s1 s2) returns true ifs1 is lexicographically less-thans2

(strle String String) S × S → B (strles1 s2) returns true ifs1 is lexicographically less-or-equals2

(strgt String String) S × S → B (strgts1 s2) returns true ifs1 is lexicographically greater-thans2

(strge String String) S × S → B (strges1 s2) returns true ifs1 is lexicographically greater-or-equals2

(strcaseequal String String) S × S → B (strcaseequals1 s2) returns true ifs1 is equal tos2 case-insensitive
(strcasedistinct String String) S × S → B (strcasedistincts1 s2) returns true ifs1 is not equal tos2 case-insensitive
(strcaselt String String) S × S → B (strcaselts1 s2) returns true ifs1 is lexicographically

less-thans2 case-insensitive
(strcasele String String) S × S → B (strcaseles1 s2) returns true ifs1 is lexicographically

less-or-equals2 case-insensitive
(strcasegt String String) S × S → B (strcasegts1 s2) returns true ifs1 is lexicographically

greater-thans2 case-insensitive
(strcasege String String) S × S → B (strcaseges1 s2) returns true ifs1 is lexicographically

greater-or-equals2 case-insensitive

Table 6.1: Abstract string syntax.

basis forstrupper. Our currentchrupperfunction uses the ASCII uppercase conversion (i.e., only

code points U+0061 (’a’) through U+007a (’z’) have an uppercase version). We plan to enhance

this function to represent the Unicodeuppercasecharacter property. Note that it is considered a

valid operation to apply the case-insensitive functions tobinary strings, as programs may (either

incorrectly or abusing the semantics of the function) perform such operations.

All encoding is removed when converting to the abstract string syntax. For example, conver-

sions from UTF-8 to UTF-16 and vice versa, used by the content-sniffing algorithm in Internet

Explorer 7 for theContent-Typestring, are handled during the translation to the abstract string syn-

tax. Note that, while widening conversions (e.g., UTF-8 to UTF-16) are straightforward to handle,

narrowing conversions (e.g., UTF-16 to UTF-8) can be lossy,and thus need a special conversion

function (strfromwide). Our current implementation forstrfromwideonly handles conversions when

all characters in the string belong to the ASCII charset, which is enough for programs that take as

input ASCII strings.
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String constraint Abstract String Syntax
STRCMP(s1,s2) = 0 ; COMPARESTRING(s1,s2) = 2; = s1 s2

CFEQUAL(s1,s2) = 1; s2 = STRCPY(s1)
STRCMP(s1,s2) 6= 0 ; COMPARESTRING(s1,s2) 6= 2; distincts1 s2

CFEQUAL(s1,s2) = 0
STRCMP(s1,s2) < 0; COMPARESTRING(s1,s2) < 2 strlt s1 s2

STRCMP(s1,s2) > 0; COMPARESTRING(s1,s2) > 2 strgts1 s2

STRSTR(s1,s2) 6= 0 strcontainss1 s2

STRSTR(s1,s2) = 0 not (strcontainss1 s2)
STRCASECMP(s1,s2) = 0 strcaseequals1 s2

STRCASECMP(s1,s2) < 0 strcaselts1 s2

STRCASECMP(s1,s2) > 0 strcasegts1 s2

STRNCMP(s1,s2,n) = 0 = (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRNCMP(s1,s2,n) < 0 strlt (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRNCMP(s1,s2,n) > 0 strgt (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRNCASECMP(s1,s2,n) = 0 strcaseequal (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRNCASECMP(s1,s2,n) < 0 strcaselt (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRNCASECMP(s1,s2,n) > 0 strcasegt (substrs1 0 (n − 1)) (substrs2 0 (n − 1))
STRCHR(s,c)6= 0 strcontainss (strtostringc)
STRCHR(s,c)= 0 not (strcontainss (strtostringc))
MEMCHR(s,c,n)6= 0 strcontains (substrs 0 (n − 1)) (strtostringc)
MEMCHR(s,c,n)= 0 not (strcontains (substrs 0 (n − 1)) (strtostringc))
s2 = STRNCPY(s1,n) = s2 (substrs1 0 (n − 1))
s2 = MBTOWC(s1) = s2 s1

s2 = WCTOMB(s1) = s2 (strfromwides1)

Table 6.2: Translation of string constraints to the abstract string syntax.

Translating to the abstract string syntax. Table6.2presents the translation from the constraints

generated on the output of the 14 classes of supported stringfunctions to the abstract string syn-

tax. Table6.2 shows one of the benefits of using an abstract string syntax: constraints from

functions with different prototypes but similar functionality (e.g, COMPARESTRING(s1,s2) < 2,

STRCMP(s1,s2) < 0), can be translated to the same basic string operation (e.g., lexicographical

less-than). Constraints on individual bytes are translated using the character extraction operator,

chrat9. For example, the constraintif (data[0] == 0xff) {. . . } in line 14 of our running

example, would be translated as(chrat data 0) = 0xff . This is possible because the exe-

cution monitor knows for each memory location if it belongs to a symbolic string and the offset into

the string, which can be used to identify the character index. In our running example, if the function

sniff is run with the following inputs:

CT: application/octet-stream

DATA: GIF89a\000\000

the string-enhanced path predicate translated to the abstract string syntax would be:

9Currently, we do not deal with unaligned accesses such as reading a single byte from a UTF-16 string, but such
accesses could be translated as extracting the character corresponding to the offset being accessed and then masking the
other byte.
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Predicate Translation
= s1 s2 l(s1) = l(s2) ∧

Vi=l(s1)−1
i=0 s1[i] = s2[i]

strcaseequals1 s2 l(s1) = l(s2) ∧
Vi=l(s1)−1

i=0 chrupper(s1[i]) = chrupper(s2[i])

strcontainss1 s2

Wi=l(s1)−1
i=0 (l(s1) ≥ l(s2) + i) ∧ (

Vj=l(s2)−1
j=0 s1[i + j] = s2[j])

= s2 substrs1 i j l(s2) = j − i + 1 ∧
Vk=j−i

k=0 s2[k] = s1[i + k]

= s strtostringc l(s) = 1 ∧ s[0] = c

= s2 (strfromwides1) l(s2) = l(s1) ∧
Vi=l(s1)

i=0 (s1[i] < 256 ∧ s2[i] = s1[i])

Table 6.3: Predicate translation. For simplicity, the negation of the above predicates is not shown.

(distinct ct "text/plain") &&

(= ct "application/octet-stream") &&

(strcasedistinct (substr data 0 5) "GIF87a") &&

(strcaseequal (substr data 0 5) "GIF89a")

where the first constraint corresponds to the false branch inthe conditional on line 6 of the running

example, the second to the true branch of the conditional on line 11, and the final two correspond

to the two clauses in the conditional on line 12 (false and true branches respectively). The value

returned by the function isimage/gif.

6.4.3 Solving the Constraints

We have designed our abstract string syntax so that it contains the predicates and functions we

expect a solver that supports strings as first-class types tooffer. However, at the beginning of

this project, no publicly available solver supported strings as first-class types. To solve the string

constraints in the path predicate we built a custom string constraint solver that leverages the fact

that many off-the-shelf SMT solvers have support for array and integer theories. Our custom string

constraint solver first represents each string (i.e., inputstrings plus any strings derived from them,

for example throughstrcpy) as a pair of an array of some given maximum size and a length variable;

and translates the operators in the abstract string syntax to constraints on the corresponding arrays

and length variables. Then it uses STP to solve those constraints.

Simultaneous work reports on solvers that support a theory of strings [15, 85, 103]. Given our

design, rather than translating the abstract string operations into a theory of arrays and integers, we

could as well generate constraints in a theory of strings instead, benefiting from any performance

improvements provided by these specialized solvers.

Upper bound on string length. Each string is represented as an array of some given maximum

size (ml) and a length variable. The maximum string size is an important parameter. If it is too

short the solver might not be able to solve some constraints.For example, in our running example

if the maximum string size is set to 16 bytes, then the constraint generated in line 11 would be
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unsolvable sincect could not equalapplication/octet-stream. On the other hand the tighter the

maximum length, the less time that it will take the solver to find a satisfying answer, if there is one.

For some programs, such as content-sniffing algorithms, themaximum length of the input strings

is known. For example, the maximum length of the content-sniffing buffer, which corresponds to

the data string in our running example, is 1024 bytes for Safari 3.1, and 256 bytes for Internet

Explorer 7 [9]. In practice, most signatures used by content-sniffing algorithms apply to the first

few bytes in the content-sniffing buffer and we can use even a smaller upper bound. In this work we

useml = 64 bytes as the maximum string size.

Translating from the abstract string syntax. Table6.3shows how the constraints on the output

of the string functions are translated to the theory of arrays and integers. Each string variables is

represented by its lengthl(s) and an array of bytess[i], where the indexi ranges from0 to ml − 1.

The maximum lengthml is a translation-time constant, but the lengthsl(s) may not be, so unless

the length of a string is constant, bounds that are shown involving l(s) are in fact translated by

expanding them up to a bound based onml and guarding with additional conditions onl(s). Note

that the translation shown for strfromwide is restricted tothe case of 8-bit code-points; a more

complex translation would be needed for applications that use characters with longer encodings

(e.g., an Arabic character in Unicode requires two bytes). For example, the constraint:

distinct ct "text/plain"

would be translated as:

¬((ct len = 10) ∧ (ct[0] = ‘t‘) ∧ (ct[1] = ‘e‘) ∧ (ct[2] = ‘x‘) ∧ (ct[3] = ‘t‘) ∧ (ct[4] =

‘/‘) ∧ (ct[5] = ‘p‘) ∧ (ct[6] = ‘l‘) ∧ (ct[7] = ‘a‘) ∧ (ct[8] = ‘i‘) ∧ (ct[9] = ‘n‘))

wherect len is the length integer that represents the length of thect array. Note that the solver only

understands about integers, but we use the text representation of the character here for the reader’s

benefit (e.g., the constraint would use 0x74 instead of ‘t‘).

Similarly, the constraint:

strcaseequal (substr data 0 5) "GIF89a"

would be translated as:

(ct len ≥ 6) ∧ (chrupper(ct[0]) = ‘G‘) ∧ (chrupper(ct[1]) = ‘I‘) ∧ (chrupper(ct[2]) =

‘F ‘) ∧ (chrupper(ct[3]) = ‘8‘) ∧ (chrupper(ct[4]) = ‘9‘) ∧ (chrupper(ct[5]) = ‘a‘)

Additional constraints. The translation introduces some additional constraints toeach query to

the solver. For each input string defined by the user, it adds aconstraint to force the length of the

string to be between zero and the predefined maximum length ofthe string,0 ≤ l(s) ≤ ml(s). In

addition, for ASCII strings it adds constraints to force each byte in the string to belong to the ASCII
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Figure 6.5: A complete input with the input strings highlighted.

charset,
∧i=ml(s)−1

i=0 0 ≤ s[i] ≤ 127. A special case happens when converting to the abstract string

syntax a string constraint from a function that assumes the input strings to be null-terminated, such

as the string functions in the C library. In this case the execution monitor adds some additional

constraints to the path predicate to exclude the null character from the possible code values. This

prevents the solver from producing inputs that actually violate the generated length constraints. For

example, the condition in line 7 in our running example produces the following constraint:

strcontains ct "<html>"

If the null character is allowed to be part of thect string, then the solver could return the following

satisfying assignment forct: l(ct) = 8∧s[0] = ‘a‘∧s[1] = ‘\0‘∧s[2] = ‘ < ‘∧s[2] = ‘h‘∧s[3] =

‘t‘ ∧ s[4] = ‘m‘ ∧ s[5] = ‘l‘ ∧ s[6] = ‘ > ‘. Given the null terminated representation expected by

strstr, that string would have an effective length of 1 character, and the generated input would not

traverse the true branch of the conditional.

6.4.4 Input Generation

Once the solver returns a satisfying assignment for a query,the system needs to generate a new in-

put that can be sent to the program, so that another round of the exploration can happen. However,

the values from the symbolic strings might not completely define a program input. For example,

Figure6.5 shows a complete input used in the exploration of the content-sniffing algorithm of Sa-

fari 3.1, where the inputs strings are highlighted and the spaces have been replaced by dots. In this

case, the program input is generated by querying the solver for anhttp input that satisfies:

= http (strcat(strcat(strcat(strcat "HTTP/1.1 200 OK\n.. ." ct) "\n\n")

data) "\n\n")

Generating an input that reaches the entry point. The function being explored might run in

the middle of some longer execution. To guarantee that the generated inputs will reach the function

under study, we need to add all constraints on the input strings generated by the code that executes

before the function under study, as additional constraintsto each query to the solver. For example,

when analyzing the content-sniffing algorithm in Safari, weneed to add any constraints on the

Content-Type header or the HTTP payload that occur in the execution before the content-sniffing
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algorithm is called. To identify such constraints we run theexecution monitor making the whole

HTTP message symbolic10. All constraints on the input strings before the call to the content-

sniffing algorithm are included as additional constraints.Such constraints may include, among

others, parsing constraints that require the MIME type string not to contain any HTTP delimiters

such as end of line characters, or constraints that force theContent-Type value to be one of a list of

MIME types that trigger the content-sniffing algorithm.

6.5 Evaluation

In this section we present our evaluation results. First we introduce our setup. Then we show

statistics from the models of the content-sniffing algorithms in two popular browsers that we extract

using string-enhanced white-box exploration and compare the coverage of string-enhanced white-

box exploration with that of byte-level white-box exploration. Next, we use the extracted models as

well as models for upload filters to automatically generate chameleon documents that can be used

to launch attacks. Finally, we detail two content-sniffing XSS attacks that affect the Wikipedia web

site and the HotCRP conference management Web application.

6.5.1 Setup

We have extracted models from the content-sniffing algorithm of two major browsers, for which

source code is not available: Safari 3.1 and Internet Explorer 7. In both cases we have evaluated the

browser running on a Windows XP Service Pack 3 operating system.

In addition, we have manually written a model for the signatures used by the Unixfile tool [66].

The Unix file tool is an open-source command line tool, deployed in many Unix systems, which

given a file outputs its MIME type and some associated information. The signatures of the Unix

file tool are used by the MIME detection functions in PHP (e.g.,finfo file). Those functions in turn

are used by the upload filter of many web sites. For example, the MIME detection functions from

PHP are used by popular open-source code such as MediaWiki [136], which is used by Wikipedia

to handle uploaded content.

As described in Section6.4.1, a prerequisite for the exploration is to identify the prototype of

the function that implements the content-sniffing algorithm, as well as any string functions used by

that function, for which a hook is not already available. To this end we use available documentation,

commercial off-the-shelf tools [90], as well as our own binary analysis tools [199]. We describe this

step next.

10Since there may exist multiple paths to the content-sniffingalgorithm, we might have to rerun this step with different
inputs. One indication to rerun this step is if during the exploration the tool reports that some inputs are not reaching the
content-sniffing algorithm (i.e., empty path predicates).
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Model Seeds Path % HTML Avg. Paths Avg. Time # Inputs Avg. path # blocks Avg. blocks
count paths per seed per path generated depth found per seed

Safari 3.1 7 1558 12.4% 222.6 16.8 sec 7166 12.1 205 193.9
IE 7 7 948 8.6% 135.4 26.6 sec 64721 212.1 450 388.5

Table 6.4: Model statistics.

Content sniffing is performed in Internet Explorer 7 by the functionFindMimeFromDataavail-

able in theurlmon.dll library [143]. We obtain the function prototype, including the parameters and

return values, from the Microsoft Developer Network (MSDN)documentation [141].

Although a large portion of Safari 3.1 is open-source as partof the WebKit project, the content-

sniffing algorithm is implemented inCFNetwork.dll, the networking library in the Mac OS X

platform, which is not part of the WebKit project. In addition to extracting the prototype of the

content-sniffing algorithm, we also had to add to the execution monitor two string function hooks

for functions that have a publicly available prototype:CoreFoundation.dll::CFEqualand Core-

Foundation.dll::CFStringCompare. Since theCoreFoundation.dlllibrary provides the fundamental

data types, including strings, which underlie the MacOS X framework, these hooks can be reused

by many other applications that use this framework.

6.5.2 Model Extraction

In this section we present some statistics about the models of the content-sniffing algorithms of

Internet Explorer 7 and Safari 3.1, extracted using string-enhanced white-box exploration. We term

the process of exploring from one seed until no more paths areleft to explore, or a user-specified

maximum run-time is reached, anexploration run.

Each model is created by combining multiple exploration runs, each starting from a different

seed. To obtain the seeds we first select some common MIME types and then we randomly choose

one file of each of those MIME types from the hard-drive of one of our workstations. For our

experiments each exploration run lasts 6 hours and the seedscome from 7 different MIME types:

application/java, image/gif, image/jpeg, text/html, text/vcard, video/avi, video/mpeg. The same

seeds are used for both browsers.

Table 6.4 summarizes the extracted models. The table shows the numberof seeds used in

the exploration, the number of path predicates that comprise each model, the percentage of path

predicates in the previous column where the content-sniffing algorithm returned the MIME type

text/html, the average number of paths per seed, the average time in seconds needed to generate a

path predicate, the number of inputs generated, the averagenumber of branches in each path (i.e.,

the path depth), the number of distinct program blocks discovered during the complete exploration

from the 7 seeds, and the average number of blocks discoveredper seed.
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The number of paths that returntext/html is important because the disjunction of those paths

forms theMhtml
csa model, which we use in Section6.5.4to find content-sniffing XSS attacks. The

content-sniffing algorithm in Safari 3.1 is smaller becauseit has signatures for 10 MIME types,

while the content-sniffing algorithm in Internet Explorer 7contains signatures for 32 different

MIME types. This is shown in Table6.4 by shorter path predicates that require less time to be

produced. The longer path predicates for Internet Explorer7 also explain why the number of inputs

generated for Internet Explorer 7 is almost an order of magnitude larger than for Safari 3.1.

Exploring from multiple seeds helps increase the coverage for Internet Explorer 7 because the

content-sniffing algorithm in Internet Explorer 7 decides which signatures to apply to the content

depending on whether it considers the content to be text or binary data. Thus, it is more efficient

to do one exploration run for 6 hours starting from a binary seed (e.g., application/pdf) and another

exploration run for 6 hours from a text seed (e.g., text/html) than to do a single exploration run for

12 hours starting from either a binary or a text seed. We have not observed this effect in Safari 3.1.

We discuss more about how to compute the number of blocks discovered in the next section.

6.5.3 Coverage

In this section we illustrate the increase in coverage per unit of time that string-enhanced white-box

exploration exhibits compared to byte-level white-box exploration. First, we detail how we measure

the number of blocks discovered and then present the coverage results.

Methodology. For each execution trace produced during the exploration, every time an instruc-

tion that transfers control is seen (e.g., an unconditionaljump, conditional jump, call, or return

instruction), the address of the next instruction to be executed is stored. This address represents the

first instruction in a block (i.e., theblock address). The number of distinct block addresses is our

coverage metric. This approach may underestimate the number of blocks discovered11, but gives a

reasonable approximation of the blocks covered by the exploration without requiring static analysis

of the binary to extract all basic blocks. A difference with fuzzing approaches is that we do not

want to maximize coverage of the whole program, only of the function that implements the content-

sniffing algorithm. Thus, we are not interested in measuringcoverage in auxiliary functions such

as memory allocation functions (e.g., malloc), string functions (e.g., strcmp), or synchronization

functions for critical sections. Our goal is to count blocksinside the content sniffing function, as

11When compared to counting basic blocks in a control-flow graph, our approach may underestimate the number of
basic blocks because one block found during execution couldbe represented as multiple basic blocks in the control-flow
graph. This happens when some path contains a jump whose target location is in the middle of one block previously
discovered dynamically. In the CFG this case counts as two basic blocks while dynamically, since we deal with each path
separately, it only counts as one.
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Figure 6.6: String-enhanced white-box exploration versusbyte-level white-box exploration on the
Safari 3.1 content-sniffing algorithm. Each curve represents the average number of blocks discov-
ered for 7 exploration runs each starting from a different seed and running for 6 hours.

well as any other function that the algorithm invokes, whichdo not belong to the standard Windows

libraries. Our tool approximates this behavior by automatically ignoring blocks inside functions

that appear in the list of functions exported by name.

Coverage results. Figure6.6shows the number of blocks that the system discovers over time on

the Safari 3.1 content-sniffing algorithm, when the exploration uses strings (square line) and when

we disable the string processing and the path predicate onlycontains byte-level constraints (triangle

line). Each curve represents the average number of blocks discovered for 7 exploration runs each

starting from a different seed and lasting 6 hours. Thestringscurve corresponds to the 7 exploration

runs from which the model of the content-sniffing algorithm in Safari 3.1 was extracted (shown in

Table6.4), while thebytescurve is the average of 7 byte-level exploration runs starting from the

same seeds used for extracting the model.

The graph shows that the string-enhanced white-box exploration achieves higher coverage than

the byte-level exploration on the same amount of time. Thus,it better employs the resources associ-

ated to the exploration. This happens because 61.6% of all byte-level constraints occur inside string

functions. Thus, the byte-level exploration expends considerable time exploring inside the string

functions, and no new blocks in the content-sniffing algorithm are discovered during that time.

6.5.4 Finding Content-Sniffing XSS Attacks

The first step to generate a content-sniffing XSS attack is to find an input that is accepted by the site’s

upload filter and interpreted by the content-sniffing algorithm in the browser as a privileged MIME

type such astext/html. We call such an input achameleondocument. The chameleon document is

basically a content-sniffing XSS attack without the malicious JavaScript payload. In this Section
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Browser HotCRP filter Unix file tool
Internet Explorer 7 2 6
Safari 3.1 0 6

Table 6.5: Number of MIME types for which a chameleon is possible for the different combinations
of content-sniffing algorithms and upload filters.

we show how to automatically find chameleon documents. Then,in the Section6.5.5we describe

two examples of content-sniffing XSS attacks based on these results.

To generate chameleon documents, we use the models for the content-sniffing algorithms of

Internet Explorer 7 and Safari 3.1, presented in Section6.5.2. In addition, we manually create

models for the HotCRP upload filter and the Unixfile tool [66]. The signatures from the Unixfile

tool are used by the MIME detection functions in PHP, which inturn are used in the upload filter

of multiple web sites such as MediaWiki [136]. Upload filters usually test the uploaded content

against signatures for the different MIME types that shouldbe accepted. If signature A matches the

content then the MIME type associated with signature A will be sent in theContent-Typeheader

when the content is delivered in an HTTP response. For example, the HotCRP upload filter accepts

only content that it believes to be PDF or PostScript files. Our manually generated model for the

HotCRP upload filterMaccept
hotcrp = Mpdf

hotcrp ∨ Mps
hotcrp is the following predicate:

(strcaseequal "%PDF-" (substr content 0 4)) ||

(strcaseequal "%!PS-" (substr content 0 4))

If the first condition (Mpdf
hotcrp) returns true then the value of theContent-Typeheader in the

HTTP response will beapplication/pdf and if the second condition (Mps
hotcrp) returns true then

it will be application/postscript. For each MIME type in the upload filter and for each browser,

we query the solver whether a chameleon document can be produced. For example, to obtain a

chameleon PostScript document that is interpreted as HTML by Internet Explorer 7 we query the

solver for an input that satisfiesMhtml
IE ∧ Mpostcript

hotcrp , which returns:

CT: application/postcript

DATA: %!PS-tRaTwad<Htmlswatarecz

Thus, the solver is able to produce a chameleon document in this case. Note that the first 5 bytes

of the input correspond to the PostScript signature used by the HotCRP upload filter. Thus, this

input is accepted by HotCRP asapplication/postscript. In addition, the input returned by the solver

contains the substring“ <Html” , which satisfies thetext/htmlsignature used by the content-sniffing

algorithm in Internet Explorer 7. Thus, this input is consideredtext/htmlby Internet Explorer 7 and

if JavaScript code is included in the payload, it will be executed by the browser.

We repeat the above procedure for each MIME type in the uploadfilters that is supported by

at least one of the browsers. Table6.5 summarizes the results. For HotCRP, chameleon PDF and
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PostScript documents can be created that will be interpreted astext/htmlby Internet Explorer 7.

For the Unixfile tool, chameleon documents that will be interpreted astext/htmlby Internet Ex-

plorer 7 can be created for 6 different MIME types:application/postscript, audio/x-aiff, image/gif,

image/tiff, text/xml, andvideo/mpeg. Chameleon documents that will be interpreted astext/html

by Safari 3.1 can also be created for 6 different MIME types:application/postscript, audio/x-aiff,

image/gif, image/png, image/tiff, andvideo/mpeg. Next, we describe two chameleon documents in

more detail.

Internet Explorer 7 and Unix file tool chameleon. Querying the solver for an input that is ac-

cepted asaudio/x-aiff by the Unixfile tool and is interpreted astext/htmlby the content-sniffing

algorithm in Internet Explorer 7 returns the following answer:

CT: audio/x-aiff

DATA: <htmLpflAIFF\t\t\t\227\t\t\t\003\t\008\201\t

The first 5 bytes of theDATAstring, “ <htmL”, satisfy one of the HTML signatures used by

Internet Explorer 7 fortext/html, while the string“AIFF” in bytes 8 – 11 , satisfies theaudio/x-

aiff signature for the Unixfile tool. This input would not match Internet Explorer’saudio/x-aiff

signature which is:

(strncmp(DATA,"MROF",4) == 0) ||

((strncmp(DATA,"FORM",4) == 0) &&

((strncmp(DATA[8],"AIFF",4) == 0) || (strncmp(DATA[8]," AIFC",4) == 0)))

Thus, the input will be consideredaudio/x-aiff by a filter based on the Unixfile tool andtext/html

by Internet Explorer 7.

Safari 3.1 and Unix file tool chameleon. Querying the solver for an input that is accepted as

video/mpegby the Unixfile tool and astext/htmlby Safari 3.1 returns:

CT: application/octet-stream

DATA: \000\000\001\187MmM\129\000\002\002TLT\001L\00 2\001\000<hTMl>e\000

Here, the solver returns an input where the first four bytes satisfy the video/mpegsignature of

the Unixfile tool, and the tag<hTMl> satisfies thetext/htmlsignature used by the content-sniffing

algorithm in Safari 3.1. Because Safari 3.1 does not have a signature forvideo/mpeg, this input will

be consideredvideo/mpegby a filter based on the Unixfile tool andtext/htmlby Safari 3.1.

6.5.5 Concrete Attacks

In this section, we detail two content-sniffing XSS attacks that affect two popular Web applications:

HotCRP and Wikipedia. We implement and confirm the attacks using local installations of the sites.
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HotCRP. HotCRP is a conference management Web application that letsauthors upload their

papers in PDF or PostScript format.12 Before accepting an upload, HotCRP checks whether the

file appears to be in the specified format. For PDFs, HotCRP checks that the first bytes of the file

are%PDF-(case insensitive), and for PostScript, HotCRP checks thatthe first bytes of the file are

%!PS- (case insensitive).

HotCRP is vulnerable to a content-sniffing XSS attack because HotCRP will accept the chameleon

document in Figure1.4as PostScript but Internet Explorer 7 will treat the same document as HTML.

To mount the attack, the attacker submits a chameleon paper to the conference. When a reviewer

attempts to view the paper, the browser treats the paper as HTML and runs the attacker’s JavaScript

as if the JavaScript were part of HotCRP, which lets the attacker give the paper a high score and

recommend the paper for acceptance.

Wikipedia. Wikipedia is a popular Web encyclopedia that lets users upload content in several

formats, including SVG, PNG, GIF, JPEG, and Ogg/Theora [225]. The Wikipedia developers are

aware of content-sniffing XSS attacks and have taken measures to protect their site. Before storing

an uploaded file in its database, Wikipedia performs three checks:

1. Wikipedia checks whether the file matches one of the whitelisted MIME types. For example,

Wikipedia’s GIF signature checks if the file begins withGIF . Wikipedia uses PHP’s MIME

detection functions, which in turn use the signature database from the Unixfile tool [66].

2. Wikipedia checks the first1024 bytes for a set of blacklisted HTML tags, aiming to prevent

browsers from treating the file as HTML.

3. Wikipedia uses several regular expressions to check thatthe file does not contain JavaScript.

Even though Wikipedia filters uploaded content, we uncover asubtle content-sniffing XSS attack.

We construct the attack in three steps, each of which defeatsone of the steps in Wikipedia’s upload

filter:

1. By beginning the file withGIF88 , the attacker satisfies Wikipedia’s requirement that the file

begin withGIF without matching Internet Explorer 7’s GIF signature, which requires that

file begin with eitherGIF87 or GIF89 .

2. Wikipedia’s blacklist of HTML tags is incomplete and contains only8 of the33 tags needed.

To circumvent the blacklist, the attacker includes the string <a href , which is not on

Wikipedia’s blacklist but causes the file to match Internet Explorer 7’s HTML signature.

3. To evade Wikipedia’s regular expressions, the attacker can include JavaScript as follows:

12A conference organizer can disable either paper format.
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<object src="about:blank"

onerror="... JavaScript ...">

</object>

A file constructed in this way passes Wikipedia’s upload filter but is treated as HTML by Internet

Explorer 7. To complete the attack, the attacker uploads this file to Wikipedia and directs the user

to view the file. These attacks demonstrate the importance ofextracting precise models because the

attacks hinge on subtle differences between the upload filter used by Wikipedia and the content-

sniffing algorithm used by the browser.

The production instance of Wikipedia mitigates content-sniffing XSS attacks by hosting up-

loaded content on a separate domain. This approach does limit the severity of this vulnerability, but

the installable version of Wikipedia,MediaWiki, which is used by over750 Web sites in the English

language alone [136], hosts uploaded user content on-domain in the default configuration and is

fully vulnerable to content-sniffing XSS attacks. After we reported this vulnerability, Wikipedia has

improved its upload filter to prevent these attacks.

6.6 Related Work

In this section we first present previous work on automatic test case generation and automatic sig-

nature generation, which is related to our work in that they also use white-box exploration or related

symbolic execution techniques. Then, we introduce previous work that verifies security properties

using software model checking techniques, which requires models of the programs to be verified,

and can benefit from automated techniques to extract such models. Next, we describe previous

research on cross-site scripting attacks, including content-sniffing XSS attacks, which we automat-

ically find in this work. Finally, we introduce simultaneouswork on solvers that support a theory of

strings and outline some current defenses against content-sniffing XSS attacks.

Automatic test case generation. Previous work on automatic test case generation is another ap-

plication of white-box exploration [78, 33, 79, 31]. There are two main differences between our

model extraction technique using string-enhanced white-box exploration and previous work on au-

tomatic test case generation. First, the goal is different:the goal of automatic test case generation

is to find bugs in a program, while the goal of our model extraction is to generate an accurate

representation of a program that can be used for reasoning about its security implications. Sec-

ond, the white-box exploration techniques used by previouswork on automatic test case generation

are not efficient on programs that heavily rely on string operations, which are the main target of

our string-enhanced white-box exploration. There is related work on compositional approaches to
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white-box exploration that build function summaries as theexploration progresses and reuse the

summaries if the function is later encountered in a context already covered in the summary [76,3].

Our string-enhanced white-box exploration can be seen as a compositional approach that uses man-

ually generated string function summaries.

Xu et al. [234] use source code annotations to augment white-box exploration with length ab-

stractions for strings, which allows a tool to reason about the length of a string independent of its

contents. Saxena et al. [188] propose loop-extended symbolic execution that broadens the coverage

of dynamic symbolic execution in programs with loops, by introducing symbolic variables for the

number of times each loop executes. These techniques could be used to replace the manually written

string function summaries we use here, among other applications, but integrating them with a string

decision procedure as in this report is future work. Previous work has also proposed improvements

to white-box exploration techniques to reduce the number ofpaths that need to be explored (i.e., the

path explosion problem) by using a compositional approach [77] or trying to identify parts of paths

that have already been explored [16]. Such techniques can be combined with our string-enhanced

white-box exploration technique to further enhance the exploration.

Automatic signature generation. Previous work on automatic signature generation produces

symbolic-execution based vulnerability signatures directly from the vulnerable program binary [47,

21,46,23]. Such signatures model the conditions on the input required to exploit a vulnerability in

the program. The difference between those signatures and our models is that vulnerability signa-

tures try to cover only paths to a specific program point (namely, the vulnerability) rather than all

paths inside some given function. A significant shortcomingof early proposals is that the signa-

tures have low coverage, typically covering a single execution path [47]. More recent approaches

have proposed to cover more execution paths by removing unnecessary conditions using path slic-

ing techniques [46], iteratively exploring alternate paths to the vulnerability and adding them to the

signature [46,21], or using static analysis techniques [23]. Also related is work that examines the

accuracy of the signatures used by a NIDS by generating exploit mutations and checking if those

mutations still exploit the application [214, 185]. The inputs they find are filtering-failure attacks.

Our approach can produce such inputs more efficiently by relying on models of the filter and the

application, rather than on black-box probing.

Property verification. Model checking techniques can be used to determine whether aformal

model (including of a program) satisfies a property [40]. They have been applied to security prob-

lems such as statically verifying security properties [36], verifying temporal-logic properties of an

access control system [96], and evaluating attack scenarios in a network that contains vulnerable

applications [183, 195]. But such techniques typically require the availability of a model, which
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limits the applicability to other security problems. In this paper we present a technique to automati-

cally extract models from binaries, which can enable the application of model checking techniques

to other applications.

Cross-site scripting attacks. Cross-site scripting (XSS) attacks, where an attacker injects ac-

tive code (e.g., JavaScript) into HTML documents, are an important and widely studied class of

attacks [98, 133, 83, 155, 48]. Content-sniffing XSS attacks are a class of XSS attacks where the

attacker embeds executable code into different types of content. Previous references to content-

sniffing XSS attacks focus on the construction of chameleon documents that Internet Explorer sniffs

as HTML. A blog post from 2004 discusses a JPEG/HTML chameleon [182]. A 2006 disclosure

describes a content-sniffing XSS attack that exploits an incorrectContent-Typeheader [86]. More

recently, PNG and PDF chameleons have been used to launch content-sniffing XSS attacks [80,172,

184]. Spammers have reportedly used similar attacks to upload text files containing HTML to open

wikis [80]. Previously content-sniffing XSS attacks have been manually generated. In this work we

show how to automatically generate content-sniffing XSS attacks.

String constraint solvers. Simultaneous work reports on solvers that support a theory of strings [15,

85,103]. Even though during the course of this work no string constraint solver was publicly avail-

able, we designed our abstract string syntax so that it coulduse such a solver whenever available.

Thus, rather than translating the abstract string operations into a theory of arrays and integers, we

could easily generate constraints in a theory of strings instead, benefiting from any performance

improvements provided by these specialized solvers.

Defenses. Current defenses that can ameliorate content-sniffing XSS attacks include transforming

the uploaded content (e.g., converting a PNG image to JPEG format), disabling content-sniffing in

the browser, and hosting the uploaded content in a separate domain so that the attacker can only

gain access to the domain that hosts the content (e.g., upload.wikimedia.org) instead of the main

domain (wikipedia.org). For an in-depth discussion on current defenses, their shortcomings, as well

as novel defenses based on building more secure content-sniffing algorithms we refer the reader to

our original paper [9].

6.7 Conclusion

In this chapter we have presented an automatic approach for generating filtering-failure attacks. Our

approach extracts high coverage models from the filter, as well as the application’s functionality that
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the filter is designed to protect. Then it compares those two models using a solver to produce inputs

that are accepted by the filter but still can compromise the application.

We have proposed string-enhanced white-box exploration, amodel extraction technique that

extracts multi-path models from binary code. String-enhanced white-box exploration builds on

previous white-box exploration techniques. Unlike previous work, it incrementally builds a model

from the explored paths and reasons directly about string operations. By reasoning directly about

string operations, it increases the coverage achieved by the exploration and improves the fidelity of

the extracted models.

We have applied our approach to generate content-sniffing XSS attacks, a class of cross-site

scripting attacks in which an attacker uploads some malicious content to a benign web site, which

the user’s browser interprets as HTML, enabling the attacker to run JavaScript, embedded in the

malicious content, in the user’s browser in the context of the site that accepted the content. We

have used string-enhanced white-box exploration to extract models of the closed-source content-

sniffing algorithms for two widely-used browsers: InternetExplorer 7 and Safari 3.1. We have

used these models to automatically find content-sniffing XSSattacks that affect two popular Web

applications: MediaWiki, an open-source wiki applicationused by many sites including Wikipedia,

and the HotCRP conference management application.



Chapter 7

Protocol-Level Vulnerability Signature

Generation

7.1 Introduction

Software vulnerabilities are prevalent, with over 4,500 new publicly disclosed vulnerabilities in

2009 [205, 56]. A popular defense for software vulnerabilities issignature-based input filtering,

which has been widely deployed in Intrusion Prevention (IPS) and Intrusion Detection (IDS) sys-

tems. Signature-based input filtering matches program inputs against a set of signatures and flags

matched inputs as attacks. It provides an important means toprotect vulnerable hosts when patches

are not yet available or have not yet been applied. Furthermore, for legacy systems where patches

are no longer provided by the vendor, or critical systems where any changes to the code might

require a lengthy re-certification process, signature-based input filtering is often the only practical

solution to protect the vulnerable program.

The key technical challenge to effective signature-based defense is to automatically and quickly

generate signatures that have zero false positives and zerofalse negatives, what we callperfect

signatures. In addition, it is desirable to generate signatures without access to the source code. This

is crucial to wide deployment since it enables third-parties to generate signatures for commercial-

off-the-shelf (COTS) programs, without relying on software vendors, thus enabling a quick response

to newly found vulnerabilities.

Due to the importance of the problem, many different approaches for automatic signature gener-

ation have been proposed. Early work proposed to generateexploit-based signaturesusing patterns

that appeared in the observed exploits, but such signaturescan have high false positive and negative

rates [112,105,197,159,237,118,120,119,220]. More recently, researchers proposed to generate

vulnerability-based signatures, which are generated by analyzing the vulnerable program and its

162
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execution and the actual conditions needed to exploit the vulnerability and can guarantee a zero

false positive rate [47,21].

Vulnerability-based signatures. A vulnerability is a point in a program where execution might

“go wrong”. We call this point thevulnerability point. A vulnerability is only exploited when a

certain condition, thevulnerability condition, holds on the program state when the vulnerability

point is reached. Thus, to exploit a vulnerability, the input needs to satisfy two conditions: (1) it

needs to lead the program execution to reach the vulnerability point; (2) the program state needs

to satisfy the vulnerability condition at the vulnerability point. We call the boolean predicate that

denotes whether an input message will make the program execution reach the vulnerability point

thevulnerability point reachability predicate(VPRP).

A vulnerability-based signature can be seen as model (as introduced in Section5.2.1) where

the output state is defined by the pair of the vulnerability point and the vulnerability condition.

Thus, a vulnerability-based signature is simply a conjunction of the vulnerability point reachability

predicate, which specifies the program inputs that reach thevulnerability point, and the vulnerability

condition that needs to hold at the vulnerability point. Thus, the problem of automatically generating

a vulnerability-based signature can be decomposed into two: identifying the output state formed

by the vulnerability point and the vulnerability condition, and identifying the vulnerability point

reachability predicate. While both problems are important, in this chapter we focus on how to

generate vulnerability point reachability predicates. The problems of identifying the vulnerability

point and the vulnerability condition have been addressed as part of a parallel project [188]. Note

that a vulnerability point reachability predicate can alsobe used as a signature (i.e., with atrue

post-condition at the output state). However, such signatures can have false positives because there

may be inputs that reach the vulnerability point but do not exploit the application.

Coverage is a key challenge. One important problem with early vulnerability-based signature

generation approaches [47] is that the signatures only capture a single path to the vulnerability point

(i.e., their VPRP contains only one path). However, the number of paths leading to the vulnerability

point can be very large, sometimes infinite. Thus, such signatures are easy to evade by an attacker

with small modifications of the original exploit message, such as changing the size of variable-length

fields, changing the ordering of the fields (e.g., HTTP headers), or changing field values that drive

the program through a different path to the vulnerability point. Acknowledging the importance of

enhancing the coverage of vulnerability-based signatures, recent work tries to incorporate multiple

paths into the VPRP either by static analysis [21, 23], or by dynamic analysis [46, 55]. However,

performing precise static analysis on binaries is hard due to issues such as indirection, pointers and
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loops, and current dynamic analysis approaches rely on heuristic-based black-box probing, which

is less effective at extending the coverage than white-box approaches.

In this paper, we proposeprotocol-level constraint-guided exploration, a new approach to au-

tomatically generate vulnerability point reachability predicates with high coverage. Our approach

has 3 main characteristics: 1) it is based on white-box exploration (i.e., instead of heuristics-based

exploration as in ShieldGen [55] and Bouncer [46]), 2) the white-box exploration works at the

protocol-leveland generates protocol-level signatures at the end, and 3) it effectively mergesex-

plored execution paths to remove redundant exploration. The three points seamlessly weave to-

gether and amplify each others benefit. By using white-box exploration, our approach significantly

increases the effectiveness and efficiency of the exploration compared to previous heuristics-based

approaches. By using protocol information to lift the symbolic constraints from the byte level to the

protocol level, our approach reduces the exploration spacefor programs that use highly-structured

protocols or file formats, and produces protocol-level signatures, which compared to byte-level sig-

natures are more compact and cover variants of the exploits caused by variable-length fields and

field reordering. By merging paths in the exploration, our exploration further reduces the explo-

ration space, avoiding the exploration of duplicate paths that otherwise could make the exploration

space increase exponentially.

Elcano. We have implemented protocol-level constraint-guided exploration in a signature gener-

ation tool calledElcano. We have evaluated the effectiveness of Elcano using 6 vulnerabilities on

real-world programs. The generated signatures achieve perfect or close-to-perfect results in terms

of coverage. Using a 6 hour time limit for the exploration, our approach discovered all possible

paths to the vulnerability point for 4 out of the 6 vulnerabilities, thus generating a complete VPRP.

For those four signatures, the generation time ranges from under one minute to 23 minutes. In ad-

dition, the resulting signatures are compact: the number ofconstraints in the resulting VPRP is in

most cases small and those constraints are often small themselves. Compact signatures can be more

easily understood by humans, which facilitates deployment.

Other applications. In addition to signature generation, a high coverage vulnerability point reach-

ability predicate is useful for other applications such as exploit generation [22] and patch testing.

For example, the Microsoft patch MS05-018 missed some pathsto the vulnerability point and as a

result left the vulnerability still exploitable after the patch [144]. This situation is not uncommon. A

quick search on the CVE database returns 13 vulnerabilitiesthat were incorrectly or incompletely

patched [56]. Our technique could assist software developers to build more accurate patches. Fur-

thermore, our protocol-level constraint-guided approachcan increase the effectiveness of generating

high-coverage test cases and hence be very valuable to software testing and bug finding.
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7.2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automatic generation of protocol-level vulnerability

point reachability predicates, then present our running example, and finally give the overview of our

approach.

7.2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates. Given a

parser implementing a given protocol specification, the vulnerability point, and a seed input that

reaches the vulnerability point, the problem of automatic generation of protocol-level vulnerability

point reachability predicates is to automatically generate a predicate functionF , such that when

given some input mapped into a message field tree by the parser, F evaluates over the message field

tree: if it evaluates totrue, then the input is considered to be able to reach the vulnerability point,

otherwise it is not.

Parser availability and specification quality. The problem of automatic generation of protocol-

level vulnerability point reachability predicates assumes the availability of a parser implementing

a given protocol or file specification. The parser given some input data can map it into fields,

according to the specification, or fail if the input is malformed. In the latter case, the IDS/IPS could

opt to block the input or let it go through while logging the event or sending a warning. Such a parser

is available for common protocols (e.g., Wireshark [227]), and many commercial network-based

IDS or IPS have such a parser built-in. In addition, recent work has shown how to create a generic

parser that takes as input protocol specifications written in an intermediate language [173,17].

The quality of the specification used by the parser matters. While obtaining a high quality spec-

ification is not easy, this is a one time effort, which can be reused for multiple signatures, as well as

other applications. For example, in our experiments we extracted a WMF file format specification.

At the time of writing, there are 37 vulnerabilities relatedto WMF in the CVE Database [56], where

our specification could be reused. Similarly, an HTTP specification could be reused in over 1500

vulnerabilities. In Chapter3, we propose techniques to automatically extract the formatof undocu-

mented protocols from the binary of a program that implements the protocol. Those techniques can

be used when the protocol used by the vulnerable program has no public specification.

Vulnerability point availability. Our problem definition assumes that the vulnerability pointis

given. Note that the vulnerability point may be different than the program point where the abnormal

behavior is detected. For example, an integer overflow may bedetected when a program crashes

due to a memory dereference that uses an invalid pointer. Theinvalid pointer was created earlier in
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1 void service() {
2 char msgBuf[4096];
3 char lineBuf[4096];
4 int nb=0, i=0, sockfd=0;
5 nb=recv(sockfd,msgBuf,4096,0);
6 for(i = 0; i < nb; i++) {
7 if (msgBuf[i] == ’\n’)
8 break;
9 else

10 lineBuf[i] = msgBuf[i];
11 }
12 if (lineBuf[i-1] == ’\r’)
13 lineBuf[i-1] = ’\0’
14 else lineBuf[i] = ’\0’;
15 doRequest(lineBuf);
16 }

17 void doRequest(char * lineBuf){
18 char vulBuf[128],uri[256];
19 char ver[256], method[256];
20 int is_cgi = 0;
21 sscanf(lineBuf,
22 "%255s %255s %255s",
23 method, uri, ver);
24 if (strcmp(method,"GET")==0 ||
25 strcmp(method,"HEAD")==0){
26 if strncmp(uri,"/cgi-bin/",
27 9)==0 is_cgi = 1;
28 else is_cgi = 0;
29 if (uri[0] != ’/’) return;
30 strcpy(vulBuf, uri);
31 }
32 }

Figure 7.1: Our running example.

the execution by adding the overflown integer to a pointer. Inthis case, the vulnerability point is the

arithmetic instruction that overflows, rather than the instruction that dereferences the invalid pointer.

Identifying the vulnerability point is part of a parallel project that aims to accurately describe the

vulnerability condition [188]. Such vulnerability points could also be identified using previous

techniques [160,46].

Seed input availability. Our problem definition also assumes that a seed input that reaches the

vulnerability point is given. Note that the seed input does not need toexploit the vulnerability, it

only needs toreach the vulnerability point. This seed input enables focusing the exploration on

paths that are related to the program functionality that contains the vulnerability. If such seed input

is not available, we could use any other program input to start the exploration. In this case, the

exploration would iterate (without adding any paths to the VPRP) until finding the first path that

reaches the vulnerability point. However, it is hard to knowwhen (or if) such path will be found.

7.2.2 Running Example

Figure7.1shows our running example. We represent the example in C language for clarity, but our

approach operates directly on program binaries. Our example represents a basic HTTP server and

contains a buffer-overflow vulnerability. In the example, theservice function copies one line of

data received over the network intolineBuf and passes it to thedoRequest function that parses

it into several field variables (lines 21–23) and performs some checks on the field values (lines 24–

31). The first line in the exploit message includes the method, the URI of the requested resource,

and the protocol version. If the method is GET or HEAD (lines 24–25), and the first character of the
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URI is a slash (line 29), then the vulnerability point is reached at line 30, where the size ofvulBuf

is not checked by thestrcpy function. Thus, a long URI can overflow thevulBuf buffer.

In this example, the vulnerability point is at line 30, and the vulnerability condition is that the

local variablevulBuf will be overflowed if the size of the URI field in the received message is

greater than 127. Therefore, for this example, the vulnerability point reachability predicate is:

((strcmp(FIELD METHOD,"GET")==0) ∨(strcmp(FIELD METHOD,"HEAD")==0))

∧ (FIELD URI[0] = ’/’) . The vulnerability condition is:length(FIELD URI) > 127 ,

and the conjunction of the two is a perfect protocol-level signature.

7.2.3 Approach

In this chapter we propose a new approach to generate high coverage, yet compact, vulnerability

point reachability predicates, calledprotocol-level constraint-guided exploration. Next, we give the

motivation and an overview of the three characteristics that comprise our approach.

Constraint-guided. Previous dynamic approaches to generate vulnerability-based signatures use

heuristics-based exploration [46,55]. Heuristic-based exploration suffers from a fundamentallimi-

tation: the number of probes needed to exhaustively search the whole space is usually astronomical.

In addition, an exhaustive search is inefficient as many probes end up executing the same path in

the program. Thus, such approaches often rely on heuristicsthat are not guaranteed to significantly

increase the signature’s coverage and can also introduce false positives.

For example, ShieldGen [55] uses the specification of the protocol that corresponds to the exploit

message to generate different well-formed variants of the original exploit. It uses various heuristics

to create the variants and then checks whether any of the variants still exploits the vulnerability.

ShieldGen’s heuristics first assume that fields can be probedindependently, and then for fixed-length

fields it samples just a few values of each field, checking whether the vulnerability point is reached

or not for those values. Probing each field independently means that constraints involving multiple

fields cannot be found. Take the constraintSIZE1 + SIZE2 ≤ MSGSIZE , whereSIZE1 and

SIZE2 are length fields in the input, andMSGSIZE represents the total length of the received

message. The authors of ShieldGen acknowledge that their signatures cannot capture this type of

constraints, but such constraints are commonly used by programs to verify that the input message

is well-formed and failing to identify them will introduce either false positives or false negatives,

depending on the particular heuristic.

False positives can be introduced because only a few random values of each field are tested. If

all tested values for a field exploit the vulnerability then they consider that any field value would

also exploit it. Imagine the case where the vulnerability isonly exploited whenFIELD ≤ 100 .
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If all random probes tested have values smaller than 100, their approach incorrectly generalizes

that any value of the field would exploit the vulnerability, when values larger than 100 would

not. False negatives can be introduced because probing onlya few sample values for each field

is likely to miss constraints that are satisfied by only a small fraction of the field values. For exam-

ple, a conditional statement such asif (FIELD==10) ∨ (FIELD==20) then exploit,

else safe , where FIELD is a 32-bit integer, creates two paths to the vulnerability point. Finding

each of these paths would require230 random probes on average to discover. Creating a signature

that covers both paths is critical since if the signature only covers one path (e.g.,FIELD == 10 ),

the attacker could easily evade detection by changing FIELDto have value 20.

To overcome these limitations, we propose to use white-box exploration to increase the cov-

erage of the final signatures by automatically discovering new paths that reach the vulnerability

point and adding them to the VPRP. However, simply applying previous white-box exploration ap-

proaches [33,78,79] does not scale well to real-world programs that use complex, highly structure

inputs such as protocols and file formats. In fact, in Bouncer[46] the authors acknowledge that

they wanted to use white-box exploration but failed to do so due to the large number of paths that

need to be explored and thus had to fall back to the heuristics-based probing approach. To make

white-box exploration feasible and effective we have incorporated two other key characteristics into

our approach as described below.

Protocol-level path predicates. Previous white-box exploration approaches generatebyte-level

path predicates, which are evaluated directly on the input bytes. Such byte-level path predicates

in turn generatebyte-level signatures, which are also specified on the input bytes. However, pre-

vious work has shown that signatures are better specified at the protocol-level instead of the byte

level [237,55]. We call such signaturesprotocol-level signatures.

Our contribution here is to show that, by lifting byte-levelpath predicates toprotocol-level path

predicates, so that they operate on protocol fields rather than on the input bytes, we can make white-

box exploration scale with highly structured inputs, as using constraints at the protocol-level hugely

reduces the number of paths to be explored compared to using byte-level constraints. The state

reduction is achieved in two ways. First, the parsing logic often introduces huge complexity in terms

of the number of execution paths that need to be analyzed. Forexample, in our experiments, 99.8%

of all constraints in the HTTP vulnerabilities are generated by the parsing logic. While such parsing

constraints need to be present in the byte-level path predicates, they can be removed in the protocol-

level path predicates. Second, the byte-level constraintsintroduced by the parsing logic makes the

VPRP match only inputs that have the same field structure as the seed exploit message, for example

same size of the variable-length fields and same field sequence (when protocols such as HTTP allow

fields to be reordered). Unless the parsing constraints are removed the resulting signature would be



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERATION 169

very easy to evade by an attacker by applying small variations to the field structure of the exploit

message. Finally, the vulnerability point reachability predicates at the protocol level are smaller and

easier to understand by humans.

Merging execution paths. As the exploration discovers new paths leading to the vulnerability

point, they need to be added to the vulnerability point reachability predicate. The simplistic ap-

proach is to blindly explore new paths by reversing constraints and at the end create a vulnerability

point reachability predicate that is a disjunction (i.e., an enumeration) of all the discovered paths

leading to the vulnerability point. This is the approach that our string-enhanced white-box explo-

ration uses in Chapter6 to create multi-path models of the content-sniffing algorithms in Internet

Explorer 7 and Safari 3.1. Such approach has two main problems. First, blindly reversing constraints

produces a search space explosion, since the number of pathsto explore becomes exponential in the

number of constraints, and much larger than the real number of paths that exist in the program. We

explain this in detail in Section7.4. In addition, merely enumerating the discovered paths generates

signatures that quickly explode in size.

To address these issues, we utilize the observation that theprogram execution may fork at one

branch condition into different paths for one processing task, and then merge back to perform an-

other task. For example, a task can be a validation check on the input data. Each independent

validation check may generate one or multiple new paths (e.g., looking for a substring in the HTTP

URL generates many paths), but if the check is passed then theprogram moves on to the next task,

which usually merges the execution back into the original path. Thus, in our exploration, we use a

protocol-level exploration graphto identify such potential merging points. This helps alleviate the

search space explosion problem, and allows our explorationto quickly reach high coverage.

7.2.4 Architecture Overview

We have implemented our approach in a system called Elcano1. The architecture of Elcano is shown

in Figure7.2. It comprises of two main components: theconstraint extractorand theexploration

module, and two off-the-shelf assisting components: theexecution monitor, introduced in Chapter2,

and theparser.

The overall exploration is an iterative process that incrementally explores new execution paths,

similar to the one introduced in Section6.3.3. In each iteration (that we also call test), an input is

sent to the program under analysis, running inside the execution monitor. The execution monitor

produces an execution trace that captures the complete execution of the program on the given input.

The execution monitor also logs the test result, i.e., whether the vulnerability point was reached or

1Elcano was a Spanish explorer who completed the first circumnavigation of the world.
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Figure 7.2: Elcano architecture overview. The darker colormodules are given, while the lighter
color components have been designed and implemented in thiswork.

not during the execution. In addition, the parser extracts the message format for the input, according

to the given protocol specification. Then, given the execution trace and the message format, the con-

straint extractor obtains thefield constraint chain. The field constraint chain is conceptually similar

to the path predicateused in previous chapters, but the constraints are at the protocol-level, the

parsing constraints have been removed, and each constraintis tagged with additional information.

We detail the field constraint chain and its construction in Section7.3.

The exploration module maintains theprotocol-level exploration graph, which stores the current

state of the exploration, i.e., all the execution paths thathave been so far explored. Given the field

constraint chain, the exploit message and the test result, the exploration module merges the new field

constraint chain into the current protocol-level exploration graph. Then, the exploration module uses

the protocol-level exploration graph to select a new path tobe explored and generates a new input

that will lead the program execution to traverse that path. Given the newly generated input, another

iteration begins. We detail the exploration module in Section 7.4.

The process is started with the seed exploit message and runsiteratively until there are no more

paths to explore or a user-specified time-limit is reached. At that point the exploration module

outputs the VPRP. The VPRPs produced by Elcano are written using the Vine language [19] with

some extensions for string operations introduced in Chapter 6.

7.3 Extracting the Field Constraint Chain

In this section we present the constraint extractor, which given an execution trace, produces a field

constraint chain. The architecture of the constraint extractor is shown in Figure7.3. First, given

the execution trace thepath predicate extractorperforms symbolic execution with the input repre-

sented as a symbolic variable and extracts thepath predicate, which is essentially the conjunction

of all branch conditions dependent on the symbolic input in the execution captured in the execution

trace. The path predicate extractor has been introduced in Section5.3. It produces a byte-level path

predicate which evaluates on the input bytes.
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Figure 7.3: Constraint Extractor Architecture. The darkercolor module is given, while the lighter
color components have been designed and implemented in thiswork.

To enable constraint-guided exploration, Elcano needs to lift the path predicate from the byte-

level to the protocol-level, where the constraints are instead on field variables of the input. In

addition, the constraint extractor needs to remove the parsing constraints, which dramatically re-

duces the exploration space and makes the exploration feasible. To accomplish this, first thefield

condition generatorlifts the byte-level path-predicate to the protocol-level, and then thefield con-

dition generalizergeneralizes it by removing the parsing constraints and outputs thefield constraint

chain. The field constraint chain differs from the protocol-levelpath-predicate in that the parsing

constraints have been removed, each constraint is annotated with additional information, and the

constraints are ordered as they appeared in the execution.

7.3.1 The Field Condition Generator

Given the byte-level path-predicate generated by the path predicate extractor and the message for-

mat of the input given by the parser, the field condition generator outputs a protocol-level path-

predicate. It performs this in two steps. First, it translates each byte symbolINPUT[x] in the byte-

level path-predicate into a field symbolFIELD fieldname [x - start(fieldname)] us-

ing the message field tree produced by the parser (Section3.2), which contains the mapping from

each field to the range of bytes that it takes in the message. Second, it tries to combine symbols on

consecutive bytes of the same field. For example, the byte-level path-predicate might include the

following constraint: (INPUT[6] << 8 | INPUT[7]) == 0 . If the message format states

that inputs 6 and 7 belong to the same 16-bitID field, then the constraint first gets translated to

(FIELD ID[0] << 8 | FIELD ID[1]) == 0 and then it is converted toFIELD ID ==

0 whereFIELD ID is a 16-bit field symbol.

The message format provided by the parser is in the form of a message field tree (introduced

in Section3.2), where one parent field may have multiple children and the root of the tree rep-

resents the whole message. For example, thelineBuf variable in our running example repre-

sents theRequest-Line field, which in turn contains 3 other fields:Method , Request-URI ,

andHTTP-Version . Thus, a constraint such as:strstr(lineBuf,"../") 6= 0 would be
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translated asstrstr(FIELD Request-Line, "../") 6= 0. A constraint on the whole

message would be applied on the rootMSGfield.

Benefits. This step lifts the byte-level path-predicate to the protocol-level, breaking the artificial

constraints that the byte-level path-predicate imposes onthe position of fields inside the exploit

message. For example, protocols such as HTTP allow some fields in a message (i.e., the headers

that follow the Request-Line/Status-Line) to be ordered differently without changing the meaning

of the message. Thus, two exploit messages could have the same fields ordered differently and a

byte-level vulnerability point reachability predicate generated from one of them would not flag that

the other exploit also reaches the vulnerability point. In addition, if variable-length fields are present

in the exploit message, changing the size of such fields changes the position of all fields that come

behind it in the exploit message. Again, such trivial variation of the exploit message could defeat

byte-level signatures. Thus, by expressing constraints using field symbols, protocol-level signatures

naturally allow a field to move its position in the input.

7.3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protocol-level path-predicate generated by the

field condition generator, the protocol specification and the input that was sent to the program and

outputs a field constraint chain where the parsing-related constraints have been removed.

First, the field condition generalizer assigns a symbolic variable to each byte of the input and

processes the input according to the given protocol specification. This step generates symbolic con-

straints that capture the constraints on the input which restrict the message format of the input to be

the same as the message format returned by the parser on the given input. We term these constraints

the parsing constraints. Then, the field condition generalizer removes the parsing constraints from

the protocol-level path-predicate by using a fast syntactic equivalence check. If the fast syntactic

check fails, the field condition generalizer uses a more expensive equivalence check that uses a

constraint solver.

Benefits. The parsing constraints in the protocol-level path-predicate over-constrain the variable-

length fields, forcing them to have some specific size (e.g., the same as in the exploit message).

Thus, removing the parsing constraints allows the vulnerability point reachability predicate to han-

dle exploit messages where the variable-length fields have asize different than in the original exploit

message. In addition, for some protocols such as HTTP, the number of parsing constraints in a sin-

gle protocol-level path-predicate can range from several hundreds to a few thousands. Such a huge

number of unnecessary constraints would blow up the size of the vulnerability point reachability
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predicate and negatively impact the exploration that we will present in Section7.4 because each

constraint would introduce a new path to be explored. Note that the parsing constraints are enforced

by the parser, so we can safely remove them from the protocol-level path-predicate while still having

the constraints enforced during the signature matching time.

The field constraint chain. To assist the construction of the protocol-level exploration graph

(explained in Section7.4), the constraint extractor constructs thefield constraint chainusing the

generalized protocol-level path-predicate (after the parsing constraints have been removed). A field

constraint chain is an enhanced version of the protocol-level path-predicate where each branch con-

dition is annotated with its execution index [232], which is unique for each point in an execution

and can be used to identify program points that correspond toeach other across executions of the

program. These annotated branch conditions are put in an ordered chain using the same order as

they appear in the execution path.

7.4 The Exploration Module

In this section we present the exploration module. The architecture of the exploration module

is illustrated in Figure7.4. It is comprised of three components: theexplorer, the prioritization

engine, and theinput generator, plus an off-the-shelfsolver. The exploration module performs 3

main tasks in each iteration of the exploration: (1) given the field constraint chain, the explorer adds

it to the current protocol-level exploration graph producing an updated graph; (2) given the updated

protocol-level exploration graph, the prioritization engine decides which new path to explore next;

(3) given the new path, theinput generatorgenerates an input that makes the program execute that

path.

The new input is then used to start another iteration of the whole process as shown in Figure7.2,

that is, the new input is replayed to the program running in the execution monitor and a new field

constraint chain is generated by the constraint extractor,which is passed to the explorer and so on.

The prioritization engine is in charge of stopping the wholeprocess once there are no more paths

to explore or a user-specified time-limit is reached. When the exploration stops, the exploration

module outputs the VPRP.

Section7.4.1details how the field constraint chain is added to the currentprotocol-level explo-

ration graph and Section7.4.2describes how to generate a new input from the updated protocol-level

exploration graph and Section7.4.3shows how the VPRP is output.
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color components have been designed and implemented in thiswork.

7.4.1 Merging Execution Paths into the Protocol-Level Exploration Graph

Our exploration builds aprotocol-level exploration graphas the exploration progresses. Using a

protocol-level exploration graph makes our exploration significantly different from previous white-

box exploration approaches [78,77,33]. The protocol-level exploration graph provides two funda-

mental benefits: 1) the exploration space is significantly reduced because the constraints are at the

protocol level, and 2) it becomes easy to merge paths, which in turn further reduces the exploration

space, and reduces the size of the vulnerability point reachability predicate.

Each node in the protocol-level exploration graph represents an input-dependent branching point

(i.e., a conditional jump) in the execution. Each node contains a protocol-level predicate and some

additional information about the state of the program when the branching point was reached. Each

node can have two edges representing the branch taken if the node’s predicate evaluated to true (T)

or false (F). We call the node where the edge originates thesource nodeand the node where the

edge terminates thedestination node. If a node has anopen edge(i.e, one edge is missing), it means

that the corresponding branch has not yet been explored. Figure7.5illustrates the exploration graph

for our running example after discovering two paths to the vulnerability point. Note that nodes B,

C, and D have open edges because one of their branches has not yet been explored.

Intuition. When a new field constraint chain is added to the protocol-level exploration graph, it

is important to merge all constraints in the field constraintchain that are already present in the

graph. Failure to merge a constraint creates a duplicate node, which in turn effectively doubles

the exploration space because the subtree hanging from the replicated node would need to be ex-

plored as well. Thus, as the number of duplicated nodes increases, the exploration space increases

exponentially.

The key intuition behind why merging is necessary is that it is common for new paths generated

by taking a different branch at one node, to quickly merge back into the original path. This happens

because programs may fork execution at one constraint for one processing task, and then merge back
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Figure 7.5: An example exploration graph for our running example. Note that nodes B, C, and D
all have open edges because their false branches have not yetbeen explored.

to perform another task. One task could be a validation checkon the input data. Each independent

check may generate one or multiple new paths (e.g., looking for a substring in the URI generates

many paths), but if the check is passed then the program moveson to the next task (e.g., another

validation check), which usually merges the execution backinto the original path. For example,

when parsing a message the program needs to determine if the message is valid or not. Thus, it

will perform a series of independent validity checks to verify the values of the different fields in the

message. As long as checks are passed, the program still considers the message to be valid and the

execution will merge back into the original path. But, if a check fails then the program will move

into a very different path, for example sending an error message.

The intuition on the merging is that two nodes can be merged ifthey represent the same program

point and they are reached with the same program state. To identify the program point, each con-

straint in the field constraint chain is annotated with its execution index [232], which is unique for

each point in an execution and can be used to identify points that correspond to each other across

executions of the program. To identify the program state we use a technique similar to the one

introduced in [16] where we compute the set of all values (both concrete and symbolic) written by

the program during the execution up to the point where the constraint is executed. Thus, we merge

nodes that satisfy 4 conditions: same instruction address,same execution index, equivalent predi-

cate, and same program state. Note that using the program state is important to avoid introducing

errors due to implicit flows. For example, in Figure7.5 it could happen that before the D constraint

the program sets the string variablex to the string “GET”. In this case, there exists an implicit flow

from the constraint A to the variablex. Then, before the C constraint, the program could check

if the variablex has value “GET”, but the variablex would not be symbolic due to the implicit
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flow and such constraint would not be added to the graph. To avoid incorrectly merging nodes with

different state, we use the write set to approximate the program state at the time the constraint is

evaluated.

Merging a new path into the exploration graph. To insert a new field constraint chain into the

protocol-level exploration graph, the explorer starts merging from the top until it finds a node that

it cannot merge, either because it is not in the graph yet, or because the successor in the new field

constraint chain is not the same one as in the graph. We call the predecessor of the node that cannot

be merged (i.e., the last node merged) thesplit node. To check if a node is already in the graph, the

explorer checks if the node to be inserted is equivalent (same instruction address, same execution

index, equivalent predicate, and same state) to any other node already in the graph.

Once a split node has been identified the graph keeps trying tomerge the rest of the nodes in the

new field constraint chain until it finds a node that it can merge, which we term thejoin node. At

that point, the explorer adds all the nodes in the new field constraint chain between the split node

and the join node as a sequence of nodes in the graph hanging from the split node and merging at

the join node. The process of looking for a split node and thenfor a join node is repeated until the

sink of the new field constraint chain is reached. At that point, if the explorer was looking for a join

node then all nodes between the last split node and the sink are added to the graph as a sequence

that hangs from the last split node and ends at the sink.

For example, Figure7.6 illustrates the graph construction for our running example. In Fig-

ure 7.6A the graph contains only the original field constraint chaingenerated by sending the seed

exploit message to the program, which contains the three nodes introduced by lines 24, 26, and

29 in our running example (since the parsing constraints have already been removed). The sink of

the original field constraint chain is the vulnerability point node (VP). Figure7.6B shows the sec-

ond field constraint chain that is added to the graph, which was obtained by creating an input that

traverses the false branch of node A. When adding the field constraint chain in Figure7.6B to the

graph in Figure7.6A, the explorer merges node A and determines that A is a split node because A’s

successor in the new field constraint chain is not A’s successor in the graph. Then, at node B the

explorer finds a join node and adds node D between the split node and the join node in the graph.

Finally node C is merged and we show the updated graph in Figure 7.6C.

7.4.2 Generating a New Input

Even after removing the parsing constraints from the protocol-level path predicate and merging

duplicated constraints, the number of paths to explore can still be large. Since we are only interested

in paths that reach the vulnerability point, we have implemented a simple prioritization scheme that
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Figure 7.6: Building the protocol-level exploration graphfor our running example.

favors paths that are more likely to reach it. The prioritization engine uses a simple weight scheme,

where there are three weights 0, 1, and 2. Each weight has its own node queue and the prioritization

engine always picks the first node from the highest weight non-empty queue. The explorer assigns

the weights to the nodes when adding them to the graph. Nodes that represent loop exit conditions

get a zero weight (i.e., lowest priority). Nodes in a field constraint chain that has the vulnerability

point as sink get a weight of 2 (i.e., highest priority). All other nodes get a weight of 1. We favor

nodes that are in a path to the vulnerability point because ifa new path does not quickly lead back to

the vulnerability point, then the message probably failed the current check or went on to a different

task and thus it is less likely to reach the vulnerability point later. We disfavor loop exit conditions

to delay unrolling the same loop multiple times. Such heuristic helps achieve high coverage quickly.

We define anode reachability predicateto be the predicate that summarizes how to reach a

specific node in the protocol-level exploration graph from theStart node, which includes all paths

in the graph from theStart to that node. Similarly, we define abranch reachability predicateto

be the predicate that summarizes how to traverse a specific branch of a node. A branch reachability

predicate is the conjunction of a node reachability predicate with the node’s predicate (to traverse

the true branch), or the negation of the node’s predicate (totraverse the false branch). To compute

a new input that traverses the specific branch selected by theprioritization engine, the explorer

first computes the branch reachability predicate. Then, theinput generator generates an input that

satisfies the branch reachability predicate.

To compute the branch reachability predicate, the explorerfirst computes the node reachability

predicate. The node reachability predicate is essentiallythe weakest pre-condition (WP) [61] of

the source node of the open edge over the protocol-level exploration graph—by definition, the WP

captures all paths in the protocol-level exploration graphthat reach the node. Then, the explorer
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computes the conjunction of the weakest pre-condition withthe node’s predicate or with the negated

predicate depending on the selected branch. Such conjunction is the branch reachability predicate,

which is passed to the input generator.

For example, in Figure7.6C if the prioritization engine selects the false branch of node D to be

explored next, then the branch reachability predicate produced by the explorer would be:A ∧ D.

Similarly, in Figure7.6D if the prioritization engine selects the false branch of node B to be explored

next, then the branch reachability predicate produced by the explorer would be:( A∨ (A∧D))∧B.

The input generator generates a new input that satisfies the branch reachability predicate using

a 3-step process. First, it uses a constraint solver to generate field values that satisfy the branch

reachability predicate. If the constraint solver returns that no input can reach that branch, then the

branch is connected to theUnreachable node. Second, it extracts the values for the remaining

fields (unconstrained by the solver) from the seed exploit message. Third, it checks the message

format provided by the parser to identify any fields that needto be updated given the dependencies

on the modified values (such as length or checksum fields). Note that here we assume the message

field tree output by the parser provides such dependencies. Otherwise, we need to use the techniques

in Chapter3 to identify the length fields and the techniques that we will introduce in Chapter8 to

identify the checksum fields. Using all the collected field values it generates a new input that starts

a new iteration.

7.4.3 Extracting the Vulnerability Point Reachability Predicate

Once the exploration ends, the protocol-level explorationgraph contains all the discovered paths

leading to the vulnerability point. To extract the VPRP fromthe graph the explorer computes the

node reachability predicate for the VP node. For our runningexample, represented in Figure7.6E

the VPRP is:( A ∨ (A ∧ D)) ∧ C. Note that, a mere disjunction of all paths to the VP, would

generate the following VPRP:( A∧B∧C)∨ (A∧D∧B∧C)∨ (A∧B∧C)∨ (A∧D∧B∧C) .

Thus, Elcano’s VPRP is more compact using 4 conditions instead of 14.

7.5 Evaluation

In this section, we present the results of our evaluation. Weevaluate Elcano using 6 vulnerabilities,

summarized in Table7.1. The table shows the program, the CVE identifier for the vulnerability [56],

the protocol used by the vulnerable program, the protocol type (i.e., binary or text), the guest oper-

ating system used to run the vulnerable program, and the typeof vulnerability. We select the vul-

nerabilities to cover file formats as well as network protocols, multiple operating systems, multiple

vulnerability types, and both open-source and closed programs, where no source code is available.
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Program CVE Protocol Type Guest OS Vuln. Type
gdi32.dll (v3159) CVE-2008-1087 EMF file Binary Windows XP Buffer overflow
gdi32.dll (v3099) CVE-2007-3034 WMF file Binary Windows XP Integer overflow
Windows DCOM RPC CVE-2003-0352 RPC Binary Windows XP Buffer overflow
GHttpd CVE-2002-1904 HTTP Text Red Hat 7.3 Buffer overflow
AtpHttpd CVE-2002-1816 HTTP Text Red Hat 7.3 Buffer overflow
Microsoft SQL Server CVE-2002-0649 Proprietary Binary Windows 2000 Buffer overflow

Table 7.1: Vulnerable programs used in the evaluation.

Program Original Non-parsing
constraints

Gdi-emf 860 65
Gdi-wmf 4 4
DCOM RPC 535 521
GHttpd 2498 5
AtpHttpd 6034 10
SQL Server 2447 7

Table 7.2: Constraint extractor results for the
first test, including the number of constraints
in the protocol-level path-predicate and the
number of remaining constraints after pars-
ing constraints have been removed.

Program All branches
explored VPRP

Gdi-emf no 72
Gdi-wmf yes 5
DCOM RPC no 1651
GHttpd yes 3
AtpHttpd yes 10
SQL Server yes 3

Table 7.2: Exploration results, including
whether all open edges in the protocol-level
exploration graph were explored and the
number of constraints remaining in the vul-
nerability point reachability predicate.

In addition, the older vulnerabilities (i.e., last four) are also selected because they have been ana-

lyzed in previous work, and this allows us to compare our system’s results to previous ones. Next,

we present the constraint extractor results (Section7.5.1), the exploration results (Section7.5.2),

and the produced signatures (Section7.5.3).

7.5.1 Removing the Parsing Constraints

In this section we evaluate the effectiveness of the constraint extractor, in particular of the field

condition generalizer, at removing the parsing constraints from the protocol-level path-predicate.

For simplicity, we only show the results for the protocol-level path-predicate produced by the field

condition generator from the execution trace generated by the seed exploit. Note that, during ex-

ploration this process is repeated once per newly generatedinput. Table7.2summarizes the results.

The Original column represents the number of input-dependent constraints in the protocol-level

path-predicate and is used as the base for comparison. TheNon-parsing constraintscolumn shows

the number of remaining constraints after removing the parsing constraints.

The removal of the parsing constraints is very successful inall experiments except the DCOM-

RPC. Overall, in the four vulnerable programs that include variable-length strings (i.e., excluding
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Gdi-wmf and DCOM-RPC), the parsing constraints account for92.4% to 99.8% of all constraints.

For formats that include arrays, such as DCOM RPC, the numberof parsing constraints is much

smaller but it is important to remove such constraints; otherwise they constrain the array to have

the same number of elements as in the exploit message. By removing the parsing constraints, each

field constraint chain represents many program execution paths produced by modifying the format

of the exploit message (e.g., extending variable-length fields or reordering fields). This dramatically

decreases the exploration space making the exploration feasible.

7.5.2 Exploration Results

Table7.2shows the results for the exploration phase. We set a user-defined time-limit of 6 hours for

the exploration. If the exploration has not completed by that time Elcano outputs the intermediate

VPRP and stores the current state of the exploration. This state can later be loaded to continue

the exploration at the same point where it was interrupted. The first column indicates whether the

exploration completes before the specified time-limit. Thesecond column presents the number of

constraints in the intermediate VPRP that is output by the exploration module once there are no

more paths to be explored or the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano explored all possible paths, thus gen-

erating a complete VPRP (i.e., a VPRP that covers all paths tothe vulnerability point). For the

DCOM RPC and Gdi-emf experiments, the 6 hour time-limit was reached, thus the VPRPs are not

complete. They also show that the number of constraints in the VPRP is in most cases small. The

small number of constraints in the VPRP and the fact that in many cases those constraints are small

themselves, makes the signatures easy for humans to analyze, as opposed to previous white-box ap-

proaches where the large number of constraints in the signature made it hard to gain insight on the

quality of the signature. We do that by labeling the nodes in the graph with the full protocol-level

constraints.

Performance. Table 7.3 summarizes the performance measurements for Elcano. All measure-

ments were taken on a desktop computer with a 2.4GHz Intel Core2 Duo CPU and 4 GB of mem-

ory. The first column presents the VPRP generation time in seconds. For the Gdi-emf and DCOM

RPC examples, the 6 hour (21,600 sec.) time-limit is reached. For the rest, the generation time

ranges from under one minute for the GHttpd vulnerability upto 23 minutes for the Microsoft SQL

vulnerability. Most of the time (between 60% and 80% depending on the example) is spent by

the constraint extractor. The remaining columns show the number of tests in the exploration, the

average time per test in seconds, and the average size in Megabytes of the execution trace.
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Gener. Avg. test Trace
Program time # tests time size
Gdi-emf 21600 502 43.0 28.8
Gdi-wmf 98 6 16.3 3.0
DCOM RPC 21600 235 92.0 3.5
GHttpd 55 6 9.1 3.0
AtpHttpd 282 12 23.5 8.6
SQL Server 1384 11 125.8 27.5

Table 7.3: Performance evaluation. The genera-
tion time and the average test time are given in
seconds, and the trace size is given in Megabytes.
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Table 7.3: On the left, the format of the Gdi-
wmf exploit file. On the right the vulnerability
point reachability predicate.

Compared to Bouncer, where the authors also analyze the SQL Server and GHttpd vulnerabil-

ities, the signatures produced by Elcano have higher coverage (i.e., less false negatives) and are

smaller. For example, Bouncer spends 4.7 hours to generate asignature for the SQL Server vul-

nerability, and the generated signature only covers a fraction of all the paths to the vulnerability

point. In contrast, Elcano spends only 23 minutes, and the generated signature covers all input-

dependent branches to the vulnerability point. Similarly,for the GHttpd vulnerability the authors

stop the signature generation after 24 hours, and again the signature only covers a fraction of all

input-dependent branches to the vulnerability point, while Elcano generates a complete signature

that covers all input-dependent branches to the vulnerability point in under one minute (according

to the ShieldGen authors, who studied this vulnerability and had access to the source code).

7.5.3 Signatures

For the two vulnerabilities in open-source programs (GHttpd and AtpHttpd), we extract the perfect

signatures for the vulnerability through manual analysis of the source code. The results show that

Elcano’s VPRPs exactly match or are very close to the perfectones that we manually extract. For

AtpHttpd the signature misses one path to the vulnerabilitypoint where the server uses thestat

function to check whether a prefix of the URI field is a directory on disk. To add this constraint to

the final VPRP we could use a function summary for the stat function similar to the ones we used

in Chapter6 for the string functions. In that case the system that tests the signature would have

to be identically configured to the vulnerable system. Another approach would be to ignore such
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constraints that test local configuration, assuming they are always satisfied. Such approach makes

configuration easier but may introduce false positives. Forthe other signatures we compare with

previous results when available. Next, we detail the SQL Server and Gdi-wmf signatures.

SQL server. The parser returns that there are two fields in the seed exploit message: the Command

(CMD) and the Database name (DB). The protocol-level path predicate for the path corresponding

to the seed contains 7 constraints, which after simplification can be reduced to three. The explo-

ration covers the open edges of those 3 nodes and finds that none of the newly generated inputs

reaches the vulnerability point. Thus, no new paths are added to the exploration graph and the

VPRP is:

(FIELD CMD==4) ∧ (strcmp(FIELD DB,"") 6 =0) ∧ (strcasecmp(FIELD DB,"MSSQLServer") 6 =0).

In addition, the vulnerability condition for this vulnerability states that the length of the DB field

needs to be larger than 64 bytes [188], which makes the last two constraints in the VPRP redundant.

Thus, the final protocol-level signature would be:(FIELD CMD == 4) ∧ length(FIELD DB) > 64.

According to the ShieldGen authors, who had access to the source code, this would be a perfect

signature.

Gdi-wmf. Figure7.3shows on the left the field structure for the seed exploit file and on the right

the VPRP. The original protocol-level path-predicate contained the 4 aligned nodes on the left of the

graph, while the exploration discovers one new path leadingto the vulnerability point that introduces

the node on the right. The graph shows that the program checkswhether theVersion field is 0x300

(Windows 3.0) or 0x100 (Windows 1.0). Such constraint is unlikely to be detected by probing ap-

proaches, since they usually sample only a few values. In fact, in ShieldGen they analyze a different

vulnerability in the same library but run across the same constraint. The authors acknowledge that

they miss the second constraint of the disjunction. Thus, anattacker could easily avoid detection by

changing the value of the Version field. The vulnerability condition is ((2 · FIELD RSIZE) >> 2)

< 0 [188]. Thus, the final signature is:(FIELD HSIZE == 9) ∧ ((FIELD VERSION == 0x300) ∨

(FIELD VERSION == 0x100)) ∧ (FIELD FILESIZE ≥ 12) ∧ (FIELD RSIZE ≤ 8183) ∧ (((2 ·

FIELD RSIZE) >> 2) < 0).

7.6 Related Work

In this section, we present related work on automatic signature generation. We refer the reader to the

related work sections in earlier chapters for a descriptionof related research on symbolic execution

(Section5.7), automatic test case generation (Section6.6), compositional approaches to white-box

exploration (Section6.6), and automatic protocol reverse-engineering (Section3.8).
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Exploit-based signatures. Early works on automatic signature generation propose generating

exploit-based signatures using machine learning techniques that identify patterns in the observed

exploits [112, 105, 197, 159, 237, 118, 220]. However, exploit-based signatures are not guaranteed

to correctly describe the vulnerability, require a large set of attack samples, can introduce false

positives, and can be easily defeated with exploit variants. There is also work on using host infor-

mation to increase signature accuracy and generation speed[127, 120, 119, 233]. However, these

approaches only use limited host information, and still cannot model the vulnerability accurately.

Venkataraman et al. show the limits of using machine learning techniques for signature generation

in an adversarial environment [213].

Vulnerability-based signatures. A more recent line of work generates symbolic-execution based

vulnerability signatures directly from the vulnerable program binary [47,21,46,23]. The vulnerability-

based signatures are guaranteed to have no false positives by design. Vigilante uses dynamic sym-

bolic execution to produce signatures that are boolean predicates that cover a single path to the

vulnerability point [47]. Compared with Vigilante, Elcano also produces boolean predicates as sig-

natures but our signatures have higher coverage because they cover multiple execution paths to the

vulnerability point. Brumley et al. analyzes three types ofsignatures: Turing machines, boolean

signatures, and regular expressions, and demonstrates that a perfect vulnerability-based signature

must be in at least the same language class as the vulnerability language [21]. More recently, Brum-

ley et al. propose a static analysis technique based on weakest-precondition to generate boolean

signatures that cover multiple paths to the vulnerability point [23]. Our approach uses dynamic

analysis instead of static analysis and can achieve more precision in the presence of indirection,

pointers and loops.

Bouncer extends previous dynamic symbolic execution approaches that produce boolean pred-

icates on inputs as signatures [46]. Even though Bouncer makes improvements in increasing the

coverage of the generated signatures, it still suffers fromseveral limitations. First, it generates

byte-level signatures instead of protocol-level signatures. As a result, it is difficult for Bouncer to

handle evasion attacks using variable-length fields and field reordering. Second, Bouncer’s explo-

ration is inefficient and largely heuristic-based. As mentioned in their paper, the authors tried to use

white-box exploration to explore the program execution space to identify different paths reaching

the vulnerability point, but couldn’t make the approach scale to real-world programs and thus had to

resort to heuristics such as duplicating or removing parts of the input message or sampling certain

field values to try to discover new paths leading to the vulnerability point. To make white-box ex-

ploration feasible and effective, Elcano incorporates twoother key characteristics. It uses protocol

information to lift the byte-level path predicates to the protocol level, and it merges protocol-level

path predicates to avoid a search space explosion, since duplicated constraints can make the number
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of paths to explore exponential in the number of constraints, and much larger than the real number

of paths that exist in the program.

Protocol-level signatures. Shield proposes a framework for protocol-level vulnerability-based

signatures, which are created manually by modeling networkprotocols [218]. ShieldGen pro-

poses an approach to automatically generate such protocol-level signatures [55]. ShieldGen takes

a probing-based approach using protocol format information and does not use information about

the program execution. Using the given protocol format, it generates different well-formed vari-

ants of the original exploit using various heuristics and then checks whether any of the variants still

exploits the vulnerability. ShieldGen’s heuristics first assume that fields can be probed indepen-

dently, and then for fixed-length fields it samples just a few values of each field, checking whether

the vulnerability point is reached or not for those values. Probing each field independently means

that constraints involving multiple fields cannot be found.Probing only a few sample values for

each field is likely to miss constraints that are satisfied by only a small fraction of the field values.

Moreover, the type of constraints in ShieldGen are limited to either “a field has the same value as in

the seed exploit message” or “a field can have any value”. In contrast, our approach supports more

granular constraints such as “a field can have only values larger than five”. Compared to ShieldGen

our approach does not uses heuristics but uses white-box exploration to increase the coverage of the

signature, addressing the above limitations.

7.7 Conclusion

In this chapter we have proposed protocol-level constraint-guided exploration, an approach for auto-

matically generating vulnerability point reachability predicates, with application to signature gener-

ation, exploit generation and patch verification. Our approach produces high coverage, yet compact,

vulnerability point reachability predicates that capturemany paths to the vulnerability point and thus

are more difficult to evade using exploit variants.

Compared to previous white-box exploration approaches, protocol-level constraint-guided ex-

ploration provides two key characteristics to make the exploration scale to programs that parse

complex, highly-structured inputs such as protocols and file formats. First, our approach lifts the

byte-level path predicates in previous approaches to the protocol-level, so that they evaluate on

symbolic variables that represent the fields in the input. This lifting provides two main benefits. It

removes the parsing constraints that produce a huge amount of paths that otherwise would need to

be explored, greatly reducing the exploration space. In addition, it produces predicates that match

exploit variants that modify the field structure of an exploit, e.g., by increasing the size of the

variable-length fields or reordering the fields in the exploit message. Second, our approach merges



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERATION 185

protocol-level path predicates into a protocol-level exploration graph. Such merging removes re-

dundant constraints that otherwise would have to be explored. Without merging, the search space

could exponentially increase and become much larger than the real number of paths in the program.

We have applied our approach to generate signatures for 6 vulnerabilities on real-world pro-

grams. The generated vulnerability point reachability predicates achieve perfect or close-to-perfect

coverage. Using a 6 hour time limit for the exploration, our exploration generates a complete vul-

nerability point reachability predicate, covering all possible paths to the vulnerability point for 4

out of 6 vulnerabilities. In addition, the number of constraints in the resulting vulnerability point

reachability predicate is in most cases small, which makes them more suitable for human analysts.



Chapter 8

Stitched Vulnerability Discovery

8.1 Introduction

Vulnerability discovery inbenignprograms has long been an important task in software security:

identifying software bugs that may be remotely exploitableand creating program inputs to demon-

strate their existence. However, little research has addressed vulnerabilities inmalware. Do mali-

cious programs have vulnerabilities? Do different binaries of the same malware family share vulner-

abilities? How do we automatically discover vulnerabilities in malware? What are the implications

of vulnerability discovery in malware to malware defense, law enforcement and cyberwarfare? In

this chapter we take the first step toward addressing these questions. In particular, we propose new

symbolic reasoning techniques for automatic input generation in the presence of complex func-

tions such as decryption and decompression, and demonstrate the effectiveness of our techniques

by finding bugs in real-world malware. Our study also shows that vulnerabilities can persist for

years across malware revisions. Vulnerabilities in botnetclients are valuable in many applications:

besides allowing a third party to terminate or take control of a bot in the wild, they also reveal ge-

nealogical relationships between malware samples. We hopeour work will spur discussions on the

implications and applications of malware vulnerability discovery.

Dynamic symbolic execution techniques [106] have recently been used for a variety of in-

put generation applications such as vulnerability discovery [78, 33, 79], automatic exploit gener-

ation [22, 104], and finding deviations between implementations [20]. By computing symbolic

constraints on the input to make the program execution follow a particular path, and then solving

those constraints, dynamic symbolic execution allows a system to automatically generate an input to

execute a new path. Repeating this process gives an automatic exploration of the program execution

space. However, traditional dynamic symbolic execution isineffective in the presence of certain

common computation tasks, including the decryption and decompression of data, and the computa-

186
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tion of checksums and hash functions; we call theseencoding functions. Encoding functions result

in symbolic formulas that can be difficult to solve, which is not surprising, given that cryptographic

hash functions are designed to be impractical to invert [161]. Encoding functions are used widely

in malware as well as benign applications. In our experiments, the traditional dynamic symbolic

execution approach fails to explore the execution space of the malware samples effectively.

To address the challenges posed by the presence of encoding functions, we propose a new

approach,stitcheddynamic symbolic execution [27]. This approach first automatically identifies

potential encoding functions and their inverses (if applicable). Then it decomposes the symbolic

constraints from the execution, separating the constraints generated by each encoding function from

the constraints in the rest of the execution. The solver doesnotattempt to solve the (hard) constraints

introduced by the encoding functions. Instead it focuses onsolving the (easier) constraints from the

remainder of the execution. Finally, the approach re-stitches the solver’s output using the encoding

functions or their inverses, creating a program input that can be fed back to the original program.

For instance, our approach can automatically identify thata particular function in an execution is

performing a computation such as decrypting the input. Rather than using symbolic execution inside

the decryption function, it applies symbolic execution on the outputs of the decryption function,

producing constraints for the execution after the decryption. Solving those constraints generates

an unencrypted message. Then, it executes the inverse (encryption) function on the unencrypted

message, generating an encrypted message that can be fed back as the input to the original program.

More generally, we decompose two kinds of computations: serial computations that transform

data into a new form that replaces the old data (e.g., decompression and decryption), and side

computations that generate constraints that can be satisfied by choosing values for another part of the

input (e.g., checksums). For clarity, we explain our techniques in the context of dynamic symbolic

execution, but they equally apply to concrete fuzz testing [63,145] and taint-directed fuzzing [74].

Our stitched dynamic symbolic execution approach applies to programs that use complex en-

coding functions, regardless if benign or malicious. In this chapter, we use it to enable the first

automated study of bugs in malware. The closest previous work we know of has focused on find-

ing bugs on the remote administration tools that attackers use to control the malware, as opposed

to the malware programs themselves, running on the compromised hosts [179,64]. Using stitched

dynamic symbolic execution we find 6 new, remotely trigger-able bugs in 4 prevalent malware fam-

ilies that include botnet clients (Cutwail, Gheg, and MegaD) and trojans (Zbot). A remote network

attacker can use these bugs to terminate or subvert the malware. At least one of the bugs can be

exploited, e.g., by an attacker different than the botmaster, to take over the compromised host. To

confirm the value of our approach, we show that traditional white-box exploration would be unable

to find most of the bugs we report without the new techniques weintroduce.
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Malware vulnerabilities have a great potential for different applications such as malware re-

moval or cyberwarfare. Some malware programs such as botnetclients are deployed at a scale that

rivals popular benign applications. For instance, the recently-disabled Mariposa botnet was sending

messages from more than 12 million unique IP addresses at thepoint it was taken down, and stole

data from more than 800,000 users [45]. Our goal in this research is to demonstrate that finding

vulnerabilities in widely-deployed malware such as botnetclients is technically feasible. However,

the implications of the usage of malware vulnerabilities require more investigation. For example,

some of the potential applications of malware vulnerabilities raise ethical and legal concerns that

need to be addressed by the community. Thus, another goal of this research is to raise awareness and

spur discussion in the community about the positives and negatives of the different uses of malware

vulnerabilities.

The remainder of this chapter is organized as follows: Section 8.2 defines the problem we

address, Section8.3 describes our approach in detail, Section8.4 gives additional practical details

of our implementation, Section8.5describes our case studies finding bugs in malware, Section8.6

discusses the implications of our results, Section8.7 surveys related work, and finally, Section8.8

concludes.

8.2 Problem Definition & Approach Overview

In this section, we describe the problem we address and give an overview of our approach.

8.2.1 Problem Definition

Often there are parts of a program that are not amenable to dynamic symbolic execution. A class

of common culprits, which we callencoding functions, includes many instances of decryption, de-

compression, and checksums. For instance, consider the code in Figure8.1, which is an example

modeled after a botnet client. A C&C message for this botnet comprises 4 bytes with the mes-

sage length, followed by 20 bytes corresponding to a SHA-1 hash [161], followed by an encrypted

payload. The bot casts the received message into a message structure, decrypts the payload using

AES [57], verifies the integrity of the (decrypted) message body using the SHA-1 hash, and then

takes a malicious action such as sending spam based on a command in the message body. Dynamic

symbolic execution attempts to create a new valid input by solving a modified path predicate. Sup-

pose we run the program on a message that causes the bot to participate in a DDoS attack: at a high

level, the path condition takes the form

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧ m′[0] = 101 (8.1)
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1 struct msg {
2 long msg_len;
3 unsigned char hash[20];
4 unsigned char message[];
5 };
6 void process(unsigned char * network_data) {
7 unsigned char * p;
8 struct msg * m = (struct msg * ) network_data;
9 aes_cbc_decrypt(m->message, m->msg_len, key);

10 p = compute_sha1(m->message, m->msg_len);
11 if (memcmp(p, m->hash, 20))
12 exit(1);
13 else {
14 int cmd = m->message[0];
15 if (cmd == 101)
16 ddos_attack(m);
17 else if (cmd == 142)
18 send_spam(m);
19 / * ... * /
20 }
21 }

Figure 8.1: A simplified example of a program that uses layered input processing, including decryp-
tion (line 9) and a secure hash function for integrity verification (lines 10-12).

wherem andh1 represent two relevant parts of the program input treated assymbolic: m is the

encrypted payloadm->message , andh1 is the message checksumm->hash . Dec represents the

AES decryption, while SHA1 is the SHA-1 hash function. To seewhether it can create a message

to cause a different action, dynamic symbolic execution will attempt to solve the modified path

condition

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧ m′[0] 6= 101 (8.2)

which differs from the original in inverting the last condition.

However, solvers tend to have a very hard time with conditions such as this one. As seen by

the solver, the Dec and SHA1 functions are expanded into a complex combination of constraints

that mix together the influence of many input values and are hard to reason about [59]. The solver

cannot easily recognize the high-level structure of the computation, such as that the internals of the

Dec and SHA1 functions are independent of the parsing condition m′[0] 6= 101. Such encoding

functions are also just as serious an obstacle for related techniques like concrete and taint-directed

fuzzing. Thus, the problem we address is how to perform inputgeneration, using dynamic symbolic

execution, for programs that use encoding functions.
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Figure 8.2: Architectural overview of our approach. The gray modules comprise stitched dynamic
symbolic execution, while the white modules are the same as in traditional dynamic symbolic exe-
cution.

8.2.2 Approach Overview

We propose an approach ofstitcheddynamic symbolic execution to perform input generation in the

presence of encoding functions. The insight behind our approach is that it is possible to avoid the

problems caused by encoding functions, by identifying the (hard) constraints they introduce and

bypassing them to concentrate on the (easier) constraints introduced by the rest of the program.

Then, we can used concrete execution of the encoding functions and their inverses to re-stitch an

input. For instance, in the path predicate of formula8.2, the first and second constraints come from

encoding functions. Our approach can verify that those constraints are independent from each other

and from the message parsing process (exemplified by the constraint m′[0] 6= 101). Thus, those

two constraints can be decomposed, and the solver can concentrate on the remaining constraints.

Solving the remaining constraints gives a partial input in the form of a value form′, and our tool can

then re-stitch this into a complete program input by concretely executing the encoding functions or

their inverses, specificallyh1 as SHA1(m′) andm as Dec−1(m′).

Stitched dynamic symbolic execution. Figure8.2presents the architectural overview of our ap-

proach. Stitched dynamic symbolic execution comprises three modules: identification, decomposi-

tion, and re-stitching. The identification module finds the encoding functions present in a program

execution (such as decryption and checksums) and looks for any required inverses both in the ex-

ecution as well as in external sources that we describe in thenext paragraph. The identification

module can be run in each iteration of the exploration or onlyin a subset of iterations. We describe

the identification module in Section8.3.3. The decomposition and re-stitching modules run in every

iteration of the exploration. On each iteration, the decomposition module separates the constraints

in the path predicate into two groups: those introduced by the encoding functions and those intro-

duced by the rest of the execution. We describe the decomposition module in Section8.3.1. The
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decomposition module passes the constraints from the rest of the execution to the input generation

module, which is similar to the one in Chapters6 and7. The input generation module produces a

partial input that explores a new path inside the program’s execution. The re-stitching module takes

as input the partial input, as well as the encoding functionsand inverses from identification and

re-stitches the partial input into a complete program inputthat can be used to start another iteration

of the exploration. If as in Figure8.1 there are multiple layers of encoding functions, each layeris

decomposed in turn, and then the layers are re-stitched in reverse order. We describe the re-stitching

module in Section8.3.2.

Identifying encoding functions and their inverses. For identifying encoding functions, the iden-

tification modules performs a trace-based dependency analysis that is a general kind of dynamic

tainting. This analysis detects functions that highlymix their input, i.e., an output byte depends on

many input bytes. The intuition is that high mixing is what makes constraints difficult to solve. For

example, a block cipher in CBC mode highly mixes its input andthe constraints it introduces during

decryption are hard to solve, but a stream cipher does not mixits input and thus the constraints it

introduces can be easily solved. Although this may be counterintuitive, note that a stream cipher

such as RC4 decrypts the input by performing, for each input byte, an xor operation with a pseudo-

random key stream. For the solver, the pseudo-random key stream is concrete and thus it only needs

to revert a simple xor operation between the input and a constant. In other words, keys that are not

derived from the input are simply constants for the solver. Thus, our identification technique targets

encoding functions that highly mix their inputs.

In addition to the encoding functions, our approach may alsorequire their inverses (e.g., for

decryption and decompression functions). The intuition behind finding inverses is that encoding

functions and their inverses are often used in concert, so their implementations can often be found

in the same binaries or in widely-available libraries (e.g., OpenSSL [165] or zlib [240]). In this

chapter, we propose a technique that given a function, identifies whether its inverse is present in

a set of other functions. We detail the identification of encoding functions and their inverses in

Section8.3.3. We further discuss the availability of inverse functions in Section8.6.2.

8.3 Stitched Dynamic Symbolic Execution

In this section we describe the three modules that comprise stitched dynamic symbolic execution:

decomposition (Section8.3.1), re-stitching (Section8.3.2), and identification (Section8.3.3).
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Figure 8.3: On the left a graphical representation of the decomposition of our running example
in Figure8.1. The other two figures represent the two types of decomposition that our approach
supports: serial decomposition (B) and side-condition decomposition (C).

8.3.1 Decomposition

Decomposition is the process of breaking down a program intosmaller components. Figure8.3A

shows a decomposition diagram for our running example in Figure8.1, where components are rep-

resented by boxes and diamonds, and arrows represent the inputs and outputs of those components,

that is, the dependencies between components. Analyzing part of a program separately corresponds

to cutting the dependencies that link its inputs to the rest of the execution.

For a formula generated by symbolic execution, we can make part of the formula independent

by renaming the variables it refers to. Following this approach, it is not necessary to extract a com-

ponent as if it were a separate program. Our tool can simply perform dynamic symbolic execution

on the entire program, and achieve a separation between components by using different variable

names in some of the extracted constraints. We propose two generic forms of decomposition: serial

decomposition (Figure8.3B) and side-condition decomposition (Figure8.3C). For each form of de-

composition, we explain which parts of the program are identified for decomposition, and describe

what local and global dependency conditions are necessary for the decomposition to be correct.

Serial decomposition. The first style of decomposition our approach performs is between suc-

cessive components, in which the first layer is a transformation producing input to the second layer.

More precisely, it involves what we call asurjective transformation. There are two conditions that

define a surjective transformation. First, once a value has been transformed, the pre-transformed

form of the input is never used again. Second, the transformation must be an onto function: every

element in its codomain can be produced with some input. For example, if a functiony = x2 returns
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a signed 32-bit integer, the codomain contains232 elements. In that case, the image is a subset of the

codomain that does not include for example the value -1, as itis not a possible output of the func-

tion. In Figure8.3B, f1 is the component that must implement a surjective transformation. Some

examples of surjective transformations include decompression and decryption. The key insight of

the decomposition is that we can analyze the part of the program downstream from the transforma-

tion independently, and then simply invert the transformation to re-stitch inputs. For instance, in

the example of Figure8.1, the decryption operation is a surjective transformation that induces the

constraintm′ = Dec(m). To analyze the rest of the program without this encoding function, we

can just rename the other uses ofm′ to a new variable (saym′′) that is otherwise unconstrained, and

analyze the program as ifm′′ were the input. Bypassing the decryption in this way gives

h1 = SHA1(m′′) ∧ m′′[0] = 101 (8.3)

as the remaining path condition.

Side-condition decomposition. The second style of decomposition our approach performs sep-

arates two components that operate on independent parts of the same input. Intuitively, afree

side-conditionis a constraint on part of a program’s input that can effectively be ignored during

analysis of the rest of a program, because it can always be satisfied by choosing values for another

part of the input. We can be free to change this other part of the input if it does not participate

in any constraints other than those from the side-condition. More precisely, a program exhibiting a

free side-condition takes the form shown in Figure8.3C. The side-condition is the constraint that the

predicatep must hold between the outputs ofg1 andg2. The side-condition is free because whatever

valueInput1 takes,p can be satisfied by making an appropriate choiceInput2. An example of a

free side-condition is that the checksum computed over a program’s input (g1 applied onInput1)

must equal (p) the checksum field parsed from a message header (g2 applied onInput2). Note that

g2 is often the identity function but could also be another transformation.

To perform decomposition given a free side-condition, we simply replace the side-condition

with a value that is always true. For instance the SHA-1 hash of Figure 8.1 participates in a free

side-conditionh1 = SHA1(m′′) (assuming we have already decomposed the decryption function as

mentioned above). Buth1 does not appear anywhere else among the constraints, so we can analyze

the rest of the program as if this condition were just the literal true. This gives the path condition:

true∧ m′′[0] = 101 (8.4)
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Multiple encoding layers. If a program has more than one encoding function, we can repeat our

approach to decompose the constraints from each encoding function in turn, creating a multi-layered

decomposition. The decomposition operates from the outside in, in the order the encoding functions

are applied to the input, intuitively like peeling the layers of an onion. As shown, in the example of

Figure8.1, our tool decomposes first the decryption function and then the hash-checking function,

finally leaving only the botnet client’s command parsing andmalicious behavior for exploration.

8.3.2 Re-stitching

After decomposing the constraints, our tool solves the constraints corresponding to the remainder of

the program (excluding the encoding function(s)), as in non-stitched dynamic symbolic execution,

to give a partial input. The re-stitching step builds a complete program input from this partial input

by concretely execution encoding functions and their inverses. If the decomposition is correct,

such a complete input is guaranteed to exist, but we construct it explicitly so that the exploration

process can re-execute the program from the beginning. Oncewe have found a bug, a complete

input confirms (independent of any assumptions about the analysis technique) that the bug is real,

allows easy testing on other related samples, and is the firststep in creating a working exploit.

For serial decomposition, we are given an input tof2, and the goal is to find a corresponding

input tof1 that produces that value. This requires access to an inversefunction forf1; we discuss

finding one in Section8.3.3. (If f1 is many-to-one, any inverse will suffice.) For instance, in the ex-

ample of Figure8.1, the partial input is a decrypted message, and the full inputis the corresponding

AES-encrypted message.

For side-condition decomposition, the solver returns a value for the first part of the input that is

processed byg1 andg3. The goal is to find a matching value for the rest of the input that is processed

by g2, such that the predicatep holds. For instance, in Figure8.1, g1 corresponds to the function

compute_sha1 , g2 is the identity function copying the valuem->hash , andp is the equality

predicate. We find such a value by executingg1 forwards, finding a value related to that value by

p, and applying the inverse ofg2. A common special case is thatg2 is the identity function and the

predicatep is just equality, in which case we only have to re-rung1. For Figure8.1, our tool must

simply re-applycompute_sha1 to each new message.

8.3.3 Identification

In this section we address the question of how to automatically identify candidate decomposition

sites. Specifically, we first discuss how to identify encoding functions, then how to test if the

decomposition is possible, and finally how to find inverses ofthose encoding functions when needed.
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Identifying encoding functions. There are two properties of an encoding function that make it

suitable for decomposition and re-stitching. First, the encoding function should be difficult to reason

about symbolically. Second, the way the function is used should match one of the decomposition

patterns described in Section8.3.1. Our identification approach checks for these two properties.

An intuition that partially explains why many encoding functions are hard to reason about is that

they produce constraints that mix together many parts of theprogram input, which makes constraint

solving difficult. For instance, this is illustrated by a contrast between an encryption function that

uses a block cipher in CBC mode, and one that uses a stream cipher. Though the functions perform

superficially similar tasks, the block cipher encryption isa barrier to dynamic symbolic execution

because of its high mixing, while a stream cipher is not. Because of the lack of mixing, a constraint

solver can efficiently determine that a single plaintext byte can be modified by making a change

to the corresponding ciphertext byte. We use this intuitionfor detecting encoding functions for

decomposition: the encoding functions we are interested intend to mix their inputs. But we exclude

simple stream ciphers from the class of encoding functions we consider, since it is easy enough to

solve them directly.

For identifying encoding functions, we perform a trace-based dependency analysis that is a

general kind of taint propagation. Given the selection of any subset of the program state as a taint

source, the analysis computes which other parts of the program state have a data dependency on that

source. We can potentially track the dependencies of valueson any earlier part of the program state,

e.g., by treating every output of a function as a dependency (taint) source. But for this work we

confine ourselves to using the inputs to the entire program (i.e., from system calls) as dependency

sources. To be precise our analysis assigns an identifier to each input byte, and determines, for

each value in an execution, which subset of the input bytes itdepends on. We call the number of

such input bytes the value’staint degree. If the taint degree of a byte is larger than a configurable

threshold, we refer to it as high-taint-degree. We group together a series of high-taint-degree values

in adjacent memory locations as a single buffer; our decomposition applies to a single such buffer.

This basic technique could apply to buffers anywhere in an execution, but we further enhance

it to identify functions that produce high-taint-degree buffers as output. This has several benefits:

it reduces the number of candidate buffers that need to be checked in later stages, and in cases

where the tool needs to later find an inverse of a computation,it is convenient to search using a

complete function. Our tool considers a buffer to be an output of a function if it is live at the point

in time that a return instruction is executed. Also, to ensure we identify a function that includes the

complete encoding functionality, our tool uses the dependency analysis to find the first high-taint-

degree computation that the output buffer depends on, and chooses the function that encloses both

this first computation and the output buffer.
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In the example of Figure8.1, the output buffers ofaes_cbc_decrypt andcompute_sha1

would both be found as candidates by this technique, since they both would contain bytes that

depend on all of the input bytes (the final decrypted byte, andall of the hash value bytes).

This identification process may need to be run in each iteration of the exploration because new

encoding functions may appear that had not been seen in previous iterations. As an optimization,

the tool runs the identification on the first iteration of the exploration, and then, on each new iter-

ation, it checks whether the solver times out when solving any constraint. If it does, it re-runs the

identification on the current execution trace.

Checking dependence conditions. Values with a high taint degree as identified above are can-

didates for decomposition because they are potentially problematic for symbolic reasoning. But to

apply decomposition to them, they must also appear in a proper context in the program. Intuitively,

the structure of the program must be like those in Figure8.3B and Figure8.3C. To be more pre-

cise, we describe (in-)dependence conditions that limit what parts of the program may use values

produced by other parts of the program. The next step in our identification approach is to verify

that the proper dependence conditions hold (on the observedexecution). This checking is needed to

avoid improper decompositions, and it also further filters the potential encoding functions identified

based on taint degree.

Intuitively, the dependence conditions require that the encoding function be independent of the

rest of the program, except for the specific relationships weexpect. For serial decomposition, our

tool checks that the input bytes that were used as inputs to the surjective transformation are not used

later in the program. For example, if a program has the following code:

m’ = Dec(m);

if (m[0] == 5) && (m’[0] == 5) then {

process();

}

our approach flags that serial decomposition is not possiblebecause the inputm is used after it is

decrypted byDec. Otherwise the solver would return that in order to reach theprocess()function

bothm′[0] andm[0] need to have value 5 but it has no way of generating a program input m that

satisfies those two constraints since the relationship introduced byDec has been removed by the

decomposition step (and if it had not been removed it would beto difficult to reason about).

For side-condition decomposition, our tool checks that theresult of the free side-condition pred-

icate is the only use of the value computed from the main input(e.g., the computed checksum), and

that the remaining input (e.g., the expected checksum from aheader) is not used other than in the

free side-condition. Our tool performs this checking usingthe same kind of dynamic dependency
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analysis used to measure taint degree. In the example of Figure 8.1, our tool checks that the en-

crypted input toaes_cbc_decrypt is not used later in the program (it cannot be, because it is

overwritten). It also checks that the hash buffer pointed toby p is not used other than in thememcmp

on line 11, and that the bufferm->hash , containing the expected hash value, is not used elsewhere.

Identifying inverse functions. Recall that to re-stitch inputs after serial decomposition, our ap-

proach requires the inverses of surjective transformationfunctions. This requirement is reasonable

because surjective functions like decryption and decompression are commonly the inverses of other

functions (encryption and compression) that apply to arbitrary data. These functions and their in-

verses are often used in concert, so their implementations can often be found in the same binaries

or in publicly available libraries (e.g., [240,165]).

To locate the relevant inverse functions in the code being analyzed, as well as in publicly avail-

able libraries, we check whether two functions are each others’ inverses by random testing. Iff and

f ′ are two functions, and for several randomly-chosenx andy, f ′(f(x)) = x andf(f ′(y)) = y,

thenf andf ′ are likely inverses of each other over most of their domains.Supposef is the en-

coding function we wish to invert. Starting with all the functions from the same binary module that

were exercised in the trace, we infer their interfaces usingour BCR tool (described in Chapter4).

To prioritize the candidates, we use the intuition that the encryption and decryption functions likely

have similar interfaces. Note that here it does not matter the full semantics of the parameters, just

the syntax and the limited semantics we extract like pointers, lengths, and keys. For example, it

does not matter for an asymmetric function that the encryption takes as input the public key and the

decryption takes as input the private key; both are just considered keys. For each candidate inverse

g, we compute a 4-element feature vector counting how many of the parameters are used only for

input, only for output, or both, and how many are pointers. Wethen sort the candidates in increasing

order of the Manhattan distances (sum of absolute differences) between their features and those of

f .

For each candidate inverseg, we executef ◦ g andg ◦ f on k random inputs each, and check

whether they both return the original inputs in all cases. Ifso, we considerg to be the inverse off .

To match the output interface ofg with the input interface off , and vice versa, we generate missing

inputs either according to the semantics inferred by BCR (such as buffer lengths), or randomly;

if there are more outputs than inputs we test each possible mapping. Increasing the parameterk

improves the confidence in the resulting identification, butthe choice of the parameter is not very

sensitive: test buffers have enough entropy that even a single false positive is unlikely, but since

the tests are just concrete executions, they are inexpensive. If we do not find an inverse among the

executed functions in the same module, we expand the search to other functions in the binary, in

other libraries shipped with the binary, and in standard libraries.
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For instance, in the example of Figure8.1, our tool requires an AES encryption function to invert

the AES decryption used by the bot program. In bots, it is common for the encryption function to

appear in the same binary, since the bot often encrypts its reply messages with the same cipher, but

in the case of a standard function like AES we could also find the inverse in a standard library like

OpenSSL [165].

Once an inverse function is identified, we use BCR to extract the function [24]. The hybrid

disassembly technique used by BCR extracts the body of the function, including instructions that did

not appear in the execution, which is important because whenre-stitching a partial input branches

leading to those, previously unseen, instructions may be taken. We further discuss the availability

of inverse functions in Section8.6.2.

8.4 Implementation

In this section we provide some implementation details including the vulnerability detection tech-

niques we use and our Internet-in-a-Workstation environment.

Vulnerability detection. Our tool supports several techniques for vulnerability detection and re-

ports any inputs flagged by these techniques. It detects program termination and invalid memory

access exceptions. Executions that exceed a timeout are flagged as potential infinite loops. It also

uses TEMU’s taint propagation module to identify whether the input (e.g., network data) is used in

the program counter or in the size parameter of a memory allocation.

Decomposition and re-stitching details. Following the approach introduced in Section8.3.1, our

tool implements decomposition by making local modifications to the constraints generated from ex-

ecution, with some additional optimizations. For serial decomposition, it uses hooks (Section2.3.2)

to implement the renaming of symbolic values. As a further optimization, the hook temporarily dis-

ables taint propagation inside the encoding function so that no symbolic constraints are generated.

To save the work of recomputing a checksum on each iteration in the case of side-condition decom-

position, our tool can also directly force the conditional branch implementing the side condition to

take the same direction it did on the original execution.

Internet-in-a-workstation. We have developed an environment where we can run malware in

isolation, without worrying about the containment problem, i.e., without worrying about malicious

behavior leaking to the Internet. Many malware programs, e.g., bots, act as network clients that start

connections to remote C&C servers. Thus, the input that our tool needs to feed to the program in

each iteration is often the response to some request sent by the program.
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All network traffic generated by the program, running in the execution monitor, is redirected

to the local workstation in a manner that is transparent to the program under analysis. In addition,

we have developed two helper tools: a modified DNS server which can respond to any DNS query

with a preconfigured or randomly generated IP address, and a generic replay server. The generic

replay server takes as input an XML file that describes a network dialog as an ordered sequence

of connections, where each connection can comprise multiple messages in either direction. It also

takes as input the payload of the messages in the dialog. Sucha generic server simplifies the task

of setting up different programs and protocols. Given a network trace of the communication we

generate the XML file describing the dialog to explore, and give the replay server the seed messages

for the exploration. Then, at the beginning of each exploration iteration our tool hands new payload

files (i.e., the re-stitched program input) to the replay server so that they are fed to the network client

program under analysis when it opens a new connection.

8.5 Evaluation

This section evaluates our approach by finding bugs in malware that uses complex encoding func-

tions. It demonstrates that our decomposition and re-stitching approach finds some bugs in malware

that would not be found without it, and that it significantly increases the efficiency of the exploration

in other cases. It presents the malware bugs we find and shows that these bugs have persisted in the

malware families for long periods of time, sometimes years.

Malware samples. The first column of Table8.1 presents the four popular families of malware

that we have used in our evaluation. Three of them (Cutwail, Gheg, and MegaD) are spam bots,

while Zbot is a trojan used for stealing private informationfrom compromised hosts. All four

malware families act as network clients, that is, when run they attempt to connect to a remote C&C

server rather than opening a listening socket and awaiting for commands. All four of them use

encryption to obfuscate their network communication, avoid signature-based NIDS detection, and

make it harder for analysts to reverse-engineer their C&C protocol. Cutwail, Gheg, and MegaD

use proprietary encryption algorithms, while Zbot uses thewell-known RC4 stream cipher. In

addition to encryption, Zbot also uses an MD5 cryptographichash function to verify the integrity of

a configuration file received from the server.

Experimental setup. For each bot we are given a network trace of the bot communicating with

the C&C server, while it runs in a contained network. From thenetwork trace we extract an XML

representation of the dialog between the bot and the C&C server, as well as the payload of the

network packets in that dialog. This information is needed by the replay server to provide the correct



CHAPTER 8. STITCHED VULNERABILITY DISCOVERY 200

Name
Program Input size # Inst. Decryption Checksum/hash Runtime
size (KB) (bytes) (×103) Algorithm MTD Algo. MTD (sec)

Zbot 126.5 5269 1307.3 RC4-256 1 MD5 4976 92
MegaD 71.0 68 4687.6 64-bit block cipher 8 none n/a 105
Gheg 32.0 271 84.5 8-bit stream cipher 128 none n/a 5

Cutwail 50.0 269 23.1 byte-based cipher 1 none n/a 2

Table 8.1: Summary of the applications on which we performedidentification of encoding functions.
MTD stands for maximum taint degree.

sequence of network packets to the bot during exploration. For example, this is needed for MegaD

where the response sent by the replay server comprises two packets that need to be sent sequentially

but cannot be concatenated together due to the way that the bot reads from the socket. As a seed for

the exploration we use the same content observed in the dialog captured in the network trace. Other

seeds can alternatively be used. Although our setup can support exploring multiple connections,

we focus the exploration on the first connection started by the bot. For the experiments we run our

tool on a 3GHz Intel Core 2 Duo Linux workstation with 4GB of RAM running Ubuntu Server

9.04. The emulated guest system where the malware program runs is a Microsoft Windows XP SP3

image with 512MB of emulated RAM.

8.5.1 Identification of Encoding Functions and Their Inverses

The first step in our approach is to identify the encoding functions. The identification of the encod-

ing functions happens on the execution trace produced by theseed at the beginning of the explo-

ration. We set the taint degree threshold to 4, so that any byte that has been generated from 5 or

more input bytes is flagged. Table8.1summarizes the results. The identification finds an encoding

function in three of the four samples: Gheg, MegaD, and Zbot.For Cutwail, no encoding function

is identified. The reason for this is that Cutwail’s cipher issimple and does not contain any mix-

ing of the input, which is the property that our encoding function identification technique detects.

Without input mixing the constraints generated by the cipher are not complex to solve. We show

this in the next section. In addition, Cutwail’s trace does not contain any checksum functions. The

identification does not throw any false positives.

For Zbot, the encoding function flagged in the identificationcorresponds to the MD5 checksum

that it uses to verify the integrity of the configuration file it downloads from the C&C server. In

addition to the checksum, Zbot uses the RC4 cipher to protectits communication, which is not

flagged by our technique. This happens because RC4 is a streamcipher that does no mixing of the

input, i.e., it does not use input bytes to update its internal state, only the key which is a constant for

the solver. The input is simply combined with a pseudo-random keystream using bit-wise exclusive-
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or. Since the keystream is not derived from the input but froma key in the data section, it is concrete

for the solver. Thus, the solver only needs to invert the exclusive-or computation to generate an

input, which means that RC4 introduces no hard-to-solve constraints.

For the other two samples (Gheg and MegaD) the encoding function flagged by the identification

corresponds to the cipher. MegaD uses a 64-bit block cipher,which mixes 8 bytes from the input

before combining them with the key. Gheg’s cipher uses a one-byte key that is combined with the

first input byte to produce a one-byte output that is used alsoas key to encode the next byte. This

process repeats and the mixing (taint degree) of each new output byte increases by one. Neither

Gheg nor MegaD uses a checksum.

Once the encoding functions have been identified, our tool introduces new symbols for the

outputs of those encoding functions, effectively decomposing the constraints in the execution into

two sets and ignoring the set of hard-to-solve constraints introduced by the encoding function.

The results of our encoding function identification, for thefirst iteration of the exploration,

are summarized in Table8.1, which presents on the left the program name and program size, the

size of the input seed, and the number of instructions in the execution trace produced by the seed.

The decryption and checksum columns describe the algorithmtype and the maximum taint degree

(MTD) the algorithm produces in the execution. The rightmost column shows the runtime of the

identification algorithm, which varies from a few seconds toclose to two minutes. Because the

identification is reused over a large number of iterations, the amortized overhead is even smaller.

Identifying the inverse functions. For Gheg and MegaD, our tool needs to identify the inverse

of the decryption function so that it can be used to re-stitchthe inputs into a new program input for

another iteration. The encryption function for MegaD is thesame one identified in Chapter4 using

the technique that flags functions with a high ratio of bitwise and arithmetic instructions. We use it

to check the accuracy of our new identification approach.

As described in Section8.3.3, our tool extracts the interface of each function in the execution

trace that belongs to the same module as the decoding function, and then prioritizes them by the

similarity of their interface to the decoding function. Forboth Gheg and MegaD, the function with

the closest prototype is the encryption function, as our tool confirms by random testing withk = 10

tests. These samples illustrate the common pattern of a matching encryption function being included

for two-way communication, so we did not need to search further afield for an inverse.

8.5.2 Stitched vs. Non-Stitched

In this section we compare the number of bugs found by our toolwhen it uses decomposition and

re-stitching, which we callfull exploration, and when it does not, which we callvanilla exploration.
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Name
Vulnerability Disclosure Encoding Search time (min.)

type public identifier functions full vanilla

Zbot
Null dereference OSVDB-66499 [170] checksum 17.8 >600

Infinite loop OSVDB-66500 [169] checksum 129.2 >600
Buffer overrun OSVDB-66501 [168] checksum 18.1 >600

MegaD Process exit n/a decryption 8.5 >600

Gheg Null dereference OSVDB-66498 [167] decryption 16.6 144.5

Cutwail Buffer overrun OSVDB-66497 [166] none 39.4 39.4

Table 8.2: Description of the bugs our tool finds in malware. The column “full” shows the results
using stitched dynamic symbolic execution, while the “vanilla” column gives the results with tradi-
tional (non-stitched) dynamic symbolic execution. “>600” means the tool run for 10 hours and did
not find the bug.

Full exploration uses the identified decoding functions to decompose the constraints into two sets,

one with the constraints introduced by the decryption/checksum function and the other with the re-

maining constraints after that stage. In addition, each iteration of the MegaD and Gheg explorations

uses the inverse function to re-stitch the inputs into a program input. Vanilla exploration is compa-

rable to previous dynamic symbolic execution tools. In bothfull and vanilla cases, our tool detects

bugs using the techniques described in Section8.4.

In each iteration of the exploration, our tool collects the execution trace of the malware program

starting from the first time it receives network data. It stops the trace collection when the malware

program sends back a reply, closes the communication socket, or a bug is detected. If none of

those conditions is satisfied the trace collection is stopped after 2 minutes. For each collected

trace, our tool analyzes up to the first 200 input-dependent control flow branches and automatically

generates new constraints that would explore new paths in the program. It then queries STP to solve

each generated set of constraints, uses the solver’s response to generate a new input, and adds it

to the pool of inputs to test on future iterations. Because constraint solving can take a very long

time without yielding a meaningful result, our tool discards a set of constraints if STP runs out of

memory or exceeds a 5-minute timeout for constraint solving.

We run both vanilla and full explorations for 10 hours and report the bugs found, which are

summarized in Table8.2. Detailed descriptions of the bugs follow in Section8.5.3. We break the

results in Table8.2 into three categories. The first category includes Zbot and MegaD for which

full exploration finds bugs but vanilla exploration does not. Full exploration finds a total of 4 bugs,

three in Zbot and one in MegaD. Three of the bugs are found in under 20 minutes and the second

Zbot bug is found after 2 hours. Vanilla exploration does notfind any bugs in the 10-hour period.

This happens due to the complexity of the constraints being introduced by the encoding functions.
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In particular, using full exploration the 5-minute timeoutfor constraint solving is never reached and

STP never runs out of memory, while using vanilla exploration more than 90% of the generated

constraints result in STP running out of memory.

The second category comprises Gheg for which both vanilla and full explorations find the same

bug. Although both tools find the same bug, we observe that vanilla exploration requires almost ten

times as long as full exploration to do so. The cipher used by Gheg uses a one-byte hard-coded key

that is combined with the first input byte using bitwise exclusive-or to produce the first output byte,

that output byte is then used as key to encode the second byte also using bitwise exclusive-or and so

on. Thus, the taint degree of the first output byte is one, for the second output byte is two and so on

until the maximum taint degree of 128 shown in Table8.1. The high maximum taint degree makes

it harder for the solver to solve and explains why vanilla exploration takes much longer than full

exploration to find the bug. Still, the constraints introduced by the Gheg cipher are not as complex

as the ones introduced by the Zbot and MegaD ciphers and the solver eventually finds solutions for

them. This case shows that even in cases where the solver willeventually find a solution, using

decomposition and re-stitching can significantly improve the performance of the exploration.

The third category comprises Cutwail for which no encoding functions with high taint degree

are identified and thus vanilla exploration and full exploration are equivalent.

In summary, full exploration using decomposition and re-stitching clearly outperforms vanilla

exploration. Full exploration finds bugs in cases where vanilla exploration fails to do so due to the

complexity of the constraints introduced by the encoding functions. It also improves the perfor-

mance of the exploration in other cases were the encoding constraints are not as complex and will

eventually be solved.

8.5.3 Malware Vulnerabilities

In this section we present the results of our manual analysisto understand the bugs discovered by

our tool and our experiences reporting the bugs. Note that all vulnerabilities have been validated by

replaying the inputs found by the exploration to the bot programs and monitoring how they crash

the bot’s process. In addition, for the Zbot buffer overrun vulnerability we have created an exploit

that hijacks execution.

Zbot. Our tool finds three bugs in Zbot. The first one is a null pointerdereference. One of the

C&C messages contains an array size field, which the program uses as the size parameter in a call

to RtlAllocateHeap. When the array size field is larger than the available memoryleft in its local

heap, the allocation returns a null pointer. The return value of the allocation is not checked by the

program, which later attempts to write to the buffer, crashing when it dereferences the null pointer.
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The second bug is an infinite loop condition. A C&C message comprises of a sequence of

blocks. Each block has a 16-byte header and a payload. One of the fields in the header represents

the size of the payload,s. When the trojan program finishes processing a block, it iteratively moves

to the next one by adding the block size,s + 16, to a cursor pointer. When the value of the payload

size iss = −16, the computed block size becomes zero, and the trojan keeps processing the same

block over and over again.

The last bug is a stack buffer overrun. As mentioned above, a C&C message comprises of a

sequence of blocks. One of the flags in the block header determines whether the block payload is

compressed or not. If the payload is compressed, the trojan program decompresses it by storing

the decompressed output into a fixed-size buffer located on the stack. When the length of the

decompressed payload is larger than the buffer size, the program will write beyond the buffer. If

the payload is large enough, it will overwrite a function return address and can eventually lead to

control flow hijacking. Thus, this vulnerability is exploitable and we have successfully crafted a

C&C message that exploits the vulnerability and hijacks theexecution of the malware.

MegaD. Our tool finds one input that causes the MegaD bot to exit cleanly. We analyzed this

behavior using the MegaD grammar in AppendixA and found that the bug is present in the handling

of theping message (type0x27 ). If the bot receives a ping message and the bot identifier (usually

set by a previously received C&C message) has not been set, then it sends a replypongmessage

(type0x28 ) and terminates. This behavior highlights the fact that, inaddition to bugs, our stitched

dynamic symbolic execution can also discover C&C messages that cause the malware to cleanly

exit (e.g., kill commands), if those commands are availablein the C&C protocol. These messages

cannot be considered bugs but can still be used to disable themalware. They are specially interesting

because they may have been designed to completely remove alltraces of the malware running in the

compromised host. In addition, their use could raise fewer ethical and legal questions than the use

of an exploit would.

Gheg. Our tool finds one null pointer dereference bug in Gheg. The bug is similar to the one in

Zbot. One of the C&C messages contains an array size field, whose value is multiplied by a constant

(0x1e8) and the result used as the size parameter in a call toRtlAllocateHeap. The program does

not check the return value of the allocation and later writesinto the allocated buffer. When the array

size field value is larger than the available memory in its local heap, the allocation fails and a null

pointer is returned. The program fails to check that the returned value is a null pointer and tries to

dereference it.



CHAPTER 8. STITCHED VULNERABILITY DISCOVERY 205

Family MD5 First seen Reported by

Zbot
0bf2df85*7f65 Jun-23-09 Prevx
1c9d16db*7fc8 Aug-17-09 Prevx
7a4b9ceb*77d6 Dec-14-09 ThreatExpert

MegaD

700f9d28*0790 Feb-22-08 Prevx
22a9c61c*e41e Dec-13-08 Prevx
d6d00d00*35db Feb-03-10 VirusTotal
09ef89ff*4959 Feb-24-10 VirusTotal

Gheg

287b835b*b5b8 Feb-06-08 Prevx
edde4488*401e Jul-17-08 Prevx
83977366*b0b6 Aug-08-08 ThreatExpert
cdbd8606*6604 Aug-22-08 Prevx
f222e775*68c2 Nov-28-08 Prevx

Cutwail
1fb0dad6*1279 Aug-03-09 Prevx
3b9c3d65*07de Nov-05-09 Prevx

Table 8.3: Bug reproducibility across different malware variants. The shaded variants are the ones
used for exploration.

Cutwail. Our tool finds a buffer overrun bug that leads to an out-of-bounds write in Cutwail. One

of the received C&C messages contains an array. Each record in the array has a length field speci-

fying the length of the record. This field is used as the size parameter in a call toRtlAllocateHeap.

The returned pointer is appended to a global array that can only hold 50 records. If the array in

the received message has more than 50 records, the51st record will be written outside the bounds

of the global array. Near the global array, there exists a pointer to a private heap handle and the

out-of-bounds write will overwrite this pointer. Further calls toRtlAllocateHeapwill then attempt

to access the malformed heap handle, and will lead to heap corruption and a crash.

Reporting the bugs. We reported the Gheg bug to the editors of the Common Vulnerabilities

and Exposures (CVE) database [56]. Our suggestion was that vulnerabilities in malware should

be treated similarly to vulnerabilities in commercial or open source programs, of course without

reporting back to the developers. However, the CVE editors felt that malware vulnerabilities were

outside the scope of their database. Subsequently, we reported the Gheg vulnerability to the Open

Source Vulnerability Database (OSVDB) moderators who accepted it. Since then, we have reported

all other vulnerabilities except the MegaD one, which may beconsidered intended functionality by

the botmaster. Table8.2presents the public identifiers for the disclosed vulnerabilities. We further

address the issue of disclosing malware vulnerabilities inSection8.6.
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8.5.4 Bug Persistence over Time

Bot binaries are updated very often to avoid detection by anti-virus tools. One interesting question

is how persistent over time are the bugs found by our tool. To evaluate this, we retest our crashing

inputs on other binaries from the same malware families. Table 8.3shows all the variants, with the

shaded variants corresponding to the ones explored by our tool and mentioned in Table8.1.

We replay the input that reproduces the bug our tool found on the shaded variant on the rest of

variants from the same family. The bugs are reproducible across all the variants we tested. These

means for instance that the MegaD bug has been present for at least two years (the time frame cov-

ered by our variants). In addition, the MegaD encryption anddecryption functions (and the key they

use), as well as the C&C protocol have not changed, or barely evolved, through time. Otherwise

the bug would not be reproducible in older variants. The results for Gheg are similar. The bug re-

produces across all Gheg variants, although in this case ourmost recent sample is from November,

2008. Note that, even though the sample is relatively old it still works, meaning that it still connects

to a C&C server on the Internet and sends spam. For Zbot, all three bugs reproduce across all vari-

ants, which means they have been present for at least 6 months. These results are important because

they demonstrate that there are components in bot software,such as the encryption functions and

C&C protocol grammar, that tend to evolve slowly over time and thus could be used to identify the

family to which an unknown binary belongs, one widespread problem in malware analysis.

8.6 Discussion

In light of our results, this section provides additional discussion on the applications for the discov-

ered bugs and associated ethical considerations. Then, it presents a potential scenario for using the

discovered bugs, and describes some limitations of our approach.

8.6.1 Applications and Ethical Considerations

Malware vulnerabilities could potentially be used in different “benign” applications such as reme-

diation of botnet infestations, for malware genealogy since we have shown that the bugs persist

over long periods of time, as a capability for law enforcement agencies, or as a strategic resource in

state-to-state cyberwarfare [171]. However, their use raises important ethical and legal questions.

For example, there may be a danger of significant negative consequences, such as adverse effects to

the infected machines. Also, it is unclear which legal entity would perform such remediation, and

whether there exists any entity with the legal right to take such action. On the other hand, having a

potential avenue for cleanup and not making use of it also raises some ethical concerns since if such
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remediation were effective, it would be a significant service to the malware’s future third-party vic-

tims (targets of DDoS attacks, spam recipients, etc.). Suchquestions belong to recent and ongoing

discussions about ethics in security research (e.g., [62]) that have not reached a firm conclusion. In

our view, malware vulnerabilities are a capability that should only be used as a last resort when other

solutions such as detection and cleanup are not possible, perhaps because the infected computers

cannot be easily disconnected from the network or immediateaction is required.

Malware vulnerabilities could also be used for malign purposes. For instance, there are already

indications that attackers are taking advantage of known vulnerabilities in web interfaces used to

administer botnets to hijack each others’ botnets [58]. This raises concerns about disclosing such

bugs in malware. In the realm of vulnerabilities in benign software, there has been significant de-

bate on what disclosure practices are socially optimal and there is a partial consensus in favor of

some kind of “responsible disclosure” that gives authors a limited form of advance notice. How-

ever, it is not clear what the analogous best practice for malware vulnerabilities should be. We have

faced this disclosure issue when deciding whether to publicly disclose the vulnerabilities we found

and to which extent we should describe the vulnerabilities.We have decided in favor of disclos-

ing the vulnerabilities we found to raise awareness of the fact that such vulnerabilities exist and

can be exploited. We also believe further discussion on the proper avenue for disclosing malware

vulnerabilities would be beneficial.

Potential application scenario. While we have not used our crashing inputs on bots in the

wild, here we hypothetically discuss one possible scenarioof how one might do so. The malware

programs we analyze start TCP connections with a remote C&C server. To exploit the vulnerabilities

we have presented, we need to impersonate the C&C server and feed inputs in the response to the

initial request from the malware program. This scenario often happens during a botnet takedown,

in which law enforcement or other responding entities identify the IP addresses and DNS names

associated with the C&C servers used by a botnet, and appeal to relevant ISPs and registrars to

have them de-registered or redirected to the responders. The responders can then impersonate the

C&C server: one common choice is asinkhole serverthat collects statistics on requests but does

not reply. But such responders are also in a position to perform more active communication with

bots, and for instance vulnerabilities like the ones we present could be used for cleanup if the botnet

does not support cleanup via its normal protocol. For example, such a scenario happened recently

during the attempted MegaD takedown by FireEye [152]. For a few days FireEye ran a sinkhole

server that received the C&C connections from the bots. Thissinkhole server was later handed to

the Shadowserver Foundation [191].
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8.6.2 Limitations

We have found our techniques to be quite effective against the current generation of malware. But

since malware authors have freedom in how they design encoding functions, and an incentive to

avoid analysis of their programs, it is valuable to considerwhat measures they might take against

analysis.

Preventing access to inverses.To stitch complete inputs in the presence of a surjective transfor-

mation, our approach requires access to an appropriate inverse function: for instance, the encryption

function corresponding to a decryption function. So far, wehave been successful in finding such

inverses either within the malware binary, or from standardsources, but these approaches could

be thwarted if malware authors made different choices of cryptographic algorithms. For instance,

malware authors could design their protocols using asymmetric (public-key) encryption and digital

signatures. Since we would not have access to the private keyused by the C&C server, we could

not forge the signature in the messages sent to the bot. We could still use our decomposition and

re-stitching approach to find bugs in malware, because the signature verification is a basically a

free side-condition that can be ignored. However, we could only build an exploit for our modified

bot, as other bots will verify the (incorrect) signature in the message and reject it. Currently, most

malware does not use public-key cryptography, but that may change. In the realm of symmetric

encryption, malware authors could deploy different non-standard algorithms for the server-to-bot

and bot-to-server directions of communication: though nottheoretically infeasible, the construction

of an encryption implementation from a binary decryption implementation might be challenging to

automate. For instance, Kolbitsch et al. [109] faced such a situation in recreating binary updates for

the Pushdo trojan, which was feasible only because the decryption algorithm used was weak enough

to be inverted by brute force for small plaintexts.

Obfuscating encoding functions. Malware authors could potentially keep our tool from finding

encoding functions in binaries by obfuscating them. General purpose packing is not an obstacle to

our dynamic approach, but more targeted kinds of obfuscation would be a problem. For instance, our

current implementation recognizes only standard functioncalls and returns, so if a malware author

rewrote them using non-standard instructions our tool would require a corresponding generalization

to compensate. Further along the arms race, there are also fundamental limitations arising from

our use of a dynamic dependency analysis such as the use of implicit flows (e.g.,if (x == 1)

then y = 1 ) for obfuscation. Such limitations are similar to previously studied limitations of

dynamic taint analysis [34]. Other targeted evasion techniques could take advantage of our checks

for whether decomposition is possible by using the receivedencrypted data after decryption, so
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that our approach decides that serial decomposition is not possible. To partially handle this case

we could generalize our analysis to identify uses of the input that do nothing useful with it. In

addition, malware authors could add non-encoding functions with high ratios of arithmetic and

bitwise instructions to try to disguise the real encoding functions by increasing the number of false

positives of our detection technique.

8.7 Related Work

One closely related recent project is Wang et al.’s TaintScope system [219]. Our goals partially

overlap with theirs in the area of checksums, but our work differs in three key aspects. First, Wang

et al.’s techniques do not apply to decompression or decryption. Second, TaintScope performs

exploration based on taint-directed fuzzing [74], while our approach harnesses the full generality

of symbolic execution. (Wang et al. use symbolic execution only for inverting theencodingsof

checksums, i.e., simple transformations on the input checksum such as converting from little-endian

to big-endian or from hexadecimal to decimal, a task which istrivial in our applications.) Third,

Wang et al. evaluate their tool only on benign software, while we perform the first automated study

of vulnerabilities in malware.

The encoding functions we identify can also be extracted to be used elsewhere. Our BCR tool

(presented in Chapter4) as well as the Inspector Gadget [109] tool can be used to extract encryption

and checksum functionalities, including some of the same ones our tool identifies. This work uses

BCR’s interface identification techniques to compare the interfaces of functions while identifying

inverses. Inspector Gadget [109] can also perform so-called gadget inversion, which is useful for

the same reasons as we search for existing inverse functions. However, their approach does not

work on strong cryptographic functions.

Previous work has used alternative heuristics to identify cryptographic operations. For instance

ReFormat [221] proposes detecting such functions by measuring the ratio of arithmetic and bitwise

instructions to other instructions. We have extended the techniques in ReFormat in Section3.6. Our

use of taint degree as a heuristic in this chapter is more specifically motivated by the limitations of

symbolic execution: for instance a simple stream cipher would be a target of the previous approaches

but is not for this work.

Decomposition is a broad class of techniques in program analysis and verification, but most

previous decomposition techniques are symmetric in the sense that each of the sub-components of

the program are analyzed similarly, while a key aspect of ourapproach is that different components

are analyzed differently. In analysis and verification, decomposition at the level of functions, as in

systems like Saturn [231], is often called a compositional approach. In the context of tools based
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on dynamic symbolic execution, there is work on compositional approaches that performs dynamic

symbolic execution separately on each function in a program[76, 3]. Because this is a symmetric

technique, it would not address our problem of encoding functions too complex to analyze even in

isolation. More similar to our approach is grammar-based fuzzing [77, 25], an instance of serial

decomposition. However parsers require different specialized techniques than encoding functions.

8.8 Conclusion

We have presented a new approach, stitched dynamic symbolicexecution, to allow analysis in the

presence of complex functions such as decryption and decompression, that would otherwise be

difficult to analyze. Our techniques for automated identification, decomposition, and re-stitching

bypass encoding functions like decryption and hashing to find bugs in core program logic. Specifi-

cally, these techniques enable the first automated study of vulnerabilities in malware. Our tool finds

6 unique bugs in 4 prevalent malware families. These bugs canbe triggered over the network to

terminate or take control of a malware instance. They have persisted across malware revisions for

months, and even years. Our results demonstrate that findingvulnerabilities in malware is tech-

nically feasible. In addition, we start a discussion on the many still unanswered questions about

the applications and ethical concerns surrounding malwarevulnerabilities, an important security

resource.
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Chapter 9

Conclusion

9.1 Discussion

In this section we provide further discussion on the challenge of working with malware that uses

obfuscation to defeat analysis and some lessons learned on building an execution trace capture

infrastructure.

9.1.1 Evasion and the Malware Arms Race

While the techniques presented in this thesis apply to any program in binary form, one important

class of programs that we use to evaluate our techniques is malware. Automatic program binary

analysis techniques are specially well-suited for malwarebecause malware is only distributed in

binary form and is highly dynamic, with new malware familiesand versions being constantly intro-

duced, and polymorphic and metamorphic variants of each version generated on a daily (or hourly)

basis. However, working with malware poses some additionalchallenges compared with working

with benign programs.

One important challenge in working with malware is obfuscation because malware authors have

an incentive to avoid analysis of their programs. Thus, theyuse a wide array of obfuscation tech-

niques to complicate the analysis of their programs’ functionality and data. As it often happens in

security, there exists an arms race between new obfuscationtechniques being developed that take

advantage of limitations in state-of-the-art analysis, and new analysis techniques being deployed

to fix those limitations. For example, historically, malware writers have used encryption, polymor-

phism, metamorphism, and other obfuscation methods to protect their programs from anti-virus and

static analysis tools [206,42,216]. Those anti-static-analysis techniques do not hamper ourdynamic

analysis. Malware can target the limited coverage of dynamic analysis by employing trigger-based
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behaviors such as time or logic bombs, but white-box exploration techniques like the ones intro-

duced in Chapters6–7 can be used to increase the coverage of dynamic analysis and find such

behaviors. Sharif et al. propose using conditional code obfuscation to hamper analysis techniques

based on white-box exploration [192]. Their obfuscation technique leverages hashing and encryp-

tion to introduce hard-to-solve constraints for dynamic symbolic execution. However, in Chapter8

we have proposed stitched dynamic symbolic execution, a decomposition and re-stitching approach

that enables white-box exploration in the presence of complex encoding functions.

A fundamental premise of dynamic analysis is that the behavior to analyze can be observed

by running the program. At the time of writing, the main obfuscation technique used to defeat

dynamic analysis is stopping the execution or changing its behavior if a virtualized or emulated

environment is detected [37, 69]. Recent research has addressed how to identify and bypass such

anti-virtualization checks [101]. Another fundamental premise of our protocol reverse-engineering

and model extraction techniques is that we can learn the input structure or model a code fragment’s

behavior by monitoring its execution. However, if the code that we monitor does not correspond

to the code that implements the functionality under study (e.g., the parser or the content sniffing

algorithm), our results would be incorrect. Thus, another obfuscation vector is to translate a binary

program into an intermediate language (IL) and ship the IL version along with an abstract machine

or emulator that interprets it. With such approach, our analysis may extract information about

the emulator itself rather than the emulated program. Therealready exist commercial programs

that enable such obfuscation [41, 207, 215]. To defeat such obfuscation, we need to extract the

IL code that is executed, as well as its semantics (e.g., the mapping from IL instructions to x86

code) and perform our analysis using that information. Sharif et al. [193] have studied the problem

of automatic reverse-engineering a certain class of malware emulators. We believe more work is

needed to produce solutions that generalize to any class of malware emulators.

In the long run, we can expect that if the techniques presented in this thesis become prevalent,

malware authors may design obfuscations that specifically target our techniques. For example,

malware authors could design their code to be hard to reuse, by mixing unrelated functionality,

adding unnecessary parameters, or inlining functions, or they could design polymorphic protocols,

which constantly change structure. Although such arms racecan sometimes be disheartening for

a researcher, in this thesis we have found that malware is an excellent playground for applying

program analysis techniques because it quickly exposes limitations and hidden assumptions, making

the final proposed techniques and their implementations more robust.
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9.1.2 Instruction-Level Execution Traces

Our offline approach to dynamic program binary analysis requires capturing information logs during

execution. The most expensive of these logs to capture are execution traces because their size grows

linearly with the number of instructions executed. For long-running programs (e.g., network servers)

it is often not possible to capture execution traces of complete programs runs. In this thesis we have

focused on the analysis of specific security-relevant functionality in programs such as the code that

parses and builds protocol messages, cryptographic functions, and content-sniffing algorithms. Our

experience has been that, to obtain execution traces that capture the functionality of interest, an

execution trace capture infrastructure needs to provide fine-grained triggers that allow an analyst to

select when to start and stop trace capture.

One important design goal of an instruction-level execution trace capture infrastructure is to

minimize the amount of data that needs to be logged per executed instruction, without losing any

information about the execution. However, our experience and that of other related work [13],

shows that there exist numerous engineering issues that need to be addressed to obtain a balance

between the run-time and space constraints of execution trace collection and the speed of accessing

the information in the traces by external applications thatconsume them.

9.2 Conclusion

Closed-source programs are prevalent in computer systems.In this thesis we have developed dy-

namic program binary analysis techniques that enable an analyst, with no access to the program’s

source code, to extract the grammar of undocumented programinputs, to reuse fragments of binary

code, and to model security-relevant functionality directly from program binaries. We have applied

our techniques to enable and enhance a variety of security applications: active botnet infiltration,

deviation detection, finding filtering-failure attacks, vulnerability-based signature generation, and

vulnerability discovery.

To extract the grammar of undocumented program inputs, we have presented a new approach

for automatic protocol reverse-engineering that uses dynamic program binary analysis to reverse the

protocol from the binary of an application that implements it. When the protocol specification is not

available, the applications implementing the protocol arethe richest source of information about the

protocol. We have proposed dynamic analysis techniques formessage format extraction and field

semantics inference. Our techniques can extract the formatand semantics of the protocol messages

in both directions of the communication, even when an analyst has access only to the application

implementing one side of the communication. We have used ourprotocol reverse-engineering tech-

niques to extract the grammar of the previously undocumented, encrypted, C&C protocol used by

MegaD, a prevalent spam botnet.
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To reuse binary code, we have developed automatic techniques for identifying the interface and

extracting the instructions and data dependencies of a codefragment from a program binary. Our

techniques extract a fragment of binary code so that it is self-contained and can be reused by external

source code, independently of the rest of the functionalityin the program binary. We have applied

our binary code reuse techniques to extract cryptographic functions used by malware, including the

encryption, decryption, and key generation functions thatMegaD bots use to protect its C&C pro-

tocol. Using the C&C protocol grammar extracted by our protocol reverse-engineering techniques

and the cryptographic functions extracted by our binary code reuse techniques, we have enabled a

network intrusion detection system to decrypt a C&C messageflowing through the network, parse

the message contents, rewrite some fields in the message, re-encrypt it, and send it on the network.

We have used this enhanced network intrusion detection system to enable active botnet infiltration

by rewriting messages to convince the botmaster that a bot under our control can send spam, when

all the spam traffic sent by the bot is blocked, enabling us to log the spam-related information sent

by the botmaster.

To model security-relevant functionality we have proposedmodel extraction techniques that

work directly on program binaries. Our model extraction techniques use white-box exploration to

produce high coverage models of the functionality. We enhance previous white-box exploration

techniques in three ways. For programs that use strings, ourstring-enhanced white-box exploration

improves the exploration by reasoning directly on strings,rather than individual bytes that form the

strings. For programs that parse complex, highly-structured inputs, our protocol-level constraint-

guided exploration improves the exploration by using the protocol grammar to reason directly on

protocol fields rather than individual input bytes. For programs that use complex encoding functions

such as hashing or encryption, our stitched dynamic symbolic execution enables exploring beyond

those encoding functions and into the core functionality ofthe program. For this, it decomposes

the symbolic constraints into hard-to-solve constraints induced by the encoding functions and easier

constraints induced by the rest of the execution, solves theeasier constraints to obtain a partial input,

and re-stitches a complete input using the encoding functions and their inverses. We have used our

model extraction techniques to model security-relevant functionality on a variety of real-world pro-

grams that include malware, Web browsers, and network servers. Our models enable applications

such as finding deviations between two implementations of the same protocol, discovering content-

sniffing XSS attacks on Web applications, generating protocol-level vulnerability-based signatures,

and discovering vulnerabilities in malware.

Altogether, we have built a platform that provides protocolreverse-engineering, binary code

reuse, and model extraction modules of functionality for analyzing security-relevant code from

program binaries, as well as a variety of tools for dynamic program binary analysis. We have
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demonstrated the utility of our novel dynamic program binary analysis techniques and approaches

on a variety of real world security problems and provided a basis for further techniques to be built on

top of our work. We envision techniques that would address problems such as further integration of

dynamic and static analysis, deconstruction of the programinto functional components, fine-grained

analysis of the program state, and analysis of control dependence and implicit flows.
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MegaD BinPac grammar

type MegaD_Message(is_inbound: bool) = record {

msg_len : uint16;

encrypted_payload(is_inbound):

bytestring &length = 8 * msg_len;

} &byteorder = bigendian;

type encrypted_payload(is_inbound: bool) = record {

version : uint16; # Constant(0x0100 or 0x0001)

mtype : uint16;

data : MegaD_data(is_inbound, mtype);

};

# Known message types

type MegaD_data(is_inbound: bool, msg_type: uint16) =

case msg_type of {

0x00 -> m00: msg_0x0;

0x01 -> m01: msg_0x1;

0x02 -> m02: msg_0x2;

0x03 -> m03: msg_0x3;

0x04 -> m04: msg_0x4;

0x05 -> m05: msg_0x5;

0x06 -> m06: msg_0x6;

0x07 -> m07: msg_0x7;

0x09 -> m09: msg_0x9;

0x0a -> m0a: msg_0xa;

0x0d -> m0d: msg_0xd;

0x0e -> m0e: msg_0xe;

0x15 -> m15: msg_0x15;

0x16 -> m16: msg_0x16;

0x18 -> m18: msg_0x18;
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0x1c -> m1c: msg_0x1c(is_inbound);

0x1d -> m1d: msg_0x1d;

0x21 -> m21: msg_0x21;

0x22 -> m22: msg_0x22;

0x23 -> m23: msg_0x23;

0x24 -> m24: msg_0x24;

0x25 -> m25: msg_0x25;

0x27 -> m27: msg_0x27;

0x28 -> m28: msg_0x28;

default -> unknown : bytestring &restofdata;

};

type msg_0x0 = record {

msg0_type : uint8; # Type of message 0

msg0_data : MegaD_msg0(msg0_type);

};

# Direction: outbound (To: CC server)

# MegaD supports two subtypes for type zero

type msg_0x0 = record {

fld_00 : uint8; # <unknown>

fld_01 : MegaD_msg0(fld_00);

};

type MegaD_msg0(msg0_type: uint8) =

case msg0_type of {

0x00 -> m00 : msg_0x0_init;

0x01 -> m01 : msg_0x0_idle;

default -> unknown : bytestring &restofdata;

};

type msg_0x0_init = record {

fld_00 : bytestring &length=16; # Constant(0)

fld_01 : uint32; # Constant(0xd)

fld_02 : uint32; # Constant(0x26)

fld_03 : uint32; # IP address

pad : bytestring &restofdata; # Padding

};

type msg_0x0_idle = record {

fld_00 : bytestring &length=8; # Bot ID

fld_01 : uint32; # Constant(0)

pad : bytestring &restofdata; # Padding

};
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# Direction: inbound (From: CC server)

type msg_0x1 = record {

fld_00 : bytestring &length=16; # Cookie

fld_01 : uint32; # Sleep Timer

fld_02 : bytestring &length=8; # Bot ID

};

# Direction: inbound (From: CC server)

type msg_0x2 = record {

fld_00 : uint16; # <unknown>

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x3 = record {

fld_00 : uint32; # Cookie

fld_01 : bytestring &length=8; # Bot ID

};

# Direction: inbound (From: CC server)

type msg_0x4 = record {

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x5 = record {

fld_00 : uint32; # Error code

fld_01 : uint32; # Cookie

fld_02 : bytestring &length=8; # Bot ID

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x6 = record {

fld_00 : uint32; # Cookie

fld_01 : bytestring &length=8; # Bot ID

fld_02 : uint32; # Constant(0)

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0x7 = record {

pad : bytestring &restofdata; # Padding

};
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# Direction: outbound (To: CC server)

type msg_0x9 = record {

fld_01 : bytestring &length=8; # Bot ID

fld_02 : uint32; # Constant(0)

};

# Direction: inbound (From: CC server)

type msg_0xa = record {

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0xd = record {

fld_00 : uint32; # Cookie

fld_01 : uint32; # <unused>

fld_02 : uint16; # Length(fld_03)

fld_03 : bytestring &length=fld_02; # URL

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0xe = record {

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0x15 = record {

pad : bytestring &restofdata; # Padding

};

type host_info = record {

fld_00 : uint32; # CPU identifier

fld_01 : uint32; # Tick difference

fld_02 : uint32; # Tick counter

fld_03 : uint16; # OS major version

fld_04 : uint16; # OS minor version

fld_05 : uint16; # OS build number

fld_06 : uint16; # Service pack major

fld_07 : uint16; # Service pack minor

fld_08 : uint32; # Physical memory(KB)

fld_09 : uint32; # Available memory(KB)

fld_10 : uint16; # Internet conn. type

fld_11 : uint32; # IP address

};
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# Direction: outbound (To: CC server)

type msg_0x16 = record {

fld_00 : bytestring &length=8; # Bot ID

fld_01 : uint16; # Length(fld_02)

fld_02 : host_info; # Host information

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0x18 = record {

pad : bytestring &restofdata; # Padding

};

# Direction: inbound or outbound (Template server)

type msg_0x1c(is_inbound: bool) =

case is_inbound of {

true -> m1c_inbound : msg_0x1c_inbound;

false -> m1c_outbound : msg_0x1c_outbound;

};

# Direction: inbound (From: Template server)

type msg_0x1c_inbound = record {

fld_00 : uint32; # Stored data

fld_01 : uint32; # Length

fld_02 : uint32; # Length(fld_03)

fld_03 : bytestring &length = fld_02; # Compressed

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: Template server)

type msg_0x1c_outbound = record {

fld_00 : bytestring &length = 16; # Cookie

fld_01 : uint32; # Constant(0)

};

# Direction: outbound (To: Template server)

type msg_0x1d = record {

fld_00 : bytestring &length = 16; # Cookie

fld_01 : uint32; # Constant(0)

};
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# Direction: inbound (From: CC server)

type msg_0x21 = record {

fld_00 : uint32; # <unknown>

fld_01 : uint16; # Port

fld_02 : uint8[] &until($element == 0); # Hostname

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x22 = record {

fld_00 : bytestring &length=8; # Bot ID

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x23 = record {

fld_00 : uint32; # Error code

fld_01 : bytestring &length=8; # Bot ID

};

# Direction: inbound (From: CC server)

type msg_0x24 = record {

fld_00 : uint32; # IP address

fld_01 : uint16; # Port

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x25 = record {

fld_00 : bytestring &length=8; # Bot ID

pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)

type msg_0x27 = record {

pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)

type msg_0x28 = record {

fld_00 : bytestring &length=8; # Bot ID

pad : bytestring &restofdata; # Padding

};
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