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Abstract

In this thesis we develop techniques for analyzing secueligvant functionality in a program that
do not require access to the program’s source code, onlyg fainary form. Such techniques are
needed to analyze closed-source programs such as comirofi-tiee-shelf applications and mal-
ware, which are prevalent in computer systems. Our tecksigue dynamic: they extract informa-
tion from executions of the program. Dynamic techniquesageise because they can examine the
exact run-time behavior of the program, without the appr@tions that static analysis requires.

In particular, we develop dynamic program binary analyschhiques to address three prob-
lems: protocol reverse-engineering, binary code reus# navdel extraction. We demonstrate our
techniques on a variety of security applications includietive botnet infiltration, deviation detec-
tion, attack generation, vulnerability-based signatweeagation, and vulnerability discovery.

Protocol reverse-engineering techniques infer the granmhandocumented program inputs,
such as network protocols and file formats. Such grammarsrgyertant for applications like
network monitoring, signature generation, or botnet irdlon. When no specification is available,
rich information about the protocol or file format can be reeel from a program that implements
it. We develop a new approach to protocol reverse-engimgdrased on dynamic program binary
analysis. Our approach reverses the format and semantirstotol messages by monitoring how
an implementation of the protocol processes them. To defmaiaour techniques, we extract the
grammar of the previously undocumented C&C protocol uselflegaD, a prevalent spam botnet.

Binary code reuse techniques make a code fragment from agondgjnary reusable by external
source code. We propose a novel approach to automatic biodey reuse that identifies the inter-
face of a binary code fragment and extracts its instructams data dependencies. The extracted
code is self-contained and independent of the rest of thetibmality in the program. To demon-
strate our techniques, we use them to extract proprietypptagraphic routines used by malware
and show how those routines enable infiltrating botnetsubatencrypted protocols.

Model extraction techniques build a model of the functiggpabf a code fragment. Closed-
source programs often contain undocumented, yet seaeliyant, functionality such as filters or
proprietary algorithms. To reason about the security pt@seof such functionality we develop
model extraction techniques that work directly on progranaties. To produce models with high
coverage, we extend previous dynamic symbolic executicmnigues to programs that use string
operations, programs that parse highly structured inputs,programs that use complex functions
like encryption or checksums. We demonstrate the utilitpaf techniques to discover vulnera-
bilities in malware and use the extracted models to autaaltifind subtle content-sniffing XSS
attacks on Web applications, to identify deviations betwdidferent implementations of the same
functionality, and to generate signatures for vulnertiediin software.



Acknowledgements

Many people encouraged and supported this thesis. Foresnmst advisor, Dawn Song. She
gave me the opportunity to join her research group, supgaonigresearch interests, and made me
grow as a researcher. Her dedication and creativity arerafiftej and her passion for research and
good humor are contagious.

| am deeply grateful to Vern Paxson for his support and maipfliediscussions and feedback,
and to David Andersen and Adrian Perrig for serving on myithesmmittee and providing insight-
ful comments on this work and its presentation. | would ailse fo thank Christopher Kruegel and
Xuxian Jiang for their support and valuable comments onwtiois.

Many thanks are in order to all members of the Bitblaze teastudting Domagoj Babic, David
Brumley, Chia Yuan Cho, Steve Hanna, Ivan Jager, Noah Jahidin Gyung Kang, Zhenkai
Liang, Stephen McCamant, James Newsome, Pongsin PoosaRkatieek Saxena, and Heng Yin.
Whether it was by co-authoring papers or by providing hededback, and discussions, | am in-
debted to you all. | am also immensely grateful to Adam Bartd &hristian Kreibich for co-
authoring papers where some of the ideas in this thesis wst@fiblished.

Many other colleagues helped with parts of this thesis. Kkame due to Bryan Parno for his
help with this manuscript; Robin Sommer for providing a gtatone version of BinPac; Rhishikesh
Limaye, Susmit Jha, and Sanijit A. Seshia for their help ingiisg an abstract string syntax;
Fabrice Desclaux for his help with the binary code reuseggtpjVijay Ganesh and David Dill for
their support with STP; Edward Xuejun Wu for their help witlalmare vulnerabilities; and Rolf
Rolles, Weidong Cui, Chris Karlof, and Adrian Mettler forlwable comments on the papers that
shaped this thesis.

| am also indebted to Chenxi Wang and Christopher Olstonkfeir thelp at the beginning of
my Ph.D. studies, and to my co-authors Avrim Blum, TheochEampouris, Chris Grier, Shobha
Venkataraman, Jia Wang, and Jennifer Yates. Thanks arelaésto the La Caixa Foundation and
to AngelAlvarez, Gerald Q. “Chip” Maguire Jr., and Jose Luis FedgmSanchez, for helping me
get into graduate school.

My life in Berkeley and Pittsburgh was brightened by mangrds. Without you all, these six
years would not have been the same. | would particularly tikéhank Min, a great friend who
shared much time with me. | would also like to thank the peaplata Negra and Iberia-Berkeley
for building great communities that make us feel at home evaitay. And, many thanks to all my
old friends. One of the toughest parts of graduate schooltavhs away from you all.

Finally, | am indebted to my family. To my parents for theimavering support, to my brother
Alejandro, a great mentor and confident, and to my lovelyesistacarena. | am fortunate to have
your support regardless of where | go.



Contents

Introduction

Introduction

1.1 Introduction. . . . . . . . . L e

1.2 Applications and Techniques. . . . . . . . . . . . . . i
1.2.1 Active Botnet Infiltration. . . . . . . . ... ... .. L
1.2.2 Deviation Detection. . . . . . . . ...
1.2.3 Generating Filtering-Failure Attacks for Web Applions . . . . . . . ..
1.2.4 Protocol-Level Vulnerability-Based Signature Gatien . . . .. .. ..
1.25 FindingBugsinMalware. . . . .. .. ... ... ... .. .. .....

1.3 ThesisOutline . . . . . . . . e

Dynamic Program Binary Analysis

2.1 Introduction. . . . . . . .

2.2 BuildingBlocks. . . . . . . . e e e e

2.3 Execution Logs. . . . . . . . e e
231 TaintPropagation. . . .. .. ... .. . . ... .. ..
232 Tracecap. . . . . . i e e e e e

2.4 Offline Dynamic Analysis . . . . . . . . . . . . e
2.4.1 Trace-Based Techniques. . . . . . .. .. ... .. .. .. .. .....
2.4.2 IR-Based Techniques. . . . . . . . . . . . . . . . i

Protocol Reverse-Engineering

Protocol Reverse-Engineering
3.1 Introduction. . . . . . . . e e e e
3.2 Overview & Problem Definition. . . . . . . . . . . . . . ... ...

vi

10
13
17

21

24

25
25
27
30
30
31
33

34
36

39



3.2.1 Automatic Protocol Reverse-Engineering. . . . . . .. . ... ... .. 42

3.2.2 ProtocolElements. . . . . . ... 44
3.2.3 Problem Definition. . . . . . . ... o 47
3.24 Approach. . . . . . .. 48
3.3 Message Format Extraction for a Received Message . . . . . ... ... ... 50
3.3.1 Identifying Delimiters. . . . . . . . . .. ... . ... .. 51
3.3.2 ldentifying LengthFields. . . . . ... .. ... ... ... .. ..... 54
3.3.3 ldentifying Fixed-Length Fields . . . . .. .. .. ... ... ...... 56
3.4 Message Format Extraction foraSentMessage. . . . . . ... ... .. ... 57
3.4.1 Preparation. . . . . . . .. e e e e e 59
3.4.2 Buffer Deconstruction. . . . . .. ... ..o 59
3.4.3 Field Attributes Inference. . . . . . . . . . ... oo 63
3.5 Field Semantics Inference. . . . . . . . . . ... o 64
3.6 Handling Encryption. . . . . . . . . ... .. e 67
3.7 Evaluation. . . . . . . .. 69
3.7.1 EvaluationonMegaD. . . .. ... ... . ... ... 69
3.7.2 EvaluationonOpenProtocols. . . . . ... ... ... ... ...... 73
3.7.3 Detecting Encoding Functions. . . . . . ... ... ... ... ..., 76
3.8 RelatedWork. . . . . . . . . e 77
3.9 Conclusion . . . . ... 80
Binary Code Reuse 81
Binary Code Reuse 82
4.1 Introduction. . . . . . . . . 82
4.2 Overview & Problem Definition. . . . . . . .. .. ... ... . ... 85
421 OVEIVIEBW. . . o o e e e e e e e 85
4.2.2 Problem Definition. . . . . .. ... 86
4.2.3 SCOPE. . . o i e e e 87
424 Approach. . . . . . .. 88
4.3 Interface Identification. . . . . . . . . ... L 91
4.3.1 Identifying the Assembly Parameters from a FunctianR . . . . . . . . 92
4.3.2 Combining Assembly Parameters from Multiple Functuns . . . . . . 96
4.3.3 Identifying Parameter Semantics . . . . . .. .. ... ... ...... 96

4.4 Code EXxtraction . . . . . . . . e e e e e e 98



441 BodyExtraction. . . . . . .. .. . ... 98

442 CCodeGeneration. . . ... ... . . . 101
4.5 Evaluation. . . . . . . . e e e e 102
45.1 Rewriting MegaD’s C&C Protocal . . . . .. ... ... ... ...... 102
4.5.2 Rewriting Kraken's C&C Protocal . . . . . ... .. ... ... ..... 105
4.5.3 Reusing Binary Code that is not an Assembly Function. . . . . .. .. 105
4.5.4 Quantitative Summary of Function Extraction . . . . . ... ... ... 106
455 Software-based FaultIsolation. . . . . . ... ... ... ........ 107
4.6 Related Work. . . . . . . . . e 108
4.7 Conclusion . . . . . . e e 111
Model Extraction 112
Deviation Detection 113
5.1 Introduction. . . . . . . . . . e e e e e e 113
5.2 Problem Definition & Approach Overview. . . . . . ... ... ... ...... 115
5.2.1 Model Extraction. . . . . . . . . . . . . ... e 115
5.2.2 Problem Definition. . . . . . .. ... .. . 117
5.2.3 Approach. . . . . . . . .. 118
5.3 Extracting Single-Path Models . . . . . . .. .. .. ... ... ... ...... 120
5.3.1 Building the Symbolic Path Predicate. . . . . .. ... ... ...... 120
5.3.2 Memory Reads and Writes using Symbolic Addresses. . . . . .. .. 121
5.4 Deviation Detection & Validation . . . . . ... ... ... ... ......... 122
5.4.1 DeviationDetection. . . . . . . .. . .. ... e 123
5.4.2 Validation. . . . . . . . . .. e 123
5.5 Evaluation. . . . . . . . . e 124
5.5.1 DeviationsinWebServers. . . .. .. ... ... ... . 0o 125
5.5.2 DeviationsinTime Servers. . . . . . . . . i i i it 128
55,3 Performance. . . . . . . ... 129
5.6 DISCUSSION . . . . . . . e e e 130
5.7 Related Work. . . . . . . . . e e e 131
5.8 Conclusion . . . . . . . e e e e e e 132
Filtering-Failure Attack Generation 134
6.1 Introduction. . . . . . . . . . e e e e 134

6.2 Content-Sniffing XSS attacks. . . . . . . .. . ... o oo 136



6.2.1 Background . . . . . ... e 136

6.2.2 Content-Sniffing XSS Attacks . . . . . .. .. .. ... ... ...... 137
6.3 Problem Definition and Approach Overview. . . . . . . . . ... ... ... .. 138
6.3.1 Problem Definition. . . . . . . .. ... 138
6.3.2 Runningexample . . . . . . . . ... e 139
6.3.3 Approach. . . . . . ... 140
6.4 String-Enhanced White-Box Exploration . . . . . .. .. ... ... ...... 142
6.4.1 Generating the String-Enhanced Path Predicate . . . . . . . ... .. 143
6.4.2 TheAbstract StringSyntax. . . . . . . ... ... ... ... ...... 145
6.4.3 Solvingthe Constraints. . . . . . . . .. .. ... .. .. .. .. ..., 148
6.4.4 InputGeneration. . . . . . .. . . . . ... e 150
6.5 Evaluation. . . . . . . . . . 151
6.5.1 Setup. . . . .. e e 151
6.5.2 Model Extraction. . . . . . . . .. ... 152
6.5.3 Coverage. . . . . . .. e e 153
6.5.4 Finding Content-Sniffing XSS Attacks. . . . . .. ... ... .. .... 154
6.5.5 Concrete Attacks . . . . . . ... 156
6.6 Related Work. . . . . . . . . . e 158
6.7 Conclusion . . . . . . .. e 160
Protocol-Level Vulnerability Signature Generation 162
7.1 Introduction. . . . . . . . 162
7.2 Problem Definition and Approach Overview. . . . . . .. ... ... ...... 165
7.2.1 Problem Definition. . . . . . . ... o 165
7.2.2 RunningExample. . . . .. .. ... .. . e 166
7.2.3 Approach. . . . . .. 167
7.2.4 Architecture Overview. . . . . . . . . . . . e 169
7.3 Extracting the Field Constraint Chain . . . . . . ... ... ... ........ 170
7.3.1 The Field Condition Generator. . . . . . ... ... ... ........ 171
7.3.2 The Field Condition Generalizer. . . . . . ... .. ... .. ...... 172
7.4 The ExplorationModule. . . . . . .. .. .. . .. .. .. .. 173
7.4.1 Merging Execution Paths into the Protocol-Level Bxation Graph. . . . 174
7.4.2 GeneratingaNewlnput . . .. .. ... ... ... ... ... ..... 176
7.4.3 Extracting the Vulnerability Point Reachability Bieate . . . . . . . . . . 178
7.5 Evaluation. . . . . . .. 178

7.5.1 Removingthe ParsingConstraints . . . . . ... ... ......... 179



7.5.2 ExplorationResults. . . .. .. .. ... ... o 180

7.5.3 Signatures . . . . . . . e e e e e e 181
7.6 Related Work. . . . . . . . . e e e 182
7.7 CoNnClUSION . . . . . . e e e e e e 184
8 Stitched Vulnerability Discovery 186
8.1 Introduction. . . . . . . . . e e e e 186
8.2 Problem Definition & Approach Overview. . . . . . . ... ... ... ..... 188
8.2.1 Problem Definition. . . . . . . ... ... .. . 188
8.2.2 Approach Overview. . . . . . . . . . . e 190
8.3 Stitched Dynamic Symbolic Execution. . . . . . .. ... ... ... ...... 191
8.3.1 Decomposition. . . . . . . .. e 192
8.3.2 Re-stitching . . . . .. . . .. . . . .. e 194
8.3.3 Identification. . . . . . . ... . e 194
8.4 Implementation. . . . . . . ... 198
8.5 Evaluation. . . . . . . . .. 199
8.5.1 Identification of Encoding Functions and Their Inesrs. . . . . . . . .. 200
8.5.2 Stitched vs. Non-Stitched . . . . . .. .. ... ... ... ....... 201
8.5.3 Malware Vulnerabilities. . . . . . . .. ... ... L L 203
8.5.4 BugPersistenceoverTime. . . . . .. .. .. ... .. ... ... 206
8.6 DISCUSSION . . . . . . . e e 206
8.6.1 Applications and Ethical Considerations . . . . .. ... ........ 206
8.6.2 Limitations. . . . . . . . . . . . e 208
8.7 Related Work. . . . . . . . . e e 209
8.8 Conclusion . . . . . . . e e e e 210
V  Conclusion 211
9 Conclusion 212
9.1 DISCUSSION . . . . . . e e e e e 212
9.1.1 Evasion and the Malware ArmsRace. . . . . .. .. ... ... .... 212
9.1.2 Instruction-Level Execution Traces . . . . . . .. . . .. .. .. .... 214
9.2 CoNnClusIoN . . . . . . e e 214

Appendices



A MegaD BinPac grammar 217



List of Tables

3.1
3.2
3.3

3.4
3.5

Field attributes used in this thesis. Each attributéucap a property of the field.. 44
Protocol Data Units (PDUs) for the different networklagers. . . . . . ... .. 45
Field semantics identified by Dispatcher for both remg¢@nd sent messages. Stored
data represents data received over the networkvaitten to the filesystem or the
Windows registry, as opposed to da¢adfrom those sources.. . . . . . ... .. 66
Different programs used in our evaluation on open pa$oc. . . . . . . . . . .. 72
Comparison of the message field tree for sent messagastextby Dispatcher and
Wireshark 1.0.5. The ICQ client used is Pidging andL ; are the set of leaf fields
output by Wireshark and Dispatcher respectively, whilg and Hp are the sets of
record (hierarchical) fieldsz, and EX denote the set of errors in leaf field output

by Wireshark and Dispatcher, Whi[évlf, and £ denote the set of errors in record

filelds. . . . . . e 72
3.6 Comparison of the message field tree for received messagacted by Dispatcher

and Wireshark 1.2.8. The ICQclientisTinylCQ. . . . . .. ... ... ..... 74
3.7 Evaluation of the detection of encoding functions. ¥alin parentheses represent

the numbers of unique instances. False positives are ceahfnatsed on manual

verification. . . . . . L. 76
4.1 Summary of parameter identification process forafonatun. . . . . .. .. .. 94
4.2 Evaluation results. At the top are the functions ex¢é@cturing the end-to-end ap-

plications and at the bottom some additional functionsaetéd from the OpenSSL

lbrary. . . . . e e e 106
5.1 Different server implementations used in our evalumatio . . . . ... ... ... 124

Xii



5.2

5.3
54

6.1
6.2
6.3
6.4
6.5

7.1
7.2

7.2

7.3

7.3

8.1

8.2

8.3

Summary of deviations found for the HTTP servers, incdgdhe number of candi-
date input queries requested to the solver and the numbewvaitobns found. Each
cell represents the results from one query to the solver ackl guery to the solver
handles half of the combined predicate for each server par.example Case 3
shows the results when querying the solver (fdfy; A =M ,4) and the combined

predicate for the Apache-MiniWeb pair is the disjunctiorCafses 1and 3.. . . . 126
Execution time and predicate size obtained during theéetextraction phase. . . 130
Execution time needed to calculate a candidate dewiatjmut for each server pair. 130
Abstract string syntax.. . . . . . . . . .. 146
Translation of string constraints to the abstractgtsyntax. . . . . .. .. .. .. 147
Predicate translation. For simplicity, the negatiothefabove predicates is not show48
Model statistics. . . . . . . . . .. 152
Number of MIME types for which a chameleon is possibletiier different combi-
nations of content-sniffing algorithms and upload filters.. . . . . . . ... ... 155
Vulnerable programs used in the evaluation. . . . . . ... ... ........ 179
Constraint extractor results for the first test, inahgdthe number of constraints

in the protocol-level path-predicate and the number of irim@ constraints after
parsing constraints have beenremoved.. . . . . . . ... ... ... ... ... 179
Exploration results, including whether all open edgethe protocol-level explo-
ration graph were explored and the number of constraintairenyg in the vulnera-

bility point reachability predicate.. . . . . . . . . ... ... ... . ... 179
Performance evaluation. The generation time and thegedest time are given in
seconds, and the trace size is given in Megabytes.. . . . . . .. ... ... .. 181
On the left, the format of the Gdi-wmf exploit file. On thght the vulnerability

point reachability predicate.. . . . . . . . . ... 181

Summary of the applications on which we performed idieation of encoding
functions. MTD stands for maximum taintdegree. . . . . . .. ... ... ... 200
Description of the bugs our tool finds in malware. The woiu‘full” shows the
results using stitched dynamic symbolic execution, wihige"vanilla” column gives

the results with traditional (non-stitched) dynamic sytibexecution. “~600"

means the tool run for 10 hours and did notfind the bug. . . . . . . ... ... 202
Bug reproducibility across different malware variantse shaded variants are the
ones used forexploration.. . . . . . . .. ... . ... 205



List of Figures

1.1
1.2
1.3
1.4
1.5

1.6

2.1

2.2
2.3

2.4

2.5

2.6

Techniques summary.. . . . . . . . . e e e 4
Applications summary. . . . . . . . . .. e e e 5
Deviations occur when the inputs that produce statean implementatior?; do

not exactly match the inputs that produce staite another implementatiof,. . . 11
A chameleon PostScript document that Internet Explotezats as HTML.. . . . 14
The vulnerability point reachability predicate (VPRRBptures the inputs that reach

the vulnerability point. A vulnerability-based signatusethe conjunction of the

VPRP and the vulnerability condition (VC). . . . . . .. . ... ... ...... 17
Common input processing. Current input generationnigcies have trouble creat-
ing inputs that reach the processingstage. . . . . .. ... ... ........ 21

Architecture of the execution monitor used to generageexecution logs. The

modules in gray were previously available. . . . . . ... ... ... ...... 28
Vine architecture. Gray modules were previously algla. . . . . . .. .. ... 29
A snippet of x86 code corresponding to the handling of & Piresponse by the
Internet Explorer 7 Web browser.. . . . . . .. ... L Lo 31

The translation of the second instruction in Figure B8 the Vine intermediate
language [19]. Each variable and constant value is folloavedlon and its type.

The type indicates the size of the variable (e.g., reff® one byte and reg32for
fourbytes). . . . . . . e 34
Slicing example. On the left an extended version of thexeton trace shown in
Figure 2.3. On the right, the slice for the ECX register atringdion 7, which
captures all instructions involved in producing the valfithe ECX register at that

INSErUCLION. . . . . . . e 37
Formula for the symbolic branch condition correspogdinthe conditional jump
iNFigure 2.3, . . . . . . e e e 38

Xiv



3.1 Message field tree for the HTTP request on the upper lefieco The upper right
corner box shows the attribute list for one of the delimiters . . . . . .. .. ..
3.2 Partial HTTP protocol grammar from RFC 2616 [65]. . . . . . ... ... ...
3.3 Message format extraction for received messages. . . . . . . . ... ... ..
3.4 Partial token table for the HTTP requestin Figure 3.1.. . . . . . .. ... ...
3.5 Partial message field tree generated by inserting ttas fagrived by identifying
delimiters using the token table in Figure 3.4 intoanemmg.t. . . . .. .. ..
3.6 Lengthfieldexample. . . . . . . . . . . . . . .. .. . e
3.7 Message field tree for the MegaD Host-Information messag . . . . . ... ..
3.8 Message format extraction for sentmessages.. . . . . . . . .. .. ... ...
3.9 Buffer deconstruction for the MegaD message in FigufeBach box is a memory

buffer starting at addresB,. with the byte length in brackets. Note the similarity

with the upside-down version of Figure 3.7.. . . . . . . . . .. ... ......
3.10 Dependency chain fd#; in Figure 3.9. The start addressBfis A.. . . . .. ..
3.11 The four server types that a MegaD bot communicates Viitle figure shows for
each server the communication protocol used between tharabthe server, the
main use of the server, and how the bot locates theserver.. . . . . ... ...
3.12 Message field tree for a simple HTTP response output bgshérk. The dotted
nodes are fields that Wireshark does notoutput. . . . . . .. ... ... .. ..

4.1 BCR architecture. The core of BCR are the interface ifiesion and code extrac-
tion modules in gray. The execution module and the disaseerale previously-
available building blocks described in Chapter 2. The sditginference module
was detailed in Chapter 3.. . . . . . . . . . .. . ...

4.2 Running example. At the top, the source for émecode function. Below, the
extracted assembly function. The boxes indicate changihe tassembly code. .

4.3 Architecture of the code extraction module.. . . . . . ... ... ... .....

5.1 On the left, the control-flow graph of a program. On théti¢gwo different execu-
tion paths in the program that end up in the same output s&tee two different
paths can end up in the same output state, the validatiore iexks whether the
new execution path truly ends up in a different state.. . . . . . ... ... ...

5.2 Overview of our deviation detection approach.. . . . .. .. ... ... ....

5.3 One of the original HTTP requests we used to generatauggadraces from all
HTTP servers, during the model extractionphase.. . . . .. ... ... .. ..

54

59
62

70

74



5.4

5.5

5.6

5.7

6.1

6.2

6.3
6.4

6.5
6.6

7.1
7.2

7.3

Example deviation found for Case 3, where MiniWeb’s mate is satisfied while
Apache’s isn't. The figure includes the candidate deviaitigut being sent and the
responses obtained from the servers, which show two diffenetput states. . . . 126
Example deviation found for Case 4, where MiniWeb's &t is satisfied while
Savant’s isn’'t. The output states show that MiniWeb acct#pmsnput but Savant
rejects it with a malformed response.. . . . . . . .. . . ... .. ... ... 127
Another example deviation for Case 4, between MiniWet Savant. The main
different is on byte 21, which is part of the Version string. this case MiniWeb
accepts the request but Savantrejects.it. . . . . . .. ... ... ... ... 127
Example deviation obtained for the NTP servers. Itidekithe original request sent

in the model extraction phase, the candidate deviationtioptput by the solver,

and the responses received from the servers, when repldngr@andidate deviation
input. Note that the output states are different since Me¢Tdoes send a response,
while Ntpddoesnot. . . . . . . . . . . . . . . . e 128

An example content-sniffing XSS attack on Wikipedia antgser of Internet Ex-
plorer 7. The numbered boxes show the sequence of eventse &jtacker uploads
a GIF/HTML chameleon to Wikipedia, 2) the user request tlee 8) the Web server
delivers the content, and 4) the browser treats the chamele& TML and runs the

attacker's JavaScript. . . . . . .. e e e e 138
Our running example, a simple content-sniffing algamitthat takes as input the
proposed MIME type and the raw data, and returns a suggesté&Eype. . . . . 140
White-box exploration.. . . . . . . . . . .. .. . 141
String-Enhanced White-box exploration. The gray mesldiave been modified

from the standard white-box exploration. . . . . . .. .. ... ... ...... 142
A complete input with the input strings highlighted.. . . . . . .. .. ... ... 150

String-enhanced white-box exploration versus bytetle/hite-box exploration on
the Safari 3.1 content-sniffing algorithm. Each curve repngs the average number
of blocks discovered for 7 exploration runs each startiognfa different seed and

running for6 hours.. . . . . . . . .. e 154
Ourrunning example. . . . . . . . . . e 166
Elcano architecture overview. The darker color modateggiven, while the lighter

color components have been designed and implemented iwdhis . . . . . . . . 170

Constraint Extractor Architecture. The darker colordoie is given, while the
lighter color components have been designed and implechémtlis work. . . . . 171



7.4

7.5

7.6

8.1

8.2

8.3

Exploration module architecture. The darker color n@dugiven, while the lighter
color components have been designed and implemented iwdhis . . . . . . . . 174
An example exploration graph for our running exampleteNbat nodes B, C, and
D all have open edges because their false branches haveti@ereexplored. . . 175
Building the protocol-level exploration graph for ounning example. . . . . . . 177

A simplified example of a program that uses layered inpotgssing, including
decryption (line 9) and a secure hash function for integrésification (lines 10-12).189
Architectural overview of our approach. The gray modwdemprise stitched dy-
namic symbolic execution, while the white modules are thaesas in traditional
dynamic symbolic execution. . . . . . . . ... 190
On the left a graphical representation of the decompasitf our running example

in Figure 8.1. The other two figures represent the two typeteobmposition that

our approach supports: serial decomposition (B) and siteliion decomposition
(C). o 192



Part |

Introduction



Chapter 1

Introduction

1.1 Introduction

In this thesis, we develop dynamic program binary analyeititiques to extract the grammar of
undocumented program inputs and to model security-retduaigtionality from program binaries.
We demonstrate that our technigues enable previously wetsskcurity applications, such as active
botnet infiltration through deep packet inspection and itevgrof encrypted protocols used by mal-
ware, and enable more accurate solutions for other impstaurity applications such as detecting
deviations between implementations of the same functitgnéihding attacks on Web applications,
vulnerability discovery, and generating signatures ftnuision detection systems.

The program binary analysis techniques presented in ta@gltan be grouped into three main
modules of functionality:protocol reverse-engineerindpinary code reuseandmodel extraction
Protocol reverse-engineering techniques infer the granainandocumented program inputs, such
as network protocols and file formats. They are necessaauseamany widely used protocols and
file formats, such as the Skype protoctPf or the communication protocols used by malware,
have no publicly available specification. Protocol reversgineering is challenging because pro-
tocols can be highly structured; can include a variety oimelets such as variable-length fields,
delimiters, length fields, and arrays; and can carry a wadetlata such as timestamps, error codes,
filenames, file data, and IP addresses.

Binary code reuse techniques extract a fragment of binaig émm a program binary, so that
it is self-contained and can be reused by external source.c@&inary code reuse is necessary
when the code to be reused is only available in binary forms $ipecially useful when the code
fragment is complex but the application does not requirevddwel understanding of how the code
fragment works; it only requires reusing its functionaliyor example, in this thesis we use our
binary code reuse techniques for extracting the cryptdacafpinctions and keys used by malware
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to protect its network protocols. Then, we deploy those tions and keys in a network intrusion
detection system (NIDS), enabling the NIDS to decrypt thergted traffic. Binary code reuse
is challenging because binary code is not designed to babkuand lacks high-level abstractions
such as functions, variables, and types.

Model extraction techniques build a model of the functidpadf a code fragment. Extracting
a model of security-sensitive code is important becausk aunodel enables automatic reasoning
about the security properties of the code. For examplejsrtlilesis we use such models to automat-
ically find subtle attacks on Web applications, to identifvidtions between different implemen-
tations of the same functionality, and to generate sigeattor vulnerabilities in software. Model
extraction is necessary because for most programs modé#igiofsecurity-sensitive functionality
are not available. Model extraction is challenging becdbsecode to model may be complex and
comprise many execution paths. A critical challenge for eb@ktraction techniques is to build
high-coverage models that cover many execution paths indte.

Dynamic program binary analysis for security applications Our techniques work on program
binaries and do not require the availability of source codany debugging information in the
binaries. This provides several benefits. First, our pmogoaary analysis technigues are widely
applicable. They can be applied to programs even when threesgode is not available, which is
important because closed-source programs are prevalemtiputer systems and only distributed in
binary form. They can also be applied independently of tlg@mming language, programming
style, and compiler used to create the program.

Second, our techniques do not require cooperation from rtihgr@m authors. This is impor-
tant because some program authors may not support the tgemuoailysis of their programs. For
example, malware is a large class of closed-source progwarese it is important not to rely on
the program authors. Another large class of closed-sourmgrams is commercial-off-the-shelf
(COTS) applications. Our techniques enable users of COPpicapions to analyze the programs
they are deploying for security issues. This is necessargilse program authors may not be aware
of the existence of security issues in their programs, magletant to document security-relevant
functionality, may be too slow to react to disclosed segusisues, or may not provide security fixes
for legacy versions of their programs.

Third, our techniques have high fidelity because they amathie binary, which is what gets
executed. Compared to the program source code, the progrey lis a lower abstraction rep-
resentation of the program. This can be challenging, butabkes the analysis of security issues
that may be hidden by the abstractions provided by the pnogriag language such as arithmetic
overflows and security issues related to the memory layotiteoprogram.
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Figure 1.1: Technigues summary.

Our techniques are dynamic: they are applied over exeautibthe code. The main advantage
of dynamic analysis over static analysis is that dynamidyaisis precise because it can examine
the exact run-time behavior of the program, without appr@tions or abstractions. This property
provides several benefits to dynamic analysis: 1) it caryaagirograms binaries that are encrypted
or packed because code and data will be decrypted or unpaefeck being used; 2) there is no
control flow uncertainty as the executed instructions aveaked at run-time; 3) pointer aliasing is
simple as the accessed memory locations are known at r@n-ijrit can analyze the interactions
of the program with other elements in the run-time environtseich as the operating system or ex-
ternal libraries. The main limitation of dynamic analysidiimited coverage, as an execution covers
only one path in the program. To address this limitation wewhite-box exploration techniques
that execute many paths in the program. Then, we generbbzesults from all the executed paths.

Application and technique summary. This thesis comprises both program binary analysis tech-
nigues and their applications. Figutel summarizes the techniques. It shows between the dashed
and dotted lines the four modules of functionality we haweetigped in this thesis. The three mod-
ules on the left: protocol reverse-engineering, binaryecoelise, and model extraction comprise
the novel techniques proposed in this thesis, while the mijmainary analysis module on the right
comprises previously proposed dynamic binary analysisnigoes that we have implemented. On
top of each functionality module, above the dotted line, fthare shows the techniques included

in the module. The main techniques developed in this thesigpdse the leftmost three columns.
The figure shows at the bottom, below the dashed line, sontdiryiblocks of functionality, which
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Modules

were available a priori and are not a contribution of thisihe Figurel.2 summarizes the appli-
cations covered in this thesis and shows which of the thrda madules of functionality that we
have developed in this thesis enable them.

The author would like to emphasize the fact that the teclesquesented in this thesis are gen-
erally applicable to programs in binary form. Our applioat target two large classes of binary
programs: benign COTS applications and malware. It is it@mbrto note that when dealing with
malware there exists an additional hurdle in that malwatbae are highly motivated to avoid
security analysis. Thus, there often exists an arms raseeket obfuscation techniques being de-
veloped by malware authors that take advantage of limitatin state-of-the-art analysis, and new
analysis techniques being deployed to fix those limitatioflsroughout this thesis, and specially
on the two applications dealing with malware in this thesimnely active botnet infiltration and
vulnerability discovery, we discuss potential steps thalware authors may try to defeat them.

1.2 Applications and Techniques

In this section, we introduce the security applicationsrasisked in this thesis and the techniques
that we have developed to enable them.

1.2.1 Active Botnet Infiltration

Botnets, large distributed networks of infected computerder the control of an attacker, are one
of the dominant threats in the Internet. The number of comsed computers in the Internet

belonging to botnets, (i.e., the number of bots) rangeseémihlions and a single botnet can grow

to over 12 million bots45]. They produce 85% of the all the spam in the Interi2®q and enable

a wide variety of other abusive or fraudulent activitiegtsas click fraud and distributed denial-of-

service attacks.
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At the heart of a botnet is its command-and-control (C&C)geol, used by the botmaster to
coordinate malicious activity. Understanding the C&C poutl used by a botnet reveals a wealth
of information about the capabilities of its bots and therallantent of the botnet. In addition,
it enables analysts to actively interact with the botnetjrtsoducing new messages or rewriting
existing messages in the C&C channel, what we aetilve botnet infiltration

Active botnet infiltration can be used to track over time tiperations of the botnet and the
botmaster (i.e., the attacker that controls the botnetmesexamples of active botnet infiltration
are equipping a network intrusion detection system (NI@)drform deep packet inspection and
rewriting of the encrypted C&C protocol used by a botnet, bailding a fake bot that joins the
botnet and simulates the network behavior of a real bot,ouitthe nasty side effects (e.g., without
sending spam). Once the botnet is infiltrated we can morigadtivities over time.

Problem overview. The main challenges for active botnet infiltration are thek laf a protocol
specification for the C&C protocol and the use of encryptedQCgrotocols. Imagine that our
goal is to enable a network intrusion detection system (NI@Serform deep packet inspection
and rewriting of the undocumented and encrypted C&C prdtased by a botnet. To rewrite
an encrypted message from the botnet's C&C protocol, theS\tBeds to be able to decrypt the
message, parse it to extract the underlying field structaoalify some field values, and re-encrypt
the message. For this, the NIDS requires access to the grgpttic information and the protocol
grammar, which are not commonly available.

In this thesis we propose techniques for inferring the gramaf an undocumented protocol
and for extracting the cryptographic information used tot@et the protocol. The cryptographic
information comprises the decryption and encryption fioms, and the session keys, while the
protocol grammar captures the information about the diffemessages in the protocol, the format
or field structure of each of those messages, and the semahtach of the message fields.

Protocol reverse-engineering techniques can be usedeptim protocol specification of un-
known or undocumented protocols and file formats. But, ciippeotocol reverse-engineering tech-
nigues cannot analyze encrypted protocols and for uneteatypotocols they are manuall0,148
72] or take as input network traces, which contain limited peot information [LO,52].

To address the issue of limited information in network tea@e this thesis we propose a new ap-
proach for automatic protocol reverse-engineering thatrbeges the fact that we often have access to
the executable of a program that implements the protocal.aPproach leverages rich information
about how the program processes the protocol data, noabl&ih network traces, producing more
accurate results than approaches purely based on netwogstrOur protocol reverse-engineering
techniques extract the message format and the field semafiticessages on both directions of the
communication, even when only one endpoint’s implemeoradif the protocol is available. This is
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of fundamental importance when analyzing a botnet's C&QGqual as often we have access to the
bot program but not to the executable of the C&C server.

To analyze encrypted protocols, in this thesis we propasérist approach for automatic binary
code reuse, the process of automatically identifying theriace and extracting the instructions
and data dependencies of a code fragment from a progranybsmathat it is self-contained and
can be reused by external source code. Reusing binary codefisl because for many programs,
such as commercial-off-the-shelf applications and mawsource code is not available. It is also
challenging because binary code is not designed to be reusedn if the source code it has been
generated from is. Binary code reuse enables automatioquiateverse-engineering for encrypted
protocols by extracting the cryptographic information chesgt to access the unencrypted data.

Intuition and approach. The intuition behind our automatic protocol reverse-eagiing ap-
proach is that in absence of a specification, the richestrimdtion about the protocol is available in
the programs that implement the protocol and that we cam théeprotocol from the implementa-
tion by running the program on protocol messages and mamittow it processes them.

Our automatic protocol reverse-engineering approachsiedan dynamic program binary anal-
ysis. We execute the program in a monitored environment| ifiggrotocol messages and analyze
how the program processes those input messages and hold# thé output messages that it sends
in response. From one execution of the program on a givenageseur techniques can extract the
message format and infer the field semantics for the inpusages as well as the output message
that may be sent in response. Thus, our automatic protogeige-engineering techniques extract
the message format and the field semantics of messages oditmmttions of the communication,
even when only one endpoint’s implementation of the prdtixavailable. The message format
captures the field structure of the message while the fieldstos capture the type of data in the
field such as an IP address, a port number, or a filename.

The intuition behind our binary code reuse approach is thatany circumstances we do not
need to understand the low level details of a piece of binadecwe just need to understand its
goal and be able to reuse its functionality. For example gifare interested in the unencrypted data
of an encrypted C&C message, we may not need to understarehthgption algorithm used to
protect the message, as long as we can reuse the decryptictiofuand decrypt the message.

Our binary code reuse approach comprise three types ofitee® a technique for identify-
ing the entry point of the interesting functionality (e.gf,the decryption function), an interface
identification technique to infer a C prototype for the piedeinary code to reuse so that other
C programs can interface with it, and a code extraction tecienthat extracts the instructions and
data dependencies in the piece of binary code to reuse sit taat be made stand-alone, without
dependencies to the rest of the program’s functionalityt €&dry point and interface identification
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techniques use dynamic program binary analysis. Our cotlection technique uses a combina-
tion of static and dynamic analysis that includes techrédoehybrid disassemblylp€, symbolic
execution 106, and jump table identificatior3p).

We use our entry point identification technique to identificeding functions, which include
functions such as encryption and decryption, compressiondacompression, and other types of
encoding. Once the encryption and decryption functiondarated, we can apply our automatic
protocol reverse-engineering techniques on the unereslygidita. For example, we can apply our
message format extraction techniques for received messagthe output of the decryption func-
tion, rather than on the output of the network receive fuamtiso that the data has already been
decrypted by the program. Using our interface identificatmd code extraction techniques we
extract the encryption and decryption functions and theigsaskeys from the binary so that we can
give them to a NIDS that can use it to decrypt and rewrite nekwraffic.

Results. As an end-to-end example of how our automatic protocol emvengineering and binary
code reuse techniques enable active botnet infiltrationhawe analyzed the previously undocu-
mented, encrypted, C&C protocol used by MegaD, a prevalgmnsbotnet. We extract the C&C
protocol grammar and the cryptographic routines used tteprdt, and use them for active botnet
infiltration, by enabling a NIDS to rewrite a capability repsent by a MegaD bot to make the
botmaster believe that the bot can send spam, while all mggpam is blocked.

We have evaluated our protocol reverse-engineering tqabeion 6 protocols: the C&C pro-
tocol used by the MegaD botnet, for which we have no spedificats well as 5 open protocols:
DNS, FTP, HTTP, ICQ, and SMB. For the open protocols, we campar results with the output of
Wireshark P27], a popular network protocol analysis tool, which shipgwitany manually-crafted
protocol grammars. Our results show that our message fartigction and field semantics tech-
niques are accurate and produce results comparable tonafkesvore importantly, our techniques
operate without knowledge about the protocol specificatopre-requisite for Wireshark.

We have evaluated our binary code reuse techniques by entrdiee encryption and decryption
routines used by two spam botnets, MegaD and Kraken, as siétleaMD5 and SHA1 functions
from the OpenSSL libraryl[65. To show that we can reuse code fragments that are not ctenple
functions we also extract the unpacking functions from tampgles of Zbot, a trojan, and use an
unpacking fragment from one sample as part of the routinepack the other sample. Finally, we
have applied software-based fault isolatid4] to the extracted code to prevent it from writing or
jumping outside their own isolated memory regions.
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Contributions.
¢ A new approach for automatic protocol reverse-engineering\We present a new approach
for protocol reverse-engineering using dynamic programatyi analysis. Our approach lever-
ages the availability of a program binary that implemengsgfotocol and infers the protocol
by monitoring how the program processes the input messagkgemerates the output mes-
sages. Compared to previous approaches that take as inpudrkeraces, our approach
infers more accurate information and can analyze encrypteicols.

¢ Message format extraction techniquesWe propose techniques for extracting the field struc-
ture for messages both received and sent by an applicatiom.te®hniques identify hard-
to-find protocol elements such as length fields, delimitgasiable-length fields, multiple
consecutive fixed-length fields, and protocol keywords.

¢ Field semantics inference techniquesiNe propose techniques for inferring field semantics.
Our field semantics inference techniques leverage the eotaatic information available in
the publicly available prototype of well-known functionadainstructions. Our techniques
infer the type of data that fields in the received and sent agesscarry such as filenames, IP
addresses, timestamps, and error codes.

¢ A binary code reuse approach. We propose the first approach for automatic binary code
reuse, which enables automatically identifying the irsteef and extracting the instructions
and data dependencies of a code fragment from an executaijeam, so that it is self-
contained and can be reused by external code.

¢ |nterface Identification techniques. We propose techniques to identify the interface of a
binary code fragment, without access to its source codeirfbadace captures the inputs and
outputs of the code fragment and enables reuse from ext&snete code.

¢ Code extraction technique We design a code extraction technigue to extract the insins
and data dependencies of a binary code fragment so thatlfismtained and can be reused
independently of the rest of the program’s functionalityr@ode extraction technique uses a
combination of static and dynamic analysis and produces tiwat runs independently of the
rest of the program, can be easily instrumented, and canaredhvith other users.

¢ Enabling active botnet infiltration. We demonstrate how our protocol reverse-engineering
and binary code reuse techniques enable active botnetatifit by analyzing MegaD, a
prevalent spam botnet that uses a previously undocumeetedypted C&C protocol. We
use our techniques to infer the C&C protocol grammar and ti@eixthe cryptographic func-
tions and keys used to protect the communication. We depiytotocol grammar and the
cryptographic information on a NIDS, enabling the NIDS tofpan deep packet inspection
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and rewriting on the encrypted C&C traffic. We use the modilNédS to rewrite a capability
report sent by the bot to the C&C server to state that the bablis to send spam, when in
reality all spam sent by the bot is being blocked.

1.2.2 Deviation Detection

Different implementations usually exist for the same sjieation. Due to the abundance of coding
errors and specification ambiguities, these implememtatissually contairdeviations i.e., dif-
ferences in how they check and process some of their inputgondatically finding inputs that
demonstrate these deviations is important for two aptinat 1)error detection since a deviation
may indicate that at least one of the two implementationsahasror, and 2fingerprint generation
since an input that triggers a deviation, when given to twiedint implementations, will result in
different output states.

For example, deviation detection is important for testimglementations of network protocols.
The Internet Standards process requires that two independplementations of a protocol from
different code bases have been developed and tested fosgatability before advancing a pro-
tocol to Draft Standard1[g]. Deviation detection can be used for interoperabilitytitgs or after
the implementations are deployed, since experience shmteven after interoperability testing,
differences still exist on how different protocol implent&iions handle some of the protocol inputs.
Deviation detection can help identify errors in the implenations of the specification, as well as
areas of the specification that are underspecified. Forraaltgrobservable deviations, the inputs
deviation detection finds can be used by fingerprinting tbkésNmap [L67 to remotely identify
the implementations.

Problem overview. We propose a novel approach to automatically discover tlexngbetween
different implementations of the same specification. Wegaren two implementation#; and P,
of the same specification and wish to find inputs such thataheesnput, when given to the two
implementations, will cause each implementation to reaudtdifferent output state.

Each implementation at a high level can be viewed as a magpiragion from the input space
I to the output state space Let P, P, : I — S represent the mapping function of the two
implementations from inputs € I, to output states € S resulting from processing the given
input. Our goal is to find an input € I such thatP; (z) # P»(z). Finding such an input through
random testing is usually hard. However, in general it isydasfind an inputz € I such that
P (z) = Py(z) = s € S, i.e., most inputs will result in the same output statfor different
implementations of the same specification.
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Figure 1.3: Deviations occur when the inputs that produatestin an implementatiorn”; do not
exactly match the inputs that produce state another implementatiof.

For example, given two implementations of a Web server, Agache #] and MiniWeb [L47],
implementing the same HTTP protocol specificati®3]] it is easy to find inputs (e.g., HTTP
requests) for which both servers, if configured similarlyll moduce the same output state (e.qg.,
an “HTTP 200 OK” response). However, it is not so easy to findat®ns, inputs for which both
servers will produce different protocol output states saslone server accepting the request and
the other rejecting it, or one server accepting the requesttee other crashing while processing it.
Our approach finds such deviations.

Intuition and approach. The intuition behind our deviation detection approach & the map-
ping functionP : I — S can be seen as a conjunction of boolean models, one for edghtou
states € S, representing the set of inputs such thatM{(z) = true <= Pi(z) = s.
If we have two such models for the same output statene for each of two implementations
of the same specification, then a deviation is just an inpat $atisfies the following predicate:
(M7 N=M3)V (-M;7 A MS). Such an input is a deviation because it produces an outgetssor
one of the implementations and another output states for the other implementation. Figufe3
illustrates this situation. To find deviations, we proposehhiques to extract the model$; and
M3 and then use a decision procedure to query for inputs thafysad/; A ~M35) vV (= M7 A M3).
We observe that the above method can still be used even wieeexthacted model/, is
incomplete, i.e., whed/; (z) = true = Pji(x) = s but the converse is not necessarily true.
In this case the model may not cover all possible inputs #ath state. We have observed that
we are able to find deviations, even when our models cover @asingle program execution path
leading to state. In that case, the mod@él/}, represents the subset of inputs that would follow that
particular execution path and still reach the output stat&hus, M}, (z) = true = P(x) = s,
since if an input satisfied/}, then for sure it will make progran® go to states, but the converse
is not necessarily true—an input which makegjo to states may not satisfyM 5. In our problem,
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this means that the difference betwektf and /5 may not necessarily result in a true deviation.
Instead, the difference betwedd; and 1/$ is a good candidate to trigger a deviation. To verify
that the candidate input indeed triggers a deviation, oprageh sends such candidate inputs to
the two programs and monitors their output states. If the iwamrams end up in two different
output states, then we have successfully found a deviagbrnden the two implementations, and
the corresponding input that triggers the deviation.

The output state needs to be externally observable. We usenethods to observe the output
state: (a) monitoring the output of the program (e.qg., thwvaek traffic), and (b) supervising its
environment, which allows us to detect unexpected statels as program halt, reboot, crash, or
resource starvation. We may use some domain knowledge #imoapplication to determine when
two output states are different. For example, when findiffgrdinces between two Web servers we
may use the Status-Code in the HTTP response to identifyutmibstate of the Web server after
processing a given HTTP request.

Results. We have designed and implemented model extraction tecbsithat produce models
covering a single execution path in the program, and fouatighch models are surprisingly effec-
tive at finding deviations between different implementagiof the same functionality.

We have evaluated our approach using 3 HTTP server impletti@mé and 2 NTP server im-
plementations. Our approach successfully identifies tlevis between the different server imple-
mentations for the same protocol and automatically geeeraiputs that trigger different server
behaviors. These deviations include errors and differeircthe interpretation of the protocol spec-
ification. For example it finds an HTTP request that is acakptethe MiniWeb Web server with a
“HTTP/1.1 200 OK” response, while it is rejected by the Apadtleb server with a “HTTP/1.1 400
Bad Request” response. Such deviation is due to an erroeiMthiWeb server that fails to verify
the value of the first byte in the URL. The evaluation shows the approach is accurate: in one
case, the relevant part of the input that triggers the devias only three bits.

Contributions.

¢ A new approach for automatic deviation detection: We propose an approach to auto-
matically discover deviations in the way that two implenatioins of the same specification
process their inputs. Our approach automatically extraidels for each implementation
and then queries a solver to obtain inputs that will causé @aplementation to result in
a different output state. One fundamental advantage of ppiroach is that it does not re-
quire a manually-generated model of the specification, iwli®ften complex, tedious, and
error-prone to generate.
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¢ Single-path model extraction techniques: We propose dynamic symbolic execution tech-
niques to extract models that cover a single execution patiei program. Our model extrac-
tion techniques work directly on program binaries. By awtically building models from
an implementation, our models are precisely faithful toithplementation.

¢ Enabling error detection and fingerprint generation using deviation detection: We im-
plement our deviation detection approach and use it to finthtdlens between multiple im-
plementations of two popular network protocols: HTTP and®NWe show that such devi-
ations flag implementation errors that need to be fixed, abasedreas of the specification
that are underspecified. In addition, the inputs that trigige deviation can be used as finger-
prints to remotely identify the different implementatior@ompared to previous approaches,
our approach significantly reduces the number of inputsrieet to be tested to discover a
deviation.

1.2.3 Generating Filtering-Failure Attacks for Web Applications

There exists a broad class of security issues where a fiitended to block malicious inputs des-
tined for an application, incorrectly models how the apmlien interprets those inputs. fitering-
failure attackis an evasion attack where the attacker takes advantages# tlifferences between
the filter’'s and the application’s interpretation of the saimput, to bypass the filter and still com-
promise the application.

One important class of filtering-failure attacks that weestigate in this thesis amontent-
sniffing cross-site scripting attacka class of cross-site scripting (XSS) attacks in which ttecker
uploads some malicious content to a benign Web site (e.gsearch paper uploaded to a conference
management system). The malicious content looks benidretodntent filter used by the Web site
(e.g., looks like a PostScript document) and is acceptechéyNeb site but, when the malicious
content is accessed by a user (e.g., a reviewer for the emufey, it is interpreted as HTML by the
user’s Web browser (i.e., rather than as a PostScript daat)mé&/e call such contentshameleon
documents and show an example in Figlié Thus, the attacker can run JavaScript, embedded in
the malicious content, in the user's Web browser in the comtethe site that accepted the content.
For the conference management system example, this meanwhin the reviewer downloads
the research paper for evaluation, the research paper tamatically execute JavaScript, that the
malicious author embedded in it, on the reviewers’ compUthat JavaScript code can submit back
to the conference management system a high score revigwgwihe reviewer’s knowledge. Thus,
an attacker can use a content-sniffing XSS attack to cres¢ameh papers that review themselves.

Another example of a filtering-failure attack is a networkriision detection system (NIDS),
which deploys a vulnerability signature to protect someatciped application. If the signature
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%!PS-Adobe-2.0
%%Creator: <script> ... </script>
%%Title: attack.dvi

Figure 1.4: A chameleon PostScript document that Interrptdeer 7 treats as HTML.

incorrectly models which network inputs exploit the vulalgitity in the application, then an attacker
can potentially construct a network input that is not madidngthe NIDS’ signature but still exploits
the application.

Problem overview. Our goal is to automatically find content-sniffing XSS atsclwhich are
inputs that if uploaded to a benign Web site that takes eat@wntent will be accepted by the filter
the Web site runs on all uploaded content. When the user dadslit from the Web site, the
user's Web browser will interpret the content as privileged)., text/htm). Thus, any executable
code (e.g., JavaScript) embedded by the attacker in themowill be executed by the user's Web
browser in the context of the benign Web site.

For compatibility, every Web browser employsantent-sniffing algorithnthat takes as input
the payload of an HTTP response, the URL of the request, anceiponse’'€ontent-Typdeader,
and produces as output a MIME type for the content in the HTa@$paonse. That MIME type
may differ from the one provided by the server in Bentent-Typdeader and is used by the Web
browser to invoke an application to handle the content ssdh@image viewer foimage/jpegor
Adobe’s PDF viewer plugin foapplication/pdf The content-sniffing algorithm is needed because
approximately 1% of all HTTP responses either lacBantent-Typdieader or provide an incorrect
value in that heade®].

To find content-sniffing XSS attacks, we model the Web sitplpad filter as a boolean predi-
cate on an inpuﬂu}ﬁjﬁted(x)), which returns true if the input is considered safe (i.e., accepted)
and false if the input is considered dangerous (i.e., rejhct We model the content-sniffing al-
gorithm in the user's Web browser as a deterministic mudtsg classifier that takes as input the
payload of an HTTP response, the URL of the request, and p@nse’<Content-Typdeader, and
produces as output a MIME type. This multi-class classiféar loe split into binary classifiers, one
per MIME type returned by the content-sniffing algorithm cEinary classifier is a boolean pred-
icate that returns true if the payload of the HTTP responsmiisidered to belong to that MIME
type and false otherwise (e.gy//™!(x)). To find content-sniffing XSS attacks, we only need to
model the binary classifiers for MIME types that can contaitiva content. Thus, we can model
the Web browser’s content-sniffing algorithm as a binargsiféer that returns true if the content is
consideredext/htmi MMl (z). To find a content-sniffing XSS attack we construct the foifay

csa
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query: Mj?fﬁzfted(m) A MIMmL(2). If the solver returns an input that satisfies such query) the

csa

have found a content-sniffing XSS attack.

Intuition and approach. The intuition behind our approach is that different cordgemave dif-
ferent privilege levels in the Web browser witkxt/htmlhaving the highest privilege since it can
execute script. An attack is possible because the webajpoad filter has a different view than the
user’'s Web browser about which content should be considanieieged. This discrepancy often
occurs due to a lack of information by the website’s devalppdout the content-sniffing algorithm
in the Web browser. In particular for Web browsers such ashet Explorer and Safari, the content-
sniffing algorithm is closed-source and there is little doeuntation about its inner workings. Thus,
filter developers are forced to infer how the content-srgffaflgorithm interprets different contents.

To overcome this problem we can extract models of the costifftng algorithm directly from
the Web browser’s binary, without access to its source c@de.model extraction approach builds
high-coverage models using white-box exploration teahedq which explore multiple execution
paths inside a program by feeding an input to the programergéing a path predicate for the
execution of the program on the input using dynamic symhmtiecution, querying a solver for an
input that traverses a different path, and iterating by senithe new input to the program so another
path is explored. We focus the exploration on a fragment rédityi code (e.g., the content-sniffing
algorithm) rather than the whole program and produce a ntbdels the disjunction of all the path
predicates.

An important characteristic of many security applicatissch as the content-sniffing algorithm
in a Web browser, an IDS signature matching engine, or a Huest b block inappropriate Web
content, is that they rely heavily on string operations.r€utrwhite-box exploration techniquesg
33,79 are not efficient at dealing with such applications becabsg contain a large number of
loops, potentially unbounded if they depend on the inputhHeaop iteration introduces a number
of constraints in the path predicate, which can grow vergdacreating a huge exploration space.
To improve the coverage of the exploration per unit of time,proposestring-enhanced white-box
exploration an extension to current white-box exploration technigiras increases the coverage
for programs that heavily use strings operations by reagodirectly about strings, rather than
individual bytes that form the strings.

In a nutshell, our string-enhanced white-box exploratiomprises four steps. First, it replaces
constraints generated inside string functions with cainstis on the output of those string functions.
Then, the constraints on the output of the string functisadranslated into abstract string operators.
Next, it translates the abstract string operators into eesgmtation that is understood by an off-the-
shelf solver that supports a theory of arrays and integenallf it uses the answer of the solver to
build an input that starts a new iteration of the exploration
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Results. We generate content-sniffing XSS attacks by extracting-bhaterage models of four
applications: the content-sniffing algorithms used by twpular Web browsers, Internet Explorer 7
and Safari 3.1, and the upload filters used by two popular Videbcations: MediaWiki 135, an
open-source wiki application used by many sites includingipgdia [224], and HotCRP §7], an
open-source conference management application. We etteamodel of both upload filters using
manual analysis of the source code. For Internet Explored7Safari 3.1, which use closed-source
content-sniffing algorithms, we extract the model usingsiting-enhanced white-box exploration
technique on the Web browsers’ binaries.

Using these models we are able to identify previously unknoantent-sniffing XSS attacks
affecting both MediaWiki and HotCRP. For MediaWiki, we firftht there exists at least 6 different
MIME types for which an attacker could build @ghameleordocument that will be accepted by
MediaWiki as being from a safe MIME type, but interpreted abML by Internet Explorer 7.
Similarly, there exists 6 MIME types for which content-$imif) XSS attacks are possible if the user
downloads the content using Safari 3.1. We have disclosstissues to MediaWiki's developers,
which have confirmed and fixed them. Furthermore, we find tiegttacks are due to the use by
MediaWiki’s upload filter of the MIME detection functions &HP, which means that other sites
that also use PHP’s MIME detection functions in their upldifteér could also be affected. For
HotCRP, we find that an attacker could build chameleon PdgtSar PDF documents that would
be accepted by the HotCRP Web application and interpreteld BH_ by Internet Explorer 7. Thus,
an attacker could create a research paper that reviewss itsel

Contributions.
e Multi-path model extraction using string-enhanced whitebox exploration: We propose

a new approach to generate high-coverage models for a fragomhdinary code. Our ap-
proach uses string-enhanced white-box exploration, agneidn to white-box exploration
that significantly increases the coverage that the exphorachieves per unit of time on
programs that heavily use string operations. The covenagease is obtained by reason-
ing directly about the string operations performed by tragpm, rather than the byte-level
operations that comprise them.

¢ Enabling finding content-sniffing XSS attacks: We implement our multi-path model ex-
traction technique and use it to extract models of the cl@seoice content-sniffing algorithms
for two popular Web browsers: Internet Explorer 7 and S&4dri Using those models we per-
form the first systematic study of content-sniffing XSS d&saand find previously unknown
attacks that affect two popular Web applications: Media\ditd HotCRP.
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Figure 1.5: The vulnerability point reachability prediegd/PRP) captures the inputs that reach
the vulnerability point. A vulnerability-based signatusethe conjunction of the VPRP and the
vulnerability condition (VC).

1.2.4 Protocol-Level Vulnerability-Based Signature Genetion

Software vulnerabilities are prevalent with over 4,500 rawblicly disclosed vulnerabilities in
2009 p0556]. One popular defense mechanism for software vulnerggsitvidely deployed in in-
trusion protection and detection systemsighature-based input filteringvhich matches program
inputs against a set of signatures, flagging matched inpuastacks.

Compared to software patches, signature-based inputrfgteran respond to attacks faster,
within minutes instead of the hours, days, or even yearsnittake to generate and test a software
patch. For example, Symantec reports that 14% of all newevabilities in Web browsers found
in 2009, and 18% of all new vulnerabilities in Web browsersni in 2008, remain unpatched
as of April 2010 R05. Moreover, for legacy systems where patches are no longefidged by
the manufacturer, or critical systems where any changekset@dde might require a lengthy re-
certification process, signature-based input filterindtisrothe only practical solution to protect the
vulnerable program.

Problem overview. Many different approaches for signature-based input ifiigehave been pro-
posed. Particularly attractive avellnerability-based signaturd®18 47, 21], which are based on
the properties of the vulnerability, rather than on the praps of the exploits for the vulnerability.
This is important because many different inputs may exg@aitiinerability and there exists tools
like Metasploit [L37] that can automatically generate exploit variants for angtdbility.

A vulnerability is a point in a program where execution mitdm wrong”. We call this point
thevulnerability point A vulnerability is only exploited when a certain conditjidhevulnerability
condition (VC), holds on the program state when the vulnerability p@mreached. Thus, for an
input to exploit a vulnerability, it needs to satisfy two ditions: (1) it needs to lead the program
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execution to reach the vulnerability point, and (2) the pang state needs to satisfy the vulnerability
condition at the vulnerability point. We call the condititmat denotes whether an input message
will make the program execution reach the vulnerabilitynpdhe vulnerability point reachability
predicate(VPRP). Figurel.5illustrates the VPRP and VC for a vulnerability. Thus, thelgem

of automatically generating a vulnerability-based sigratcan be decomposed into two: identi-
fying the vulnerability condition and identifying the vdrability point reachability predicate. A
vulnerability-based signature is simply the conjunctidéthe two.

We call a vulnerability-based signature that capturesnglliis that would exploit the vulner-
ability complete Such a signature produces zero false negatives, i.e.tithes all exploits for
the vulnerability. We call a vulnerability-based signattinat only matches inputs that exploit the
vulnerability sound Such a signature produces zero false positives, i.e. g dot match benign
inputs. Aperfectvulnerability-based signature is a signature that is bothplete and sound. The
goal of a vulnerability-based signature generation metadd produce perfect signatures. In ad-
dition to producing perfect signatures, given the rate atkvivulnerabilities are discovered and
that manual signature generation is slow and error-proni@evability-based signature generation
methods also need to be automated.

Vulnerability-based signature generation methods worknmyitoring the program execution
and analyzing the actual conditions needed to exploit tHeevability and can guarantee a zero
false positive rate47,21,46]. Early approaches are limited in that they only capturenglsi path
to the vulnerability point (i.e., theivulnerability point reachability predicateontains only one
path). However, the number of paths leading to the vulnétyabioint can be very large, sometimes
infinite. Thus, such signatures are easy to evade by an attadth small modifications of the
original exploit message, such as changing the size ofblarlangth fields, changing the ordering
of the fields (e.g., permuting the order of the HTTP headers)hanging field values that drive the
program through a different path to the vulnerability point

Recognizing the importance of enhancing the coverage okvability-based signatures, recent
work tries to incorporate multiple paths into the vulneligbipoint reachability predicate either by
static analysis43], or by black-box probing46,55]. However, due to the challenge of precise static
analysis on binaries, the vulnerability point reachapiflitedicates generated using static analysis
are too big 23]. And, black-box probing technique4§,55], which perturb the original exploit input
using heuristics such as duplicating or removing partsefribut message or sampling certain field
values to try to discover new paths leading to the vulnetglydoint, are highly inefficient and
limited in their exploration. Hence, they generate vulbéity point reachability predicates with
low coverage.
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Thus, a key open problem for generating vulnerability-dasignatures is how to generate vul-
nerability point reachability predicates with high cowggaand in a compact form. In this thesis, we
proposeprotocol-level constraint-guided exploratioa new approach to generate high-coverage,
yet compact, VPRPs, which capture many paths to the vulitigygimint.

Intuition and approach. To create high-coverage VPRPSs, our protocol-level comstgaided
exploration approach leverages white-box explorationt, Brograms that parse complex, highly-
structured inputs are challenging for white-box explanattechniques because the parsing intro-
duces a large number of execution paths. Thus, the exmaraiends an enormous amount of time
exploring those paths, and it does not effectively explbie grogram state after the parsing has
finished. To address this problem, previous work proposemivgositional approach that generates
higher-level path predicates that work on symbolic gramtolkens returned by the parser, instead
of symbolic input bytes77].

Such approach works well with programs where the parsindhefinputs is well-separated
from the remaining functionality such as compilers andrjrteters. But, programs that parse net-
work and file specifications often do not have well-separg@ding and processing stages. The
intuition behind our protocol-level constraint-guidecbixation approach is that when such clean
separation does not exist, the protocol specification (plyldvailable or extracted using protocol
reverse-engineering technigues) can be used to identfdhstraints introduced by the parsing
process, i.e., thparsing constraints The parsing constraints can be removed from the path predi-
cate, introducing field symbols as the output of those pgrsamstraints, so that the generated path
predicates operate on field symbols, rather than byte syanbol

In addition to the reduction in the number of paths to be exgulplifting the byte-level path
predicates to field-level path predicates solves anothpoitant problem for vulnerability-based
signatures. Path predicates that operate on byte symbadth roaly inputs that have exactly the
same format than the input used to collect the path predidatiéhout lifting the byte-level path
predicates to field-level path predicates, the resultiggature would be very easy to evade by an
attacker by applying small variations to the format of thelet message. For example, without
lifting the path predicates, the resulting VPRP would notahaxploit variants where the variable-
length fields have a different size.

In addition to using the protocol information, our approadho merges execution paths to
further reduce the exploration space. As the exploratiognsses, new discovered paths that reach
the vulnerability point need to be added to the VPRP. A sindiidgunction (i.e., an enumeration)
of all paths leading to the vulnerability point would inttage many duplicated constraints into
the VPRP, where every duplicated constraint effectivelyldies the exploration space. Thus, the
exploration space could increase exponentially. To avtglwe construct an exploration graph as
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the exploration progresses and use it to identify potenteiging points. As a side benefit, merging
paths also reduces the size of the resulting VPRP.

Results. We have used our approach to generate signatures for 6 ablliges on real-world
programs. The vulnerable programs take as input file formmsisell as network protocols, run on
multiple operating systems, and encompass both openesaunit closed programs. Our approach
is successful at removing the parsing constraints. In tle volnerable programs that include
variable-length strings, the removed parsing constraint®unted for 92.4% to 99.8% of all con-
straints in the byte-level path predicates.

The generated signatures achieve perfect or close-tegigdsults in terms of coverage. Using
a 6 hour time limit for the exploration, our approach diseedeall possible paths to the vulnerability
point for 4 out of 6 vulnerabilities, thus generating a coet@lVPRP. For those four signatures, the
generation time ranges from under one minute to 23 minuteaddition, the number of constraints
in the resulting VPRP is in most cases small. The small nurabeonstraints in the VPRP and the
fact that in many cases those constraints are small theassaivakes most of the signatures easy
for humans to analyze.

Contributions.

e Extracting vulnerability point reachability predicates u sing protocol-level constraint-
guided exploration: We propose a new approach for automatically generatingevahility
point reachability predicates that capture many pathsaatinerability point. Our approach
uses protocol-level constraint-guided exploration, &mégue that leverages the availability
of a protocol specification to lift byte-level path prediesitto field-level path predicates. In
addition, it merges program paths to avoid an explosion énekploration space. Our ap-
proach significantly reduces the number of paths that nedx texplored and enables the
generation of harder to evade signatures.

¢ Enabling high-coverage vulnerability-based signature geeration: We implement our
protocol-level constraint-guided exploration techniquel use it to generate vulnerability-
based signatures for 6 real-world vulnerabilities. Ounatgres have high coverage, achiev-
ing perfect coverage in 4 out of 6 cases. The increase in agedranslates into signatures
that are more difficult to evade by attackers. In additioe, dienerated signatures are often
small and can be analyzed by humans more easily than thdwwigaajenerated by previous
approaches.
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Figure 1.6: Common input processing. Current input gefmrdaechniques have trouble creating
inputs that reach the processing stage.

1.2.5 Finding Bugs in Malware

Given the prevalence of software defects, vulnerabiligcdiery has become a fundamental secu-
rity task. It identifies software bugs that may be remotelplexable and creates program inputs
that demonstrate their existence. So far, vulnerabilggaiery has focused drenignprograms and
little research has addressed vulnerabilitiesalwareprograms that the attacker installs in compro-
mised computers. However, malware vulnerabilities haveeatgotential for different applications
such as malware removal, malware genealogy, as a capdbiligw enforcement agencies, or as a
strategic resource in state-to-state cyberwarfare.

For example, some malware programs such as botnet clientiepioyed at a scale that rivals
popular benign applications: the recently-disabled Mzs#pbotnet was sending messages from
more than 12 million unique IP addresses at the point it wieentalown, and stole data from more
than 800,000 userd§]. A vulnerability in a botnet client could potentially beagsto notify the user
of infection, to terminate the bot, or even to clean the itdddost. However, some of the potential
applications of malware vulnerabilities raise ethical deghl concerns that need to be addressed
by the community. While our goal in this research is dematisty that finding vulnerabilities
in widely-deployed malware such as botnet clients is tezdilyi feasible, we also hope that this
work helps in raising awareness and spurring discussiongrcommunity about the positives and
negatives of the different uses of malware vulnerabilities

Problem overview. Dynamic symbolic execution techniquesOf have recently been used for
automatic generation of inputs that explore the executiats of a program for a variety applica-
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tions such as vulnerability discoveryg, 33, 79 and automatic exploit generatio@4, 104. How-
ever, traditional dynamic symbolic execution (as well ds®ofinput generation techniques such as
mutation fuzzing §3, 144 or taint-directed fuzzing{4)]) is ineffective in the presence of certain
operations such as the decryption and decompression gfatalahe computation of checksums
and hash functions; we call thesacoding functions Encoding functions can generate symbolic
models that are difficult to solve, which is not surprisingea that some of these functions, e.g.,
cryptographic hash functions, are designed to be infeasibinvert.

Encoding functions are used widely in malware as well asdreapplications. For example,
malware will often decrypt the received network traffic, depress its contents, and verify the
integrity of the data using a checksum. This process istiitesd in Figurel.6. In dynamic sym-
bolic execution, those operations are expanded into a eangambination of constraints that mix
together the influence of many input values and are hard soreabout$9. The solver cannot
easily recognize the high-level structure of the compaitgtsuch as that the internals of the decryp-
tion and checksum functions are independent of the messaga@ and processing that follows.
To address the challenges posed by the encoding functianpraposestitched dynamic symbolic
executiona new approach to perform input generation in the presefitard-to-reason operations.

Intuition and approach. The intuition behind our stitched dynamic symbolic exemutpproach
is that it is possible to avoid the problems caused by engdiinctions, by identifying and bypass-
ing them to concentrate on the rest of the program executtthed dynamic symbolic execution
first decomposes the symbolic constraints from the exetusigparating the (hard) constraints gen-
erated by each encoding function from the (easier) comstran the rest of the execution. The
solver does not attempt to solve the constraints introdiyethe encoding functions. It solves
the constraints from the remainder of the execution and thestitches the solver’s output, using
the encoding functions (e.g., computing the checksum femptrtial input) or their inverses (e.g.,
encrypting the partial input), into a complete program inpu

In a nutshell, our approach proceeds in two phases. As a fiedep it identifies encoding
functions and their inverses (if applicable). For identify encoding functions, we perform a type
of dynamic taint analysis that detects functions that lyighilx their input, i.e., where an output byte
depends on many input bytes. The intuition is that high nghwhat makes constraints difficult
to solve. To identify the inverses, we use the intuition tiatoding functions and their inverses
are often used in concert, so their implementations cam dféefound in the same binaries or in
widely-available libraries (e.g., OpenSS16H or zlib [240). We propose a technique that given
an encoding function tests whether its inverse is preseasit of functions.

Then in the second phase, our approach augments traditidri@-box exploration by adding
decomposition and re-stitching. On each iteration of exgion, we decompose the generated
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constraints to separate those related to encoding fursctenmd pass the constraints unrelated to
encoding functions to a solver. The constraint solutiomasents a partial input; the approach then
re-stitches it, with concrete execution of encoding funtsiand their inverses, into a complete input
used for a future iteration of exploration.

Results. We have implemented our approach and have used it to perfarfirst automated study
of vulnerabilities in malware. Our approach finds 6 bugs inealent malware families that include
botnet clients (Cutwail, Gheg, and MegaD) and trojans (Zb&tremote network attacker can use
these bugs to terminate or subvert the malware. We demtndlva at least one of the bugs can
be exploited to take over the compromised host. We also findut that cleanly exits a MegaD
bot. Suchkill commands may not be bugs but can still be used to disable theanea They are
specially interesting because their use could raise fethéras and legal questions than the use of
an exploit would.

To confirm the value of our approach, we show that traditiatyalamic symbolic execution is
unable to find most of the bugs we report without our decontiposand re-stitching techniques, and
that it takes significantly longer for those it finds. In adtit we use an array of variants from each
of the malware families to test how prevalent over time thimexabilities are. The bugs reproduce
across all tested variants. Thus, the bugs have persistegsamalware revisions for months, and
even years. These results are important because they dieaterikat there are components in bot
software, such as the encryption functions and the C&C paisde that tend to evolve slowly over
time and thus could be used to identify the family to which aknown binary belongs.

Contributions.
¢ A new approach for input generation in the presence of hard-b-reason operations: We

propose stitched dynamic symbolic execution, a new appré@@nable input generation
in the presence of encoding functions that introduce hassbitve constraints. We describe
techniques to identify the encoding functions and theieises, to decompose a symbolic
execution separating the hard constraints from the engdiinctions from the easier con-
straints from the rest of the execution, and to re-stitchpidueial input output by the solver
into a complete program input.

¢ Enabling finding bugs in malware: We implement our approach and use it to perform the
first automated study of vulnerabilities in malware. We findugjs in 4 prevalent malware
families that a remote attacker can use to terminate or suthemalware. At least one of the
bugs can be exploited to take over the compromised host. e stat traditional dynamic
symbolic execution is unable to find most of these bugs andtttekes significantly longer
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for those it finds. In addition, we show that the bugs persisbss malware revisions for
months, and even years.

1.3 Thesis Outline

This thesis is organized in five parts. Phihtroduces the problems addressed in this thesis. It
comprises this introductory chapter as well as Chaptevhich presents background information
on dynamic program binary analysis and the blocks that tigisis builds upon. Our techniques are
described in three parts that correspond to the main moddilesctionality we have developed.
In Partll, we describe our protocol reverse-engineering technjguesh comprise techniques for
message format extraction, field semantics inference, eardrgar extraction. Then, in PdH, we
describe our binary code reuse techniques, which comm@migues for interface identification
and code extraction.

Next, in PartlV, we describe our model extraction techniques. This partpeis@s four chap-
ters. Chapteb presents single-path model extraction techniques foratievi detection. Chaptér
describes string-enhanced white-box exploration, annekia to previous white-box exploration
techniques for extracting models of programs that usegstspperations, and applies those multi-
path model to finding content-sniffing XSS attacks. Chapteletails protocol-level constraint-
guided exploration, an extension to white-box explorafimnextracting models of programs that
parse highly structured inputs, and applies it to genagdtigh-coverage vulnerability point reacha-
bility predicates. Chapte3 presents stitched dynamic symbolic execution, an appribeatienables
dynamic symbolic execution in the presence of complex engodinctions such as encryption and
hashing, and applies it for finding bugs in real-world makviirat uses such encoding functions.

We finalize in Par¥/ where we provide further discussion and our concluding rema



Chapter 2

Dynamic Program Binary Analysis

2.1 Introduction

In this thesis we develop dynamic program binary analysiBriigues. Dynamic program analysis
is the process of automatically analyzing the behavior ofogqam from its execution on a set of
inputs, called test cases. Dynamic program analysis usis-x techniques that monitor the pro-
gram’s internals, as opposed to black-box techniques tbatran the program on inputs but focus
on input-output relationships without any knowledge of gnegram’s inner workings. Dynamic
program analysis leverages the program'’s internals teaeHiner-grained and more accurate anal-
ysis than black-box techniques.

Program analysis requires access to the program in eitheceseode or binary form. In this
thesis, we focus in the common scenario where the programces@ode is not available but the
program binary is. Malware and commercial-off-the-sh€O['S) programs are two large classes
of programs where an external analyst only has access tordigeam binary. In addition to not
requiring access to the program’s source code, other bemnéfitsing the program binary are that
the analysis is independent of the programming languaggramming style, and compiler used
to create the program; it has high fidelity because the prodriaary is what gets executed; and it
does not require cooperation from the program authors.

Binary analysis. Binary code is different than source code. Thus, we needadptaazhd develop
program analysis techniques and tools that are suitablgifiary code. One challenging difference
is that binary code lacks high-level abstractions presesburce code such as:

¢ Functions. The source-level concept of a function is nataly reflected at the binary code
level, since functions at the source level can be inlinelit, ispo non-contiguous binary code

25
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fragments, or can exit using jumps instead of return inswas (e.g., due to tail-call opti-
mizations).

¢ Variables. There are no variables at the binary level. Thegeonly registers and memory.
Some limited size information can be obtained from the lerajtthe instructions operands
(8, 16, 32, 64 bit) but there is no explicit information abtarger structures.

e Types. Data at the binary level has no explicit type infoiorat At the binary level type
information needs to be inferred from external informatiBor example, strings do not exist
at the binary level. Furthermore, there is no concept of acsslevel buffer at the binary
level. A buffer at the binary level is just a contiguous seweeof bytes in memory and the
only real boundaries in memory are pages. This makes caneseph as buffer overflows
hard to define without knowledge about higher-level semsamgiven by the source code.

Dynamic analysis. The main advantage of dynamic program binary analysis daéic program
binary analysis (dynamic analysis and static analysissiiort) is that dynamic analysis can exam-
ine the exact run-time behavior of the program, without apipnations or abstractions. Dynamic
analysis has access to the executed instructions as wak &shtent of the instruction’s operands.
Thus, there is no control flow uncertainty even if the progiamacked, encrypted or heavily uses
indirection, and there is no uncertainty on which memoryresisks are accessed (i.e., no mem-
ory aliasing). In addition, dynamic analysis can analyzeititeractions of the program with the
operating system and external libraries.

The main limitation of dynamic analysis is that an executorers only one path in the pro-
gram. To address this limitation the program must be exdonrtea variety of test cases that make
the program exhibit its full behavior. The extent of the pang’s behavior exhibited on the test cases
over the program'’s set of possible behaviors is catlederage Coverage can be measured using
different metrics such as the percentage of all instruatiopaths executedL]l]. In Section2.4we
introduce white-box exploration techniques, which auttcaily generate test cases that increase
the coverage of the program.

This thesis deals predominantly with dynamic analysis. el@v, dynamic and static analysis
have properties that complement each other. Static asadgsi give more complete results as it
covers different execution paths and dynamic analysis ddreas many of the challenges of static
analysis such as pointer aliasing or indirect jumps. Thusijrees we combine them together to
leverage the benefits of both. We expect that the combinatia@tynamic and static analysis will
become prevalent in the near future.
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Offline analysis. Dynamic analysis techniques can work online, as the progresoutes, or of-
fline, on information logs collected during execution. Aletnovel dynamic binary analysis tech-
niques proposed in this thesis work offline. We present tiferdnt information logs we collect
during program execution in Secti@3. The most important of these execution logsexecution
traces which capture instruction-level information. Offline dymic analysis has the benefit that all
needed information is recorded during execution. This lesaihe analysis to be rerun many times
over the same execution logs without new non-deterministgavior being introduced in each exe-
cution. In addition, execution logs can be easily sharel wither analysts. The main disadvantages
compared to online analysis is that the logs collected dyshogram execution can grow very large
and that their collection can significantly slow down exemut

Architecture.  Although we design our dynamic program binary analysisriggkes to be as gen-
eral as possible, the focus on this thesis is on the x86 (§2dlwhitecture, by far the most prevalent
architecture for personal computers (PCs), with over otieinstalled PCs worldwidel96 and
over a million new ones being shipped each daij.[ Our techniques work on x86 binaries and do
not require the availability of source code or any debuggifigrmation in the binaries.

The remainder of this chapter is structured as follows. iBe@.2 presents the previously-
available building blocks used in this thesis. Secdpresents the execution logs gathered during
program execution, which are the input to the offline dynaarialysis techniques. Finally, Sec-
tion 2.4 provides background information on previously-proposgalasnic program binary analysis
techniques that our techniques build on.

2.2 Building Blocks

In this section we provide background information on the fimeviously-available building blocks,
shown at the bottom of Figurg.1, that this thesis builds on: an emulator with taint propegat
capabilities (TEMU) 23§, an static analysis platform that provides a translatiommfx86 instruc-
tions to an intermediate representation (VingJ][ a set of static disassembler3D, 90], and a
constraint solver{3].

TEMU. TEMU is a dynamic analysis platform that enables user-défimstruction-level execu-
tion monitoring and instrumentatio@38. TEMU is implemented on top of the QEMU open-source
whole-system emulator and virtualizek8(). As a whole-system emulator, QEMU uses dynamic
translation to run an entire guest system, including theaifpey system and applications, made for
one architecture (e.g. ARM) on a different host architex{ier.g. x86). As a virtualizer, QEMU can
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XED ) Execution
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Figure 2.1: Architecture of the execution monitor used toggate the execution logs. The modules
in gray were previously available.

be used to run an unmodified guest operating system (e.gddws) inside another host operating
system (e.qg., Linux) providing good isolation between thsttand the guest systems.

TEMU provides three main components on top of QEMU. Firsprdvides an introspection
module for extracting information from the operating systef the guest system such as the pro-
cess and thread identifiers for the current instructionptise address and size of a module that has
been loaded in memory (i.e., an executable or dynamicalketi library), and the list of processes
running in the guest system. Currently, TEMU can extraatrimiation from Windows 2000, Win-
dows XP, and Linux operating systems. Second, TEMU providemdule that implements taint
propagation 38,47,49,160 204). Taint propagation is a data-flow technique where data fadeint
source (e.g, network data, a keystroke, or a file) is markeédd additional taint information that is
propagated along with the data, as the data moves througlystem (e.g., into memory, registers,
or the file system). TEMU's taint propagation module supptaint across different processes as
well as tainting across memory swapping and the file systdmird,;TTEMU provides a clean inter-
face (API) for user-defined activities. Using this API, issean write custorpluginsthat monitor or
instrument the execution including the kernel as well agiifierent user-level processes. The API
provides the plugin with important functionality for momiing and instrumenting the execution
such as reading or writing the system’s registers and memagrying the operating system infor-
mation provided by the introspection module, saving antbreg) the state of the emulated system,
defining new taint sources, and querying or setting the tafatmation of memory and registers. It
also provides callback functions for different system ¢évench as a new block or instruction being
executed, a new process being created, or a process loadiodiwde in its address space.

The plugin architecture makes TEMU an extensible platfasrmionitoring and instrumenting
the execution of a system. In this thesis we develop a plugliectTracecapthat enables saving
detailed information about the execution for offline anely3 he execution logs produced by Trace-
cap include execution traces with instruction-level infation, process state snapshots taken at a
some point in the execution, and logs of the heap allocatieqeested by a process. We use the
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Figure 2.2: Vine architecture. Gray modules were previpashilable.

term execution monitothroughout this thesis to refer to the combination of TEMU dnacecap.
Figure2.1 presents the architecture of the execution monitor. Werites@racecap’s functionality
in Section2.3. A more detailed description of TEMU is available 8§ .

Vine. Vine is a static analysis platform that can translate asbetota formally specified inter-
mediate representation (IR), called the Vine intermedmtguage, and provides a set of common
static analysis techniques that operate on the Vine intdiates language such as creating control
flow graphs (CFGs)151], transforming statements from the Vine language into Biigjatic As-
signment (SSA) form151], symbolic executionJ0€], value set analysis (VSA)], computing
weakest pre-condition$]], and data-flow analysislp]]. Figure2.2 shows the Vine architecture.
In this thesis, our main use of Vine is as a symbolic executiogine for our string-enhanced and
protocol-level white-box exploration techniques, whiake gart of our model extraction module.
We describe symbolic execution in Secti@i.2and refer the reader td 99 for a more detailed
description of Vine.

Disassemblers. A disassembler is a program that translates machine caslassembly language.

In this thesis, we use an external disassembler for twordiftepurposes. Tracecap uses a disassem-
bler while logging the execution trace to identify the lifbperands of an instruction and associated
information such as the operand length and the type of acogbg operand (e.g., read or write).
Currently, Tracecap uses the XED disassemt®2&€)[ In addition, our binary code reuse module
uses the commercial IDA Pro disassemblgf] [to disassemble code sections in the process state
snapshots that Tracecap can generate during the exectiagoracess.

Constraint solver. In this thesis the constraint solver is a decision procedwitech performs
reasoning on symbolic expressions. We use the solver in odehextraction module to determine
if a symbolic expression is satisfiable and to generate ateoexample if it is not. We interface



CHAPTER 2. DYNAMIC PROGRAM BINARY ANALYSIS 30

with the solver through Vine, which contains a transform@afrom Vine expressions into a common
language understood by different solvers, which makesniveaient to benefit from any advances
on decision procedures. Currently, our constraint sow&TiP [/ 3], a complete decision procedure
incorporating the theories of arrays and bit-vectors.

2.3 Execution Logs

In this section we present the information we collect dufimggram execution. This information
enables our offline dynamic analysis techniques. We use taio omline components: the taint
propagation module included in TEMU, aildacecap a TEMU plugin that we have developed to
collect execution logs. Next, we provide some backgrourfdrination on taint propagation and
describe the different execution logs that Tracecap cdeatol

2.3.1 Taint Propagation

Taint propagation is a data-flow technique where data froaina $ource is marked with additional
taint information that is propagated along with the datahasdata moves through the systes8,[
47,49,160,204. Using taint propagation usually comprises three stepfinilhg the taint sources,
propagating the taint information, and checking the taifdrimation at the taint sinks. The taint
propagation module in TEMU provides functionality to deftaet sources and takes care of the
taint propagation as the program executes. Defining taikisss left up to plugin.

Using the TEMU API, a plugin can introduce taint at sourceshsas the keyboard, network
interface, and the file system; as well as directly taint msnuoo registers during the execution.
TEMU implements a whole-system taint propagation modubehich taint is propagated through
kernel and across different user-level processes, evan ifainted data is swapped out of memory
or written to a file. TEMU uses a shadow memory to store the fafiormation for each byte
of physical memory, registers, the hard disk and the netwadstface buffer. More details about
TEMU's taint propagation module can be found i9§.

Each byte in a taint source is assigned a unigue taint identifiror convenience, the taint
identifier comprises three parts: a taint source identifi¢gint origin, and a taint offset. The taint
source identifier is coarse and captures the high level safrthe taint such as the network, the
keyboard, the file system, or memory. The taint origin presidiner-granularity and is used to
group together related bytes in the taint source. For ex@nipthe taint source is the network
each TCP flow is assigned a different origin, and if the tamitree is the file system each file is
assigned a different origin. Finally, the taint offset ecaps the position of the byte in the taint
stream identified by the pair of the taint source identifiedt #re taint origin. For example, offset
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78061321: mov (%eax),%al /I (Yeax) tainted, %al untainted
78061323: cmp $0x48,%al /I %al tainted
78061325: jne 0x780a8adc

Figure 2.3. A snippet of x86 code corresponding to the hagdbf an HTTP response by the
Internet Explorer 7 Web browser.

zero is assigned to the first byte in a TCP flow or in a tainted @iféset one to the second byte
and so on. Breaking the unique taint identifier into three ponents makes it easier to understand
where the taint information comes from when analyzing ihattaint sinks.

Our use of taint propagation in this thesis is to define tadarses and to log into the execution
trace the taint information for each operand of an instamncéxecuted by the program. For example,
Figure 2.3 shows the first three instructions executed by a Web browssrreceives an HTTP
response. The memory location pointed by the EAX registeznwiime first instruction executes
contains the first byte in the HTTP response. If the user hiasatkthe network as a taint source then
the location pointed by EAX is tainted. When the first instimie executes, the taint information
for the first byte in the HTTP response is copied to the shademwany corresponding to the lowest
byte in EAX. When these instructions are written to the ekeautrace, the taint information for
each operand is recorded. We detail execution traces inetktesaction.

2.3.2 Tracecap

Tracecap can collect different execution logs for a progexmcution: execution traces, process
state snapshots, function hooks logs, and exported fursctams. We explain each of them next.

Execution traces. Execution traces are instruction-level logs of the executAn execution trace
usually contains the instructions executed by a singlelesel process, but it can optionally include
the kernel instructions and multiple user-level processes

The format of an execution trace has evolved over the duratfahis thesis and is currently
in its seventh version. The current execution trace forraatthree elements: the header, the body,
and an optional trailer. The header contains general tréfoeniation like the version, as well as
the address and size of each module loaded by a process iratiee The body of the trace is a
sequence of executed instructions. The optional trailatains additional module information for
each process. This module information is often more coragtan the one stored in the header,
since modules can be loaded during execution and thus tifemmation is not available when the
header is written. Storing the module information for anceti®n is important because a module
(e.g., DLL) could be loaded at an address different froméfmudit.
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For each executed instruction, the execution trace recardsng others, the instruction’s ad-
dress, the identifiers for the process and thread that eec ¢ instruction, the size of the instruc-
tion and its raw bytes, and a list of operands accessed byn#ieiction. For each operand in an
instruction, it records, among others, the operand type, (egister, memory, immediate), the size,
the address (i.e., memory address or unique identifier fdn eggister), the access type (e.g., read
or write), the content of the operand before the instrucérecutes, and the taint information for
the operand. For each tainted byte in an operand, it incladiss of taint records, where each taint
record comprises the taint source identifier, the taintiorignd the taint offset.

The execution trace uses variable-length encoding to nieithe space needed to record each
instruction. Currently, our execution traces are not casped. We plan to add support for com-
pressed execution traces in the future, as the benefitsoaf t@npression have been demonstrated
in related work 1L3].

Process state snapshots. Tracecap can take snapshots of the state of a process ateddasint

in the execution. A process state snapshot includes thermoot all memory pages in the address
space of the process that are not currently swapped outkoltlsan optionally include the content
of all registers, as well as the taint information for botbisters and memory addresses. To generate
the process state snapshot Tracecap uses the TEMU API tdivegtkocess page table and retrieve
the content and taint information for each page.

Hook logs. The TEMU API enables specifying callbacks that are execwtaeh a certain program
point (i.e., value of the EIP register) is reached. We calséhcallbackfiooks Hooks can be global
orlocal. A global hook is executed whenever a process raablegorogram point while a local hook
is only triggered when a specific process reaches itun&tion hookis a hook that executes at the
entry point of a given function ( before any instruction ie fanction is executed) A function hook
can also define eeturn hook another callback that is executed when the function ret(after the
function’s return instruction is executed). Function heakn be used to perform different actions
such as logging the parameters and output values of thedanmt tainting the output values of the
function. Function hooks require access to the functiorgqtype, so that the callback can locate
the parameters of the function in the stack and the outpuesgabf the function if a return hook is
defined. We have developed over a hundred function hooksrémetap. The hooked functions
have publicly available prototypes and cover functiogadiich as file and network processing, heap
allocation, Windows registry accesses, string processing time operations.

The TEMU API supports specifying the functions by name, toiehhaving to update the function’s start address

when the module that contains the function is loaded at areaddhat is not the default one. The system also supports
specifying the function by ordinal if it is not exported byme.
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Tracecap can create function hooks logs with informaticyuéthe invocations of hooked func-
tions. For example, Tracecap can produce heap allocatgsmdth information about the calls to
heap allocation and free functions invoked by a prograrmdueixecution. For each heap allocation,
the log provides information such as the current instrictiounter in the trace, the start address
of the heap buffer, the buffer size, and whether the buffee svas tainted. For each heap free
operation, the log specifies the instruction counter andtiuwe address of the buffer being freed.

Exported functions log. TEMU parses the header of PE (Windows) binaries that arestbatto
memory and extracts the exported symbol names and offsetsedap dumps this information to a
file, so that offline analysis can use it to determine funcéotry points and function names.

2.4 Offline Dynamic Analysis

Offline dynamic analysis techniques work on informationslagllected from program executions.
All the novel dynamic binary analysis techniques proposethis thesis operate offline, taking
as input execution traces. In addition to execution trasesje of our techniques also take as
input other logs from the execution such as the processstafgshots and the heap allocation logs
described in the previous section. Although the input isaglsvexecution traces, we classify the
techniques intdrace-basedf they operate on sequences of assembly instructions directly on
execution traces) antR-basedif they operate on sequences of statements from an inteateedi
representation (i.e., the execution traces are first mggwslinto the Vine intermediate language).

Converting the execution trace to an intermediate reptasen (IR) enables more precise anal-
ysis but is expensive. Techniques that can operate on eithexecution trace or an IR, e.g., dynamic
program slicing 2] described in Sectio.4.2 often produce more accurate results when operating
on an IR because the IR enables precise reasoning aboutsthgction semantics and makes in-
struction side-effects such as setting the processottasstiags explicit. For example, Figuged
shows the list of IR statements resulting from translatimg second instruction in Figu&3into
the Vine intermediate language. Here, one x86 instructdnanslated into 10 IR statements with
all side effects (i.e., AF, CF, OF, PF, SF, and ZF status flaggje explicit. However, not all anal-
ysis techniques require such precise reasoning. For egamngtking the call stack at any point in
the execution provides important contextual informatiabthere is no benefit from translating the
execution trace into an IR for callstack tracking. It is meficient to perform it directly on the
execution trace. In addition, our execution traces mayaioritiint information. Thus, techniques
that rely on taint information can operate directly on executraces. On the other hand, formal
analysis like symbolic execution greatly benefits from atiag on an IR.
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label pc_0x78061323 2:

/ *cmp $0x48,%al =/

T _8t0_283:reg8 t = cast(R_EAX_5:reg32_t)L:reg8_t;

T_32t3 286:reg32_t = cast(T_8t0_283:reg8_t)U:reg32_t;

T_0_288:reg32_t = T_32t3 286:reg32_t - 0x48:reg32_t & Oxf f:rreg32_t;
R_CF_10:regl_t = T_32t3_286:reg32_t < 0x48:reg32_t;

T 1 289:reg8 t = cast(T_0_288:reg32_t)L:reg8 t;

R_PF _1l1iregl t =

Icast(((T_1_289:reg8 t >> 7rreg32_t = T_1 289:ireg8 t >> 6 reg32_t) ©
(T_1 289:rreg8 t >> 5:reg32_t ~ T_1 289:reg8 t >> 4:reg32_ ) ~
((T_1_289:reg8_t >> 3ireg32_t ~ T_1 289:rreg8 t >> 2:reg32 -
(T_1 289:reg8 t >> 1:reg32 t = T_1 289:reg8 t)))L:regl t;

R_AF_12:regl t = lireg32_t ==

(Ox10:reg32_t & (T_0 _288:reg32_t ~

(T_32t3_286:reg32_t = 0x48:reg32_t)));

R_ZF 13:regl_t = T_0_288:reg32_t == 0:reg32_t;
R_SF 14:regl t = lireg32_t == (lireg32_t & T_0 288:reg32_ t >> 7:reg32_t);
R_OF_15:regl t = lireg32_t ==

(L:reg32_t & ((T_32t3_286:reg32_t ~ 0x48:reg32_t)

& (T_32t3 286:reg32_t ~ T_0_288:reg32_t)) >> 7:reg32_t);

Figure 2.4: The translation of the second instruction inuFéd.3 into the Vine intermediate lan-
guage 9. Each variable and constant value is followed a colon andlyjpe. The type indicates
the size of the variable (e.g., reg®r one byte and reg32for four bytes).

In this thesis we present both trace-based and IR-basedidgegs. Our protocol reverse-
engineering and binary code reuse techniques, presen@hjnier3 and Chapted respectively, are
trace-based, while our model extraction technigues in @nap-8 are IR-based. In the remainder
of this section we provide some background information @avipus dynamic analysis techniques
that we leverage in this thesis.

2.4.1 Trace-Based Techniques

To enable trace-based techniques we have developed agparsiule that reads an execution trace
and provides a clean API to access its information. Sinyilave have developed parsers and APIs
to access the process state snapshots and the heap atidagsiohat Tracecap also produces. Next,
we introduce some trace-based techniques used in thisthesi

Loop detection. The loop detection module extracts the loops present in aoution trace. It
supports two different detection methods: static and dyoairhe static method first extracts loop
information (e.g., the addresses of the loop head and tigdait conditions) from control flow
graphs, using one of the standard loop detection technimpplemented in Vine 201. Then,
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it uses the loop information in a pass over the executiorettacdetect the loops present in the
execution. The dynamic method does not require any stativegsing and extracts the loops from
a single pass on the execution trace, using techniquesdtettdoop backedges as instructions that
appear multiple times in the same functid®f]. The output of both loop detection methods is a
list of loops present in the execution trace. The informmafar each loop includes the position of
the loop in the execution trace as well as information abbie iterations of a loop (i.e., loops in
an execution trace are unrolled). Both methods have pros@m The static method is often more
accurate because it can precisely identify loop entry aiigeints, but it requires analyzing all the
modules (i.e., program executable and dynamically linkalites it uses, including operating system
libraries) used by the application, may miss loops thataianhdirection, and cannot be applied if
the unpacked binary is not available. On the other hand, yhardic method cannot detect loops
that do not complete an iteration, needs heuristics to iiyelobp exit conditions, but requires no
setup and can be used on any execution trace.

Callstack tracking. The call stack tracking module iterates over the executiacet replicating
the function stack for each thread in a given process. Natetltie source-level concept of a func-
tion may not be directly reflected at the binary code levelxgdagned in Sectior2.1. We use an
assembly functioabstraction at the binary level, where all code reachabl® the assembly func-
tion entry point before reaching an exit point constitutes body of the assembly function. Note
that code reachable only through another entry point theough a call instruction) belongs to the
body of the callee function, rather than to the caller’'s bdglgurce-level functions that are inlined
by the compiler are considered part of the assembly funatibere they were inlined. We define
exit points to be return instructions. We define entry pdiotse the target addresses of call instruc-
tions’, as well as the addresses of exported functions provideukiexported function log. Using
the exported function log is important to defeat a commornstrtion used by malware where an
external function is not invoked using a call instructionstead the malware program writes the
return address into the stack and jumps into the entry pédititeofunction. Note that this deobfus-
cation only works for external functions. An internal fuiect that the program jumps into, without
using a call instruction, will look as part of the caller filon to our callstack tracking.

The call stack tracking module makes a pass on the execuiioa monitoring entry and exit
points. It can handle some special cases such as calls witbtauins and returns without calls
by monitoring the expected return addresses. For exampienviaced with the Uniongjmp
function, a non-local goto used for unstructured controlvfli is able to identify to which call
the return instruction that follows thengjmp invocation belongs to. The call stack tracking

2\We also consider a call instruction followed by an indirerhp, an idiom commonly used in Windows binaries.
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module provides an API so that a program can identify theegamg the execution trace that belong
to a function run and can execute functionality (e.g., obihg statistics) on each function run.
After iterating over the execution trace it outputs a fumctihat given an instruction counter in the
execution trace, returns the function nesting at that pafithie execution.

Execution trace indexing. An execution trace can only be accessed sequentially,iteeating
from the top. To enable random access to the execution tracprevide a tool that builds an
execution trace index that stores the file pointer offsetefach instruction. The execution trace
index is used, among others, by techniques that iteratenzadk on the trace.

2.4.2 IR-Based Techniques

In this thesis, IR-based techniques work on the Vine inteiiaie language representation of an
execution trace, which we simply refer to as the IR. Next, wavigle background information
on three previously proposed IR-based techniques that wehusughout this thesis: symbolic
execution, white-box exploration, and dynamic slicing.

Dynamic symbolic execution. In symbolic execution, the values of variables are replagitad
symbols and the program’s execution on those symbols pesdfgymulas, rather than concrete
values [LOg. Dynamic symbolic execution performs both concrete andlwlic execution along
an execution pathl[lQ, 78,32]. To fix the execution path on which to perform dynamic synitbol
execution, an input (e.g., test case) is given to the progracdhsymbolic execution is performed
along the concrete execution of the program on the givertirfpue advantage of dynamic symbolic
execution is that if a symbolic formula falls outside thedheof constraints that can be solved, e.g.,
AP < 25 when the solver does not support exponentiation, the faroah be replaced with the
corresponding values from the concrete execution. For pl@mwe can replacel® < 25 with
A=3ANB =2A(9 < 25)if AandB had values 3 and 2 respectively in the execution. This
limits the generality of the expression, i.e., A and B aredite@the values seen in the execution, but
maintains the correctness of the formula.

In dynamic symbolic execution, when the program reachesachr predicate that uses some
of the symbols, a symbolic branch condition is created. Tdgunction of all symbolic branch
conditions forms thgath predicate a predicate on the symbolic program inputs that captutes al
the inputs that would follow the same execution path in theg@m.

In this thesis, we perform offline dynamic symbolic executan an execution trace. For this,
we lift the execution trace into the Vine intermediate laagg, transform the IR into Single Static
Assignment (SSA) form, and replace the program’s input (¢hg value of the EAX register and
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/ * Execution trace */ / = Slice for ECX at 7 */
0) 78061321: mov (Y%eax),%al 78061330: push  $0x5
1) 78061323: cmp $0x48,%al 78061332: pop %ecx

2) 78061325: jne 0x780a8a4c

3) 7806132b: cmp %ecx,-0x4(%ebp)
4) 7806132e: je 0x7806135c

5) 78061330: push  $0x5

6) 78061332: pop %ecx

7) 78061333: cmp %ecx,-0x4(%ebp)
8) 78061336: jb 0x780a8a8f

Figure 2.5: Slicing example. On the left an extended versiaihe execution trace shown in Fig-
ure2.3. On the right, the slice for the ECX register at instructigmvhich captures all instructions
involved in producing the value of the ECX register at thatinction.

the contents of the buffer returned by tlexzv function) with symbols. Optionally, we can taint
the variables that we want to be symbolic during program @ti@e and then lift to the Vine inter-
mediate language only those instructions that operateiatetadata.

White-box exploration. Dynamic analysis techniques cover a single execution paiiprogram.
White-box exploration is a technigue that leverages dynayinbolic execution to automatically
generate inputs (i.e., test cases) that execute diffesghspn a program7s, 32]. White-box ex-
ploration can be used to increase the coverage of dynamlgsim&echniques. It works by first
obtaining a path predicate for one execution. Then, it rgahe of the symbolic branch condi-
tions in the path predicate and produces a modified pathgatedihat includes all branch conditions
in the original predicate up to the negated condition, phesrtegated condition. Then, it queries a
constraint solver for an input that satisfies the modifieth pagdicate. If the solver returns an input,
that input is fed to the program to generate a new executianfttiows a different program path.
By repeating this process, white-box exploration can aataally find inputs to explore different
execution paths in a program, increasing the coverage afrthlysis.

Dynamic program slicing. Dynamic program slicing takes as input an execution of anamg
and a variable occurrence in that execution, e.g., the waltize EAX register at the beginning of

a particular instruction since EAX is used in many instroigsi, and extracts all statements in the
execution that had some effect on the value of the varialdaroence 111, 2]. Dynamic program
slicing is the dynamic counterpart of program slicird$. The output of slicing a variable oc-
currence (variable for short) is calledskice Dynamic data slices contain only data dependencies
while full dynamic slices contain both data and control defancies.
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OUT:regl t = (cast(INPUT_10000_0000:reg8 t)U:reg32 t +
Oxffffffb8:reg32_t & Oxff:reg32_t) == 0:reg32_t;

Figure 2.6: Formula for the symbolic branch condition csp@nding to the conditional jump in
Figure2.3

We have implemented a slicing algorithm proposed by Zhamady €39, which is precise, i.e.,
only statements with dependencies to the variable aredadlin the slice. The algorithm works
bottom to top on the execution log (slicing can be performedhe execution trace or the IR) and
can generate multiple slices (i.e., one per variable) imglsipass. Figur@.5shows an example
slice. On the left it presents an extended version of theugdattrace shown in Figurg.3. On the
right, it shows the slice for the ECX register at instructignvhich captures all instructions involved
in producing the value of the ECX register at that instructio

In this thesis we use dynamic program slicing as a first stegreéating small formulas for
symbolic branch conditions. Given a branch condition \@éan the IR, we first slice the branch
condition variable over the IR, producing a slice that i€oftmuch smaller than the complete IR.
Then, we create a formula by combining all the statementslica together and simplifying the re-
sulting statement using different technigues such as aohfilding and constant propagation. The
output of this simplification is a formula (often small), whicaptures how the symbolic program
inputs influence the branch condition. For example, Figuéshows the formula for the symbolic
branch condition corresponding to the conditional jump iguFe 2.3 which in short states that
INPUT == 0x48.
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Chapter 3

Protocol Reverse-Engineering

3.1 Introduction

Protocol reverse-engineering techniques extract thefgmaion of unknown or undocumented net-
work protocols and file formats. Protocol reverse-engimgetechniques are needed because many
protocols and file formats, especially at the applicatioyetaare closed (i.e., have no publicly
available specification). For example, malware often use®cumented network protocols such as
the command-and-control (C&C) protocols used by botnetytahronize their actions and report
back on the nefarious activities. Commercial off-the-Blapiplications also use a myriad of un-
documented protocols and file formats. Closed network paigoinclude Skype’s protocollp§g;
protocols used by instant messaging clients such as AOICk [B3], Yahoo!'s Messenger234,
and Microsoft's MSN Messenget{Q; and update protocols used by antivirus tools and browsers
Closed file formats include the DWG format used by Autode#iisoCAD software ] and the
PSD format used by Adobe’s Photoshop softwdie [

A detailed protocol specification can enable or enhance raaoyrity applications. For exam-
ple, in this chapter we enable active botnet infiltration Riracting the specification of a botnet’s
C&C protocol and using it for deep packet inspection and itévgr of the botnet’'s communication.
In Chapter7 we show that a protocol specification enables generatingguoblevel vulnerability-
based signatures for intrusion detection systems, whietharder to evade than byte-level signa-
tures. Protocol specifications are also the input for gergtocol parsers used in network moni-
toring [17,173 and can be used to build protocol-aware fuzzers that exgleeper execution paths
than random fuzzers cahqf, as well as to generate accurate fingerprints required bgfprinting
tools that remotely distinguish among implementationshefdame specificatiorl$2].

Currently, protocol reverse-engineering is mostly a tcoesuming and error-prone manual
task. Protocol reverse-engineering projects such as géetargeting the MSN Messenger and SMB
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protocols from Microsoft {48 210 1, the Yahoo! Messenger protocdlq1], or the OSCAR and
ICQ protocols from AOL 72,89], have all been long term efforts lasting years. In addijtimotocol
reverse-engineering is not a once-and-done effort, siristirgg protocols are often extended to
support new functionality. Thus, to successfully reversgireer a protocol in a timely manner and
keep up the effort through time, automatic protocol revensgineering techniques are needed.

Previous work on automatic protocol reverse-engineerioggses techniques that take as input
network data 10,52,116. Those techniques face the issue of limited protocol imi@tion avail-
able in network traces and cannot address encrypted pistomaddress those limitations, in this
thesis we present a new approach for automatic protocotsexangineering, which leverages the
availability of a program that implements the protocol. @pproach uses dynamic program bi-
nary analysis techniques and is based on the intuition taitoring how the program parses and
constructs protocol messages reveals a wealth of infoomatbout the message structure and its
semantics.

Compared to network traces, program binaries containrigtedocol information because they
represent the implementation of the protocol, which is tlestdetailed description of the protocol
in absence of the specification. Understanding the protogolementation can be beneficial even
for protocols with a publicly available specification, basa implementations often deviate from
the specification. In addition, for encrypted protocol®, pinogram binary knows the cryptographic
information required to decrypt and encrypt protocol dafaus, we can wait until the program
decrypts the received network data to start our analysistoit before the program encrypts the
network data to be sent in response, thus revealing thetsteuand semantics of the underlying
protocol.

Our work in context. This chapter comprises work published in two conferencielest The
first article appeared in the proceedings of the 14th ACM €wrfce on Computer and Commu-
nications Security (CCS 2007). It presented a system cBidyhlot[30], which implemented the
first approach for automatic protocol reverse-engineenisigg dynamic binary analysis. Polyglot
uses the intuition that monitoring the execution of a progthat implements the protocol reveals a
wealth of information about the protocol. Polyglot exteaonly the message format of a received
message. The second article appeared in the proceedirgs§th ACM Conference on Computer
and Communications Security (CCS 2009). It presented amsysalledDispatcher[26], which in
addition to the techniques introduced in Polyglot, implated techniques to extract the message
format for a sent message. It also implemented semantieseimée techniques for both sent and
received messages, which we had previously introduced a@chnical Report in 20072B].

IMicrosoft has since publicly released the specificationathtprotocols as part of their Open Specification initia-
tive [139



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 42

After the publication of Polyglot, other research groupsli@ined automatic protocol reverse-
engineering techniques that used dynamic binary analgsixtracting the protocol grammaz49,
124,54] and the protocol state-machiné4]. The works that focus on protocol grammar extraction
use the approach we introduced in Polyglot of monitoringekecution of a program that imple-
ments the protocol. Their techniques target two issueshel) tonsider the message format to be
hierarchical 229 124,54, rather than flat as considered in Polyglot, and 2) theyrektbe problem
scope from extracting the message format as done in Polyglektracting the protocol grammar
by combining information from multiple messagé&®$,54]. In Dispatcher we still focus only on
message format extraction because it is a pre-requisiteotbrprotocol grammar and state-machine
extraction, but we consider the hierarchical structureheffirotocol messages. In this chapter, we
present a unified view of the techniques introduced in Potyghd Dispatcher that considers the
hierarchical structure of protocol messages. We also uh#dyprotocol nomenclature used across
the different protocol reverse-engineering works.

3.2 Overview & Problem Definition

In this section we introduce automatic protocol reversgiraering and its goals, describe the scope
of the problem we address, introduce common protocol el&srard terminology, formally define
the problem, and provide an overview of our approach.

3.2.1 Automatic Protocol Reverse-Engineering

The goal of automatic protocol reverse-engineering isrgae undocumented protocol or file for-
mat to extract thgrotocol grammay which captures the structure of all messages that comprise
the protocol, and thprotocol state machinevhich captures the sequences of messages that repre-
sent valid sessions of the protocol. In this thesis we foecusewersing application layer protocols
because those comprise the majority of all protocols andreme likely to be undocumented. In
addition, we consider file formats a simple instance of aqu@itwhere there are no sessions and
each file corresponds to a single message.

Extracting the protocol grammar usually comprises twosstdfirst, given a set of input mes-
sages, extract thmessage formaif each individual message. Second, combine the messagatfor
from multiple messages of the same type to identify complesgage properties such as field al-
ternation and optional fields. In this thesis we address thedfiep of protocol grammar extraction:
extracting the message format for a given message. Extgettte message format is a pre-requisite
for extracting both the protocol grammar and the protocatiesinachine. The message format cap-
tures the field structure and the field semantics of the messatch we describe next.
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Message format. The message format has two components: nfessage field treand afield
attribute listfor each node in the tree. The message fielcPti®a hierarchical tree structure where
each node represents a field in the message and is tagged [si#intaend] range of offsets where
the field appears in the message, where offset zero is thdyiestin the message. A child node
represents a subfield of its parent, and thus correspondsstbrange of the parent field in the
message. The children of a parent have non-overlappingesaagd are ordered using the lowest
offset in their range. The root node represents the compietssage, the internal nodes represent
records, and the leaf nodes represéedf field$, the smallest semantic units in a protocol. Note
that leaf fields are sometimes referred to simply as fieldshithesis, when we refer to fields in
plural, we mean any node in the message field tree, whichdeslboth records and leaf fields.

In addition to the range, a node contains a field attribute lisiere each attribute captures a
property of the field. Tabl8.1 shows the field attributes that we consider in this thesise fidid
boundary attribute captures how the recipient locates thadary between the end of this field
and the beginning of the next field in the message. For fixegttefields the receiver can find the
boundary using the constant field length value, which is kmavpriori. For variable-length fields
the receiver can usedelimiter, i.e., a constant value that marks the end of the field length field
The field dependencies attributes captures inter-fieldioekhips such as this field being the length
of another field or this field being the checksum of multipleestfields in the message. The field
semantics attribute captures the type of data that a fielibsatWe explain the different protocol
elements in more detail in the next section.

Note that the message field tree with the associated fiel@&sgpgyfectly describes the structure
of a given message. However, without the attribute list wanotilearn anything from this message
that can be applied to other instances of the same messagéetgp, from one HTTP GET request
to another).

Field semantics. One important field attribute is the field semantics, i.e, tipe of data that
the field contains. Typical field semantics include timestanmostnames, IP addresses, ports, and
filenames. Field semantics are fundamental to understaatl avinessage does and are important
for both text and binary protocols. For example, an ASChiasted integer in a text-based protocol
can represent among others a length, a port number, a steep tr a checksum value. Field
semantics are critical for many applications, e.g., theyraeded in active botnet infiltration to
identify interesting fields in a message to rewrite.

2Also called protocol field treelp4.

3Also called hierarchical fieldslp4, 26] and complex fields329.
4Also called finest-grained field424.
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GET /index.htm| HTTP/1.1\r\n Field Range: [24:25]

User-Agent: Mozilla/4.0\r\n Field Boundary: Fixed-length(2)

Host: foo.com\r\n\r\n Field Dependencies: Delimiter(Request-Line)
Field Semantics: Delimiter

re —
e -
- o
- s .= -
= — - _
Request-Line T Headers CRLF
[0:23] [0:65] [66:67]
Method Version User-Agent CRLF Host header CRLF
[0:2] [16:23] header [26:48 [49:50] [51:63] [64:65]
Value Value
[38:48] [57:63]

Figure 3.1: Message field tree for the HTTP request on therupfteorner. The upper right corner
box shows the attribute list for one of the delimiters.

Attribute Value

Field Range Start and end offsets in message

Field Boundary Fixed-length{), Variable-lengthl.ength), Variable-lengthDelimiter)
Field Dependencies Length(;), Delimiter(z;), Checksumg;, . . ., x;)

Field Semantics The type of data the field carries. A value from TaBla

Table 3.1: Field attributes used in this thesis. Each attigilcaptures a property of the field.

HTTP running example. Figure 3.1, captures the message field tree for an HTTP request. The
HTTP request message is shown on the upper left corner andothen the upper right corner
shows the attribute list for one of the nodes. The root nodeigare 3.1 represents the complete
HTTP request, which is 68 bytes long. There are four recotdds:Headers the Request-Ling

the User-Agentheader, and thelostheader. HTTP mostly uses delimiters to mark the end of the
variable-length fields. The field attribute list for the CRfi€ld shown in the figure, shows in the
field semantics attribute that ti@RLFfield is a delimiter and in the field dependencies field that its
target is theRequest-LineThe HTTP specification is publicly availabléq] and Figure3.2 shows

a partial HTTP grammar, taken from the specification, thaec®most production rules related to
our example HTTP request.

3.2.2 Protocol Elements

In this section we describe some elements commonly usedioquis and how they are represented
in the message field tree and field attribute list.
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HTTP-message = Request | Response
Request = generic-message
Response = generic-message
generic-message = start-line
* (message-header CRLF)
CRLF
[ message-body ]
start-line = Request-Line | Status-Line
message-header = field-name ":" [ field-value ]

Figure 3.2: Partial HTTP protocol grammar from RFC 2664

Layer PDU
Physical Layer bit
Data Link Layer frame
Network Layer packet
Transport Layer | segment
Application Layer| message

Table 3.2: Protocol Data Units (PDUSs) for the different natking layers.

Message. We define a message to be the Protocol Data Unit (PDU) of thecapipn layer, where
a PDU is the information that is delivered as a unit among pedities in a networking layer.
Table 3.2 shows the PDUs for different networking layers. We sepafaepplication layer PDU
with a horizontal line because there is no defined PDU forrlagbove the Transport layez(3).

Fixed-length and variable-length fields. Each field, regardless if a record or a leaf field, is either
fixed-length or variable-length. The length value of a fixedgth field is static, i.e., it does not
change across multiple instances of the same field. Thehesadie for a fixed-length field is part
of the protocol specification and known a priori to the impégrations of the protocol. In contrast,
the length of a variable-length field is dynamic, i.e., it cdmnge across multiple instances of the
same field. Protocol specifications need to describe how plementation identifies the length or
the boundary of a variable-length field. The main protocelrents used for this task are length
fields and delimiters, which we describe next. The field bampdttribute captures whether a field
is fixed-length or variable-length and for the latter whetih@ises a delimiter or a length field. In
our HTTP running example, all fields except the delimiteeskelves are variable-length, while in
our MegaD running example only ttdSG Host-Infg andPaddingfields are variable-length, the
rest are fixed-length.

Length fields. A length field captures the size oftarget variable-length field, which can be a
record or a leaf field. A length field always precedes its tafigéd in a message, but it does not
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need to be its immediate predecessor. The length field caulifiseent units. For example, in
Figure 3.7 the Msg-Lengthfield encodes the total length of the message in 64-bit uhiisthe
Lengthfield encodes the length of theost-Inforecord in bytes. The value of the length field is
often the output of a formula that may use the real length eftéinget field plus or minus some
known constant. For example, a record may have three chiltkfia fixed-length type field, a
fixed-length length field, and a variable-length payloadhia case the length field can capture the
payload length or the record length which includes the fileedyth of both the type field and the
length field itself. The field dependencies attribute castwrhether a field is a length field and what
the target variable-length field is. The field boundary lattié captures for a target variable-length
field whether its boundary is located using a particular tleffigld.

Delimiters. A delimiter® is a constant used to mark the boundary of a target variabigth field.
Delimiters are fields themselves and are always the suace$gshe target variable-length field
they delimit. Delimiters are part of the protocol specificatand known to the implementations
of the protocol. Delimiters can be used in binary, text orediyrotocols, e.g., delimiters are used
in HTTP, which is mainly a text protocol, and also in SMB, whiis mainly a binary protocol.
They can be formed by one or more bytes. For example, in Figurethe Carrier-Return plus
Line-Feed two-byte sequence (CRLF) is used as a delimiteraik the end of the start-line and
the different message heade6$]| while SMB uses a single null byte to separate dialect g#in
inside aNegotiate Protocol Requegi86. Protocols can have multiple delimiters. For example,
in Figure 3.1, in addition to the CRLF delimiter to separate headers etlieialso the space (SP)
delimiter that marks the end of tidethodandURI fields, as well as the semicolon plus space (CS)
delimiter that separates tidamefrom theValuein each header field. As shown in the field attribute
list in Figure3.1, the field dependencies attribute captures whether a fieldiimiter and which
field is its target. The field boundary attribute capturesaftarget variable-length field whether its
boundary is located using a particular delimiter.

Field Sequences. Field sequences, or sequences for short, are lists of aainseéields with the
same type. Sequences are used in file formats such as WMF,rAMP&G, and also in network
protocols such as HTTP. A sequence is always variabletiemggjardless if the fields that form the
sequence are fixed-length or variable-length. The end ofjaesee is marked using a delimiter
or a special length field called a counter field. For exampldsigure 3.1, the Headersfield is a
sequence and an empty line (CRLF) delimiter is used to masitl. Note that an array is a special
case of a sequence where each field in the sequence has figghl-I& sequence is simply a record

®In our early protocol reverse-engineering woBd][ we referred to delimiters as separators. Since then, we hav
adopted the term delimiter because it has been more commeatyin follow-up work.
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in the message field tree with a field semantics attributeevedat indicates so. All children of a
sequence are of the same type.

Keywords. Keywords are protocol constants that appear in the protomdsages. Keywords
are part of the protocol specification and known a priori ® ithplementations. Not all protocol
constants are keywords, since there are protocol condtaatsiever appear in a message, such
as the maximum length of a field. Keywords can appear in bjrtarg, and mixed protocols and
can be strings or numbers. For example, in Figdukthe “GET”, “HTTP”, “User-Agent”, and
“Host” strings are all keywords, while in FiguB7 the version number is also a keyword. The field
semantics attribute captures whether a field carries a ke&lywhofield can carry different keywords
in different instances of the field. For example, tethodfield in Figure3.1 carries the “GET”
keyword but in other HTTP requests it could carry the “POSIT"I@EAD” keywords. Note that
according to this definition delimiters are also keywordse #lifferentiate delimiters from other
keywords because of their particular use.

Dynamic fields. Dynamic fields have been defined by previous work to be fieldssetvalue
may change across different protocol dialo§3][ According to that definition almost any field in a
protocol is dynamic. There are very few fields in protocoloadvalue never changes because they
can encode very little information. In this thesis, we defilyaamic fields to be fields that carry
protocol-independent information, which means fields tesfer carry a protocol keyword.

3.2.3 Problem Definition

In this thesis we develop protocol reverse-engineeringrigeies to address two problemsies-
sage format extractioandfield semantics inferencéMessage format extraction is the problem of
extracting the message field tree for one message of thecptotbcan be applied to a message
ceivedby the application, as well as to a messagatby the application in response to a previously
received message. Field semantics inference is the pratfi@inen a message field tree, tagging
each field in the tree with a field semantics attribute spewifthe type of data the field carries.

The input to our message format extraction and field sensinfierence techniques is execution
traces taken by monitoring an application that implemenésgrotocol, while it is involved in a
network dialog using the unknown protocol. The executiaees can be obtained by monitoring a
live dialog, where the application communicates with aaptimtity somewhere on the Internet, or
an offline dialog, where we replay a previously capturedodjdtom the unknown protocol to the
application. In both cases the application runs inside eew@ion monitor presented in Chapgr
which produces execution traces.
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3.2.4 Approach

We design message format extraction and protocol infereatwiques for both messages received
and sent by an application. Thus, our approach can analytresiaes of the communication of
an unknown protocol, even when an analyst has access ore tapplication implementing one
side of the dialog. This is important because there are sosnahere access to applications that
implement both sides of a dialog is difficult, such as revers botnet's C&C protocol where the
binary of the C&C server is rarely available or reversing eppietary instant-messaging protocol
(e.g., Yahoo's YMSG or Microsoft's MSNP) where client impientations are publicly available,
but server implementations are not.

To extract the format afeceivedmessages we use the following intuition: by monitoring how a
program parses a received message we can learn the messagelfecause in order to access the
information in the leaf fields, the program first needs to fimolske fields by extracting the hierar-
chical structure of the message. By monitoring the parsinggss, we can learn what the program
already knows, e.g., the length of fixed-length fields andviidaes used as delimiters, as well as
what the program has to discover, e.g., the boundaries ofati@ble-length fields. We present our
message format extraction techniques for received mesga@ectior3.3.

To extract the format afentmessages we use the following intuition: programs storddiei
memory buffers and construct the messages to be sent by mimgplthose buffers together. We
define theoutput bufferto be the buffer that contains the message about to be sd tirte that
the function that sends data over the network is invoked. Apexial case, for encrypted proto-
cols the output buffer contains the unencrypted data atitne the encryption routine is invoked.
Our intuition is that the structure of the output buffer eg@nts the inverse of the structure of the
sent message. We propadseffer deconstructigna technique to build the message field tree of a
sent message by analyzing how the output buffer is conetiucbm other memory buffers in the
program. We present our message format extraction techsifigu sent messages in Sectia.

Our techniques to extract the message format differ forivedeand sent messages. For received
messages, our techniques focus on how the program parseedisage and leverage taint propaga-
tion, a data-flow technique that allows us to follow how theefeed message is handled throughout
the parsing. For sent messages, our technigues focus orhbqwdgram builds the message from
its individual fields and leverage buffer deconstructiomich analyzes how the different memory
buffers are used to fill the output buffer. Note that we do eeétage taint propagation for extract-
ing the message field tree of sent messages, because ontyianfraf all possible sources of taint
information during message creation (e.g., output of sytalls and data sections in the program)
is actually used to build the sent message.
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To infer the field semantics, we use type-inference-basgthigues that leverage the observa-
tion that many functions and instructions used by prograamgain known semantic information
that can be leveraged for field semantics inference. Wherdari¢he received message is used to
derive the arguments of those functions or instructioms, @emantic sinks), we can infer its seman-
tics. When the output of those functions or instructions. (isemantic sources) are used to derive
some field in the output buffer, we can infer its semantics.pfésent our field semantic inference
techniques for both received and sent messages in S&cbon

One limitation of our message format extraction and fieldriafce techniques is that they work
at the byte level. Thus, they currently cannot handle fiehalker than 8-bit, such as the QR (query
or response) bit or the 4-bit Opcode (kind of query) in a DN§uest L49. While our techniques
can be extended to operate at the bit-level with some engjigeeffort, an end-to-end solution
requires the building blocks we use e.g., taint propagatmalso operate at the bit level.

Encrypted protocols. To handle encrypted protocols such as MegaD'’s C&C protaeelse the
intuition that the program binary knows the cryptographioimation (e.g., cryptographic routines
and keys) required to decrypt and encrypt the protocol ngessarhus, we can wait until the pro-
gram decrypts the received message to start our analysistapdhe analysis before the program
encrypts the message to be sent in response. Compareditiugremrk, we propose extensions to a
recently proposed technique to identify the buffers h@dime unencrypted received messag@l].
Our extensions generalize the technique to support impi&atiens where there is no single bound-
ary between decryption and protocol processing, and tdifgehe buffers holding the unencrypted
sent message. We present our handling of encrypted pretoc8lectiors.6.

Per-message execution traces.An execution trace may contain the processing of multipls-me
sages sent and received by the application during the nietsialog. To separately analyze each
message we need to split the execution trace into per-megsags. This is challenging when two
consecutive messages are sent on the same direction ofrtirawucation. For example, MegaD
uses a TCP-based C&C protocol. In a C&C connection the batssamequest to the C&C server
and receives one or more consecutive responses with thefeamat. At that point the question
is whether to consider the response from the server a singésage in which case there is a sin-
gle message field tree where the child of the root node canelspto a sequence with two child
records, or to consider the response as two messages, ih edse there are two separate message
field trees.

Some work defines a message to be all data received by a peee befesponse is sent, i.e.,
before the application calls the function that writes datthe socket44]. This makes the response
from MegaD’s C&C server to be a single message. In this thesizuse a different definition
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Figure 3.3: Message format extraction for received message

of what a message is and split the execution trace into twaesravery time that the program
makes a successful call to write data to a socket (gemg and every time that the program makes
a successful call to read data from a socket (eary), except when the argument defining the
maximum number of bytes to read is tainted. In this case, dhd data is considered part of the
previous message and the trace is not split. This handlesase of a program reading a field
conveying the length of the message payload and using thie t@read the payload itself.

3.3 Message Format Extraction for a Received Message

The input for extracting the message format for a receivedsamge is an execution trace of the
program while it parses the protocol message that we wankttact the format for. We have
introduced execution trace logging and taint propagatio@hapter2. Here, the execution monitor
taints each byte of the received message with a differamtaéfset where offset zero corresponds to
the first byte in the message. The execution trace contaireafih instruction operand whether the
operand is tainted. If tainted, it contains the taint oBdet each byte in the operand. We refer to the
taint offsets apositionsin the received message. The output of this process is theaged$ormat
as a message field tree with an attribute list for each node.méssage field tree has no semantics
attribute. In Sectior3.5we show how to extract the values for the field semanticdatei

Figure 3.3 illustrates the message format extraction process for @vet message. It shows
that the execution trace is the input to three modules: deindentification, length identifica-
tion, and fixed-length field identification. The delimiterdaiength identification modules focus on
variable-length fields that use delimiters and length fitddrnark their boundaries. In addition to the
execution trace, the length identification module alsogsaeinput the loop information provided
by the loop detection module we introduced in Cha@eiVe present the delimiter identification
module in Sectior8.3.1and the length identification module in Sectidr8.2 The fixed-length
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identification focuses on fixed-length fields and is presemieSection3.3.3 The fields identified
by those three modules are added to the message field tree tgéhconstruction module.

3.3.1 Identifying Delimiters

In Section3.2.2we defined a delimiter to be a constant used to mark the boyrafaa target
variable-length field. Delimiters are part of the protocpésification and known to the programs
that implement the protocol. The intuition to identify dmiters is that when parsing a received
message, programs search for the delimiter by comparindiffieeent bytes in the message against
the delimiter. When a successful comparison happens, tggan knows it has found a delimiter
and therefore the boundary of the target variable-lengtti fimt precedes the delimiter.

For example, a Web server that receives the HTTP requestjiré3.1 knows that the Carrier-
Return plus Line-Feed (CRLF) sequence is the delimiter ts@dark the end of th®equest-Line
field. The server compares the bytes in the request from thiatiag (position zero) until finding
the CRLF value at positions [24:25]. At that point the pragrenows that the range of tiRequest-
Lineis [0:23]. Similarly, the program knows that the space cti@ra(SP) is the delimiter used to
mark the end of théMlethodand URI fields inside theRequest-Line Thus, the server compares
the bytes in theRequest-Lineange with the space character until it finds it at positiorABthat
point, it knows that thdiethodfield comprises range [0:2]. Then, it continues scanningHemext
occurrence of the space character, which is found at posifio At that point it knows that thegRI
field comprises the range [4:14] and that the remainder oRimguest-Lindrange [16:23]) has to
correspond to th¥ersionfield.

In a nutshell, our delimiter identification technique sc#res execution trace looking for com-
parison operations between bytes from the received megisag¢ainted bytes) and constant values
(i.e., untainted bytes). For each comparison operationdoit stores for each tainted byte involved
in the comparison, the position of the tainted byte, the oris/alue it was compared against, and
the result of the comparison (i.e., success or failed). Thesearches for tokens (i.e., byte-long
constants) that are compared against multiple consequisigions in the input message.

The detailed process comprises 4 steps: 1) genefateea tablethat summarizes all compar-
isons between tainted and untainted data in the executae,t2) use the token table to identify
byte-long delimiters, 3) extend byte-long delimiters imalti-byte delimiters, and 4) add the de-
limiters and their target-fields to the message field treedégeribe these steps below.

Our delimiter identification technique has two importaraperties. First, it makes no assump-
tions about the constants used as delimiters. Insteaderitifies delimiters by the way they are
used. Second, it does not assume that the program searcltee felimiter in an ascending posi-
tion order. All byte-comparisons between tainted and umtegi data are recorded in the token table
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Figure 3.4: Partial token table for the HTTP request in Feduf.

in the first step, before delimiters are identified. Thus,oé$l not matter the order in which the
comparisons are done by the program, which is importantusecaome programs like the Apache
Web server scan backwards to find delimiters.

Generating the token table. The token table summarizes all comparisons between taartdd
untainted data in the execution trace. Each row in the toéible trepresents a token (i.e., a byte-
long constant value) that at some point in the execution wagpared against tainted data. Thus,
the token table can have at most 256 rows. Each column repseaeposition in the received
message from zero to the message size minus one. Each ettig/tible represents whether the
comparison between the token and the position in the redtenassage was successful (S) or failed
(F). Figure3.4 shows a partial token table for the comparisons that a Wekeiseerforms on the
first 51 bytes of the HTTP request in Figuel. For brevity, we limit the table to only 8 tokens.

To populate the token table, the delimiter identificationdule scans the execution trace for
comparison operations that involve tainted and untaintgd.dt breaks each comparison operation
into one-byte comparisons and for each one-byte compaitisracts the position of the tainted
byte, the token it was compared against, and the result afdhmparison. It adds a new entry with
this information into the token table. Only equality conipans are added to the table and compari-
son operations include not only compagen) instructions but also other operations that compilers
use to compare operands such as string comparssaas () instructions ottest instructions with
identical operands (used to cheaply compare if an operasddra value).

Extracting byte-long delimiters. To extract byte-long delimiters the delimiter identificatimod-
ule scans each row of the token table in ascending positider ¢o find all sequences of consecutive
positions that were compared against the token. A new sequerstarted every time the current
position is not consecutive with the previous one and evierg 1 successful comparison is found.
The reason to break a sequence at a successful compari¢at &tuccessful comparison marks
the presence of the delimiter and thus the end of the fieldiinds. Once the list of all sequences
for a token has been extracted, any sequence shorter thaiti®p® is removed to avoid including
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spurious comparisons. We call each sequence of conseqasrgons ascopeand the output of
this step is a list of byte-long delimiters with the assamiascopes where the delimiter was used.

For example, from the token table in Figuset this step outputs two one-byte delimiters: the
Line-Feed (LF) token with scopes [0:25] and [26:50], andghace (SP) token with scopes [0:3]
and [4:15]. This shows that each one-byte delimiter can hayéple scopes and that different one-
byte delimiters may have overlapping scopes since the sdopéhe SP token are a subrange of the
scope for the LF token. Thus, the delimiter scope hierar@ptures the hierarchical relationship
between th&kequest-Linand theMethodandURI fields. Note that two one-byte delimiters cannot
have identical scopes since we require a successful casopain mark the end of a scope.

Extending delimiters. When a delimiter consists of multiple bytes, e.g., the CRleknditer,
the program can use different ways to find it such as seardbmtipe complete delimiter or only
searching for one byte in the delimiter and when it finds ieaking if the remaining bytes in the
delimiter are also present. For multi-byte delimiters, pinevious step identifies only one byte in
the delimiter or all the bytes but as independent byte-losigrdters. For example, the token table
in Figure3.4 corresponds to a Web server that scans for the LF charadesrae found, it checks
if the CR character is present in the previous position. is¢hse, the previous step identifies only
the LF token as a one-byte delimiter.

In this last step, we try to extend each one-byte delimiteatlyzing the comparisons at the
positions before and after all occurrences of the delimiter, the comparisons at the predecessor
and successor positions for the last position in each schighe token table shows a successful
comparison with the same token for all predecessor positiare extend the delimiter with that
token. If the token table shows a successful comparison thithsame token for all successor
positions, we extend the delimiter with that token and iaseeall scopes by one. The process
recurses on each delimiter that was extended, until no nelimiters are extended. At that point,
any duplicate scopes for a delimiter are removed. The ouipthis step is a list of multi-byte
delimiters with the scopes where they are used.

For example, the one-byte LF delimiter identified in the pyas step has scopes [0:25] and
[26:50]. This step first checks the successor positions @anfinding no successful comparisons
with the same token at those positions. Then, it checks #agoessor positions 24 and 49, finding
that they all have a successful comparison against the GRitdkhus, the one-byte LF delimiter is
extended to be a two-byte CRLF delimiter with identical ssaprhe same process for the one-byte
SP delimiter produces no extensions and the output of tgsisttwo delimiters: CRLF with scopes
[0:25] and [26:50], and SP with scopes [0:3] and [4:15].
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Figure 3.5: Partial message field tree generated by ingdttafields derived by identifying delim-
iters using the token table in Figugedinto an empty tree.

Adding the delimiters and target fields to the message field &. Once the delimiters have
been identified, each scope is used to create two fields: mitlifield with a range that covers
the bytes in the delimiter and a variable-length field thatecs the remainder of the scope. Both
fields are added to the message field tree. For example, @] [fcope for the CRLF delimiter
produces a delimiter field with range [24:25] and varialglegith field with range [0:23]. Note that,
the operation that inserts new nodes into the message feldises the field ranges to determine the
correct position of the field in the tree. For example, Figifeshows the message field tree after
inserting the fields derived by the delimiter identificatfjmocess using the token table in Fig@rd
into an empty tree. Note that the message field tree has a gaptat2 for the range [16:23], which
corresponds to theersionfield in Figure3.1 Once the length and fixed-length field identification
terminates, the tree construction module fills the gaps figttls.

3.3.2 ldentifying Length Fields

The intuition behind our techniques for length field detarttis the following. The application data
is stored in a memory buffer before it is accessed (it mightioeed from disk to memory first).
Then a pointer is used to access the different positionsarbttifer. Now when the program has
located the beginning of a variable-length field, whose flerig determined by a length field, it
needs to use some value derived from the length field to advidwecpointer to the end of the field.
Thus, we identify length fields when they arsedto increment the value of a pointer to the tainted
data. For example, in Figui&6 we identify the length field at positions 12-13 when it is used
access positions 18-20.

We consider two possibilities to determine whether a fieltkisig used as a length field: 1) the
program computes the value of the pointer increment frontethgth field and adds this increment
to the current value of the pointer using arithmetic operetj or 2) the program increments the
pointer by one or some other constant increment using a loa,it reaches the end of the field,
indicated by a stop condition.
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Figure 3.6: Length field example.

Incrementing the pointer using arithmetic operations. For the first case, the program performs
an indirect memory access where the effective address lesisdoenputed from some tainted data.
Thus, when we find an indirect memory access that: 1) accaeds@sted memory location, and 2)
where the effective address has been computed from taimatiad(ide., the base or index registers
used to compute the address were tainted), we mark all theecative positions used to compute
the effective address as part of a length field. In additioa,mark the smallest position in the
effective address as the end of the target field. For examplEjgure 3.6 if the instruction is
accessing positions 18-20, and the address of the smadisiiop (i.e., 18) was calculated using
taint data coming from positions 12-13, then we mark pasifi@ as the start of a length field with
length 2, and position 18 as the end of the target field. If gtkefield is used to access multiple
positions in the buffer, we only record the smallest positieing accessed. For example, if we have
already found the length field in FiguBe6 directs to position 18, and it appears again in an indirect
memory access to position 27, we still consider the end ofaiget field to be position 18.

Incrementing the pointer using a loop. For the second case, since the pointer increment is not
tainted (i.e., it is a constant) then the previous approaas ehot work. In this case we assume that
the stop condition for the pointer increment is calculatsthg a loop. The length identification
module uses the loop information provided by the dynamip lomdule presented in Chapt2to
identify loops in the trace that have a tainted exit conditiéfter extracting the loops we check if
the loop stop condition is generated from tainted data, iedlag the loop as tainted. Every time
the program uses a new position, we check if the closest laptainted. If so, we flag a length
field. Our techniques are not complete because there aregubsibilities in which a program can
indirectly increment the pointer, for example using switdtements or conditionals. But, these are
hardly used since the number of conditions could potegtgibw very large, up to maximum value
of the length field.

Variable-length fields. Length fields are used to locate the end of a variable-lemgtfet field. To
determine the start of the target variable-length fieldhaut assuming any field encoding, we use
the following approach. Length fields need to appear befwi target field, so they can be used to
skip it. Most often, as mentioned iBJ)] they precede the target field in the field sequence. After we



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 56

locate a length field, we consider that the sequence of bgegelen the last position belonging to
the length field and the end of the target field, correspon@svariable-length field. For example,
in Figure 3.6, when the length field at positions 12-13 is used to access@us18-20, we identify
everything in between (i.e., 14-17) to be a variable-lerighl. Thus, if a fixed-length field follows
the variable-length field and is not used by the program elibeause the field is not needed or not
supported by the program, then we will include the fixed-tbrfeeld as part of the variable-length
field.

Note that our approach detects length fields by looking attpoiincrements and thus, it is
independent of the encoding used in the length field. In esttprevious work uses techniques for
identifying length fields that assume the length is encod@ugusome pre-defined encoding, such as
the number of bytes or words in the fiel6 53]. Thus, those techniques would miss length fields
if they use other encodings, which do not belong to the setetiefined encodings being tested.

3.3.3 Identifying Fixed-Length Fields

In Sections3.3.1and3.3.2we have presented our techniques to identify the boundafiesriable-
length fields. In this section we present our techniques gatify the boundaries of fixed-length
fields. The intuition behind our fixed-length field identifiica technique is that fields are semantic
units and programs take decisions based on the value of aafieldwhole. Thus, when a field
comprises multiple bytes, those bytes need to be used wrgathrithmetic operations, comparisons
or other tasks. In addition, most fields are independentrafrdields, so bytes belonging to different
fields rarely are used in the same instruction. The excefithis rule are special relationships such
as length fields, pointer fields or checksums.

Our approach for identifying multiple bytes belonging te ttame field is the following. Ini-
tially, we consider each byte received from the network defrendent. Then, for each instruction,
we extract the list of positions that the taint data involiedhe instruction comes from. Next, we
check for special relationships among bytes, specificallthis paper we check for length fields,
using the techniques explained in Sect®B8.2 If no length field is found, then we create a new
fixed field that encompasses those positions. For exampteiifsruction uses tainted data from
positions 12-14 and those positions currently do not betoraglength field, then we create a fixed
field that starts at position 12 and has length 3.

If a later instruction shows a sequence of consecutiveedipsitions that overlaps with a
previously defined field, then we extend the previously defiiedd to encompass the newly found
bytes. One limitation is that fixed-length fields longer tliaa system’s word size (four bytes for
32-bit architectures, eight for 64-bit architectures) maanbe found, unless different instructions
overlap on their use. Note that fields larger than 4 bytes swally avoided for this same reason,
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Field Range: [14:15]

Field Boundary: Fixed-length(2)

Field Dependencies: Length(Host-Info)
Field Semantics: Length

Figure 3.7: Message field tree for the MegaD Host-Infornmatiessage.

since most systems have 32-bit architectures where longjels fneed several instructions to be
handled. For fields longer than 4 bytes, our message formmatates them into four-byte chunks.
Note that this does not affect variable-length fields whiod identified by finding the delimiters
and the length fields.

Even with this limitation, our approach is an improvemergmprevious work$2], where each
binary-encoded byte is considered a separate field. Useatgaibproach, two consecutive fixed-
length fields, each of length 4 bytes, would be considere@ ®dnpnsecutive byte-long fixed-length
fields.

3.4 Message Format Extraction for a Sent Message

The input for extracting the message format for a sent messaan execution trace of the program
while it constructs the response to a given message. Thatmftphis process is the message format
as a message field tree with an attribute list for each nodie.méssage field tree has no semantics
attribute. In Sectior3.5we show how to extract the values for the field semanticdatei

Our techniques to extract the message format for sent mesdagnot leverage taint propagation
in the same way than the techniques for received messagdsodsent messages our techniques
mostly work backwards (i.e., bottom-to-top) on the exemutirace, while taint propagation is a
forward (i.e., top-to-bottom) technique. Here, we leveragint propagation in a different way
by tainting the memory regions where the program under aisafnd all dynamic libraries (DLLS)
shipped with the program are loaded. Intuitively, protammstants known to the program are stored
in the data sections of those modules. Taint propagatiowalus to track how those constants are
used to build the sent message. This is needed to identifgnitels and keywords, which are
constants as explained in Secti®2.2
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Figure 3.8: Message format extraction for sent messages.

MegaD running example. The MegaD botnet is one of the most prevalent spam botnetseiau

the time of writing [L30,99. MegaD uses an encrypted, binary (under the encryptiae)igusly
undocumented C&C protocol. FiguB7, corresponds to a message constructed by a MegaD bot
to communicate back to the C&C server information about théskost. We use the message
in Figure 3.7 as a running example throughout this section. The messdsfe hytes long and is
partially encrypted. Th#sg-Lengthfield represents the total length of the message in 4-bisunit
and is unencrypted. Thencrypted Payloadecord corresponds to the encrypted part of the message.
The other record contains the host information such as the i@éntifier and the IP address of the
host.

Approach overview. The process of extracting the message format of a sent nessatus-
trated in Figure3.8. It comprises three steps. Tpesparationstep consists of a forward pass over
the execution trace to extract information about the execut This step uses four of the mod-
ules introduced in Chapté&: the loop detection module, the execution trace indexingute the
heap allocation monitor, and the call stack tracking modWée present the preparation step in
Section3.4.1

The core of the process is thaffer deconstructiostep. The intuition behind buffer deconstruc-
tion is that the message field tree for the sent message isvbisé of the structure of the output
buffer, which holds the message when is about to be sent ametinork. Thus, deconstructing the
output buffer into the memory buffers that were used to fillith data reveals the message field tree
of the sent message. This happens because programs stsdrfielemory buffers and construct
the messages to be sent by combining those buffers togetlyene 3.9 shows the deconstruction
of the output buffer holding the message in Fig@ré Note how Figure3.9is the upside-down
version of Figure3.7. Buffer deconstruction is implemented as a backward passaivexecution
trace. It outputs a message field tree with an empty fieldattilist for each node (except the field
range). We present buffer deconstruction in Seciigh2



CHAPTER 3. PROTOCOL REVERSE-ENGINEERING 59

\‘53(2)\‘» \‘54(2)\\ \ B, (8) HBG(Z)‘ ‘B7(36) \ H B, (6) \

- Version™ Type - BotID . Length®, Host info i/ Padding |
8@ | | B, (56) |
“Msg_len ™. Payload 4

| ~ Output Buffer (58) ‘,

MSG

Figure 3.9: Buffer deconstruction for the MegaD messageiguiré 3.7. Each box is a memory
buffer starting at addresB,. with the byte length in brackets. Note the similarity witte thpside-
down version of Figur&.7.

Finally, thefield attribute inferencestep identifies length fields, delimiters, field sequences,
variable-length fields, and fixed-length fields. The infotimraon those protocol elements is used to
fill the field attributes in the message field tree. We preseitt &ttribute inference in Secti@4.3

3.4.1 Preparation

During preparation, a forward pass over the execution tiaogade collecting information needed
by buffer deconstruction and field attribute inference.pRration uses four of the modules intro-
duced in ChapteR: the execution trace indexing module, the call stack tragknodule, the loop
detection module, and the heap allocation monitor. It usesraice indexing module to build a trace
index that enables random access to the execution tracéeddsy buffer deconstruction to scan
the execution trace backwards. It uses the call stack trigckiodule to produce a function that
given a instruction in the trace returns the function ngstinen the instruction was executed, also
needed by buffer deconstruction. It uses the loop deteatiodule to extract information about the
loops in the execution trace, needed by field attribute émfee. Buffer deconstruction also needs
information on whether two different writes to the same mpgnaaldress correspond to the same
memory buffer, since memory locations in the stack (and siocally in the heap) may be reused
for different buffers. Buffer liveness information is gatked during preparation using the heap al-
location monitor for heap buffers, and using the call staakking module to extract information
about which memory locations in the stack are freed whenuhetion returns.

3.4.2 Buffer Deconstruction

Buffer deconstruction is a recursive process. In eachtiterét deconstructs a given memory buffer
into a list of other memory buffers that were used to fill itlwidata. The process starts with the
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output buffer and recurses until there are no more buffedetmnstruct. Each memory buffer that
forms the output buffer (and, recursively, the memory bgfteat form them) corresponds to a field
in the message field tree. At the end of each iteration, foh @aemory buffer used to construct
the current buffer, a field is added into the message field tFe® example, the output buffer in
Figure 3.9 holds the message in FiguBe7 before it is sent over the network. Deconstructing this
output buffer returns a sequence of two buffers that werd tesdill it with data: a 2-byte buffer
starting at offset zero in the output buff@By() and a 56-byte buffer starting at offset 2 in the output
buffer (Bs). Correspondingly, a field with range [0:1] and another oiith vange [2:57] are added
to the message field tree. These two fields correspond tdshelengthand theEncrypted Payload
fields in Figure3.7.

Note that buffer deconstruction works at the binary levebreha memory buffer is just a se-
guence of consecutive memory locations that were allodatéte same execution context. Thus,
when any variable (e.g., an integer) is moved into memony.(@assed by value in a function
call) it becomes a memory buffer. Buffer deconstruction twas parts. First, for each byte in the
given buffer it builds adlependency chairrhen, using the dependency chains and the information
collected in the preparation step, it deconstructs thengiudfer. The input to each buffer decon-
struction iteration is a buffer defined by its start addressemory, its length, and the instruction
number in the trace where the buffer was last written. The atidress and length of the output
buffer are obtained from the arguments of the function teatls the data over the network (or the
encryption function). The instruction number to start thalgsis corresponds to the first instruc-
tion in the send (or encrypt) function. In the remainder @ #ection we introduce what program
locations and dependency chains are and present how thageddo deconstruct the output buffer.

Program locations. We define gorogram locationto be a one-byte-long storage unit in the pro-
gram'’s state. We consider four types of locatiomemory locationsregister locationsimmediate
locations andconstant locationsand focus on the address of those locations, rather thatson i
content. Each memory byte is a memory location indexed bgdtiyess. Each byte in a register
is a register location, for example, there are 4 locatioms, (bytes) in the 32-bit EAX register: the
lowest byte is EAX(0) and corresponds to the AL register, EBpcorresponds to the AH register,
and EAX(2) and EAX(3) correspond to the higher two bytes irgister. An immediate location
corresponds to a byte from an immediate in the code sectisoroé module, indexed by the offset
of the byte with respect to the beginning of the module. Camtskocations represent the output
of some instructions that have constant output. For exangple common instruction is to XOR
one register against itself (e.ggr %eax, %ea) which clears the register. Dispatcher recognizes a
number of such instructions and makes each byte of its oatpahstant location.
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Dependency chains. A dependency chain for a program location is the sequenegitéd oper-
ationsthat produced the value of the location at a certain poinh@grogram. A write operation
comprises the instruction number at which the write ocalrtiee destination location (i..e, the lo-
cation that was written), the source location (i.e., thatmn that was read), and the offset of the
written location with respect to the beginning of the outpuffer. Figure3.10shows the depen-
dency chains for theBy buffer (the one that holds the encrypted payload) in Figiee In the
figure, each box represents a write operation, and each rsegjwé vertical boxes represents the
dependency chain for one location in the buffer.

The dependency chain is computed in a backward pass stattihg given instruction number.
We stop building the dependency chain at the first write djmsrdor which the source location is:
1) an immediate location, 2) a constant location, 3) a mertumation, or 4) an unknown location.
We describe these four stop conditions next.

If the source location is part of an immediate or part of thgpotifrom some constant output
instruction, then there are no more dependencies and tireisf@mplete. This is the case for the
first four bytes ofB, in Figure3.1Q The reason to stop at a source memory location is that we
want to understand how a memory buffer has been construaieddther memory buffers. After
deconstructing the given buffer, Dispatcher recurses erbtlifers that form it. For example, in
Figure3.10the dependency chains for locatiddem(A+) throughMem(A+11) contains only one
write operation because the source location is another meloeation. Dispatcher will then create
a new dependency chain for buffistem(B)throughMem(B+7). When building the dependency
chains, Dispatcher only handles a small subset of x86 ictihns which simply move data around,
without modifying it. This subset includes move instrungofmov,movls move with zero-extend
instructions (ovz, push and pop instructions, string storetog, and instructions that are used
to convert data from network to host order and vice versa sischxchange instructiongohg,
swap instructionsbisway), or right shifts that shift entire bytes (e.ghr $0x8,%eax When a
write operation is performed by any other instruction, tbarse is considered unknown and the
dependency chain stops. Often, it is enough to stop the depewy chain at such instructions,
because the program is at that point performing some opara the field (e.g., an arithmetic
operation) as opposed to just moving the content aroundeSirograms operate on leaf fields, not
on records, then at that point of the chain we have alreadyrsed up to the corresponding leaf
field in the message field tree. For example, in Fighid®the dependency chains for the last two
bytes stop at the sanmald instruction. Thus, both source locations are unknown. Nudéthose
locations correspond to the length field in Fig@.&. The fact that the program is increasing the
length value indicates that the dependency chain has glreadhed a leaf field.
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Figure 3.10: Dependency chain By in Figure3.9. The start address @, is A.

Extracting the buffer structure. We call the source location of the last element in the depsrde
chain of a buffer location itsource We say that two source locations belong to the same source
buffer if they are contiguous memory locations (in eithereagling or descending order) and the
liveness information states that none of those locatiosskan freed between their corresponding
write operations. If the source locations are not in memery.( register, immediate, constant or
unknown location), they belong to the same buffer if theyemeritten by the same instruction (i.e,
same instruction number).

To extract the structure for the given buffer Dispatchenalies on the buffer locations from the
buffer start to the buffer end. For each buffer location,daisher checks whether the source of
the current buffer location belongs to the same source baffehe source of the previous buffer
location. If they do not, then it has found a boundary in tmectture of the buffer. The structure of
the given buffer is output as a sequence of ranges that fowhitre each range states whether it
corresponds to a source memory buffer.

For example, in Figur8.10the source locations foMem(A+) andMem(A+5) are contiguous
locationsMem(B)and Mem(B+1) but the source locations falem(A+11) and Mem(A+2) are
not contiguous. Thus, Dispatcher marks locatddam(A+12) as the beginning of a new range.
Dispatcher finds 6 ranges ;. The first four are shown in Figui2 10and marked with arrows
at the top of the figure. Since only the third range origindtem another memory buffer, that is
the only buffer that Dispatcher will recurse on to recornstrhe last two ranges correspond to the
Host InfoandPaddingfields in Figure3.7 and are not shown in Figu®1Q

Once the buffer structure has been extracted, Dispatctes e correspondence between
buffers and fields in the analyzed message to add one fielcetm#ssage field tree per range in
the buffer structure using the offsets relative to the outludfer. In Figure3.10it adds four new
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fields that correspond to théersion Type Bot ID, andLengthin Figure3.7. Note that buffer de-
construction focuses on the source and tail of the depegddrain, ignoring the possibly multiple
instructions that may move a byte of data across differegisters before writing it to a memory
location. There are two reasons why we ignore those inténstuctions in the chain. One is
that registers are only temporary storage locations, theraine is that general-purpose registers
have a maximum length (i.e., 4 bytes in a 32-bit architegttirat is smaller than the size of many
variable-length fields. Thus, if those intermediate inginns where accounted for, the technique
would split large fields into multiple smaller fields.

3.4.3 Field Attributes Inference

The message field tree built by buffer deconstruction cagtthre hierarchical structure of the out-
put message, but does not contain field attributes othertligaineld range. Field attributes convene
information that can be generalized from this message ter attessages of the same type such as
if a field is fixed-length or variable-length or inter-fieldatonships such as if a field represents the
length of another target variable-length field. Similartte heed for buffer deconstruction, new field
attribute inference techniques are also needed for serdages. Next, we propose field attribute
inference techniques designed to identify different prot@lements in sent messages. These tech-
nigues differ but share common intuitions with the techegjused for received messages: both try
to capture fundamental properties of the protocol elements

Length fields. We use three different techniques to identify length fietdsént messages. The
intuition behind the techniques is that length fields candmeputed either by incrementing a counter
as the program iterates on the field, or by subtracting partethe beginning and the end of the
buffer. The intuition behind the first two techniques is tthetse arithmetic operations translate into
an unknown source at the end of the dependency chains foutfez lmcations corresponding to the
length field. When a dependency chain ends in an unknownepDispatcher checks whether the
instruction that performs the write is inside a known fuactthat computes the length of a string
(e.g.,strlen) or is a subtraction of pointers to the beginning and endebtiffer. The third technique
tries to identify counter increments that do not corresptnaell-known string length functions.
For each buffer it uses the loop information to identify if shevrites to the bufférbelong to the
same loop. If they do, then it uses the techniquesl8g[to extract the loop induction variables.
For each induction variable it computes the dependencyncrad checks whether it intersects the
dependency chains from any output buffer locations thatqute the locations written in the loop

5Many memory move functions are optimized to move 4 bytes &ha in one loop and use separate instructions or
loops to move the remaining bytes.
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(since a length field always precedes its target field). Atgrgecting location is part of the length
field for the field processed in the loop.

Delimiters. Delimiters are constants and it is difficult to differen¢éiahem from other constants
in the sent message. The technique to identify delimiteskddor constants that appear multiple
times in the same message or appear at the end of multipleagess the same session (three
appearances are required). Constants are identified tgngiht information introduced by tainting
the memory regions containing the program and DLLs shippeld the delimiters come from the
data section, they can also be identified by checking whefteesource address of all instances of
the constant comes from the same bulffer.

Variable-length fields. Fields that precede a delimiter and target fields for preshoidentified
length fields are marked as variable-length fields. Fieldwe from semantic sources that are
known to be variable-length such as file data are also marke@mable-length. All other fields
are marked as fixed-length. Note that some fields that a mbgpecification would define as
variable-length may encode always the same fixed-length idaé specific implementation. For
example theServerheader is variable-length based on the HTTP specificatiavwener, a given
HTTP server implementation may have hard-codedeverstring in the binary, making the field
fixed-length for this implementation. Leveraging the aaaility of multiple implementations of the
same protocol could help identify such cases.

Field sequences. The intuition behind identifying field sequences is thaythee written in loops,
one field at a time. The technique to identify sequences kesrfor loops that write multiple
consecutive fields. For each loop, it adds to the messagetifselcone record field with the range
being the combined range of all the consecutive fields writtehe loop and with &equencéeld
semantics value. It also adds one field per range of bytetewiit each iteration of the loop.

3.5 Field Semantics Inference

In this section we present our techniques to identify thel feedlmantics of both received and sent
messages. The intuition behind our type-inference-baselhiques is that many functions and
instructions used by programs contain rich semantic infdion. We can leverage this information

to infer field semantics by monitoring if received networkala used at a point where the semantics
are known (i.e., semantics sinks), or if data to be sent ton#terork has been derived from data
with known semantics (i.e., semantics sources). Such g@ranference is very general and can
be used to identify a broad spectrum of field semantics imotutimestamps, filenames, hostnames,
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ports, IP addresses, and many others. The semantic inform@tthose functions and instructions
is publicly available in their prototypes, which descrilbeit goal as well as the semantics of its
inputs and outputs. Function prototypes can be found, famgte, at the Microsoft Developer
Network [13§ or the standard C library documentatid®3]. For instructions, one can refer to the
system manufacturers’ manuals.

Techniques. For receivedmessages, Dispatcher uses taint propagation to monitosefjaence
of bytes from the received message is used in the argumerstsnod selected function calls and
instructions, for which the system has been provided wighftimction’s prototype. The sequence
of bytes in the received message can then be associatedheitetnantics of the arguments as
defined in the prototype. For example, when a program callsdhnectfunction Dispatcher uses
the function’s prototype to check if any of the arguments o $tack is tainted. The function’s
prototype tells us that the first argument is the socket g#scrthe second one is an address struc-
ture that contains the IP address and port of the host to cobmeand the third one is the length
of the address structure. If the memory locations that spord to the IP address to connect to in
the address structure are tainted from four bytes in thetjripan Dispatcher can infer that those
four bytes in the input message (identified by the offset etdint information) form a field that
contains an IP address to connect to. Similarly, if the mgrfamations that correspond to the port
to connect to have been derived from two bytes in the inpusagss it can identify the position of
the port field in the input message.

For sentmessages, Dispatcher taints the output of selected fursctind instructions using a
unique source identifier and offset pair. For each tainteplelece of bytes in the output buffer,
Dispatcher identifies from which taint source the sequelfidg/tes was derived. The semantics of
the taint source (return values) are given by the functien'astruction’s prototype, and can be
associated to the sequence of bytes. For example, if a pnogsas thedtsc instruction, we can
leverage the knowledge that it takes no input and returns-Bit6gutput representing the current
value of the processor’s time-stamp counter, which is planeegisters EDX:EAX 91]. Thus, at
the time of execution when the program usatsc Dispatcher taints the EDX and EAX registers
with a unique source identifier and offset pair. This paiquely labels the taint source to be from
rdtsg and the offsets identify each byte in tittsc stream (offsets 0 through 7 for the first use).

A special case of this techniquedsokieinference. A cookie represents data from a received
message that propagates unchanged to the output buffers@sgion identifiers). Thus, a cookie is
simultaneously identified in the received and sent messages

Implementation. To identify field semantics Dispatcher uses an input setmétfon and instruc-
tion prototypes. By default, Dispatcher includes over omedned functions and a few instructions
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Field Semantics | Received| Sent
Cookies yes yes
IP addresses yes yes
Error codes no yes
File data no yes
File information no yes
Filenames yes yes
Hash / Checksum  yes yes
Hostnames yes yes
Host information no yes
Keyboard input no yes
Keywords yes yes
Length yes yes
Padding yes no

Ports yes yes
Sequences no yes
Registry data no yes
Sleep timers yes no

Stored data yes no

Timestamps no yes

Table 3.3: Field semantics identified by Dispatcher for etieived and sent messages. Stored data
represents data received over the networkwritten to the filesystem or the Windows registry, as
opposed to dateeadfrom those sources.

for which we have already added the prototypes by searchitigeorepositories. To identify new
field semantics and their corresponding functions, we emartiie external functions called by the
program in the execution trace. Talde3 shows the field semantics that Dispatcher can infer from
received and sent messages using the predefined functions.

Keywords. An important field semantic is keywords. Keywords are protamnstants that ap-
pear in network messages and are known a priori to the impittien. They are useful to create
protocol signatures to detect services running on nordatanports and mapping traffic to applica-
tions [84,131]. Our intuition to identify keywords in received messagethiat similar to delimiters,
the program compares the keywords against the receivedcaliph data. Dispatcher locates the
keywords in the received message by analyzingsihecessful comparisorisetween tainted and
untainted data, using comparison operations as the sarpaiiks. The technique comprises two
steps. The first step is identical to the first step in the d@inidentification technique presented
in Section3.3.1 that is, to populate the token table. The second step dliffethat it focuses on
the successful comparisons, rather than all the comparisibrtonsists of scanning in ascending
position order the columns in the token table. For each ipositf we find a successful compar-
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ison, then we concatenate the token that was compared to#hiigop to the current keyword. If
no successful comparison is found at the current positianstere the current keyword and start
a new keyword. We also break the current keyword and startvaone if the keyword crosses a
field boundary as defined by the message field tree. This mohnis general, in that it does not
assume that the multiple bytes that form the keyword appggather in the code or that they are
used sequentially. For example, using the token table slWwigure3.4, Dispatcher identifies two
HTTP keywords: “GET” at positions [0:2] and “HTTP” at positis [16:19].

To identify keywords in sent messages, Dispatcher tairtgrtamory region that contains the
module (and DLLs shipped with the main binary) with a spedgiat source, effectively tainting
both immediates in the code section as well as data stordueinldta section. Locations in the
output buffer tainted from this source are considered keggaio

3.6 Handling Encryption

Our protocol reverse-engineering techniques work on uyeted data. Thus, when reversing en-
crypted protocols we need to address two problems. Firstieéeived messages, we need to identify
the buffers holding the unencrypted data at the point thatdttryption has finished since buffers
may only hold the decrypted data for a brief period of timecdwel, for sent messages, we need to
identify the buffers holding the unencrypted data at thenpthiat the encryption is about to begin.
Once the buffers holding the unencrypted data have beetifiddnprotocol reverse-engineering
techniques can be applied on them, rather than on the messagsved or about to be sent.

Recent work has looked at the problem of reverse-engingénim format of received encrypted
messages2Pl, 12§. Since the application needs to decrypt the data befomgusi those ap-
proaches monitor the application’s processing of the qgried/message and locate the buffers that
contain the decrypted data at the point that the decryptamfimished by identifying the output
buffers of functions with a high ratio of arithmetic and bise instructions. Those approaches do
not address the problem of finding the buffers holding thenangoted data before it is encrypted,
which is also required in our case. We have developed tweréifit approaches to identify encoding
functions. In this section we present extensions to theiigade presented in ReFormag1], which
flags encoding functions as functions with a high ratio ahanietic and bitwise instructions. Then,
in Chapter8 we present a different technique to identify encoding fioms, which flags encoding
functions as functions that highly mix their inputs.

Next, we describe our two extensions to the technique pteden ReFormat2]]. First, Re-
Format can only handle applications where there existsgiesboundary between decryption and
normal protocol processing. However, multiple such bouedamay exist. As shown in FiguBe7
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MegaD messages comprise two bytes with the message lealiphydd by the encrypted payload.
After checking the message length, a MegaD bot will decrybyt@s from the encrypted payload
and process them, then move to the next 8 bytes and processdhd so on. In addition, some
messages in MegaD also use compression and the decryptiodeanmpression operations are
interleaved. Thus, there is no single program point whdrdadh in a message is available unen-
crypted and uncompressed. Consequently, we extend theideehto identify everjnstanceof
encryption, hashing, compression, and obfuscation, wiwelgenerally ternencoding functions
Second, ReFormat was not designed to identify the buffddifgpthe decoded (unencrypted) data
before encoding (encryption). Thus, we extend the tecleniq@lso cover this case. We present the
generalized technique next.

Identifying encoding functions. To identify every instance of an encoding function we hawe si
plified the process in ReFormat by removing the cumulatitie & arithmetic and bitwise instruc-
tions for the whole trace (since we are interested in the ffati each function), the use of tainted
data, and the concept of leaf functions. The extended tqubrapplies the intuition in ReFormat
that the decryption process contains an inordinate numibaritbmetic and bitwise operations to
encoding functions. It makes a forward pass over the inpetuion trace using the call stack track-
ing module. For each function instance, it computes the tatween the number of arithmetic and
bitwise operations over the total number of instructionshia function. The ratio includes only
the function’s own instructions. It does not include instions belonging to any called functions.
Any function instance that executes a minimum number ofiiletibns and has a ratio larger than a
pre-defined threshold is flagged as an instance of an enchdintijon. The minimum number of in-
structions is needed because the ratio is not meaningffiifiations that execute few instructions.
In our experiments we set the minimum number of instructitm@0. We have experimentally
set the threshold to 0.55 by training with a number of knoweoeling functions and selecting a
threshold that minimizes the number of false negatives. Vatuate the technique in Secti@7.3

Identifying the buffers. To identify the buffers holding the unencrypted data befameryption
we compute theead seftfor the encryption routine, the set of locations read ingideencryption
routine before being written. The read set for the encryptmutine includes the buffers holding
the unencrypted data, the encryption key, and any hardectaddes used by the routine. We can
differentiate the buffers holding the unencrypted dataahbee their content varies between multiple
instances of the same function. To identify the buffers imgjJdhe unencrypted data after decryption
we compute thevrite setfor the decryption routine, the set of locations writteridiesthe decryption
routine and read later in the trace. We detail the read arte wet extraction as part of our interface
identification technigue in Chaptdr
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3.7 Evaluation

In this section we evaluate our techniques on the previaustiocumented C&C protocol used by
the MegaD botnet, as well as a number of open protocols. Mégalprevalent spamming botnet
first observed in 2007 and credited at its peak with respditgifor sending a third of the world’s
spam [29. We use MegaD'’s proprietary and encrypted C&C protocol asakworld test of our
techniques. We use the open protocols to evaluate our tpemiagainst a known ground truth.

3.7.1 Evaluation on MegaD

MegaD uses a proprietary, encrypted, binary protocol thatriot been previously analyzed. Our
MegaD evaluation has two parts. We first describe the inftionabtained by Dispatcher on the
C&C protocol used by MegaD, and then show how the informagixtinacted by Dispatcher can be
used to rewrite a C&C dialog.

MegaD C&C Protocol. The MegaD C&C protocol uses TCP for transport on either poro8
443 . It employs a proprietary encryption algorithm insteadhef 8SL routines for HTTPS com-
monly used on port 443. Some MegaD bots use port 80 and otker4438 but the encryption and
protocol grammar are identical regardless of the port.

A MegaD bot communicates with four types of C&C servelaster Servers (MS)Drop
Servers (DS)Template Servers (TYnNdSMTP Servers (SShhe four server types are illustrated in
Figure3.11 The botmaster uses the master servers to distribute codamarthe bots. Bots locate
a master server using a rendezvous algorithm, based on dom@aies hard-coded in the bot bina-
ries. A bot employs pull-based communication using MegdIXsC protocol to periodically probe
the master server with a request message to which the seplegsr with a sequence of messages
carrying authentication information and a command. Thepsoforms the requested action and
returns the results to the master server. Drop servershdigtrnew binaries. A bot locates a drop
server by receiving a message from its master server cimgaariJRL specifying a file to download
through HTTP. Template servers distribute the spam templdiat bots use to construct spam. A
bot locates a template server via a message from the master specifying the address and port
to contact. Again, communication proceeds in a pull-basetiibn using MegaD's custom C&C
protocol. SMTP servers play two distinct roles. First, behteck their spam-sending capabilities
by sending them a test email using the standard SMTP protédodt locates the SMTP server for
this testing via a message from the master server speciffimgerver’'s hostname. Second, bots
notify an SMTP server after downloading a new spam templadepgior to commencing to spam.

"Malware often uses TCP ports 80 and 443 for their communiodiecause those ports are often open in firewalls to
enable Web browsing.
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Figure 3.11: The four server types that a MegaD bot commtescaith. The figure shows for each
server the communication protocol used between the botrengdrver, the main use of the server,
and how the bot locates the server.

A bot locates the SMTP server used for template downloadicetibn via a control parameter in
the spam template. The notification uses a modified SMTP gobtdnstead of sending the usual
SMTP “HELO <hosthame” message, the bot sends a special “HELO 1” message and ¢leses
connection.

Message format. We capture two MegaD C&C network traces by running the binarg con-
tained environment that forwards C&C traffic but blocks atlyeo traffic from the bot (e.g., spam
traffic). Our MegaD C&C traces contain 15 different messg@a®ceived and 8 sent by the bot).
Using Dispatcher, we have extracted the message field reegssages on both directions, as well
as the associated field semantics. All 15 messages followttheture shown in Figurg.7 with a
2-byte message length followed by an encrypted payload.p@wad, once decrypted, contains a
2-byte field that we term “version” as it is always a keywordralue 0x100 or 0x1, followed by a
2-byte message type field. The structure of the remainintppdydepends on the message type. To
summarize the protocol grammar we have used the output glliser to write a BinPac gram-
mar [L73 that comprises all 15 messages. Field semantics are add=mivanents to the grammar.
AppendixA presents the MegaD protocol gramma.

To the best of our knowledge, we are the first to document th€ @g€otocol employed by
MegaD. Thus, we lack ground truth to evaluate our grammarverdy the grammar’s accuracy,
we use another execution trace that contains a differetarine of one of the analyzed dialogs. We
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dump the content of all unencrypted messages and try to ga@s@essages using our grammatr.
For this, we employed a stand-alone version of the BinPasepancluded in Bro175. Using our
grammar, the parser successfully parses all MegaD C&C messa the new dialog. In addition,
the parser throws an error when given messages that do tmt file MegaD grammar.

Field attribute inference. The 15 MegaD messages contain no delimiters or arrays. Tdragio
two variable-length fields that use length fields to markrtheundaries: the compressed spam-
related information (i.e., template and addresses) reddiom the spam server, and the host infor-
mation field in Figure3.7. Both the length fields and variable-length fields are colyreetected by
Dispatcher. The only attributes that Dispatcher missesharenessage length fields on sent mes-
sages because they are computed using complex pointanatiththat Dispatcher cannot reason
about. In particular, the message length is computed byatlitg the pointers to the end and
beginning of the message, but then this result goes throwgggaence of arithmetic and bitwise
instructions that encodes the final number of bytes in valuhe field.

Field semantics. Dispatcher identifies 11 different field semantics over theriessages: IP ad-
dresses, ports, hostnames, length, sleep timers, erres coelywords, cookies, stored data, padding
and host information. There are only two fields in the Mega@nmgmnar for which Dispatcher does
not identify their semantics. Both of them happen in reativeessages: one of them is the message
type, which we identify by looking for fields that are compmhEgainst multiple constants in the
execution and for which the message format varies deperatirits value. The other corresponds
to an integer whose value is checked by the program but apgharet used further. Note that we
identify some fields in sent messages as keywords becaugedhee from immediates and con-
stants in the data section. We cannot identify exactly whey represent because we do not see
how they are used by the C&C server.

Rewriting a MegaD dialog. To show how our grammar enables live rewriting, we run a live
MegaD bot inside our analysis environment, which is locatea network that filters all outgoing
SMTP connections for containment purposes. In a first djalug C&C server sends the command
to the bot ordering to test for spam capability using a givpars test server. The analysis network
blocks the SMTP connection causing the bot to send an erresage back to the C&C server, to
communicate that it cannot send spam. No more spam-relagsdages are received by the bot.
Then, we start a new dialog where at the time the bot calls tloeypt function to encrypt the
error message, we stop the execution, rewrite the encryptiffer with the message that indicates
success, and let the execution contfhufter the rewriting the bot keeps receiving the spam-eslat

8The size of both messages is the same once padding is aatdontdus we can reuse the allocated buffer.
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Program Version | Protocol | Type Guest OS
Apache f] 221 HTTP | Server Windows XP
BIND [14] 9.6.0 DNS Server Windows XP

Filezilla [67] 0.9.31 FTP Server Windows XP
Pidgin [177] 255 ICQ Client Windows XP
Sambad 1864 3.0.24 SMB Server| Linux Fedora Core §

TinylCQ [20§ 1.2 ICQ Client Windows XP
Table 3.4: Different programs used in our evaluation on quetocols.
Wireshark Dispatcher Errors
Protocol | Message Type | [Lw] | [Hwl | Lol [ [Hpl | 1B | |ES] | BRI [ 1ER]
HTTP GET reply 11 1 22 0 11 1 0 1
POST reply 11 1 22 0 11 1 0 1
DNS A reply 27 4 28 0 1 0 0 4
FTP Welcome0 2 1 3 1 1 0 0 0
Welcomel 2 1 3 1 1 0 0 0
Welcome?2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1
ICQ New connection| 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0
|Tota| | 123 | 30 | 154 | 22 | 34 | 5 | 0 | 8 |

Table 3.5: Comparison of the message field tree for sent messxtracted by Dispatcher and
Wireshark 1.0.5. The ICQ client used is Pidgiby, and L are the set of leaf fields output by
Wireshark and Dispatcher respectively, whitky, and Hp are the sets of record (hierarchical)
fields. EVLV and EX denote the set of errors in leaf field output by Wireshark aisp&icher, while
EH and EH denote the set of errors in record fields.

messages, including the spam template and the addresgesrtpdespite the fact that it cannot send
any spam messages. Note that simply replaying the messatgaditates success from a previous
dialog into the new dialog does not work because the successage includes a cookie value that
the C&C selects and may change between dialogs. In Chdpterpresent our binary code reuse
techniques and apply them to the cryptographic routined ts@rotect MegaD’'s C&C protocol.
Using the extracted cryptographic routines in combinatth MegaD’s protocol grammar, we can
perform this same rewriting experiment on a Network InmnsDetection System (NIDS), rather
than inside the execution monitor where the bot runs.
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3.7.2 Evaluation on Open Protocols

In this section we evaluate our techniques on five open potsoONS, FTP, HTTP, ICQ, and SMB.
To this end, we compare the output of Dispatcher with that ok®tark P27 when processing
17 messages belonging to those 5 protocols. For each platecselect at least one application
that implements it, which we present in Tald&l. For each protocol, we select a set of protocol
messages. For HTTP we evaluate how the Apache seflprgcesses &ITTP GETrequest for
the file “index.html” and the reply generated by the servesr BNS we evaluate an A query to
resolve the IP address of the domain “test.example.cond gethe BIND name servedf]] and its
corresponding reply. For FTP we analyze the sequence ofagessent by the FileZilla served]

in response to a connection, as well as the messages senttiehesername and password are
received. For ICQ we analyze the messages in a login coonesgint by the Pidgin client toal {7
and the responses from the server interpreted by the Tingliégx tool [20§. For SMB, we analyze
aNegotiate Protocol Request received by the Sambad open source serd@§]

Message format. Wireshark is a network protocol analyzer containing maguatitten gram-
mars (called dissectors) for a large variety of network grots. Although Wireshark is a mature
and widely-used tool, its dissectors have been manuallgrgéed and therefore are not completely
error-free. Wireshark dissectors parse a message into sagesield tree. The internal message
field tree is not output in a visual representation by Wirdslwat is accessible through the library
functions. To compare the accuracy of the message formatatically extracted by Dispatcher
to the manually written ones included in Wireshark, we amalthe message field tree output by
both tools and manually compare them to the protocol spatific. Thus, we can classify any
differences between the output of both tools to be due ta®imdDispatcher, Wireshark, or both.

We denote the set of leaf fields and the set of records in theagedield tree output by Wire-
shark asLy, (L stands for leaf) anddy, (H stands for hierarchical), respectivel, and Hp are
the corresponding sets for Dispatcher. Teheshows the evaluation results for sent messages and
Table3.6for received messages. For each protocol and message kb shbw the number of leaf
fields and records in the message field tree output by botk &molvell as the result of the manual
classification of its errors. Her¢EL | and |E5| represent the number of errors on leaf fields in
the message field tree output by Wireshark and Dispatchpectgely. Similarly,| E| and|EH |
represent the number of errors on records.

The results show that Dispatcher outperforms Wiresharkmwidentifying leaf fields. This result
is mainly due to the inconsistencies between the differasstedtors in Wireshark when identifying
delimiters. Some dissectors do not add delimiters to thesaggesfield tree, some concatenate them
to the variable-length field for which they mark the boundaviile others treat them as separate
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HTTP/1.1 200 OK\r\n
Server: Apache/2.2.11 (Win32)\r\n

Status-Line ~ CRLE ™ < CRLE ™
[0:16] N, [15:16] ¢ N, [46:47) 4
Version .'l' ™
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Figure 3.12: Message field tree for a simple HTTP respongaibby Wireshark. The dotted nodes
are fields that Wireshark does not output.

_______

...............................

Wireshark Dispatcher Errors
Protocol | Message Type | [Lw| | [Hw] | [Lp| | [Hpl | [Ey| | 1EB] | [Ew] | 1ER]
HTTP GET request 13 2 40 10 27 2 8 0
DNS A query 14 3 13 1 1 0 0 2
ICQ New connection 38 11 36 11 0 2 0 0
Close connection | 13 3 10 3 0 3 0 0
SMB Negotiate Protoco| 48 16 39 11 9 6 0 5
Request
[Total [ 126 | 35 | 138] 36 | 3/ | 18 | 8 | 7 |

Table 3.6: Comparison of the message field tree for receivesbages extracted by Dispatcher and
Wireshark 1.2.8. The ICQ client is TinylCQ.

fields. After checking the protocol specifications, we hali¢hat delimiters should be treated as
their own fields in all dissectors. FiguBel2illustrates some of the errors made by Wireshark. It
shows the message field tree for a simple HTTP response dugpMireshark. The dotted nodes
are missing nodes that Wireshark does not output, whichdectielimiters, the reason field and the
children of theServer header field.

The results also show that Wireshark outperforms Dispatalieen identifying records. For
sent messages, this is due to the program not using loopsitotive arrays because the number
of elements in the array is known or is small enough that thepiler has unrolled the loop. For
example, if an array has only two elements, the source-leegl that processes the field iterates
only twice and the compiler may decide to unroll the two itienas at the binary-level. Thus, at the
binary level there is no loop that handles both records irath@y and Dispatcher will flag them as
separate fields rather than as two records of an array. Feivegtmessages it is often due to the
loop that processes the record being missed by the detéstmuse it executed only one iterafion

Here we are using the dynamic loop detection method (Se@8&c#.1), which can only detect loops that complete
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The two main sources of errors for Dispatcher when analygerg messages are: consecutive
fields that are stored as a single string in the program biaadyarrays that are not written using
a loop. An example of consecutive fields stored as a unit byagication is the error in the
Status-Linerecord of the HTTP reply message. The HTTP/1.1 specificdtidh states that its
format is: Status-Line = HTTP-Version SP Status-Code SP Reason-PI@R4LF but Dispatcher
considers th&tatus-Codgthe delimiter, and thReason-Phrasto belong to the same field because
all three fields are stored as a single string in the servata section, which is copied as a whole
into the sent message. An example of a program processinganveithout a loop is thé8IND
server processing separately Qeeries Answers Authoritative and Additional sections in the
DNS reply. This introduces four errors in the results beedbdispatcher cannot identify that they
form an array.

The two main sources of errors for Dispatcher when analyritgived messages are: fields
smaller than one byte and unused fields. An example of fielddlasnthan one byte are the fields
that comprise the flags records in the DNS and SMB messagege Bispatcher works at the
byte level it currently does not identify fields smaller thame byte. Unused fields are fields that
the program only moves without performing any other operatin them. When two consecutive
unused fixed-length fields are found, Dispatcher groups themsingle field introducing an error.
For example, in the SMBlegotiate Protocol Requestessage, th€rocess ID High Signature
ReservedTree ID, andProcess IDfields are all grouped together by Dispatcher into a singlesed
field. These errors in sent and received messages highlightatt that the message field tree
extracted by Dispatcher is limited to the quality of the poatl implementation in the binary, and
may differ from the specification.

Overall, Dispatcher and Wireshark achieve similar acgurddote that we do not claim that
Dispatcher will always be as accurate as Wireshark, sincarevenly evaluating a limited number
of protocols and messages. However, the results show thadturacy of the message format
automatically extracted by Dispatcher can rival that of &frark, without requiring a manually
generated grammar.

Field Attribute Inference. The 17 messages contain 34 length fields, 73 delimiters, 43&8ble-
length fields, and 6 arrays. We have analyzed in detail tlerseim the field attribute inference for
sent messages. Dispatcher misses 8 length fields becaiurseathe is hard-coded in the program.
Thus, their target variable-length fields are consideregtifiength. Out of the 43 delimiters in sent
messages Dispatcher only misses one, which corresponduitblbgte marking the end of a cookie
string that was considered part of the string. Dispatcheectly identifies all other variable-length

a full iteration, i.e., where the backedge is taken.
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Number of traces | Number of functions | False Positives| False Positive Rate
20 3,467,458 (16,852) 87 (9) 0.002%

Table 3.7: Evaluation of the detection of encoding fundioWalues in parentheses represent the
numbers of unique instances. False positives are compasatilion manual verification.

fields in sent messages. Out of 3 arrays, Dispatcher miss&efoomed by theQueries Answers
Authoritative and Additional sections in the DNS reply, which BIND processes separatet a
therefore cannot be identified by Dispatcher.

Field semantics. Dispatcher correctly identifies all semantics in Taki@except the 3 pointers in
the DNS reply, used by the DNS compression method, whicharguated using pointer arithmetic
that Dispatcher cannot reason about.

3.7.3 Detecting Encoding Functions

To evaluate the detection of encoding functions preseme&kction3.6 we perform the following
experiment. We obtain 25 execution traces from multiplegpams that handle network data. Five
of these traces process encrypted and compressed fundtansf them are from MegaD sessions
and the other one is from Apache while handling an HTTPS @eséilegaD uses its own encryp-
tion algorithm and thelib library for compression and Apache uses SSL with AES and 3MA-
The remaining 20 execution traces are from a variety of pnogrincluding three browsers pro-
cessing the same plain HTTP response (Internet Exploreafdriss.1, and Google Chrome 1.0), a
DNS server processing a received request (BIND), a Web spreeessing an HTTP GET request
(AtpHttpd), the Microsoft SQL server processing a requestftabase information (MSSQL), as
well as the RPC service embedded in Windows handling a dingdisting. For all these 15 traces
the inputs do not contain any checksums, encrypted or caas@dedata, so we believe they are free
of encoding functions.

Dispatcher flags any function instances in the executiaregavith at least 20 instructions and
a ratio of arithmetic and bitwise instructions greater thabb as encoding functions. To evaluate
false negatives, we run Dispatcher on the Apache-SSL tr&ispatcher correctly identifies all
encoding functions. To evaluate false positives, we rurpétisher on the 20 traces that do not
contain encoding functions. The results are shown in Takle The 20 execution traces contain
over 3.4 million functions calls from over 16,852 unique dtians. Dispatcher flags 87 function
instances as encoding functions, belonging to nine unigaetibns. Using function names and
debugging information, we have been able to identify two afuthose nine functionsmemchr

10TLS-DHE-RSA with AES-CBC-256-SHA-1
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and comctl32.dll:: TrueSaturateBits . Based on these results, our technique correctly
identifies all known encoding functions and has a false pesitite of 0.002%.

Next, we run Dispatcher on the four MegaD execution tracesir Enique encoding functions
are identified. Three of them appear in all four executiondsa the decryption routine, the encryp-
tion routine, and a key generation routine that generate®ticryption and decryption keys from
a seed value in the binary before calling the encryption orygion routines. In addition, in one
execution trace Dispatcher flags a fourth function thatesgonds to thaflate function in thezlib
library, which is statically linked into the MegaD binary.

3.8 Related Work

Protocol reverse-engineering projects that enable ipgability of open solutions with proprietary
protocols have existed for a long time. Those projectsdeadie manual techniques, which are slow
and costly 148210 121,72,89. Automatic protocol reverse-engineering techniguestmansed,
among other applications, to reduce the cost and time agedawith these projects.

Protocol format. Early work on automatic protocol format reverse-engimagtakes as input net-
work traffic. Among these approaches, the Protocol Infoicaadroject pioneers the use of sequence
alignment algorithms10] and Discoverer proposes a related, but improved, teckrtigat first to-
kenizes messages into a sequence of binary and text tokemsclusters similar token sequences
and finally merges similar sequences using type-based segatignment$2]. Approaches based
on network traffic are useful when a program that implemedmsprotocol is not available. How-
ever, they cannot reverse encrypted protocols and areetinfiiy the lack of protocol information
in network traffic. Leveraging a program that implements pithetocol significantly improves the
quality of the reversed-engineered format.

Lim et al. [123 use static analysis on program binaries to extract the dbrirom files and
application data output by a program. Their approach requhre user to input the prototype of the
functions that write data to the output buffer. This infotioa is often not available, e.g., when the
functions used to write data are not exported by the progfdrair static analysis approach requires
sophisticated analysis to deal with indirection and camastdle packed binaries such as MegaD.
Also, they do not extract the format of received messagesfer field semantics.

In Polyglot, we propose a dynamic binary analysis approactextracting the message for-
mat of received messages that does not require any a priowl&dge about the program or
the protocol and can effectively deal with indirection aratked binariesd0]. Dynamic binary
analysis techniques are also used in follow-up work thataetd the hierarchical message for-
mat [229,124,54,125. We detail those works next.
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In Autoformat, the authors propose techniques to extractribssage field tree of received mes-
sages and to identify field sequenc&g4]. Their technique groups together consecutive positions
in the input message that are processed by the same funetvever, a function may parse mul-
tiple fields, e.g., when parsing two consecutive fixed-lerigtlds in a binary protocol. Their output
message field tree captures the hierarchical structureeahtssage but contains no field attributes.
Thus, it cannot be used to generalize across multiple instaof the same message. To identify
field sequences their technique looks for input positioashth similar execution history, i.e., that
have been processed by the same functions.

Wondracek et al. propose techniques to extract the messagatfof received messages and use
hierarchical sequence alignment to identify optional Seldternation, and sequences of identically-
structured record®p9. Their message format captures the hierarchical fieldsira and contains
field attributes such as length fields and delimiters, whashlze used to generalize across messages.
When identifying leaf fields, they break an input chunk trehot a delimiter, length field, or
variable-length field, into individual bytes and thus mayssnidentifying multi-byte fixed-length
fields.

In Tupni the authors propose techniques to identify fieldiseges and to aggregate information
from multiple message$fl]. Their field sequence identification technique groups ttogreinput
positions that are handled in the same loop iteration. Tigemntifies fields with the same type
across different messages by comparing the set of ingingcthat operate on the fields. Then, it
aligns fields based on their types using the techniquéZh [

Lin and Zhang develop techniques to extract the input sytrx of inputs with top-down or
bottom-up grammarslpy. Their technique for top-down grammars has the same scspbea
works above and assumes that program control dependenoesgbrogram parsing. However,
many programs may not satisfy this assumption, e.g., they maaktrack to previously scanned
fields or they may perform error checks that do not revealtisfructure but modify the program’s
control dependence. Their input syntax tree representsengrchical structure of the input but does
not allow to generalize to other inputs, similar to a mesdade tree with no field attributes. They
also propose a technique for inputs with bottom-up gramp@simonly used in programming
languages.

In Dispatcher, we propose message format extraction tgabaifor sent messages and field
semantics inference techniques for both received and sessages. Compared to the above ap-
proaches, Dispatcher is able to extract the message foomadeived and sent messages from the
same binary. This is important in scenarios where only thgiam that implements one side of the
dialog is available such as when analyzing the C&C protoaséd by botnets and instant messag-
ing protocols. In addition, Dispatcher extracts fine-geditfield semantics, which are important to
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understand what a message does, as well as for identifyildg figth the same type across multiple
messages.

State-machine. In addition to extracting the protocol grammar, protocekme-engineering also
includes inferring the protocol’s state-machine. ScrigntGnfers the protocol state-machine from
network datal17]. Due to the lack of protocol information in network datasitdifficult for Script-
Gen to determine whether two network messages are two oestaf the same message type. This
is needed when converting messages into alphabet symbohpt&en outputs a state-machine
that captures only previously-seen sessions, withoutrgénation. Prospex uses execution trace
similarity metrics to cluster messages of the same type &p ¢hn be assigned the same symbol
from the alphabet44]. Then, it extracts a tree that captures previously-sessi@es, labels the tree
nodes using heuristics, and applies an algorithm to infemimimal consistent DFA. Techniques to
extract the message format like the ones presented in thgtahare a prerequisite for techniques
that extract the protocol state-machine.

Protocol specification languages. Previous work has proposed languages to describe protocol
specifications 17,50,173. Such languages are useful to store the results from pbtegerse-
engineering and enable the construction of generic prbtpacsers. In this thesis, we use the
BinPac language to represent our MegaD C&C protocol spatiific and the generic BinPac parser
to analyze MegaD messages given that specificafidf]

Other related work. Previous work has targeted protocol reverse-engineeanggdecific appli-
cations like protocol replay or inferring connections thatong to the same application session.
RolePlayer 3] and ScriptGen 117, 116 address the problem of replaying previously captured
network sessions. Such systems perform limited protos@rse-engineering from network traffic
only to the extent necessary for replay. Their focus is tatifiethe dynamic fields, i.e., fields that
change value between sessions, such as cookies, lengthdidld addresses. Our field semantics
inference techniques leverage the richer semantics blaila protocol implementations compared
to network traffic, accurately extracting a wide range offisdmantics for dynamic fields. Replayer
uses dynamic binary analysis to replay complete programmutiass that correspond to network di-
alogs [L58. Previous work also addresses the related problem ofifgiergt multiple connections
that belong to the same application session from netwoffkctfd. 07].
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3.9 Conclusion

In this chapter, we have proposed a new approach for automatiocol reverse-engineering that
uses dynamic program binary analysis. Our approach takegasexecution traces obtained by
running a program that implements the protocol, while itgesses a received message and builds
the corresponding response. Compared to previous ap@m®dlat take as input network traces,
our approach infers more complete protocol information earlanalyze encrypted protocols.

We have develop techniques to extract the message formaharigld semantics of messages
on both directions of the communication, even when only arpeint's implementation of the pro-
tocol is available. Our message format extraction techesqdentify the field structure of a message
as well as hard-to-find protocol elements in the messageastdngth fields, delimiters, variable-
length fields, and multiple consecutive fixed-length fieldsr field semantics inference techniques
identify a wealth of field semantics including filenames, tRli@sses, timestamps, ports, and error
codes. In addition, we have shown how to apply our technigoesncrypted protocols by identi-
fying the buffers that hold the unencrypted received messdigr decryption and the unencrypted
message to be sent before encryption.

We have implemented our techniques in a tool called Disgatahd have used it to extract the
grammar of the previously undocumented, encrypted, C&@opad of MegaD, a prevalent spam
botnet. We have shown how the protocol grammar enablesedutitnet infiltration by rewriting a
message that the bot sends to the C&C server. Furthermonteaweeevaluated our techniques on a
variety of open protocols and compared Dispatcher’s outptht the output of Wireshark, a state-
of-the-art protocol analyzer. Dispatcher achieves singitxuracy as Wireshark, without requiring
access to the protocol grammar.
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Chapter 4

Binary Code Reuse

4.1 Introduction

Often a security analyst wishes to reuse a code fragmeristhagilable in a program’s binary, what
we callbinary code reuseFor example, a piece of malware may use proprietary corsigresind
encryption algorithms to encode the data that it sends teenétwork and a security analyst may
be interested in reusing those functions to decode the metwessages. Further, the analyst may
be interested in building a network proxy that can monitait erodify the malware’s compressed
and encrypted protocol on the network. Also, for dialog agpf some field of a network protocol
is changed, other dependent fields such as length or chedisldsimay need to be updatestd].

If those fields use proprietary or complex encodings, the@@ing functions can be extracted and
deployed in the network proxy so that the rewritten messagmirectly formatted. Another ap-
plication is the creation of static unpacking tools for esslaf malware sample®12. Currently,
creating a static unpacker is a slow, manual process. Frarkevave emerged to speed the pro-
cess P09, but a faster approach would be to extract the unpackingtiom from the malware
sample and reuse it as a static unpacker.

At the core of these and other security applications is pigade reuse, an important problem
for which current solutions are highly manu@D[122, 194. In this thesis we conduct the first sys-
tematic study outomatic binary code reuswhich can be defined as the process of automatically
identifying the interface and extracting the instructi@msl data dependencies of a code fragment
from an executable program, so that it is self-containedcamde reused by external code. Reusing
binary code is useful because for many programs, such as @@Jlgations and malware, source
code is not available. Itis also challenging because binadg is not designed to be reusable even
if the source code it has been generated from is.

82
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Binary code reuse encompasses two main challengisface identificationi.e., inferring the
prototype of the code fragment so that other source codentaridce with it, andtode extraction
i.e., extracting the instructions and data dependencittgeaode fragment so that it is self-contained
and independent of the rest of the program’s functionadlitierface identification is challenging be-
cause the code fragment may not have a prototype availajglejtevas intended only for internal
use. A prototype for the binary code fragment enables refifeaode by generating and passing
appropriate inputs. Interface identification is challemggbecause thparameterghat comprise the
prototype are not explicitly defined in the binary code armbddecause they need to be expressed
using variables and types, which do not exist in the binadec®ur approach uses dynamic analy-
sis to extract a parameter abstraction at the binary lewedhgaembly parametgand then translate
the assembly parameters into the formal parameters in tietppe. Interface identification takes
as input a set of execution traces. It identifies the inputsautputs for each function run present
in the execution traces, splits them into assembly paras)atientifies important attributes such as
the parameter type (input, output, input-output) and thampater location (register, stack, table),
and finally combines this information across the multipledtion runs.

In addition to the prototype, we want to extract the coderfragt itself, i.e., its instructions and
data dependencies, so that it is self-contained and caubeddy other code, independently of the
rest of the functionality in the program. The self-contdimede fragment can easily be shared with
other users and can be statically instrumented or rewyigan, for profiling or to enforce a safety
policy on its memory accesses if it is untrusted. Our codeaetibn technique uses the observation
that for reusing a binary code fragment a user often has nt teeenderstand its inner workings.
For example, a security analyst may want to reuse the ptapyieipher used by some malware,
together with the session keys, to decrypt some data, witlotrying about how the proprietary
cipher works. For these applications, complex reversdéaergng or decompilation methods are
not necessary to recover the source code. We can leverageppert of current C compilers for
inline assembly 15, 142 and generate a function with a C prototype but an inline ragbe body.
Thus, the output of our approach is a source code functiom iétlee binary code fragment to reuse
does not correspond to an assembly function. Code extraoses a combination of static and
dynamic analysis that includes hybrid disassembBf], symbolic execution10€], and jump table
identification B9 technigues.

Not all binary code can be reused. To reuse a binary code &agrhe fragment should have
a clean interface and be designed to perform a specific watmed task, mostly independent of
the remaining code in the program. In this paper we mostlygam reusing binary code fragments
that correspond to functions at the source code level, wieatallassembly functiongdecause in
structured programming a function is the base unit of sooome reuse. Functions are usually
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designed to perform an independent, well-contained taskhawe a well-defined interface, the
function prototypeln addition, we show that a code fragment that does not spored to a complete
assembly function, but has a clean interface and performallecantained task, can also be reused.
Reusing an arbitrary assembly function can be extremeljerttang because the function interface
can be convoluted and the function can have complex sideteff®ur approach handles common
side effects such as an assembly function modifying onesogbairameters or accessing a global
variable, and also handles calls to internal and standararii functions. But we exclude functions
with a variable-length argument list or functions that aasg®ed recursive structures such as trees.
We refer the reader to Sectidn2.3for a more detailed description of the problem’s scope.

In this chapter, we design and implement BCR, a tool thatetdrcode fragments from program
binaries and wraps them in a C prototype, so they can be rdysether C code. We use BCR to
extract the encryption and decryption routines used by pamrsbotnets: MegaD and Kraken. We
show that these routines, together with appropriate se&sigs, can be reused by a network proxy to
decrypt encrypted traffic on the network. Further, we shaat the network proxy can also rewrite
the malware’s encrypted traffic by combining the extractadrgption and decryption functions
with the session keys and the protocol grammar. To show thatam reuse code fragments that do
not correspond to complete assembly functions we alsoaxtia unpacking functions from two
samples of Zbot, a trojan, and use an unpacking fragment drersample as part of the routine to
unpack the other sample.

Other applications. In addition to the applications that we examine in this thebinary code
reuse is useful for many other applications. For exampleaiitbe used to automatically describe
the interface of undocumented functions. It often happkatsrmalware uses undocumented func-
tions from the Windows API, which are not described in thelipudocumentation13§. Projects to
manually document such functionsg3 could benefit from our approach to automatically identify
the interface of a binary code fragment. Extracted funetioould also be useful in the development
of programs that interoperate with other proprietary ffiaiegs or file formats, by allowing the mix-
ture of code extracted from previous implementations wetfimmplemented replacements and new
functionality. Another application is to determine wheath&o pieces of binary code are function-
ally equivalent, i.e., given the same inputs they produeestime outputs even if the instructions
in both pieces of binary code may differ. Recent work has egkird this issue at the source code
level by fuzzing both pieces of source code and comparingrjet-output pairs §7], but how

to interface with a binary code fragment to perform such ifugds an open problem. Finally, a
security analyst may want to fuzz a well-contained, segiagnsitive function independently of the
program state in which it is used.
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4.2 Overview & Problem Definition

In this section we give an overview of binary code reuse, &dlyrdefine it, outline the scope of our
solution, and present an overview of our approach.

421 Overview

Binary code reuse comprises two tasksirtgrface identificationi.e., identifying the interface of
the code fragment and formatting it as a prototype that canveded from other source code; and
2) code extractioni.e., extracting the instructions and data dependendiéiseccode fragment so
that it is self-contained and can be reused independentlyeatest of the program’s functionality.

The interface of the code fragment specifies its inputs angdutsl Interface identification is
challenging because binary code has memory and registaes than named parameters, and has
limited type and semantic information, which must be cotagtiinto a source level prototype. It
is also challenging because the code fragment might havedseated by any compiler or written
by hand, thus few assumptions can be made about its callimgention. In addition, the extracted
code fragment needs to be self-contained, so we need aivecprecess that extracts any function
called from inside the code fragment that we want to extraet from inside those callees) and we
need to account for the possible side effects from the cagrfent and its callees. For example,
we need to identify and extract the data dependencies suglolzal variables and tables that the
code fragment uses.

Previous work on binary code reuse is highly man@dl 122 194. As far as we know we
are the first ones to systematically study automatic binadeaeuse. Our goal is to automate the
whole process, with a focus on automatically identifying tode fragment’s interface. There are
two different representations for the extracted binaryecatecompiled source codé(, 127 and
assembly instructionssp, 194. In this work we use inline assembly with a C prototype baeau
inline assembly is the most accurate representation ofdbe it represents what gets executed)
and because decompilation is not needed for binary code.rdiee use of inline assembly limits
portability to the x86 architecture, and requires compslgoport, but the x86 architecture is still by
far the most important architecture in security appliaaioand commonly used compilers include
rich support for inline assembly, 142.

To reuse a binary code fragment, the code fragment shoulel @alean interface and be de-
signed to perform a well-contained task, relatively indegent of the remaining code in the pro-
gram. Otherwise, if the fragment’s interface is not cleathercode performs several intertwined
tasks and the user is only interested in one of them, it besdliffecult to separate the relevant code
and interface with it. In structured programming, the abolaracteristics are usually associated
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with functions, which are the basic unit of (source) codeseein a program and reduce the devel-
opment and maintenance costs of a program by making the codalan. Thus, it makes sense
to focus on reusing binary code that corresponds to a fumetidhe source level since that code
was designed to be modular in the first place. However, theesdavel concept of a function may
not be directly reflected at the binary level, since fundiahthe source level can be inlined, split
into non-contiguous binary code fragments, or can exitgigimps instead of return instructions
(e.g., due to tail-call optimizations). Despite this bing; it is possible to define amssembly func-
tion abstraction at the binary level for which an inferred prgpet gives a clean interface when the
underlying functionality is well modularized. We descritngr function abstraction next.

4.2.2 Problem Definition

To reuse functions from program binaries, we first need atiomabstraction that captures our
definition of what a function is in binary code.

Function abstraction. A basic blockis a sequence of instructions that has one entry point, one
exit point, and contains no instructions that perform calrfiow transfet. Basic blocks are disjoint
and partition the code in an executable. We definassembly functioto be a collection of basic
blocks with a single function entry point, which is the targéthe instruction that transfers control
from the external code into the assembly function code, awiecoo more function exit points, which
are instructions that transfer control to external codebeddnging to the function. All code reach-
able from the function entry point before reaching a funtixit point constitutes the body of the
assembly function, except code reachable only throughinsatuctions before corresponding return
instructions, which is instead part of the called functiémother words, the body of a function is
assumed to continue with the next instruction after a calirirction. A function exit point can be
a return or interrupt instruction. Our definition does natlie assembly functions with multiple
entry points, which we treat as multiple (partially ovepamy) assembly functions, each including
all code reachable from one function entry point to any fiomcexit point.

If one assembly function jumps to another, i.e., withouhgsa call function as mentioned
in Section2.4.], this definition considers the blocks following the jumpgetrto be part of the
assembly function to extract. We can further extend our digfinof a function exit point to include
jumps to the entry point of any other assembly function inghegram’s binary or in an external
dynamic linked library (DLL). For this we need a list of enfpgints for other assembly functions
such as the one provided by the exported function log pratlbgehe execution monitor.

Icall instructions are a special case that is often not censitito end a basic block because the callee often returns
to the instruction following the call instruction.
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Problem definition. The problem of binary code reuse is defined as: given theyofar program
and the entry point of an assembly function in the binaryntiifie the interface and extract the
instructions and data dependencies that belong to the bBs&mction so that it is self-contained
and can be reused by external C code. The extracted fundatimsists of both an inline assembly
function with a C prototype and a header file containing thection’s data dependencies. The
problem definition when the code fragment does not corraspom complete assembly function,
i.e., for an arbitrary code fragment, is similar except tihaequires the exit points to be given,
because a return instruction can no longer be considerexitgoomt.

4.2.3 Scope

To reuse a binary code fragment, the fragment should haveaa éhterface and be designed to
perform a specific well-contained task, mostly indepenaénhe remaining code in the program.
Our binary code reuse approach focuses on reusing asseuamdlifoins because they correspond
to functions at the source code level, which are the baseadfirsiburce code reuse in structured
programming. However, we also show that a code fragmentithed not correspond to a complete
assembly function, but has a clean interface and performslecantained task, can also be reused.
Reusing an arbitrary assembly function can be extremellfestzing because the function in-
terface can be convoluted and the function can have complexeffects. Our approach handles
common side effects such as an assembly function modifyiegod its parameters or accessing a
global variable, and also handles calls to internal anddstahlibrary functions, but it excludes other
complex cases such as functions with a variable-lengthnaegu list or functions that are passed
recursive structures such as trees. An important classratifins that we extract in this thesis
areencoding functionswhich we introduced in Sectia®6 and include encryption and decryption,
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compression and decompression, code packing and unpackiecksums, and generally any func-
tion that encodes data. Encoding functions are usually-egltained, have clean interfaces, limited
side effects, and are interesting for many security apiphica. Next, we detail the assumptions we
make to limit the scope of the problem:

¢ The function entry point is known. For encoding functiong gan identify the entry point
using the techniques in Secti@6 that flag functions with a high ratio of arithmetic and
bitwise operations, as well as the techniques in Se@&iBthat flag functions that highly mix
their inputs.

e Since our approach uses dynamic analysis, we assume thanvexecute the function at
least once. If some specific input is needed to reach theifumatie assume we are provided
with such input.

¢ The function has a fixed parameter list. Thus, we excludetiome with variable-length list
of arguments such awintf

e The function is not passed complex recursive structurel agclists or trees (pointers to
single-level structures are supported).

¢ The function does not call system calls directly (e.g., tigiointerrupt osysenter  instruc-
tions) but instead uses system calls only through well-knfumctions that are available in
the target system where the function is reused (e.g., tinelatd C library, or the Windows
API if the target system is Windows-based).

¢ The function contains no code that explicitly uses its owsatmn. For example, the code
should not check if it is loaded at a specific address or offEBis restriction excludes most
self-modifying code. However, the function may still refece global addresses through
standard position-independent-code and dynamic linkirggocatable and non-relocatable
code are both supported.

4.2.4 Approach

Figure 4.1 illustrates our binary code reuse approach implementeclinB&R tool. First, the
program is run inside thexecution monitgrwhich was described in Chapt@r The execution
monitor outputs an execution trace of the run, as well as ags state snapshot when the exit
point of the binary code fragment is reached. To produce thegss state snapshot, the execution
monitor tracks when execution reaches the given entry pbihie code fragment and when it leaves
the code fragment via an exit point (e.g., a return instomdti When the execution reaches an exit
point, the execution monitor produces a process state lsoaps
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In this chapter we refer to the process state snapshot ag@ enc_tbl[256] = { 0x53, ... ,0x9c };
. . .. intencode(char*src, char*dst, int len) {
memory dump since we do not use the register and taint infofmt i;
. . .. if (Isrc || !dst) return -1;
mation that the snapshot may also contain. It is important t@.emset(dst, 0, len);

take the memory dump at the end of the function’s executioff; (=0:i<ten: =)
st[i] = enc_tbl[src[i]];

to maximize the code pages present in the dump, as pages r{rawm len;

not be loaded into memory till they are used. The prograsemttune ooaoTo00]
. . . . void* buf0, /* IN; STACK(0); FixLen(4); PTR */
may be run multiple times to produce a collection of exeautio voio* but1, / IN-OUT; STACK(1); FixLen(4); PTR */

data32_t buf0_len, /*IN;STACK(2); FixLen(4); LEN */
traces and memory dumps. )
data32_t retval_EAX;

The interface identification module takes as input the exe-asm___ volatile_(
"push  %[valO]\n\t"

cution traces generated during program execution and tmtp;uusn ;{gugm
push  %[bufO]\n\t"

the prototype, which captures how external source code Ceaft [1bl00401000}n\"

imp bl_func_004071000_refjn\t"

interface with the code fragment. Interface identificatbtom- %t

i . .. . g . mov  %%esp,%%ebp\n\t"
prises three steps. First, it identifies the inputs and astpuZel .02t

H H H "cmpl  $0x0,0x8(%%ebp)\n\t"
for each function run present in the execution traces. Tien, g gisigne

splits the inputs and outputs for each function run into RS SErpiooaotorsin|
bly parameters and identifies important attributes such@s town womaene

. . "push  $0x0\n\t"

parameter type (input, output, input-output) and the patam o, ﬁxzwf%ebp),%%ecx\n\t.-

. . . . "push  %%ecx\n\t"
location (register, stack, table). It also identifies theapzeter cal memsetn

. . . . . "add  $0xc,%%esp\n\t"

semantics using the semantics inference techniques peelSermovi $0xo,-0x4(%%ebppnt’
: . : : imp[1bl00401038)n't"
in Chapter3. Finally, it combines the assembly parameters.

found in the multiple function runs into the formal paranmgte ‘mov  0x8(%%ebp) %%ecxinit’
"add  -0x4(%%ebp),%%ecx\n\t"

for the function prototype. "movsbl (%%ecx),%%edxin\t

"mov  0xc(%%ebp),%%eax\n\t"

The code extraction module extracts the instructions arpdd -0x4(%%ebp) %%eaxinit”
) ] "mov %%edx),%%cl\n\t"
data dependencies of the code fragment. It takes as input ti'r'fge %%eCl,(%e%eax)init”

mp. [1I00401030] "
execution traces, the memory dumps, and the prototype putjiposoiosaint’]

mov  0x10(%%ebp),%%eax\n\t"
by the interface identification module. It produces as outpifyy Joesthrrees

C code corresponding to the body of the code fragment, aifhir sossi000 reeme

header files with its data dependencies (e.g., With the SaDIE) i’ oo ot (oo, (ouf1] mem” (buf)

and constants used by the code fragment). Code extractiofyemoe iw-r mearr - 0
comprises three steps. First, it recovers the instructibas oo retval_EAX;
form the body of the code fragment using hybrid disasserh
bly [156. Hybrid disassembly combines the best of static ahip
dynamic disassembly. It addresses the problem of resolii§ ©OP; the source for thencode

indirection in static disassembly using information frone t function. Below, the extracted as-

execution traces, and it can disassemble instructiongrtagt S€MPly function. The boxes indi-
cate changes to the assembly code.

ure 4.2: Running example. At
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not have been executed during the program runs. Hybridsisasly outputs the disassembled in-
structions belonging to the code fragment. Then, the cotla@ion module makes the assembly
code relocatable by arranging the disassembled instngciiio basic blocks and rewriting table ac-
cesses, as well as the target addresses of call and jumycithats, to use labels. Finally, it encodes
the body as an inline-assembly block inside a function deimithat uses the C prototype output
by the interface identification module. In addition, it desaa C header file containing the memory
dump as an array.

Isolation. Because the extracted code runs in the same address spheepasgram that uses it,
the same security concerns apply to it as to an untrustediplairty library: a malicious extracted
function might attempt to call other functions in memory @ewrite the application’s data. An
isolation mechanism is needed to limit what the extractetbaan do. In this work we process the
extracted code with a software-based fault isolation (&) to insert runtime checks that prevent
the extracted code fragment from writing or jumping outsigsignated memory regions (separate
from the rest of the program). We use PittSFI€l@4], an SFI implementation for x86 assembly
code that enforces jump alignment to avoid overlappinguiesibns and includes a separate safety
verifier, which can be used by a third party to verify that tbde has been correctly rewritten.

Running example. Figure4.2 shows our running example. At the top is the source code for th
encode function, which read¢en characters from buffesrc , transforms them using the static
tableenc _tbl , and writes them to thdst buffer. Below it is the assembly function corresponding
to theencode function, extracted by BCR from the program binary. Theddogxes in the figure
show the C prototype produced by the interface identificatimdule, and the prologue and epilogue
introduced by the code generation module. The smaller bsixew the additional elements in the
body of the function that have been rewritten or modified t&erthe function stand-alone. The rest
are the unmodified assembly instructions extracted by thg batraction module. Also produced,
but omitted from the figure, is a header file that contains a argrdump of the original module.
This header file contains the module’s data that the extlamide may access, e.g., the contents of
the tabletbl 004000000 needed by the boxed instruction that accesses the table.

Next, we detail the interface identification module in Sectt.3and the code extraction module
in Section4.4. For simplicity, we focus the discussion on the case whexdthary code fragment
to reuse corresponds to an assembly function. Later in@etihwe show an example of applying
BCR to a code fragment that does not correspond to an asséumigtjon.
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4.3 Interface Identification

The goal of the interface identification module is to build #&u@ction prototype for the assembly
function so that it can be reused from other C code. The C fyméacomprises the function’s name
and a list of itformal parametersHowever, formal parameters do not directly appear at tharki
code level, so BCR works with a binary-level abstractionjoliwe term amassembly parameter
and describe next. At the same time, we collect some additioformation, such as the parameter
length or its semantics. This information does not direafipear in the prototype, but it is needed
for interfacing with the extracted code.

The interface identification module identifies the asserpalameters using a dynamic analysis
that takes as input the execution traces produced by thegxeaenonitor. Thus, it can only extract
parameters that have been used by the function in the esasutaptured in the given execution
traces. To increase the coverage inside the function we sarthe white-box exploration tech-
nigues we describe in Chapte#s8. In our experiments, we achieve no false negatives in eterf
identification with less than 8 runs for any function and hageneeded such exploration.

In the remainder of this section we describe how to identifygirototype of an assembly func-
tion. The process for identifying the prototype of an agbigrbinary code fragment is analogous.

Parameter abstraction. An assembly parameter plays a role for an assembly functialogous
to a formal parameter for a C function, specifying a locatiepresenting an input or output value.
But, instead of being referred to by a human-written namsgmably parameters are identified with
a location in the machine state. To be specific, we define ddggrarameters with five attributes:

1. Theparameter typecaptures whether it is only an input to the functidN {, only an out-
put from the function QU7 or both (N-OUT). An example of arilN-OUT parameter is a
character buffer that the assembly function converts acgko uppercase.

2. Theparameter locatiordescribes how the code finds the parameter in the prograatts. st
A parameter can be found on the stack, in a register, or ahantmcation in memory. For
stack parameters, the location records the fixed offset ftmrvalue of the stack pointer at
the entry point; for a register, it specifies which registdemory locations can be accessed
using a fixed address or pointed by another pointer parajeenaps with an additional
offset. BCR also specially classifies globals that are aszkas tables via indexing from a
fixed starting address, recording the starting addresshandftset.

3. Theparameter lengtltan be either fixed or variable. A variable length could bederined
by the value of another length parameter, or the presencekoban delimiter (like a null
character for a C-style string).
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4. Theparameter semantiandicates how its value is used. Parameters have pointength
semantics if they are used to identify the location and sizsler parameters, as previously
described. Our parameter abstraction supports a numbenwrgic types related to system
operations, such as IP addresses, timestamps, and filenAm&snknown” type represents
a parameter whose semantics have not been determined.

5. Theparameter value lisgives the values BCR has observed the parameter to take lbver a
assembly function executions. This is especially useftlidfparameter’'s semantics are oth-
erwise unknown: a user can just supply a value that has beghfieguently in the past.

Overview. The interface identification module performs three stepsr dach assembly func-
tion execution, it identifies a list of assembly parametesesdiby the assembly function in that run
(Section4.3.]). Next, it combines the assembly parameters from multiphe to identify missing
parameters and generalizes the parameter attributesqis4@.2. Finally, it identifies additional
semantics by running the assembly function again in theugi@tmonitor using the parameter in-
formation and a taint tracking analysis (SectB.3. Later, in Sectio.4.2 we will explain how
the code generation module translates the assembly pa@npeoduced by the interface identifi-
cation module into the formal parameters and outputs then€titan prototype.

4.3.1 ldentifying the Assembly Parameters from a Function Rn

For each function run in the execution traces the interfdeatification module identifies the run’s
assembly parameters. Because there are no variables atanglbvel (only registers and memory),
this module introduces abstract variables (sometimesd@Hocs B]) as an abstraction over the
machine-level view to represent concepts such as buffatsstatk parameters. These variables
must be sufficiently general to allow for rewriting: for iaste, the addresses of global variables
must be identified if the variable is to be relocated. A finaldnge is that because the code being
extracted might have been created by any compiler or wrlitelhand, BCR must make as few
assumptions as possible about its calling conventions.

In outline, our approach is that the interface identifiaatioodule first identifies all the bytes in
the program’s state (in registers or memory) that are ednenput or an output of the assembly
function, which we calinput locationsandoutput locationsrespectively. It then generalizes over
those locations to recognize abstract locations and asg@atameters. To get the best combination
of precision and efficiency, we use a combination of locakdibn of instruction idioms, and
whole-program dataflow analysis using tainting and synebediecution. In the remainder of this
section we refer to an assembly parameter simply as a parafoebrevity, and use the term formal
parameter to refer to the parameters in the C function proéot Next, we define what input and
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output locations are. Note that, as introduced in Se@&idr® a program location is a one-byte-long
storage unit in the program’s state (memory, register, idiate or constant).

Input locations. We define an input location to be a register or memory locatian is read by
the function in the given run before it is written. ldentifigi the input locations from an execution
trace is a dynamic dataflow-based counterpart to statievivmbles dataflow analysi¢%$1], where
input locations correspond to variables live at functiotmerLike the static analysis, the dynamic
analysis conceptually proceeds backwards, marking lmasiths inputs if they are read, but marking
the previous value of a location as dead if it is overwritgSince we are interested only in liveness
at function entrance, we can use a forward implementatiohe dynamic analysis is also simpler
because only one execution path is considered, and thesaddren the trace can be used directly
instead of conservative alias analysis. This basic deteimin of input locations is independent of
the semantics of the location, but as we will explain lataraibinput locations will be treated as
parameters (for instance, a function’s return addressbeitbxcluded).

Output locations. We define an output location to be a register, memory, or aoh&cation that
is written by the extracted function and read by the code élatutes after the function returns.
Extending the analogy with compiler-style static analysis corresponds to the intersection of the
reaching definitions of the function’s code with the locaidhat are live in the subsequent code.
Like static reaching definitionslp1], it is computed in a single forward pass through the trace.
Our choice of requiring that values be read later is motivdig minimizing false positives
(a false positive output location translates into an exaeameter in the C function prototype).
This requirement can produce false negatives on a singlgfran output value is not used under
some circumstances. However, our experience is that sissh fi@gatives can be well addressed
by combining multiple function runs, so using a strict defami in this phase gives the best overall
precision.

Approach. The input and output locations contain all locations belogdo the assembly param-
eters and globals used by the assembly function, withoardey calling conventions. In addition
to identifying them, the interface identification moduleeds to classify the input and output lo-
cations into higher level abstractions representing patars. Also, it needs to identify whether a
parameter corresponds to a stack location, to a global, acdessed using a pointer. The overall
parameter identification process from one function run rmrearized in Tablet.1 and described
next.

For efficiency, the basic identification of parameters iglsi forward pass that performs only
local analysis of instructions in the trace. It starts atehéy point of one execution of a func-
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92}

=
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ke

Description

Identify stack and table accesses

Identify input and output locations

Remove unnecessary locations (e.g., saved registersy&i6i?, address)
Identify input and input-output pointers by value

Split input locations into parameter instances using jgojistack and table access informatipn
Identify input parameter pointers by dataflow

Split output locations into parameter instances usingtpoinformation
Identify output parameter pointers by dataflow

O N OO AW N

Table 4.1: Summary of parameter identification process fanetion run.

tion, and uses one mode to analyze both the function and tietidas it calls, without discerning
between them (for instance, a location is counted as an aaut if it is only read in a called func-
tion), and another mode to analyze the remainder of the aiee the function finishes. For each
instruction, it identifies the locations the instructiomds and writes. For each location, it identifies
the first and last times the location is read and written withe function, as well as the first time
it is read or written after the function. Based on this infatian, a location is classified as an input
location if it is read inside the function before being waittinside the function, and as an output
location if it is written in the function and then read oussithie function before being written outside
the function; observe that a location can be both an inpuanoutput.

At the same time, the analysis identifies stack and tablesaeseby a local matching of machine
code idioms. The ESP register is always considered to poittet stack. The EBP register is only
considered to point to the stack if the difference betwesnvaue and that of ESP at function
entrance is a small constant, to support both code that tiaesiframe pointer and code that uses
it as a general-purpose register. Then, a memory accesddskaaxcess if it uses a stack register
as a starting address and has a constant offset. On the atfirdamemory access is classified as
a table access if its starting address is a constant andfdet of a non-stack register. The starting
address and offset values in stack and table accesses argee¢or future use.

Excluding unnecessary input locations. The input locations given by the simple liveness-style
definition above include several kinds of locations with ki@eping roles in function calls which
should not be considered parameters, so we next discusoteowltide them. To exclude the return
address, the interface identification module ignores anyong locations written by a call instruc-
tion or read by a return instruction during the function exem. To exclude the stack pointer, it
ignores any access to ESP. When code calls functions in ardgally linked library, it fetches the
real entry point of the function from an export table, but welede such loads.

Most complex is the treatment of saved registers. For instane define a stack location to be
used for saving the register EBX if the contents of EBX ard fieved in that location with a push
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instruction, and later restored to EBX with a pop instruatiBut the location is not a saved register
location if the value is popped to a different register thtawas pushed from, if the stack value is
accessed before the pop, or if after the pop, the stack valtgad before being overwritten. Con-
ventionally, the stack is used to save certain registeligated by the calling convention if a called
function modifies them, but our analysis is independent efdélling convention’s designation: it

simply excludes any location used only for saving a register

Identifying pointers. A final building block in identifying parameters is to iddgtlocations that
hold pointers. The interface identification module usesmal@oation of two approaches for this
task: an inexpensive value-based method that can be agpliati locations, and a more expensive
dataflow-based method that works by creating a symbolic ditarand is applied selectively. To
detect a pointer by value, BCR simply checks each sequenfmupntonsecutive input locations
(pointers are four bytes on our 32-bit architecture) to s#eeir value forms an address of another
input or output location. However, this simple approach fahto detect some pointers (for in-
stance, the address of a buffer that was only accessed witkero indexes), so we also implement
a more sophisticated approach.

To identify more pointers, the interface identification mteduses a symbolic execution ap-
proach using our Vine systerm ] to analyze an indirect memory access. The input locations t
the function are marked as symbolic variables, and the neodnputes a formula for the value
of the effective address of the access in terms of them, wsingmic slicing and simplification as
explained in Sectior2.4.2 It then checks whether the resulting formula has the forra 82-bit
symbolic input plus a constant. If so, the input locatiors @nsidered a pointer, and the constant
an offset within the region the pointer points to. (The reeesituation of a constant starting address
and a variable offset does not occur, because it would agirbade been classified as a global ta-
ble.) Though precise, this symbolic execution is relagiv{pensive, so the interface identification
module uses it only when needed, as we will describe next.

Identifying assembly parameters from input and output locaions. Once the input and output
locations have been identified and unnecessary locatiomsvexl, the interface identification mod-
ule identifies input and input-output pointers by value gdared above. Then it uses the pointers,
stack, and table accesses to classify the input and outpatidas into assembly parameters. Each
parameter is a contiguous region in memory (or a registat)tvio distinct parameters may be ad-
jacent in memory, so the key task is separating a contiguegisir into parameters. The module
considers a location to be the start of a new parameter itligstart of a pointer, the address after
the end of a pointer, or the location of a pointer, stack, bletaccess. With the information found
so far, the interface identification module determines trameter type, location, and value, and if
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the parameter has pointer semantics. The parameter lengitbvisionally set to the length seen on
this run.

Then, the interface identification module attempts to fertblassify any parameters that are
in memory but are not on the stack and are not known globalspplyimg the dataflow-based
pointer identification analysis. Specifically, it checksettter the access to the starting location of
the parameter was a pointer access; if so, it updates theofyjhe pointed-to parameter and the
semantics of the pointer parameter accordingly. Aftersifgisg the input locations and pointers in
this way, the module classifies the output locations sityiland then identifies and classifies other
pointers that point to them.

4.3.2 Combining Assembly Parameters from Multiple Functimn Runs

The set of assembly parameters identified from a single rgnb@ancomplete, for instance if an in-
put pointer is first checked not to be null and if null, the ftioe returns without further processing.
This is the case with therc anddst parameters of thencode function in Figure4.2 Therefore
the interface identification module further improves itsulés by combining the information about
parameters identified on multiple runs.

The final set of parameters identified is the union of the patars identified over all runs, where
parameters are considered the same if they have the samegbar#ocation. When parameters with
the same location differ in other attributes between rumssd attributes are merged as follows:

e The parameter type generalizes to input-output if it wasitiip some runs and output in
others.

e The parameter length generalizes to variable-length ifai¢ fixed-length in some runs and
variable-length in others, or if it had differing lengthg@&s runs.

e The parameter semantics generalizes to any non-unknowe ¥t was a known value in
some runs and unknown in others (e.g., a parameter is coadidgointer if it was identified
to be a pointer at least once, even if it was considered unkrmwuns when it was NULL).
On the other hand, the semantics are replaced with unknowheyf had conflicting non-
unknown values on different runs.

e The parameter value list is the union of all the observedeslu

4.3.3 ldentifying Parameter Semantics

In addition to the declared type of a parameter included énGlprototype, it is also common (e.g.,
in MSDN documentation]3§)) to provide additional information in text or a commentttbaplains
how the parameter is used; what we refer to asédimantics For instance, one integer parameter
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Figure 4.3: Architecture of the code extraction module.

might hold the length of a buffer, while another is an IP addréeNe next describe the techniques
that the interface identification module uses to identifyapaeter semantics.

Two kinds of semantics that occur frequently in encodingcfioms as part of specifying other
input and output parameters are pointers and lengths. Asibed above, the parameter identifica-
tion process finds pointer parameters at the same time itifiésrihe parameters they point to. To
identify length parameters, their targets, as well as bibength parameters that use a delimiter to
mark their end (e.g., null-terminated strings), we levertige message format extraction techniques
introduced in Chaptes.

The interface identification module uses the semanticsanfm techniques presented in Chap-
ter 3 to detect semantics related to system operations such akltBsges, timestamps, ports, and
filenames. In a nutshell, certain well-known functions takguts or produce outputs of a particu-
lar type, so BCR uses taint tracking to propagate these typtee target function (the one being
extracted) if an output of a well-known function is used asrgut to the target function, or an
output of the target function is an input to a well-known ftioc. For instance, the argument to
theinet _ntoa function is an IP address, so an output parameter that istaséetive that argu-
ment must itself be an IP address. Conversely, if an inptmater is based on the return value of
RtlIGetLastWin32Error , it must be an error code. Currently, BCR supports the sdnsathé-
fined in Table3.3 plus “pointer” and “unknown”. A similar approach can be usédhe instruction
level to select a more specific C type (eftpat  rather tharint ) [82].

Semantics inference leverages the execution monitorpatifor function hooks, which we
introduced in Sectior?.3.2 Hooks added after the execution of well-known functiond #me
target function taint their outputs, and hooks before thr@cution check if their inputs are tainted.
Because a function hook can only be added to the target &maetfiter its parameters have been
identified, semantics inference requires an extra run ofuthetion in the execution monitor.
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4.4 Code Extraction

In this section we describe the code extraction module. Tdie whallenges for code extraction are
identifying all instructions from the assembly functionremuse and producing a properly formatted
C function that can be reused by external code. FiguBsshows the architecture of the code ex-
traction module, which comprises two sub-modulesdy extractiorandC code generationFirst,
the body extraction module uses hybrid disassembly to sksakle all instructions that comprise
the body of the assembly function. In addition, it makes twembly code relocatable by rewriting
the assembly instructions to use labels for the targetsIband jump instructions, as well as for
absolute memory addresses. Then, the C code generatiorevfoduats the assembly function as
an inline-assembly block, creates a C function prototypefthe prototype output by the interface
identification module, and adjusts the function’s prologmel epilogue so that it conforms to the
calling convention expected by the C code. For brevity, is section we use “C function” to refer
to a function with a C prototype and an inline-assembly body.

4.4.1 Body Extraction

Extracting the body of an assembly function to reuse is arsd@iprocess that starts by extracting
the body of the given assembly function and then recursieeisacts the body of each of the assem-
bly functions that are descendants of this function in thecfion call graph. The body extraction
module classifies descendant functions into two categoniel-known functionghat may be avail-
able in the system where the C function is going to be recadpi.g., functions in the standard
C library or in the Windows Native API, and the rest, which wentinternal functions The body
extraction module extracts the body of the given functiod alhinternal descendant functions. As
an optimization, it avoids extracting well-known funct®nr his increases portability: for example
if a function from a Windows executable usascpy from the standard C library, it can be re-
compiled in a Linux system making a call to the lostiicpy  function. In other cases, portability
is not possible because the function may not have a direlziaement in the target OS (e.g., there
is no direct replacement in Linux fdttReadFile ), so this optimization is not performed and we
use instead a compatibility laye226. For instance, in our running example, shown in Figr2
theencode function callsmemset; since it is part of the C library and thus likely availabletfie
target systemmemset is not extracted.

Hybrid disassembly. The body extraction module uskgbrid disassemblya technique that com-
bines static and dynamic disassemtl$§]. The body extraction module supports three disassem-
bly modes of operation: purely static, purely dynamic, agrid disassembly. In purely static
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disassembly, the body extraction module statically desakdes the code starting at the given entry
point, using the IDA Pro commercial disassembl(d]] If the program binary is not packed, then
disassembly is performed directly on the executable. Fckguhbinaries disassembly is performed
on the memory dump taken by the execution monitor at the sagldt point. Purely static disas-
sembly provides good code coverage but may not be able tesdisdble code reachable through
indirect jumps or calls, as well as code intertwined withadat

In purely dynamic disassembly, the body extraction modigassembles only instructions be-
longing to the function and its descendants that appearergiven execution traces. For this, it
uses the call stack tracking module presented in Ch&aeidentify which instructions belong to
each function. Purely dynamic disassembly has low coderageebut has no trouble dealing with
packed executables, or indirect jumps or calls.

In hybrid disassembly, the body extraction module combbuh static disassembly with dy-
namic information from the execution traces to obtain th&t lbé both modes. We have found that
hybrid disassembly works best and have set it to be the defande of operation. For hybrid disas-
sembly, the body extraction module first uses static disalestarting at the given function entry
point. In the presence of indirection, the static disassenthay miss instructions because it can
not resolve the instructions’ targets. Thus, the body ekt module collects the targets of all
indirect jumps and calls seen in the execution traces amrdtdithe static disassembler to continue
disassembling at those addresses. For example, in Fggjrihe call to theanemset function was
originally a direct call to a stub that used an indirect jumi@imemset’s entry point in a dynamic
library. The body extraction module resolves the targethefjump and uses the information in
the exported functions log, output by the execution monimmetermine that the function is the
standardnemset. In addition, the body extraction module uses a dataflovetb@pproach to stat-
ically identify the targets of jump tables, another clasindirect jumps often used to implement
switch statements3p]. This technique can find additional targets of jump tabled,seen during
the execution. In the presence of code intertwined with,dhtastatic disassembler may also miss
instructions. Hybrid disassembly collects the addres$adl executed instructions and directs the
static disassembler to continue disassembling at thogessks. Using this approach, hybrid disas-
sembly is able to identify more instructions that belongh® function body but that do not appear
in the execution traces.

There exist some situations where static disassembly mayenpossible even from a memory
dump, for instance if a program re-packs or deletes instmgtright after executing them: the code
may be re-packed by the time the memory dump is taken. In ssituaion hybrid disassembly
smoothly falls back to be equivalent to purely dynamic disasbly. To summarize, hybrid disas-
sembly uses static disassembly when possible and incaggoaaditional dynamic information to
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further extend disassembly. For each function, hybridsgismbly stores the disassembled basic
blocks, and recovers the control flow graph.

Rewriting call/jumps to use labels. Once the C function is recompiled it will almost certainly
be placed at a different address, so the body extraction lmogeds to make the code relocatable.
To enable this, it inserts a label at the beginning of eaciclidsck. Then, it rewrites the targets
of jump and call instructions to use these labels. If theelad a jump instruction has not been
recovered by the hybrid disassembly, it is rewritten to usrique missing block label that exits the
function with a special error condition. Figude2 uses small boxes to highlight the inserted block
labels and the rewritten call/jump instructions. Rewgtiine call/jump instructions to use labels
also enables a user or a subsequent tool (like the SFI tonistisd in Sectiod.5.5 to instrument
the function or alter its behavior by inserting new instioies in the body.

Rewriting global and table accesses. The extracted C function is composed of a C file with the
assembly function and a header file. The header file contaimenaory dump of the module con-
taining the function to extract, taken at the function’st@xiint on a given run. The body extraction
module rewrites instructions that access global variatméables to point to the corresponding off-
sets in the memory dump array. This way the extracted fumatém access table offsets that have
not been seen in the execution traces. In our running exarti@eheader file is not shown for
brevity, but the array with the contents from the memory disngalledtbl 004000000 and the
instruction that accessesc _tbl has been rewritten to use the laidet3018+tbl 00400000
which is the first byte oenc _tbl in the memory dump. The memory dump is taken at the func-
tion’s exit point, but if the interface identification modutliscovers any input parameters that are
accessed using a fixed address and modified inside the faneti., a global table that is updated
by the function, it ensures that the parameter values ortitmentry are copied into the dump, so
that they are correct when the function is invoked again.

An alternative approach would be to create separate C ammagsvariables for each global
parameter, which would reduce the space requirements éoextracted function. Though this
would work well for scalar global variables, it would be diffiit to infer the correct size for tables,
since the binary does not contain bounds for individualaldés, and code compiled from C often
does not even have bounds checks. (An intermediate appveadd be to estimate the size of a
table by multiplying the largest observed offset by a safatfor; this would be appropriate if it
could be assumed that testing covered at least a uniforridinaaf the entries in each table.)
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4.4.2 C Code Generation

The code generation module writes the output C files usingnfbemation provided by the interface
identification module and the body extraction module. Tooelecthe function body, the code gen-
eration module uses GCC's inline assembly featutd. [It wraps the function body in an assembly
block and then puts the assembly block inside a function iiefinwith a C function prototype,
as shown in Figurd.2 In addition it creates a C header file containing the memaiypmg as an
array. Though our current implementation is just for GCG, itiline assembly features of Visual
C/C++ [142 would also be sufficient for our purposes. In fact, some ef¥isual C/C++ features,
such as “naked” inline assembly functions, for which the piden does not generate a prologue or
epilogue, could simplify our processing.

The assembly block contains the assembly instructionstantist of inputs, outputs, and clob-
bered registers. These are filled using the parameter iafitym provided by the interface iden-
tification module. When GCC compiles the function, it willlagrologue and epilogue code that
affects the stack layout, so even if the extracted functiogirally used a standard calling conven-
tion, it would not find the stack parameters where it expetsovercome this problem, the code
generation module inserts wrapper code at the beginningeofunction that reads the parameters
from the C prototype (as inputs to the assembly block), femtin the stack or register locations
expected by the extracted function, and calls the extraetd point. After the call instruction it
inserts a jump to the end of the function so that the epiloggeried by GCC is executed. The
second box in Figurd.2 shows this wrapper.

The C prototype comprises the function name and the fornralnpeters of the function. The
function name is based on its entry poifilr{c _00401000 in the running example), and each
parameter’s C type is based on its size and whether it is agroinput and input-output parameters
located in the stack or registers appear first, with stac&rpaters appearing in order of increasing
offset (this means that if the extracted function used thetrmommon C calling convention, their
order will match the original source). For each output patmreturned using a register, the code
generation module adds an additional pointer formal patamns the end of the C prototype and
uses the outputs list in the assembly block to let GCC know tthea register needs to be copied
to the pointed-to location. Additionally, for output gldlax table parameters the code generation
module adds a C variable corresponding to the start addfdke global or table in the memory
dump. This makes the function’s side effects available beio€ code.

Each formal parameter is also annotated with a comment thes ghformation about the at-
tribute values for the corresponding assembly parametdr asithe parameter type and its seman-
tics. These are useful for a user who wants to reuse the &umctn addition, it prints the most
common value seen for each parameter during the multipleuéoas along with the percentage
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of executions where the parameter showed that value. Tbissathe user to select a value for the
parameter when the parameter semantics are unknown. Ttiofuprototype is shown in the first
box in Figure4.2

45 Evaluation

This section describes the experiments we have performenmwnstrate that our binary code
reuse approach and implementation is effective for sgcapiplications such as rewriting encrypted
malware network traffic and static unpacking, that non-fiamcfragments can be extracted to give
useful functions, and that extracted functions can be uafalyseven though they come from an
untrusted source.

4.5.1 Rewriting MegaD’s C&C Protocol

In Chapter3 we introduced MegaD, a prevalent spamming botnet first @bgdn 2007 and credited
at its peak with responsibility for sending a third of the @& spam [L29. In that chapter we
reverse-engineered MegaD’s proprietary, encrypted, C&Mpol and demonstrated how to rewrite
C&C messages on the host by modifying a buffer before enicnyptn this section we show that
our binary code reuse approach enables the same C&C raywitia network proxy, by extracting
the bot’s key generation and encryption functions.

Function extraction. MegaD’s C&C protocol is protected using a proprietary epton algo-
rithm, and the bot contains functions for block encryptibiock decryption, and a common key
generator. We identify the entry points of the three fundiaising the techniques presented in
Section3.6that flag functions with a high ratio of arithmetic and bitevigperations.

First, we use BCR to automatically extract the key genendtiaction. The identified prototype
shows that the function has two parameters and uses twol gédides. The first parameter points to
an output buffer where the function writes the generated kKb second parameter is a pointer to
an 8 byte buffer containing the seed from which the key is gied. Thus, the function generates
the encryption key from the given seed and the two tablesdarbthary. Other attributes show that
all calls to the key generation function use the same “algtdefeed, and that the two tables are not
modified by the function.

Although the entry points for the block encryption and detion functions are different, the
first instruction in the block decryption function jumps twetentry point of the block encryption
function, so here we describe just the encryption functidhe prototype extracted by BCR has
3 parameters and uses 6 global tables. The first parametss goian input buffer containing a
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key (as produced by the key generation function). The otlvergarameters are pointers to the
same 8 byte input-output buffer that on entry contains thenarypted data and on exit contains the
encrypted data.

The technique to automatically detect encoding functiclesiifies the functions with highest
ratio of arithmetic and bitwise operations, which for blogkhers is usually the functions that
process a single block. To encrypt or decrypt an arbitrargsage, we would like a function that
encrypts or decrypts arbitrary length data. Thus, whenguiis technique, after BCR extracts the
detected encoding functions, we instruct it to extractrtharent functions as well. Then, we com-
pare the prototype of each detected function with the ondefolarent. If the parent’s prototype
is similar but accepts variable-length data, e.g., it haangth parameter, then we keep the parent
function, otherwise we manually write a wrapper for the kldenction. For MegaD, the parent
of the block encryption function has additional parameteesause it performs other tasks such as
setting up the network and parsing the message. It contaisigle loop that performs decryption
of a variable-length buffer; instead, decryption is irgaxled with parsing. Since we are not inter-
ested in the parent function’s other functionality, we e/mur own wrapper for the block encryption
function.

Note that in the process of extracting the encoding funstiva also identify the keys that each
function invocation uses. We do this by looking for inputgraeters to the encoding functions that
are fixed-length, are not derived from the input, and havetlher@semantics (i.e., are not a pointer or
a length). For MegaD all invocations of the encryption/getion function use the same key, which
corresponds to the output of the key generation functionm@stioned earlier, the key generation
function takes as input a hard-coded seed value “abcdefgh, generating the same key in each
invocation.

To verify that the extracted encryption/decryption fuantiworks correctly, we augment the
grammar for the unencrypted MegaD C&C protocol, presemekbpendixA, to use the extracted
decryption function. This augmented grammar serves ad topilne BinPac parser shipped with
the Bro intrusion detection systerhiq3. Using the augmented grammar, Bro successfully parses
all the encrypted MegaD C&C messages found in our netwodeta

Network-based C&C rewriting. To perform network rewriting we must deploy the encryp-
tion/decryption function, as well as the session keys, irtvark proxy. Such a proxy will only
be effective if the functions and keys match those in the,lsutso estimate the rate at which they
change we repeat our analysis with other MegaD samples.tdhwe have analyzed four MegaD
samples, who were first seen in the wild between February 200&ebruary 2010. Although there
are differences between the samples, such as some samipg3 G port 80 instead of 443 for its
C&C, the parser, using the decryption function and keysaetdd from the December 2008 sample,
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is able to successfully parse the C&C messages from all sraples. In addition, we extract the
key generation and encryption functions from the oldestarfi-ebruary 2008) and compare them
with the ones from the December 2008 sample. Although threreyatactic differences, i.e., short
sequences of instructions have been replaced with eqotvatees possibly by recompiling with
different options or by obfuscating the code, the versigadanctionally equivalent, producing the
same outputs on more than a billion randomly generated snfitus we conclude that the relevant
algorithms and keys, including the session key, have beenamged during the two year time span
of our samples.

To show how our binary code reuse approach enables livetnegvan the network, we build a
network proxy that is able to decrypt, parse, modify andnergpt MegaD C&C messages that it
sees on the network. To test the proxy we reproduce the expetiin SectiorB.7.1, but perform
rewriting on the network rather than on the host. The expeminproceeds as follows.

We run a live MegaD bot inside a network that filters all outgpSMTP connections for con-
tainment purposes, but allows the C&C protocol through. tiat ssuppose that no proxy is in use.
The bot probes the C&C server for a command and the C&C seeralssin response a message
that orders the bot to test its ability to send spam by coimgetd a test mail server. Because the
firewall at the border of the network blocks SMTP, the conioecto the test mail server fails and
the bot sends a reply to the C&C server indicating that it casand spam, and afterward no more
spam-related messages are received.

Next, we repeat the experiment adding a network proxy thegt @ a man-in-the-middle on
traffic between the C&C server and the bot. For each messageyséhe bot, the proxy decrypts it
and checks if itis a message that it needs to rewrite. Whebdhgends the message indicating that
it has no SMTP capability, the proxy, instead of relayingithe C&C server, creates a different
message indicating that the SMTP test was successful, gadtyand sends it to the C&C server
instead. Note that the fail and success messages werdigdas part of our reverse engineering of
MegaD's C&C protocol grammar, presented in Chaftday observing the differences in the output
message that is sent right after the SMTP connection suedemdailed. Also, it would not suffice
for the proxy to replay a previously captured success messmgause the message also includes a
nonce value selected by the C&C server at the beginning d&f diatog. With the proxy in place,
the bot keeps receiving spam-related C&C messages, evds ifriable to actually send spam. The
spam-related C&C messages include a command to downloaahatsmplate, which contains all
the information about the spam operations such as the fafithé messages, the spam URLs, and
the list of addresses to spam.
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4.5.2 Rewriting Kraken's C&C Protocol

Kraken is a spam botnet that was discovered on April 2008 asdhaen thoroughly analyzeti7g,
122,194. Previous analysis uncovered that Kraken (versions 3#15346) uses a proprietary cipher
to encrypt its C&C protocol and that the encryption keys ar@omly generated by each bot and
prepended to the encrypted message sent over the netit8klR2. Researchers have manually
reverse-engineered the decryption function used by Krakehhave provided code to replicate
it [122. In this thesis, we extract Kraken’s decryption functiaing our automatic approach and
verify that our extracted function is functionally equieat to the one manually extracted in previous
work. Specifically, when testing the manually and autonadificextracted function on millions of
random inputs, we find their outputs are always the same.djitiad, we extract the corresponding
encryption function and a checksum function, used by thedweerify the integrity of the network
messages.

Similarly to the MegaD experiment described in Sectos.], we build a network proxy that
uses the extracted encryption, decryption, and checksoatifus, as well as the protocol grammar,
and use it to rewrite a C&C message to falsify the result of B capability check. Unfortunately
(for the purpose of this experiment), none of our Kraken damponnects to a live C&C server on
the Internet. Thus, to verify that the message rewritingks@ve use a previously published Kraken
parser 122. The rewritten message parses correctly and has the SThgRdtaectly modified.

4.5.3 Reusing Binary Code that is not an Assembly Function

Next, we show that our approach enables reusing a binaryfcagiment that does not correspond
to a complete assembly function, but has a clean interfadearforms an independent task. We
extract unpacking code from two versions of a trojan horsgymamZbot used primarily to steal
banking and financial informatior2Q2. Zbot uses two nested layers of packing. The samples,
provided to us by an external researcher, represent a typglain the course of malware analysis:
they have already had one layer of packing removed, and we lbeen provided the entry points
for a second, more complex, unpacking routine.

The function prototype extracted by BCR is identical fortbfatnctions. It contains two pointer
parameters: the ESI register points to an input-outputebufbntaining packed data as input and a
count of the number of bytes unpacked as output, while therE@ister points to an output buffer
for unpacked data. Since ESl and EDI are not used for parampassing in any of the standard x86
calling conventions, this suggests these functions weginatly written in assembly code.

Although the prototypes are the same, the unpacking fumetime not functionally equivalent;
they both consist of two distinct loops, and we find that eting these loops separately captures
more natural functional units. Examining the extracteccfiom bodies, we find that both consist of
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General Code Extraction Parameter Identification
Function Runs | Runtime | #Insn. | # Missed | # Indirect | # Param. | FP FN
(sec) blocks | call/jump
MegaD keygen 4 3 320 0 0 3 0 0
MegaD encrypt 6 257 732 0 0 4 0 0
Kraken encrypt 2 16 66 0 0 7 1 0
Kraken decrypt 1 2 66 0 0 6 0 0
Kraken checksum 1 179 39 0 0 4 1 0
Zbotv1151 2 15 98 0 0 2 0 0
Zbot v1652 2 17 93 0 0 2 0 0
MD5_Init 6 2 10 0 0 1 0 0
MD5_Update 6 38 110 0 1 3 0 0
MD5_Final 7 31 67 0 3 2 0 0
SHAL Init 1 8 11 0 0 1 0 0
SHA1 Update 1 36 110 0 1 3 0 0
SHA1 Final 2 36 76 0 3 2 0 0

Table 4.2: Evaluation results. At the top are the functioxtsageted during the end-to-end applica-
tions and at the bottom some additional functions extrafttad the OpenSSL library.

two loops that are separated ppysha andpopa instructions that save and restore processor state.
Each loop makes its own pass over the packed data, with thpdss applying a simpler deciphering
by subtracting a hard-coded key, and the second pass parparmore complex instruction-by-
instruction unpacking. After extracting the two loops irgeparate functions, we verify that the
differences between the versions are only in the first lobg:extracted version of the second loop
can be reused across the sample versions. This highlighttath that as long as a binary code
fragment has a clean interface and performs a well-seghtas, it can be reused even if it does
not correspond to a complete function in the original maeltiode.

4.5.4 Quantitative Summary of Function Extraction

Table4.2 summarizes the extraction results for all functions in Bect.5.1through Sectio®.5.3
and the MD5 and SHA1 hash functions that we extract from then3®L library for evaluation
purposes. Note that, in OpenSSL obtaining the hash of a vafyeres calling three separate func-
tions: Init, Update, and Final. THeeneralsection of the table shows the number of function runs in
the execution traces used as input to the function extrastigp, and the total time needed to extract
the function. The&Code Extractiorsection has the number of instructions in each extractectitum

the number of missed blocks and the number of indirect cdljamp instructions. We approximate
the number of missed blocks by counting the number of camditi jumps for which we have not
seen the code that follows each of its branches. Note thah wWieefunction has indirect calls or
jumps this method is not enough. However, in this case omypenSSL functions, for which we
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have the source code, present indirect calls or jumps. PEn@meter Identificatiorsection shows
the number of parameters in the C function prototype anduinger of false positives (e.g., unnec-
essary parameters in the prototype) and false negativgs if@ssing parameters in the prototype).
For the OpenSSL functions, the false positives and negative measured by comparison with the
original C source code. For the malware samples, no soueitable, so we compare with our
manual analysis and (for Kraken) with other reported result

The results show that a small number of executions is encugittact the complete function
without missing blocks or parameters. For samples withaditéct jumps or calls, static disassem-
bly recovers all basic blocks. For the samples with indioegtthe dynamic information resolves
the indirection and enables the static disassembler to finkdeainstructions in the function body.
The Kraken checksum and MegaD encrypt samples are significdower to extract than the other
samples. This is because they have larger number of ineosatif the dataflow-based pointer anal-
ysis technique, which dominates the running time. The patarmidentification results show that
no parameters are missed. Some runs do not identify all paess) e.g., when the function first
checks if a pointer has NULL value and if NULL it exist withofutrther processing of the other
parameters. However, combining multiple executions (Beet.3.2 gives complete results. For
the functions from OpenSSL, the parameters include fieldsiontext structure that is passed to the
functions via a pointer. There are two false positives inkheken functions (i.e., extra parameters
are identified), both of which are output parameters redatereturned in the ECX register. These
are caused by a compiler optimization (performed by the d&icft compiler, for instance) that re-
places the instructiosub $4,%esp to reserve a location on the stack with the more compact
instructionpush %ecx, which has the same effect on the stack pointer and also sapi@lue
from ECX that will later be overwritten. When this idiom oesun the code following an extracted
function that uses ECX internally, the interface identtfima module incorrectly identifies ECX as
a function output. Such common idioms could be speciallydlehduring interface identification
or identified through bottom-to-top live analysis since B@&X value is dead. More generally, false
positive parameters are not a serious problem for usabdiira outputs can simply be ignored, and
extra inputs do not change the extracted function’s executi

455 Software-based Fault Isolation

If the extracted functions are to be used in a security-teesapplication, there is a danger that
a malicious extracted function could try to hijack or inted with the operation of the application
that calls it. To prevent this, we use software-based faualation (SFI) 217 as a lightweight
mechanism to prevent the extracted code from writing to dimgalocations in the rest of the
application. SFI creates separate “sandbox” data and @mgens for the extracted function, so
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that it can only write to its data region and it can only jumghivi its code region. SFI works by
adding checks just before each store or jump instructiortheLextracted code still runs in the same
address space, so calls from the application are still grmpt efficient.

Specifically, we post-process our extracted malware fanstusing PittSFleld, an implemen-
tation of SFI for x86 assembly codé34. PittSFleld adds new instructions for checks, and to
enforce additional alignment constraints to avoid oveaiag instructions. Thus, BCR’s translation
of jumps to use labels is necessary for it to work. PittSFleés previously implemented for use
with the assembly code generated by GCC, so in order to wdtk asisembly code that could be
generated by other compilers or hand-written, we generalito save and restore the temporary
register used in sandboxed operations, and to not assuineBRais always a pointer to the stack.
We also make corresponding changes to PittSFleld’s sepegafication tool, so a user can check
the safety of an extracted function without trusting thesparwho extracted it.

4.6 Related Work

This section compares our approach with the manual protesss$ to replace, other automatic
approaches, techniques for related problems in other dnand some other tasks that require
similar algorithms.

Manual code extraction. Code extraction is a common manual activity in malware aisl0,
122 194]. While this process can give the analyst a deep understgradithe malicious functional-
ity, it is also very time-consuming. Simple tool support caake some of the repetitive tasks more
convenient, but existing approaches still require spizeidiskills. Our approach allows this task to
be automated, when all that is needed is to be able to exdmufarictionality in another context.

Other binary code reuse approaches Kolbitsch et al. have since proposed a different approach
for binary code reuse and implemented it in a tool called éotpr Gadget]09. Their approach
is based in identifying a sink in an execution where inténgsbehavior happens (e.g., a call to a
function that writes to disk) and then apply dynamic progsiicing to identify the instructions and
data dependencies related to that behavior in the execulioa slice is the basis of a gadget: the
binary code to be reused. There are significant differenetgeen BCR and Inspector Gadget.
First, BCR requires as input the entry point of the code tseauhile Inspector Gadget requires
as input a point in the execution where the desired behavamifests, e.g., a call to a function like
gethostbyname orWriteFile . Second, Inspector Gadget has been designed to extraetbeha
iors that may include multiple steps (e.g., download a fiegrdpt it, execute it), while BCR has
been designed to extract individual functionalities (etlye decryption function). While Inspector
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Gadget can extract full behaviors at once, full behaviarstlthe possibilities in which an analyst
can reuse the code: an analyst can only interface with thgagdny changing the values returned
by external functions that the gadget invokes. In contl@€IR performs interface identification
and is able to generate a valid C function that comprises smye specific functionality (e.g., an
algorithm) that any other C program can invoke. For examnipis,not clear how to use Inspector
Gadget to enable a NIDS to decrypt C&C messages that are setbie metwork, as presented in
Section4.5, or how to build a signature that identifies botnet traffic gtfdecrypting the traffic
and then checking for some pattern in the decrypted codeserhee not behaviors that the bot
implements but an analyst may still want to reuse the deicnygtinction and implement its own
functionality on top. While the decryption function may begent in a gadget extracted from the
bot, it may not be easy to interface with it.

Third, gadgets only contain instructions that appear dutire single execution trace used as
input to Inspector Gadget. This is an important limitati@céuse branches that were not taken
during execution may need to be executed during code rewsewhen the input changes the
program may take a different path. In such a situation, aef@adguld crash. To address this issue
Inspector Gadget modifies the slice to include additionstrirctions that force the branch to take
the path that was observed during the execution. This soligi problematic since the gadget no
longer behaves as the original program and the results malgenmeaningful. In contrast, BCR
addresses this issue using hybrid disassembly, which c@slsitatic and dynamic disassembly to
increase the number of relevant instructions extractedhridyisassembly includes all instructions
from the code fragment that appear in the (possibly multipleut execution traces, and in addition,
it is often able to disassemble many more instructions tlesewot executed (i.e., do not appear in
the execution traces).

Finally, it is difficult to obtain a slice that matches exgadthe desired functionality. Dynamic
slicing tends to be conservative and that results in slicasdre larger than needed. One example
is when slicing a variable (e.g., the content of the EAX rexg)s that was popped from the stack.
The stack pointer (i.e., the ESP register) is a dependentheqdop instruction. If the stack pointer
is included in the slice, then all previous instructionst tinge the stack, regardless if related to the
behavior under analysis, will also need to be included irstive. This is the conservative approach
and the resulting slice includes much unrelated functigndDn the other hand, if the stack pointer
is not included in the slice, then the slice is not complet# @munning the slice would produce a
crash if the stack layout is not correct. These slicing tketae not mentioned irlp9. However,
in previous work 0§ the authors decide not to include the stack pointer in tleesland propose
heuristics tdix the stackwhich are not guaranteed to work and require knowledgetatmouapiler-
specific mechanisms for handling procedures and stack frame
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Input-output relationship extraction. A variant on the extraction problem is extracting the re-
lationship between some given inputs and outputs of a camtipnt To extract such relationships,
previous work has used symbolic executi@®,[L0g or dynamic binary slicing108 114. When
the functionality to be extracted is sufficiently simplegdin be represented by a single input-output
symbolic formula. For instance, such input-output formsutan be used for protocol dialog re-
play [28], or as a malware signatur&(Qg. However, a single formula is not a practical representa-
tion for more complex functionality that includes loops ¢iner variant control-flow paths, or uses
complex data structures.

Another alternative representation is a dynamic binapgeglat captures the instructions needed
to produce the output from the inputs in a given executiomddyic binary slices are usually gener-
ated by applying modified versions of dynamic program sfj¢echniquesd] on execution traces.
For instance, Lanzi et al1ll4 produce dynamic binary slices using a combination of baukls
and forward slicing, and use them to analyze kernel malwafteen it cannot extract an exact input-
output symbolic formula, the malware modeling tool of Kidioh et al. 10§ combines dynamic
binary slicing with tainted scopes to capture control delemicies. There are two main differences
between extracting input-output symbolic formulas or dgiwabinary slices and binary code reuse.
First, our problem is more difficult because the inputs anghus must be inferred. Second, by
using a combination of dynamic and static analysis to ekfitae body of the code fragment we
achieve better coverage than purely dynamic techniques.

Other applications of interface extraction. Jiang and Su97] investigate the problem of auto-
matic interface extraction in C source code, to allow autechaandom testing for fragments with
equivalent behavior. Their task of determining which Jalés constitute inputs and outputs of a
fragment is related to the one we tackle in SectdoB) but made easier by the availability of type
information. Extracting the code itself is also easier bseain their scenario code fragments are
restricted to contiguous statements.

Lin et al. [12§ extract an interface to functionality in a benign programoider to add malicious
functionality: for instance, to turn an email client into pasn-sending trojan horse. Because the
functionality runs in its original context, their interia@eed not cover all inputs and outputs of the
code, only those relevant to a particular use. Using teclasiggimilar to our output inference, they
perform a side-effect analysis to determine whether a fonstmemory effects can be reverted.

Liveness analysis. The analysis that our tool performs to identify input andpotitvariables are

the dynamic analogues of static data-flow analysis perfdinyecompilers, such as live variable and
reaching definitions analysid$1]. Some of the same challenges we face have also been adtiresse
in purely static tools that, like our tool, must operate amapy code. For instance, link-time opti-
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mizers B1, 189 must also exclude saves of callee-saved registers fromethdts of naive liveness
analysis.

Binary rewriting. Many of the techniques required for binary code reuse ard usédinary
rewriting and instrumentation applications. For instarmeely static disassembly provides insuffi-
cient coverage for even benign applications on Windowspt86orms, so state-of-the art rewriting
tools require a hybrid of static and dynamic disassemb§f[ much as we do. Cifuentes and Van
Emmerik B9 introduced the technique we adopt for locating the jumpetatatements used to
implement switch statements.

4.7 Conclusion

This chapter performs the first systematic study of autamatiary code reuse, which we define
as the process of automatically identifying the interfand axtracting the instructions and data
dependencies of a code fragment from an executable prog@that it is self-contained and can
be reused by external code.

We have proposed a novel interface identification techniiqestract the prototype of an undoc-
umented code fragment directly from the program’s binainyheout access to its source code. We
have designed a code extraction approach to automatiodtyot a code fragment from a program
binary so that it is self-contained. The extracted codenfiaxgt can be run independently of the rest
of the program’s functionality in an external C program, aad be easily tested, instrumented, or
shared with other users.

We have implemented BCR, a tool that uses our approach tonatitlly extract an assembly
function from a program binary. We have used BCR to reuseriiagraphic routines used by two
spam botnets in a network proxy that can rewrite the malwa&C encrypted traffic. In addition,
we have extracted an unpacking function from a trojan horegrpm, and have shown that a code
fragment belonging to that function can be reused by the clapa function for a different sample
from the same family. Finally, we have applied softwareebult isolation techniqued 34 to
the extracted functions to ensure they can be used safetytkoagh they come from an untrusted
source.
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Chapter 5

Deviation Detection

5.1 Introduction

Many different implementations usually exist for the sampec#fication. Due to the abundance of
coding errors and specification ambiguities, these impleati®ns usually contaideviations i.e.,
differences in how they check and process some of their sapli¢ a result, the same inputs can
cause different implementations to behave differently.dxample, an implementation may not per-
form sufficient input checking to verify if an input is welbifmed as indicated in the specification.
Thus, for some inputs, it might exhibit a deviation from dretimplementation, which follows the
specification and performs the correct input checking.

Automatically finding deviations between implementatiofishe same specification, what we
call deviation detectionis important for several applications. For example, demiadetection is
important for testing implementations of network protacdlhe Internet Standards process requires
that two independent implementations of a protocol frorfedifnt code bases have been developed
and tested for interoperability before advancing a prdtte@®raft Standard8]. Deviation detec-
tion could be used to enhance interoperability testingesaxperience shows that even after current
manual testing, differences still exist on how differertitpcol implementations handle some of the
protocol inputs. In this thesis we show how to automaticéitig deviations between two imple-
mentations of the same protocol specification and how toyafhy@ discovered deviations to two
particular applicationserror detectionandfingerprint generation

First, deviations are important for error detection beeaudeviation often indicates that at least
one of the two implementations has an error or that the spatitn is underspecified. Finding such
errors is important to guarantee that the specification ieectly implemented, to ensure proper
interoperability with other implementations, to make agrtthat the specification is unambiguous,
and to enhance system security since errors often represkm@rabilities that can be exploited.

113
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Enabling error detection by automatically finding deviaidoetween two different implementations
is particularly attractive because it does not require auabywritten model of the specification.
These models are usually complex, tedious, and error-pimigenerate. Note that deviations do
not necessarily flag an error in one of the two implementatmmnthe specification. For example, it
could happen that the specification allows for optional fiamality that is provided by only one of
the implementations. However, deviation detection is adgmay to automatically find candidate
implementation errors and to detect ambiguities in theifipation.

Second, such deviations naturally give risditgerprints which are inputs that, when given to
two different implementations, will result in different fput states. Fingerprints can be used to dis-
tinguish between the different implementations and wetballdiscovery of such inputsgerprint
generation Fingerprinting has been in use for more than a decd@g4dnd is an important tool
in network security for remotely identifying which implemtation of an application or operating
system a remote host is running. Fingerprinting to@B2[181, 6] need fingerprints to operate and
constantly require new fingerprints as new implementationsew versions of existing implemen-
tations, become available. Thus, the process of autoriigtitading these fingerprints, i.e., the
fingerprint generation, is crucial for these tools.

Deviation detection is a challenging task— deviations ligueappen in corner cases, and dis-
covering deviations is often like finding needles in a haglstaPrevious work in related areas is
largely insufficient. For example, the most commonly usethnéue is a variant of fuzz testing
where random or semi-random inputs are generated and séfetent implementations to observe
if they trigger a difference in output29, 63, 145. The obvious drawback of this approach is that it
may take many such random inputs before finding a deviation.

In this thesis we propose a novel approach to automaticalbpder deviations in input checking
and processing between different implementations of theegarotocol specification. We are given
two programs in binary forn#; andP,, which implement the same protocol specification and wish
to find inputs such that the same input, when sent to the twdemmgntations, will cause each
implementation to result in a different output state. At ghhievel, we build two models)/; and
M, which capture how each implementation processes a simglg.iThen, we check whether the
predicate(M; A ~Ms) V (=M A My) is satisfiable, using a solver such as a decision procedure.
If the predicate is satisfiable, it means that we can find aantjnwhich will satisfy AM; but not
M, or vice versa, what we call a deviation because such inpdslése two program executions
to different output states. Note that such inputs are onlyatiens for certain if the models have
perfect accuracy and coverage. Otherwise, the returnedsigpe only good candidates to trigger a
deviation. Since our models may not include all possibleetien paths, we verify such candidate
inputs by sending them to the two programs and monitoring theput states. If the two programs
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end up in two different output states, then we have sucdgssébund a deviation between the two
implementations, and the corresponding input that trigjtjee deviation.

We have designed and implemented model extraction techsidpuat produce models covering
a single execution path in the program, and found that suathetacare surprisingly effective at
finding deviations between different implementations ef same functionality. We have evaluated
our approach using 3 HTTP server implementations and 2 NTWeisenplementations. Our ap-
proach successfully identifies deviations between therdifft server implementations for the same
protocol and automatically generates inputs that trigiféerdnt server behaviors. These deviations
include errors and differences in the interpretation ofttaocol specification. For example it auto-
matically finds an HTTP request that is accepted by the MitiWeb server with a “HTTP/1.1 200
OK” response, while it is rejected by the Apache Web servén wi“HTTP/1.1 400 Bad Request”
response. Such deviation is due to an error in the MiniWeleséhat fails to verify the value of the
first byte in the URL. The evaluation shows that our approadictcurate: in one case, the relevant
part of the input that triggers the deviation is only threts.bOur approach is also efficient: we find
deviations using a single request in about one minute.

The remainder of this chapter is organized as follows. 8eé&i2 introduces the problem and
presents an overview of our approach. Seciddescribes our model extraction technigue. Sec-
tion 5.4 presents how to generate candidate deviation inputs andtoalidate that they truly
trigger a deviation. Our evaluation results are presemegieiction5.5. We discuss enhancements
to our approach in Sectidn 6. Finally, we present the related work in Secti@ and conclude in
Section5.8.

5.2 Problem Definition & Approach Overview

In this section, we first introduce the intuition behind oundel extraction techniques. Then, we
formally define the deviation detection problem with reggedhe extracted models. Finally, we
provide an overview of our deviation detection approach.

5.2.1 Model Extraction

Our model extraction techniques use the intuition that gqanm can be seen as a mapping function
P : I — S from the input spacé to the output spacs. A program accepts an inpute I and
then processes the input resulting in a particolatput states € S, i.e., P(x) = s. Note that we
say an output state rather than an output because we arestetgin programs that process highly
structured inputs (e.qg., files or network traffic) and marffedint inputs may produce the same
output state. For example, consider a network protocolititiides a timestamp in every message
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such as th®ate header in an HTTP response. Every HTTP request received Bbas@fver may
produce a different HTTP response becauséie value in the response constantly changes, but
many of those HTTP responses will produce an equivalentubstgte, i.e., they will return “HTTP
200 OK” and serve back a file hosted in the Web server.

Our model extraction techniques consider output statésatieadisjoint and extract modelfor
each different output state. Our models are boolean priedithat capture all inputs to the program
x € I that cause the program to reach a particular output staté;,(z) = true <= P(z) = s.
Thus, the program can be seen as a conjunction of the modetadb output state. Such models
could be generated in different ways (e.g., statically oragyically, from the program’s source code
or from its binary). In this thesis, we describe dynamic apghes for model extraction that take as
input the program in binary form.

Two important properties of models are correctness and eness. A model/}, is correct
if it returns true only for inputs that reach the output statdt is complete if returns true for all
inputs that can possibly reach the output stat®©ur models are correct by construction because
they only contain paths that have been executed and havsegktte output state. To be complete a
model needs to cover all paths that can possibly reach tipeiostiate. Thus, a critical challenge for
model extraction techniques is to build high-coverage rsotthat capture many execution paths in
the code. In this thesis we have evolved our model extratdohniques to progressively increase
their coverage. In this chapter we show that even modelscithadr a single execution path are
useful to find deviations. Then, in Chap&ewe present techniques for extracting multi-path models
that are the disjunction of multiple execution paths thathean output state. Finally, in Chapier
we show how to refine those multi-path models by merging compasts of the execution, so that
the resulting model has higher coverage and is smaller.

An output state is a pair that comprises a program point armbkeln predicate on the program
state that needs to be satisfied at that program point. Itiosilady comprise a set of such pairs.
Thus, the model can be seen as a conjunctionrefahability predicatewhich captures the inputs
that make the program execution reach the program pointerothput state definition, and the
boolean predicate that needs to hold on the program state tvhepoint is reached.

The semantics of an output state, i.e., what the program aoththe predicate in the output state
represent, are application-dependant. For example, whdim@j deviations between Web servers,
an output state for a Web server could be that an input HT Tastqcauses a successful delivery of
a webpage in an output HTTP response. Here, the output stale loe defined with a pair where
the program point is the call site that invokes #end function, and the boolean predicate states
whether the message to be sent has a 200 status code, whadtésdsuccess. If there are multiple
call sites for thesend function, a set of pairs could be used instead.
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5.2.2 Problem Definition

Deviation detection is the problem of automatically findprggram inputs that cause two imple-
mentations of the same specification to reach differentutidtates. We call those program inputs
deviationsand focus on finding deviations between two implementatidiise same protocol spec-
ification.

We are given two implementations of the same protocol spatidin in binary formP; and
P,. As explained in Sectioh.2.1each implementation at a high level can be viewed as a mapping
function Py, P, : I — S from the protocol input spacEto the protocol output space Our goal
is to find inputsz € I such thatP, (z) # P»(x). Finding such inputs through random testing is
usually hard. However, in general it is easy to find inputs I such thatP; (z) = Py(z) = s € S,
i.e., most inputs will result in the same output stattor different implementations of the same
specification.

For example, given two implementations of a Web server, Agache §] and MiniWeb [147],
implementing the same HTTP protocol specificati®]] it is easy to find inputs (e.g., HTTP
requests) for which both servers, if configured similarlgpduce the same output state (e.g., an
“HTTP 200 OK” response). However, it is not so easy to find diwens, inputs for which both
servers produce different output states such as one servepting the request with a “HTTP/1.1
200 OK" response, while the other one rejecting it with a “HPFT.1 400 Bad Request” response.
Our approach automatically finds such deviations.

Output states. The output states for deviation detection need to be extgmlaservable. We use
two methods to observe such states: (a) monitoring the mietiraffic output by the program, and
(b) supervising its environment, which allows us to detawxpected states such as program halt,
reboot, crash, or resource starvation. However, we cammpifyscompare the complete output from
both implementations, since the output may be differentelutivalent. For example, many proto-
cols contain sequence numbers, and we would expect thetdudputwo different implementations
to contain two different sequence numbers. However, theubuhessages may still be equivalent.
Thus, we may use some domain knowledge about the specifimcpitdieing analyzed to determine
when two output states are different. For example, manypals such as HTTP include a status
code in the response to provide feedback about the statire séfuest. We use this information
to determine if two output states are equivalent or not. hreptases, we observe the effect of a
particular query in the program, such as program crash aotelClearly these cases are different
from a response being emitted by the program.
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Figure 5.1: On the left, the control-flow graph of a programm t@e right, two different execution
paths in the program that end up in the same output statee 8w different paths can end up in
the same output state, the validation phase checks whétheetv execution path truly ends up in
a different state.

5.2.3 Approach

The intuition behind our deviation detection approach & thwe have a model for the output state
s for each of the two implementations of the same specificatidpy , M}, , then a deviation is just
an input that satisfies the following predicaté/p A —M3p, )V (-=Mp A M3, ). Such an input is

a deviation because it produces an output stdite one of the implementations and another output
statet # s for the other implementation.

Given the above intuition, the main challenge is creatingaeh)M 7, that captures all the
program inputs that reach the output state-urthermore, we observe that the above method can
still be used even if our model does not consider the entiogram and only considerssingle
execution path. In that case, the modé}, represents the subset of protocol inputs that follow
the same execution path and still reach the output statehus, M} (x) = true = P(z) = s,
since if an input satisfied/}, then by definition it will make progran® go to states, but the
converse is not necessarily true—an input which maRego to states may not satisfyM},. For
example, Figuré.la shows the control flow graph of a progratwith two paths that reach the
Success state. If the post-condition for theuccess state is always true and the model for the
Success state contains only the path inlb, then there exists an input, i.e., the one that produces
the execution irb.1c, which makesP go to theSuccess state but does not satisfy the model
for 5.1b.

In our problem, this means that the difference betwkgn and Mg, may not necessarily result
in a true deviation. Instead, the difference betw@éf and M}, is a good candidate, which we
can then test to validate whether it is a true deviation. VBewdis models with multiple execution
paths in Sectior.6.
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Figure 5.2: Overview of our deviation detection approach.

Our approach is an iterative process, and each iteratiosisterof three phases, as shown in
Figure5.2 First, in themodel extractiorphase, we are given two binari&s and P, implementing
the same protocol specification, such as HTTP, and an inmuch as an HTTP GET request. For
each implementation, we log an execution trace of the biaariy processes the input, and record
what output state it reaches, such as halting or sending a reply. For this, wethes execution
monitor introduced in Chapt&:. We start monitoring the execution before sending a medsae
program and stop the trace when we observe a response fropnaiyam. We use a no-response
timer to stop the trace if no answer is observed from the seatfter a configurable amount of time.
We assume that the execution from both binaries reachesadgpii output states; otherwise we
have already found a deviation! For each implementattpand P, we then use this information
to produce a model (a symbolic predicate) over the inpfit,and /5 respectively, each of which
is satisfied for inputs that cause each binary to follow theespath than the original input did in
each program and still reach the same output statethe original input did.

Next, in thedeviation detectiophase, we use a solver (such as a decision procedure) to find
differences between the two modél§’ and M. In particular, we ask the solver (/7 A —M3) v
(M5 N —M7) is satisfiable. When satisfiable the solver will return amepie satisfying input. We
call these inputs theandidate deviation inputs

Finally, in thevalidation phase we evaluate the candidate deviation inputs obtairtbe imodel
extraction phase on both implementations and check whéikédmplementations do in fact reach
different output states. This phase is necessary becagisgribolic predicate might not include all
possible execution paths, then an input that satisfigss guaranteed to make, reach the same
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equivalent output state as the original inpubut an input that does not satisly; may also make
P, reach a equivalent output state. Hence, the generatedded@dieviation inputs may actually
still cause both implementations to reach equivalent digfaies.

If the implementationslo reach different output states, then we have found a dewistiggered
by that input. This deviation is useful for two things: (1)nfy represent an implementation error
in at least one of the implementations, which can then bekelteagainst the protocol specification
to verify whether it is truly an error; (2) it can be used angerprintto distinguish between the
two implementations.

Iteration. We can iterate this entire process to exanmtiger input types. Continuing with the

HTTP example, we can compare how the two implementationsegeoother types of HTTP re-
guests, such as HEAD and POST, by repeating the process sa tjyges of requests. In Sec-
tion 5.6 we discuss how to use white-box exploration techniques tonaate this iteration, so that
many different inputs types can be tested and rarely uséts$ gan be covered.

5.3 Extracting Single-Path Models

In this section, we describe the model extraction phase.gblaéof the model extraction phase is
that given an input: such thatP;(x) = P»(x) = s, wheres is the output state when executing
inputz with the two given programs, we would like to compute two msgk/; and M3, such that,
M; = true = Pi(z) = sand M5 = true = P»(x) = s. Each model is a boolean predicate
that captures the set of inputs that would reach the outpte sby following the same execution
path that the program followed during the execution. Eactehis the conjunction of the symbolic
path predicate obtained by executing the program on symiaitger than concrete inputs, and the
boolean predicat®, that defines the output state.

5.3.1 Building the Symbolic Path Predicate

In our design, we build the symbolic predicate in two diststeps. We first execute the program on
the original input, while recording a trace of the (concyeteecution, using the execution monitor
introduced in Chapte2. We then use this execution trace as input to the dynamic sljordxecution
process that builds the symbolic predicate.

In this section we explain how to generate the symbolic petdipate from an execution trace.
In dynamic symbolic execution, the input to the program.(etge network message received by the
program) is converted into a sequence of symbols (one syp@dhput byte) and the program is
run on a combination of symbols and concrete values. Wheprtgram reaches a branch predicate
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that uses some of the input symbols, a symbolic branch dondg created. The conjunction of all
symbolic branch conditions forms the path predicate, aipagel on the symbolic program inputs
that captures all the inputs that would follow the same eftecupath in the program than the
original input. The symbolic path predicate can be gendrateng different methods like forward
symbolic execution or weakest pre-conditiai8[33, 20, 21].

In this thesis we compute the symbolic predicate using ttfaigue ofwveakest pre-conditiof23,
61]. To compute the weakest pre-condition we use the Vineqiauf[19], which was introduced
in Chapter2. The weakest pre-condition, denoteg( P, @), is a boolean predicatg over the in-
put spacel of programP such that iff(x) = true, then P(z) will terminate in a state satisfying
Q. In our setting, the post-condition is the predicétgthat defines the output state Thus, the
weakest pre-condition computed over the execution tratie té post-conditior); is exactly the
model that captures the set of inputs that would reach thgubstates by following the same exe-
cution path that the program followed during the executlaran nutshell, to generate the symbolic
predicate, we perform the following steps:

1. Record the execution trace of the program on the orignpalti which sets the program path.

2. Translate the execution trace into a prog@nwritten in the intermediate representation (IR)
offered by the Vine intermediate language. As an optimiathe taint information from the
execution trace can be used to include in the IR program oslyuctions that operate on data
derived from the input.

3. TranslateB into a single assignment (SSA) form.

4. Calculate the weakest pre-conditiop(B, @) using the algorithm proposed by Brumley et
al. [21]. The weakest pre-condition on a single-path programsstaith the post-condition
and further constrains it to follow the same program patkrnak the trace, by adding asser-
tions for the symbolic branches encountered during theutixat

5.3.2 Memory Reads and Writes using Symbolic Addresses

If an instruction accesses memory using an address thatii@ddrom the input, then in the path
predicate the address will be symbolic. A symbolic addresdcaccess different memory locations
and we must analyze the set of possible locations it may actesreate a sound path predicate, we
add an assertion to the path predicate to only consider ggastthat would calculate an address
within this set. The size of this set with respect to the seslbpossible locations that may be
accessed influences the generality of the path predicate.larger the set, the more general the
path predicate is at the cost of more analysis.
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Memory reads. When reading from memory using a symbolic address, the patfigate must
include initialization statements for the set of memoryakimns that could be read. In some cases,
we achieve good results considering only the address traavetaally used in the logged execution
trace and adding the corresponding constraints to the patfigate to preserve soundness. To
increase the generality of the path predicate we use twa t¢lslniques. We use range analysis
to estimate the range of symbolic memory addresses thall teubhccessed]. Range analysis is
conservative but costly. In addition, we add special hawgdior the common case of static tables,
which are present in the data section of the program and ack beit not written, by the program.
For this, we extract the constraints leading to the tablescand query the solver for possible offset
values in the table. If the solver returns an input, we addagéted) to the path predicate, e.g., if
it returns INPUT = 5, then we add to the path predicate thetcaing INPUT != 5. This forces
the solver to return a different answer the next time we giter\We repeat this process until the
solver fails to return an input. This method identifies tHéedént locations in the table that may be
accessed. Then, our system extracts the contents of theslts from a memory dump and adds
concrete initializers to the path predicate.

Memory writes. We need not transform writes to memory locations that userdelic address.
Instead we record the set of possibly accessed addresskeaddrhe corresponding constraint to
the path predicate to preserve soundness. These corssti@ioe the solver to reason about any
potential alias relationships. As part of the weakest mred@ion calculation, subsequent memory
reads that could use one of the addresses being considerédmsformed to a conditional state-
ment handling these potential aliasing relationships. Als memory reads, we often achieve good
results by only considering the address that was actuadlg usthe logged execution trace. This
reduces the coverage of the path predicate but maintaiasétgracy. Again, we could generalize
the predicate to consider more values, by selecting a laegasf addresses to consider.

5.4 Deviation Detection & Validation

In this section we present the deviation detection and &atid phases. The deviation detection
phase takes as input the models for each implementatiorugeddoy the model extraction phase,
presented in Sectioh.3, and outputs candidate inputs to trigger a deviation. Tteyalidation
phase verifies whether those candidate deviation inputsttigger a deviation.
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5.4.1 Deviation Detection

The deviation detection phase uses a solver to find candidjatés, which may cause deviations.
This phase takes as input the modéf§ and M5 generated for the progran?y and P in the
model extraction phase. We rewrite the variables in eactigate so that they refer to the same
input, but each to their own internal states. We then quergtiver whether the combined predicate
(MFA-M3)V(—M;AMS) is satisfiable, and if so, to provide an example that satigfeesombined
predicate. If the solver returns an example, then we havedfan input that satisfies one program’s
model, but not the other. If we had perfectly and fully modetach program, and perfectly specified
the post-condition to be that “the input results in an edeivaoutput state”, then this input would
be guaranteed to produce an equivalent output state in ogegon, but not the other.

However, since the models extracted in Sectahonly consider one execution path, then, as
illustrated in Figures.], it is possible that while an input does not satisfy the syloharedicate
generated for a server, it actually does result in an idahtic equivalent output state, thus not
triggering a deviation. This means that the input returnethb solver is only @andidate deviation
inputand we need an additional validation phase to check whétheetcandidate deviation inputs
trigger a deviation. Note that we can query the solver fortiplel candidate deviation inputs, each
time requiring the new candidate input to be different tHengrevious ones.

5.4.2 Validation

The validation phase checks each candidate deviation tomlatermine whether it actually drives
both implementations to different output states. To chebktiver a deviation has been found, each
candidate deviation input is sent to the implementatioringoexamined, and the outputs of the
execution are compared to determine whether they resuljuivalent or different output states.
Determining if two output states are equivalent may reqademe domain knowledge about the
protocol implemented by the programs. We use two methodsrtpare output states: monitoring
the network traffic output by the program, and supervisiggeitvironment to detect unexpected
states such as program crash.

For protocols that contain some type of status code in thgorese, such as HTTP in the Status-
Line [65], each different value of the status code represents aeliffeoutput state for the server.
For those protocols that do not contain a status code in §pnse, such as NTR46, we define a
genericvalid stateand consider the server to have reached that state, as ajuense of an input,
if it sends any well-formed response to the input, indepatigef the values of the fields in the
response.

In addition, we define three special output statetal statethat includes any behavior that is
likely to cause the server to stop processing future qustiel as a crash, reboot, halt or resource
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Server Version Type Binary Size
Apache f] 224 HTTP server 4,344 kB
MiniWeb [147] 0.8.1 HTTP server 528 kB
Savant |87 3.1 HTTP server 280 kB
NetTime [L57] | 2.0 beta 7| NTP server 3,702 kB
Ntpd [164] 4.1.72 NTP server 192 kB

Table 5.1: Different server implementations used in outuaton.

starvation, ano-response statéhat indicates that the server is not in the fatal state hilidsd not
respond before a configurable timer expired, anubdformed stat¢hat includes any response from
the server that is missing mandatory fields. This last stateeeded because servers might send
messages back to the client that do not follow the guideiiméise corresponding specification. For
example several HTTP servers, such as Apache or Savant, raggiond to an incorrect request with
a raw message written into the socket, such as the stringrtt@Bwithout including the expected
Status-Line such as “HTTP/1.1 400 Bad Request”".

5.5 Evaluation

We have evaluated our deviation detection approach on tffereit protocols: HTTP and NTP.
We selected these two protocols as representatives of tg@ families of protocols: text protocols
(HTTP) and binary protocols (NTP). In particular, we usethHTTP server implementations and
two NTP server implementations, as shown in Tahle All the implementations are Windows
binaries.

The original inputs, which we send to the servers during tloeehextraction phase were ob-
tained by capturing a network trace from one of our workstetiand selecting all the HTTP and
NTP requests that it contained. For each HTTP request indheank trace, we send it to each of
the HTTP servers, running inside the execution monitor,@rgut an execution trace that captures
how the server processed the request. The execution matstrecords the output state observed
at the end of the execution. If an input produces the sameubstate for all HTTP servers then we
use the execution traces for each server as input to the reattattion phase. Otherwise we have
already found a deviation! We proceed similarly for each N@fuest. In Sectioh.5.1, we show
the deviations we discovered in the Web servers, and in@esth.2 the deviations we discovered
in the NTP servers.
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Original request:

0000: 47 4554 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48545450 2F 31 2E 31 0D OA 48 6F 73 74 3A 20 HTTP/1.1..Host:
0020: 3130 2E 30 2E 30 2E 32 31 0D 0A OD OA 10.0.0.21....

Figure 5.3: One of the original HTTP requests we used to geéaexecution traces from all HTTP
servers, during the model extraction phase.

5.5.1 Deviations in Web Servers

This section shows the deviations we found among three Welersenplementations: Apache,
MiniWeb, and Savant. We show results for a specific HTTP qu&hich we find to be specially
important because it discovered deviations between diiteserver pairs. Figurg.3 shows this
query, which is an HTTP GET request for the filadex.html . The post-condition used to
identify the output state is based on the Status-Code in ThEHeply and some additional special
states as explained in Sectibrl.2 The output state for all three servers from the originautrip:
Status-Code == 200which means that the Web Server returned the requestedagebp

Deviations detected. For each server we first extract the model from the executewet which
represents how the server handled the original HTTP reamstn in Figures.3. We call these
models: M3%, M2, M0 for Apache, Savant and MiniWeb respectively. For simplicite
remove the output state and usgy, Mg, M), to identify the models. Then, for each of the three
possible server pairs: Apache-MiniWeb, Apache-Savant Sahnt-MiniWeb, we calculate the
combined predicate as explained in Sectiof.l. For example, for the Apache-MiniWeb pair, the
combined predicate i&M4 A ~ M) V (Myr A —=My). To obtain more detailed information, we
break the combined predicate into two separates queridgetsdiver, one representing each side
of the disjunction. For example, for the Apache-MiniWebrpaie query the solver twice: one for
(M4 N —Mjy) and another time fof My, A = My4).

Table 5.2 summarizes the deviations found for the three Web serveaeh Eell of the table
represents a different query to the solver, that is, halfiefdombined predicate for each server pair.
Thus, the table has six possible cells. For example, the twdlpredicate for the Apache-MiniWeb
pair, is shown as the disjunction of Cases 1 and 3. Out of thpassible cases, the solver returned
unsatisfiable for three of them (Cases 1, 5, and 6). For thairéng cases, where the solver was
able to generate at least one candidate deviation inputhewe svo numbers in the format X/Y. The
X value represents the number of different candidate dewiamputs we obtained from the solver,
and the Y value represents the number of these candidatatidevinputs that actually generated
different output states when sent to the servers in theatadid phase. Thus, the Y value represents
the number of inputs that triggered a deviation.
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My My - Mg
My N/A Case 1: unsatisfiable Case 2: 5/0
My, Case 3: 5/5 N/A Case 4: 5/5
Mg | Case 5: unsatisfiable Case 6: unsatisfiable  N/A

Table 5.2: Summary of deviations found for the HTTP servieiduding the number of candidate
input queries requested to the solver and the number of titaviafound. Each cell represents the
results from one query to the solver and each query to theesdlandles half of the combined
predicate for each server pair. For example Case 3 showsshés when querying the solver for
(M A—DMy) and the combined predicate for the Apache-MiniWeb pairésdisjunction of Cases
1and 3.

Candidate deviation input:

0000: 47455420 E8 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: B4 120212 9004 0204 0D OA 48 6F A64C 08 20 .......... Ho.L.
0020: 28D08291 12E0840C 350D 0A0OD 0A [ 5....

Miniweb response: Apache response:
HTTP/1.1 200 OK HTTP/1.1 400 Bad Request

Server: Miniweb Date: Sat, 03 Feb 2007 05:33:55 GMT
Cache-control: no—cache Server: Apache/2.2.4 (Win32)

... I...1

Figure 5.4. Example deviation found for Case 3, where MirbWeoredicate is satisfied while
Apache’s isn't. The figure includes the candidate deviatiggut being sent and the responses
obtained from the servers, which show two different outpaites.

In Case 2, none of the five candidate deviation inputs retliogehe solver were able to generate
different output states when sent to the servers, that iden@tions were found. For Cases 3 and
4, all candidate deviation inputs triggered a deviation nvbent to the servers during the validation
phase. In both cases, the MiniWeb server accepted sometivgdwas rejected by the other server.
We analyze these cases in more detail next.

Applications to error detection and fingerprint generation. Figure5.4shows one of the devia-
tions found for the Apache-MiniWeb pair. It presents oneheftandidate deviation inputs obtained
from the solver in Case 3, and the responses received fromAguache and MiniWeb when that
candidate input was sent to them during the validation phdse key difference is on the fifth
byte of the candidate deviation input, whose original AS@llue represented a slash, indicating
an absolute path. In the generated candidate deviation, ithmi byte has value OXE8. We have
confirmed that MiniWeb does indeed accept any value on this. b$o, this deviation reflects an
error by MiniWeb: it ignores the first character of the reqaddJRI and assumes it to be a slash,
which is a deviation from the URI specificatioh?.
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Candidate deviation input:

0000: 47 455420 08 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: 09090909 0909 09 09 OD OA 48 6F FF FF FF 20 .......... Ho...
0020: 09090909 09090909 090D OAOD DA  ............

Miniweb response: Savant response:
HTTP/1.1 200 OK File not found

Server: Miniweb

Cache-control: no—cache

[.1

Figure 5.5. Example deviation found for Case 4, where MirbWeoredicate is satisfied while
Savant’s isn’'t. The output states show that MiniWeb acctysnput but Savant rejects it with a
malformed response.

Candidate deviation input:

0000: 47 455420 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48545450 2F 08 2E 31 0D 0A 48 6F FF FF FF 20 HTTP/..1..Ho...
0020: 09090909 09090909 090D OAOD OA ...

Miniweb response: Savant response:
HTTP/1.1 200 OK HTTP/1.1 400 Only 0.9 and 1.X requests supported
Server: Miniweb Server: Savant/3.1

Cache—control: no—cache Content-Type: text/html
.1 .1

Figure 5.6: Another example deviation for Case 4, betweeani\Web and Savant. The main differ-
ent is on byte 21, which is part of the Version string. In thase MiniWeb accepts the request but
Savant rejects it.

Figure5.5 shows one of the deviations found for the Savant-MiniWel. daipresents one of
the candidate deviation inputs obtained from the solveraee4, including the responses received
from both Savant and MiniWeb when the candidate deviatigtinvas sent to them during the
validation phase. Again, the candidate deviation inputehdiferent value on the fifth byte, but in
this case the response from Savant is only a raw “File notddstring. Note that this string does
not include the HTTP Status-Line, the first line in the resgothat includes the response code, as
required by the HTTP specification and can be consideredommadfd B5]. Thus, this deviation
identifies an error though in this case both servers (i.ei\W@h and Savant) are deviating from the
HTTP specification.

Figure 5.6 shows another deviation found in Case 4 for the Savant-Mahi\pair. The HTTP
specification mandates that the first line of an HTTP request include a protocol version string.
There are 3 possible valid values for this version stringT Ti#/1.1", “HTTP/1.0", and “HTTP/0.9”,
corresponding to different versions of the HTTP protocolowsdver, we see that the candidate



CHAPTER 5. DEVIATION DETECTION

128

Original request:
0000: e3(00)04 fa 00 01 00 00 00 01 00 00 00 00 00 00

-1 11 0000 1 1]

0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

Candidate deviation input:
0000: O@OO 00 00 01 00 00 00 01 00 00 00 00 00 00

LI VN MD

~0o0jooolfo1 1]

0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

NetTime response:
0000: 04 0f 00 fa 00 00 00 00 00 00 00 00 00 00 00 00

LI VN MD

Ntpd response:
No response

0020: c9 6e 72 6¢ a0 c4 9a ec c9 6e 6b 7a ca e2 a8 00
0040: c9 6e 72 95 2560 41 5e c9 6e 72 95 25 60 41 5e

Figure 5.7: Example deviation obtained for the NTP servéirincludes the original request sent

in the model extraction phase, the candidate deviationtioptput by the solver, and the responses
received from the servers, when replaying the candidat@tigw input. Note that the output states

are different since NetTime does send a response, while ditdpd not.

deviation input produced by the solver uses instead a difteversion string, "HTTRb.1". Since
MiniWeb accepts this answer, it indicates that MiniWeb isproperly verifying the values received
on this field. On the other hand, Savant is sending an errdretaltent indicating an invalid HTTP
version, which indicates that it is properly checking th&eat received in the version field. This
deviation shows another error in MiniWeb’s implementation

To summarize, in this section we have shown that our appriaahle to discover deviations
between multiple real-world HTTP Web servers. We have mteskedetailed analysis of three of
them, and confirmed the deviations they trigger as errorst dDthe three deviations analyzed
in detail, two of them can be attributed to be Miniweb’s immkntation errors, while the other
one was an implementation error by both MiniwWeb and Savahé discovered inputs that trigger
deviations can potentially be used as fingerprints to diffdgate among these implementations.

5.5.2 Deviations in Time Servers

In this section we show the deviations found on the two NTRessranalyzed: NetTimelp7]
and Ntpd [L64. Again, for simplicity, we focus on a single request that s¥®w in Figure5.7.
This request represents a simple query for time synchrboizdrom a client. The request uses
the Simple Network Time Protocol (SNTP) Version 4 protoaghich is a subset of NTPLAG.
The output state for both servers on the original input shawhigure 5.7 is the valid state that
we presented in Sectidh4.2 which represents that the server sends a well-formed nespio the
input, independently of the values of the fields in the respon
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Deviations detected. First, we generate the models for both servevs: and My for NetTime
and Ntpd respectively from the execution traces capturétjubke original request shown in Fig-
ure5.7. Since we have one server pair, we need to query the solvee.twn Case 7, we query the
solver for(My A —Mr) and in Case 8 we query it fgiV/r A =M y). The solver returns unsatisfi-
able for Case 7. For Case 8, the solver returns 4 candidaigtidevinputs. One of these candidate
inputs triggers a deviation during the validation phase iarghown in Figures.7. It presents the
candidate deviation input returned by the solver, and thparse obtained from both NTP servers
when that candidate deviation input was sent to them duhiaegalidation phase.

Applications to error detection and fingerprint generation. The results in Figur&.7 show that
the candidate deviation input returned by the solver in Gdsas different values at bytes 0, 2 and
3. First, bytes 2 and 3 have been zeroed out in the candideigtide input. This is not relevant
since these bytes represent the “Poll” and “Precision” $ieldd are only significant in messages
sent by servers, not in the queries sent by the clients, arsdate ignored by the servers.

The important difference is on byte 0, which is presenteddtaiti on the right hand side of
Figure5.7. Byte 0 contains three fields: “Leap Indicator” (LI), “Veosi” (VN) and “Mode” (MD)
fields. The difference with the original request is in thesien field. The candidate deviation input
has a decimal value of O for this field (note that the field lbngt3 bits), instead of the original
decimal value of 4. When this candidate deviation input veagt £0 both servers, Ntpd ignored it,
choosing not to respond, while NetTime responded with aimenrsumber with value 0. Thus, this
candidate deviation input leads the two servers into diffeputput states.

We check the specification for this case to find out that a zah@evfor the Version field is re-
served, and according to the latest specification shouldmgel be supported by current and future
NTP/SNTP serversl4g. However, the previous specification states that the sestveuld copy
the version number received from the client in the requass, the response, without dictating any
special handling for the zero value. Since both implementatseem to be following different ver-
sions of the specification, we cannot definitely assign thisré¢o one of the specifications. Instead,
this example shows that we can identify inconsistenciesrariguity in protocol specifications. In
addition, we can use this query as a fingerprint to diffeetatbetween the two implementations.

5.5.3 Performance

In this section, we measure the execution time and the oaipeiat different steps in our approach.
The results from the model extraction phase and the demidgtection phase are shown in Tabla

and Table5.4, respectively. In Tabl®.3, the column “Trace-to-IR time” shows the time spent in
converting an execution trace into our IR program. The \@klew that the time spent to convert
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Program | Trace-to-IR time | % of Symbolic Inst. | IR-to-predicate time | Model Size
Apache 7.6s 3.9% 31.9s 49,786
MiniWeb 5.6s 1.0% 14.9s 25,628
Savant 6.3s 2.2% 15.2s 24,789
Ntpd 0.073s 0.1% 5.3s 1,695
NetTime 0.75s 0.1% 4.3s 5,059

Table 5.3: Execution time and predicate size obtained duhia model extraction phase.

Input Calculation Time
Apache - MiniWeb 21.3s
Apache - Savant 11.8s
Savant - MiniWeb 9.0s
NetTime - Ntpd 0.56s

Table 5.4: Execution time needed to calculate a candidatati® input for each server pair.

the execution trace is significantly larger for the Web sexy&vhen compared to the time spent on
the NTP servers. This is likely due to a larger complexityhaf HT TP protocol, specifically a larger
number of conditions affecting the input. This is shown ie$lecond column as the percentage of all
instructions that operate on symbolic data, i.e., on dataetbfrom the input. The “IR-to-predicate
time” column shows the time spent in generating a symboltb peedicate from the IR program.
Finally, the “Model Size” column shows the size of the getetanodels, measured by the number
of expressions that they contain. The model size shows dbaifarger complexity in the HTTP
implementations, when compared to the NTP implementations

In Table5.4, we show the time used by the solver in the deviation detegii@mse to produce a
candidate deviation input from the combined symbolic pratdi. The results show that our approach
is very efficient in discovering deviations. In many cases,can discover deviations between two
implementations in approximately one minute. Fuzz tesippgroaches are likely to take much
longer, since they usually need to test many more examples.

5.6 Discussion

In this section we discuss extensions to the work presenttiis chapter, as well as the relationship
with the work that we present in the subsequent chaptersdsothasis.

Covering rarely used paths. Some errors are hidden in rarely used program paths and dindin
them can take multiple iterations in our approach. For etariation, we need an input that drives
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both implementations to equivalent output states. In thégter, these protocol inputs were obtained
from a network trace. Thus, the more different inputs corgdiin the network trace, the more paths
we could potentially cover. In Chaptér we present white-box exploration techniques that enable
automatically generating inputs that explore differerga@iion paths in the program, starting from
a single input seed. We could use those input generatiomitpeds on both implementations to
automatically find inputs that drive both implementationgtte same output state. Those inputs
could then be used as input to the deviation detection psoces

Creating models that include multiple paths. In this chapter, we have presented techniques
to generate models that contain a single execution pathhoAdih such models have proved to
be effective at finding deviations between protocol impletatons, we expect higher coverage
models to find a larger number of deviations. In Chapteve present a model extraction technique
based on white-box exploration that can produce modelsritmyvenultiple execution paths. Then,
in Chapter7, we further refine our model extraction techniques to mergewion paths that share
common constraints. High-coverage models that merge patihen used for deviation detection,
can identify a larger number of deviations and reduce thebmurof candidate inputs that do not
pass the validation phase.

Addressing other protocol interactions. In this chapter we have evaluated our deviation detec-
tion approach over server implementations for protocas tise request/response interactions (e.g.
HTTP, NTP), where we examine the request being received byaisprogram. Our approach ap-
plies to other scenarios as well. For example, with clienbgams we could analyze the response
being received by the client. In protocol interactions Imirmy multiple steps, we could consider
the output state to be the state of the program after thetlgsisfinished.

5.7 Related Work

Symbolic execution & weakest pre-condition. Symbolic execution]J0€g has been used for a
wide variety of problems including generating vulnerapilsignatures 1], automatic test case
generation T8, 190, proving the viability of evasion technique413, and finding bugs in pro-
grams B3, 236. Weakest pre-condition was originally proposed for depélg correct programs
from the ground upg1]. It has been used for different applications including iiirgdbugs in pro-

grams B8] and for sound replay of application dialotydg.

Model checking. Chen et al. 36] manually identify rules representing ordered sequendes o
security-relevant operations, and use model checkingtgabs to detect violations of those rules
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in software. There is also a line of research using modelkshgdo find errors in protocol im-
plementations. Udrea et aR1]] use static source code analysis to check if a C implememntati
of a protocol matches a manually specified rule-based spatiifh of its behavior. Musuvathi
et.al. 154, 153 use a model checker that operates directly on C and C++ audi@se it to check
for errors in TCP/IP and AODV implementations. Chaki et 8b][build models from implemen-
tations and check them against a specification model. Cadparour approach, these approaches
need reference models to detect errors. Although thesaitpas are useful, our approach is quite
different. Instead of comparing an implementation to a nailpudefined model, we compare im-
plementations against each other. Another significangidiffce is that our approach works directly
on binaries, and does not require access to the source code.

Protocol error detection. There has been considerable work on testing network prbigie-
mentations, with heavy emphasis on tools for automatiaddiecting errors in network protocols
using fuzz testing92,94, 132, 176,200,228 10(. Fuzz testing 145 is a technique in which ran-
dom or semi-random inputs are generated and fed to the pnograler study, while monitoring
for unexpected program output, usually an unexpected fiatd such as program crash or reboot.
Compared to fuzz testing, our approach is more efficientifmavering deviations since it requires
testing far fewer inputs. It can detect deviations by conmgahow two implementations process
the same input, even if this input leads both implementatioequivalent states.

Protocol fingerprinting. There has also been previous research on protocol fingengrift3,
174 but available fingerprinting toolslp2, 181, 6] use manually extracted fingerprints. More re-
cently, automatic fingerprint generation techniques, \waylonly on network input and output,
have been propose@9]. Our approach is different in that we use binary analysiautomatically
generate the candidate inputs.

5.8 Conclusion

In this chapter we have presented a novel approach for dmvidétection, the process of automat-
ically finding deviations in the way that two different impientations of the same specification
process their input. Our approach can automatically finchpatithat when sent to both implemen-
tations it drives them to different output states. It cantbeaied to find multiple such inputs.

Our deviation detection approach enables and automatesrpartant applications: error de-
tection and fingerprint generation. It has several advastayer current solutions. First, it auto-
matically builds models from the programs that implemeantgpecification and finds deviations by
comparing those models, without requiring access to a nignuetten model of the specification.
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Second, it works directly on program binaries, without asd® the source code of the implemen-
tations. Finally, because our models capture the interradgssing of the implementations, our
approach can find the needle (deviation) in the haystacki(isypace) without having to check each
straw (input) individually. Thus, it can find deviations sificantly faster than technigues that focus
on random or semi-random probing.

We have built a prototype system to evaluate our technicares have used it to automatically
discover deviations in multiple implementations of twofeliént protocols: HTTP and NTP. Our
results show that our approach successfully finds devisidier a few minutes. Those deviations
include errors in at least one of the implementations aniréifices in the interpretation of the
specification. Those deviations produce different, extiyrrobservable, output states in each im-
plementation and can thus be used as fingerprints.



Chapter 6

Filtering-Failure Attack Generation

6.1 Introduction

There exists a broad class of security issues where a filtended to block malicious inputs des-
tined for an application, incorrectly models how the aptlion interprets those inputs. fitering-
failure attackis an evasion attack where the attacker takes advantages# tfferences between
the filter's and the application’s interpretation of the saimput to bypass the filter and still com-
promise the application.

One important class of filtering-failure attacks aomtent-sniffing XSS attackSontent-sniffing
XSS attacks are a class of cross-site scripting (XSS) atackvhich the attacker uploads some
malicious content to a benign web site (e.g., a picture wf@ddo Wikipedia, or a paper uploaded to
a conference management system). The malicious contertéssed by a user of the web site, and
is interpreted atext/htmlby the user’s browser. Thus, the attacker can run JavaSeniedded in
the malicious content, in the user’s browser in the contéttesite that accepted the content. Such
attacks are possible because the web site’s upload filtea Heferent view than the user’s browser
about which content should be considetegt/html This discrepancy often occurs due to a lack
of information or understanding by the web site’s develemrout thecontent-sniffing algorithm
that runs in the browser and decides what MIME type to asso¢@some given content. For
instance, some content that the web site’s upload filterasdeecause it interprets it as a PostScript
document might be interpreted as HTML by the browser of tlee dewnloading the content. There
are other examples of filtering-failure attacks. For examph Intrusion Detection System (IDS)
may deploy a vulnerability signature to protect some urpadcapplication in the internal network.
If the signature incorrectly models which inputs explo# trulnerability in the application, then an
attacker can potentially construct an input that is not imeddy the IDS’ signature but still exploits
the application.

134
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An important security problem is how to automatically findefilng-failure attacks and obtain
inputs that demonstrate the attacks. Armed with such anlkaitigut, one can demonstrate to the
filter's developer the necessity of improving the filter sattthaccurately resembles the application’s
behavior. In this chapter we propose an approach to autcatigtgenerate filtering-failure attacks.
Our approach compares a model of the filter with a model of pipéi@ation’s functionality that the
filter is designed to protect and automatically finds inphts the filter considers benign but can
still compromise the application.

To extract the models of the filter and the application, we uss model extraction techniques
like the ones we introduced in Chapter However, the single-path models that we used to find
deviations in that chapter have limited coverage. In thegptér we propose a technique to extract a
model of a fragment of binary code that captures multipleetien paths inside the code fragment.
These multi-path models have significantly higher coverthiga the single-path models that we
used in Chapteb. To extract multi-path models, we desigtiing-enhanced white-box exploration
String-enhanced white-box exploration is similar in gpioi previous white-box exploration tech-
niques used for automatic test case generat®d®7B, 79]. Unlike previous work, our technique
incrementally builds a model from the explored paths andaes directly about string operations,
which provides a significant performance boost for progrdmsheavily use string operations.

An important characteristic of many security applicatiosisch as an IDS signature matching
engine and a content-sniffing algorithm in a browser, is thay rely heavily on string operations.
Current white-box exploration techniquegg[33, 79] are not efficient at dealing with such appli-
cations because they contain a large number of loops (faitgrninbounded if they depend on
the input). The intuition behind our string-enhanced whitx exploration technique is that we
can enhance the exploration of programs that use stringeadsoning directly about string oper-
ations, rather than reasoning about the individual bytetleperations that comprise those string
operations. Reasoning directly about string operatiogsifstantly increases the coverage that the
exploration achieves per unit of time.

In this chapter we demonstrate our approach to construetifig-failure attacks by finding
inputs that trigger content-sniffing XSS attacks. We use giting-enhanced white-box explo-
ration technique to obtain a model for the closed-sourcéetsniffing algorithms of two different
browsers: Internet Explorer 7 and Safari®3.Then, we compare those models with the model of
a web site’s upload filter to automatically find contentng XSS attacks. We use two different
web site’s upload filters: the one used by MediaWikB%, an open-source wiki application used
by many sites including the Wikipedia encyclopedi24], and the one used by the HotCR¥7], a
popular conference management Web application.

Though much of Safari is open-source as part of the WebKjeptd222], the content-sniffing algorithm in Safari is
part of the closed-sourd@FNetworklibrary.
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The MediaWiki filter is based on the MIME detection functigm®vided in PHP, which other
sites may also use. Our approach finds 6 MIME types that ankattacan use to build content-
sniffing XSS attacks against sites that use MediaWiki wheruer accesses the site using Internet
Explorer 7, and a different set of 6 MIME types that the attaakan use against users that employ
Safari 3.1. For HotCRP, it finds that an attacker can use Eopt&nd PDF chameleon documents
to launch content-sniffing XSS attacks against users thpt@ninternet Explorer 7.

The remainder of this chapter is organized as follows. IniSed.2 we provide an overview
of content-sniffing XSS attacks. Then, in Sect&Bwe formally define the problem of generating
filtering-failure attacks and present an overview of ourrapph. Next, in Sectiol.4 we detail
our string-enhanced white-box exploration technique. Vidduate our approach in Sectiérb and
describe the related work in Sectiéré. Finally, we conclude in Sectiob.7.

6.2 Content-Sniffing XSS attacks

For compatibility, every Web browser employsantent-sniffing algorithnthat inspects the con-
tents of HTTP responses and occasionally overrides the MiygE provided by the server. For
example, these algorithms let browsers render the appetelynl % of HTTP responses that lack a
Content-Typdneader. In a competitive browser market, a browser thatsggethe “correct” MIME
type is more appealing to users than a browser that failserethese sites. Once one browser ven-
dor implements content sniffing, the other browser vendmesaced to follow suit or risk losing
market share.

If not carefully designed for security, a content-sniffigaithm can be leveraged by an at-
tacker to launcttontent-sniffing XSS attacka type of cross-site scripting (XSS) attacks. We il-
lustrate content-sniffing XSS attacks by describing archttaainst the HotCRP conference man-
agement system. Suppose a malicious author uploads a paget@RP in PostScript format. By
carefully crafting the paper, the author can creatbameleomocument that both is valid PostScript
and contains HTML (see Figurk4). HotCRP accepts the chameleon document as PostScript, but
when a reviewer attempts to read the paper using InterndoEexy, the browser’s content-sniffing
algorithm treats the chameleon as HTML, letting the attacka a malicious script in HotCRP's
security origin. The attacker’s script can perform actionsbehalf of the reviewer, such as giving
the paper a glowing review and a high score.

6.2.1 Background

In this section, we provide background information abow Iservers identify the type of content
included in an HTTP response. We do this in the context of a $ielihat allows its users to upload
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content that can later be downloaded by other users, suaregshotograph sharing or a conference
management site.

Content-Type. HTTP identifies the type of content in uploads or downloadsgithe Content-
Typeheader. This header contain®#VIE type such agext/plainor application/postscriptWhen
a user uploads a file using HTTP, the server typically stoogh the file itself and a MIME type.
Later, when another user requests the file, the Web servels 4be stored MIME type in the
Content-Typéheader. The browser uses this MIME type to determine how eésgmt the file to
the user or to select an appropriate plug-in.

Some Web servers (e.g., old versions of Apadiedend the wrong MIME type in th€ontent-
Typeheader. For example, a server might send a GIF image v@tngent-Typef text/htmlor text/-
plain. Some HTTP responses lackCantent-Typéneader entirely or contain an invalid MIME type,
such ag/* or unknown/unknownTo render these Web sites correctly, browserscosgent-sniffing
algorithms that guess the “correct” MIME type by inspectihg contents of HTTP responses.

Upload filters. When a user uploads a file to a Web site, the site has threensgtio assigning
a MIME type to the content: (1) the Web site can use the MIMEetygceived in th&€€ontent-Type
header; (2) the Web site can infer the MIME type from the filension; (3) the Web site can
examine the contents of the file. In practice, the MIME typtghimContent-Typédneader or inferred
from the extension is often incorrect. Moreover, if the uisemalicious, neither option (1) nor
option (2) is reliable. For these reasons, many sites chotsen (3).

6.2.2 Content-Sniffing XSS Attacks

When a Web site’s upload filter differs from a browser's cottniffing algorithm, an attacker
can often mount @ontent-sniffing XSS attackn a content-sniffing XSS attack, the attacker up-
loads a seemingly benign file to an honest Web site. Many Wek siccept user uploads. For
example, photograph sharing sites accept user-uploadegesrand conference management sites
accepts user-uploaded research papers. After the attapkeads a malicious file, the attacker
directs the user to view the file. Instead of treating the fiean image or a research paper, the
user’s browser treats the file as HTML because the browseriteat-sniffing algorithm overrides
the server's MIME type. The browser then renders the attack ML in the honest site’s security
origin, letting the attacker steal the user’s credentiaigiie site or transact with the site on behalf
of the user.

2Multipurpose Internet Mail Extensions (MIME) is an Intetiséandard 70,71, 150 originally developed to let email
include non-text attachments, text using non-ASCIl enegsli and multiple pieces of content in the same message.
MIME defines MIME types, which are used by a number of protsciicluding HTTP.
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A

J HTTP/1.1 200 OK 3
Content-Type: image/gif

Figure 6.1: An example content-sniffing XSS attack on Wiklipeand a user of Internet Explorer 7.
The numbered boxes show the sequence of events: 1) theeattgitkads a GIF/HTML chameleon

to Wikipedia, 2) the user request the file, 3) the Web servidvate the content, and 4) the browser
treats the chameleon as HTML and runs the attacker’'s JapaScr

To mount a content-sniffing XSS attack, the attacker mudt erdile that will be accepted
by the honest site and be treated as HTML by the user’'s browSefting such a file requires
exploiting a mismatch between the site’s upload filters aedrowser’s content-sniffing algorithm.
A chameleordocument is a file that both conforms to a benign file formatlisas PostScript)
and contains HTML. Most file formats admit chameleon docusmérecause they contain fields
for comments or metadata (such as EX85]). Site upload filters typically classify documents
into different MIME types and then check whether that MIMBpéaybelongs to the site’s list of
allowed MIME types. These sites typically accept chametimsuments because they are formatted
correctly. The browser, however, often treats a well-edfthameleon as HTML.

The existence of chameleon documents has been known fortsamE.82. Recently, security
researchers have suggested using PNG and PDF chamelegnatisuo launch XSS attacksls
80, 86], but these researchers have not determined which MIMEstygre vulnerable to attack,
which browsers are affected, or whether existing defenciesmby protect sites.

6.3 Problem Definition and Approach Overview

In this section, we first define the problem of finding filterifagure attacks, then we present our
running example, and finally we give an overview of our apphoa

6.3.1 Problem Definition

Given afilter and the application that the filter tries to moddiltering-failure attack is an input that
is considered safe by the filter and can potentially be hdrfafithe application. Thus, a filtering-
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failure attack is an evasion attack that bypasses the fifteistill can compromise the application.
A filter can be modeled as a boolean predicaté:{;’ (z)) on an inputz, which returns true if
the inputx is considered safe and false if the input is considered daoge In our approach the
application’s processing of the input is also modeled ascdelam predicate that captures all inputs
to the programx € I that cause the program to reach a particular output stateeXéct semantics
of the output state depend on the application. We explaintbanodel the application for a content-
sniffing XSS attack next.

The content-sniffing algorithm (CSA) in the user’'s browsan e modeled as a deterministic
multi-class classifier that takes as input the payload of @mPHresponse, the URL of the request,
and the response@Gontent-Typéeader, and produces as output a MIME type for use by the lerows
This multi-class classifier can be split into binary class#j one per MIME type returned by the
content-sniffing algorithm, where each binary classifieat imodel that returns true if the payload
of the HTTP response is considered to belong to that MIME et false otherwise (for instance
sl ) or MREmL(2) for brevity).

For a content-sniffing XSS attack, we seek inputs that arepied by the web site’s upload filter
and for which the content-sniffing algorithm of the browsetputs a MIME type that can contain
active content, such asxt/html3. Thus, we can model the browser’s content-sniffing algorids
a binary classifier that returns true if the HTTP payload issidered HTML,M 2™ (2. To find a
content-sniffing XSS attack that is accepted by the welbssitgfoad filter and interpreted as HTML
by the browser, we construct the following que :J‘ffl{;(x) A MMmL(2). If the solver returns an

input that satisfies such guery, then we have found a costeffing XSS attack.

6.3.2 Running example

Figure 6.2 shows an example content-sniffing algorithemiff) that takes as input the proposed
MIME type (ct) and the contentdata), and returns a suggested MIME type. It sniffs an HTML
document when the proposed MIME typetéxt/plainand JPEG and GIF images if the proposed
MIME type is application/octet-streamA possible content-sniffing XSS attack for this algorithm
would require a Content-Type ¢éxt/plainand the content to contain the strindhtml>, because
that is the only option to return a MIME type that can contaitivee code. An attacker could use
the following input to try to bypass an upload filter in a websgind run JavaScript in the browser:
CT: text/plain

DATA: GIF89a<htmi><script>alert("XSS");</script></ht mi>

30ther MIME types that can run active content aigplication/pdf application/x-msdownlogdand application/x-
shockwave-flashor simplicity, we focus on content-sniffing XSS attackbgne the attacker embeds JavaScriptin some
content that the content-sniffing algorithm interprets 3&M. To consider multiple MIME types we can simply create
a disjunction of the modelsi/"™ () v MSLes" (z) v MPY (z).
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const char * text_mime="text/plain",binary_mime="application/oct et-stream";
const char = html_mime="text/html",gif_mime="image/gif",jpeg_mim e="image/jpeg";
const char = sniff(char xct, char *data) {
/I Sniff HTML from text/plain
if (strcmp(ct,text_mime) == 0) {
if (strstr(data,"<htmI>") = 0) return html_mime;
else return text_mime;
}
/I Sniff GIF, JPEG from application/octet-stream
if (strcmp(ct,binary_mime) == 0) {
if ((strncasecmp(data,"GIF87a",6)==0) || (strncasecmp( data,"GIF89a",6)==0))
return gif_mime;
if ((data[0] == OxFF) && (data[l] == 0xDS8))
return jpeg_mime;
}
return NULL;
}

Figure 6.2: Our running example, a simple content-sniffilgg@thm that takes as input the pro-
posed MIME type and the raw data, and returns a suggested NNt

6.3.3 Approach

In this section we provide an overview of our filtering-fa#uattack generation approach. We do so
in the context of context-sniffing XSS attacks. Contenffgig XSS attacks are particular to a web
site and the browser that the user employs to access thattee®sr approach to generate content-
sniffing XSS attacks is to first build a model of the web sitgdtoad filter and the content-sniffing
algorithm (CSA) in the user’s browser. The model for the witd'ssupload filterA\/ ;?l{;(x) is a
boolean predicate that returns true if the inpiis considered safe and accepted by the web site and
false if the input is considered dangerous and rejected nidgael of the content-sniffing algorithm

in the browser is a boolean predicat€!’ that captures all contents in an HTTP response that are
classified as HTML. Armed with both models, we find conteriffisry XSS attacks by querying a
solver for an input that satisfies ;?l{;(x) A ML), If the solver returns such an input we have
found a content-sniffing XSS attack, that is, an input thacisepted by the web site but interpreted
as HTML by the user’s browser.

The main challenge is creating high coverage models for ltiee éind the content-sniffing algo-
rithm. To extract those models we emplstying-enhanced white-box exploratiogtring-enhanced
white-box exploration is similar in spirit to previous wiibox exploration techniques used for au-
tomatic test case generatiodd[ 78, 79). Unlike previous work, our technigue incrementally bsild
a model from the explored paths and reasons directly abog stperations. By reasoning directly
about string operations, we increase the coverage achigvéte exploration per unit of time and

improve the fidelity of our models.
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Figure 6.3: White-box exploration.

In this chapter, we use string-enhanced white-box exptordb extract models for the closed-
source content-sniffing algorithms of two browsers: Ing¢rBxplorer 7 and Safari 3.1. For the
upload filters used by MediaWiki and HotCRP, we manuallyaetttheir models from their publicly
available source code. Next, we briefly describe the stanghite-box exploration and introduce
string-enhanced white-box exploration.

White-box exploration. White-box exploration is an iterative process that incretaldy explores
new execution paths in the program by generating new inpatsttaverse those paths. Figw&
illustrates the process. In each iteration, also calleduad or atest an input is sent to the pro-
gram under analysis, running inside an execution moniteamrthis execution a path predicate
is produced that captures all the inputs that would folloer $ame execution path in the program
than this input. Given the path predicate, thput generatorproduces a new input by negating
one constraint in the path predicate and asking a solverdduge an input that satisfies the new
predicate with the negated constraint. This process capg@ated for each constraint in the path
predicate, generating from a single execution many newtsn@ince many inputs can be generated
from each path predicate, and many path predicates will bergéed during the exploration, the
prioritization modulées in charge of assigning priorities to the newly generatguiis and selecting
the input with the highest priority to start a new round of itezative process. In our white-box
exploration approach the path predicate is extracted efffiom an execution trace, as presented in
Section5.3. Another possibility is to extract it during execution ugiforward symbolic execution

in addition to the concrete rur’$,32]. This iterative process starts with an initegedinput, and
runs until there are no more paths to explore, or a userfig@denaximum run-time is reached.

String-enhanced white-box exploration. String-enhanced white-box exploration improves white-
box exploration in two ways: 1) it includes string consttaiin the path predicate, so that it can
reason about string operations, and 2) it produces a modideasxploration progresses that is
the disjunction of all the path predicates that reach th&etk®utput state. Figuré.4 illustrates
string-enhanced white-box exploration and highlights¢hanges with respect to standard white-
box exploration.
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Figure 6.4: String-Enhanced White-box exploration. Thaygnodules have been modified from
the standard white-box exploration.

In string-enhanced white-box exploration the path prdadicantains constraints on the output
of the string functions invoked by the program (esfrlen or strcmp, which replace the byte-
level constraints that those string functions would otheewntroduce. This string-enhanced path
predicate enables reasoning directly about the stringatipes, which in turn increases the coverage
that the exploration achieves per unit of time. The incréassmverage is due to eliminating the
time spent exploring inside the string functions.

String-enhanced white-box exploration excludes wellvnatring functions from the explo-
ration and replaces the constraints generated inside giosg functions with constraints on their
output. This approach resembles the use of uninterpretectifuns in compositional white-box
exploration B]. String functions are a sweet spot for composition in thathky appear in many
programs, 2) some types of programs use them heavily (egtemt-sniffing algorithms, parsers
or filters), 3) they contain loops, which may be unboundedaweha very large bound since they
depend on the function’s input, 4) their prototype is usuktiown, or can be obtained with limited
work, and 5) they are easy to reason about (as compared forpéxdo system calls where one
might have to reason about the underlying operating systeamem the hardware). Rather than cre-
ating function summaries for the string functions as theyexecuted as irvp, 3], string-enhanced
white-box exploration simply replaces them with string igpers in an abstract syntax and then
relies on a solver with support for a theory of strings to osasbout those constraints.

6.4 String-Enhanced White-Box Exploration

This section details how our string-enhanced white-boxaration technique works. Overall, our

string processing comprises four steps. First, we creatéray®nhanced path predicate where
constraints generated inside string functions have bgalaaed with constraints on the output of
those string functions (Sectidh4.1l). Then, the constraints on the output of the string funstion
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are translated into an abstract string syntax (Sed@idr). Next, the system solves the constraints
using a two-step approach that first represents each ssgiag array of some maximum length and
a length variable, and then translates the abstract stpatators into a representation that is under-
stood by an off-the-shelf solver that supports theory aliyrand integers (Sectidn4.3. Finally,

the answer from the solver is used to build an input thats&mew iteration of the exploration
(Section6.4.9).

Our string handling is designed to abstract the underlyegyesentation of the strings so that
it can be used with programs written in different languades. example, in this chapter we apply
it to the content-sniffing algorithm of Internet Explorerwhich uses C strings (where strings are
often represented as null-terminated character arragsyedl as to the content-sniffing algorithm
of Safari 3.1, which uses a C++ string library (where striags represented as objects containing
a character array and an explicit length). One importantasheristic of C/C++ strings is that one
can operate with them using string functions suclstden or strcmp but also directly access the
underlying array of characters. Thus, the string-enhapegil predicate may contain constraints on
the output of string functions and constraints on the iriiai bytes that comprise them.

6.4.1 Generating the String-Enhanced Path Predicate

In this section, we present how the string-enhanced pattliqaie is generated. In a nutshell,
adding string support to the path predicate comprises thieyes: 1) introducing string symbols,
which requires identifying the memory locations that hdid tnputs strings when the function to
model is invoked, 2) turning off symbolic execution insidhe tstring functions, and 3) introducing
string constraints by creating new symbols for the outputhefstring functions. For simplicity,
we introduce this processing in the context of a symboliccetien monitor that performs both
symbolic and concrete execution and outputs the stringsgrdd path predicate. In reality, our
implementation breaks this processing in two. First, thecakon monitor collects the execution
trace, as well as information about the string functions were invoked during the run. Then, the
path predicate extraction takes as input the executior @ad the string information and outputs
the string-enhanced path predicate.

Introducing string symbols. The symbolic execution monitor uses the function hook®dhiced
in Chapter2. To start the symbolic execution, the system sets a fun¢tawk for the function to
be explored (i.e., theniff function in our running example). When the function is adjithe code
stub performs the following operations: 1) reads the patarsef the function from the stack, 2)
determines the length of the user-defined input strings the ct anddata parameters of theniff
function in our running example), 3) adds to the symbolictertithe memory locations comprising
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each input string, and 4) sets a return hook. When the fumegturns, the return hook logs the
return values of the function (i.e., the suggested MIME )y stops the symbolic execution.

When creating a new string symbol, the representation oftiiveg is abstracted. In particular,
the function hook uses the function’s prototype to deteemirhether the input strings are null-
terminated arrays of characters or objects containing ray and an explicit length variable. If the
string is null-terminated the location of the null-chamatioes not become symbolic. If the string
is an object with an explicit length variable then, in additto the memory locations that comprise
the string, the length variable also becomes a symbol.

Introducing string constraints.  To introduce string constraints the system uses functiak$o
for some predefined string functions. The function hookstliier string functions differ from the
functionality described above. To distinguish betweerhtigpes of function hooks, we term the
function hooks for string functionsstring function hooks A string function hook performs the
following operations: 1) reads the parameters of the fondtiom the stack, 2) checks if any of the
parameters of the function is symbolic; if none are symbiblan it returns, 3) turns off symbolic
execution inside the function, so that no constraints vélienerated inside the string function, 4)
sets up a return hook. When the string function returns,ahem hook makes the return values of
the function symbolic.

Currently, the execution monitor provides hooks for oved &fting functions for which proto-
types are publicly available. The prototypes of those gtfimctions can be found, among others,
at the Microsoft Developer NetworklBg, the WebKit documentation2P?, or the standard C
library [93].

The user is expected to provide a string function hook forfangtion that is currently not avail-
able in the framework. When a program to be explored usesifunscthat have no publicly available
prototype, some manual reverse engineering of the binargaded to extract the function’s proto-
type. For example, the content-sniffing algorithm in InegrExplorer 7 uses two string functions
that have no publicly available prototypghlwapi.dll::Ordinal. 151 andshlwapi.dll::Ordinal 153"
Our analysis found thahlwapi.dll::OrdinalL151is a case sensitive comparison of some maximum
length, which can use the existing string function hookrf@vcrt.dll::strncmp Our analysis of
shiwapi.dll::Ordinal. 153uncovered that it is a case insensitive versioattivapi.dll::Ordinal 151,
which can use the existing string function hook fosvcrt.dll::strncasecmpThe time spent doing
such analysis was close to an hour per function. Once olokaihe string function hooks are added
to the framework so that they can be reused in the future.

4shiwapi.dll is the Shell Light Weight Utility Library, a Windows librarthat contains functions for URL paths,
registry entries, and color settings.
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String function classes. String functions are grouped into classes, where two sfringtions in
the same class would generate the same path predicate ffehiis function called in the source
code was replaced with any other function in the same class.eXamplemsvcrt.dll::strstrand
msvcr71.dll::strstrboth belong to the sam@TRSTRIass. Grouping string functions into classes
and assigning the same symbol type to the output of all fangti the same class reduces the num-
ber of different constraints that the system needs to tata$hto the abstract string syntax. Cur-
rently, the framework supports 14 classes of string funsti®TRSTRSTRCPYSTRNCPYSTR-
CMP, STRCASECMPSTRNCMP STRLEN STRNCASECMPRCOMPARESTRINGCFEQUAL,
STRCHRMEMCHR WCTOMB, andMBTOWC.

To generate the string-enhanced path predicate, everytimef the predefined string functions
is called during execution, the symbolic execution monittroduces new symbols for the output
of the string function. Then, when the program uses thoséeigi(e.g., in a comparison) a string
constraint is introduced in the path predicate. The pattipage output by the execution monitor
contains a mixture of string constraints (i.e., on the outguhe string functions), and constraints
on some of the bytes of the input strings, which can be gesbiay either functions that are not
hooked or when the program directly accesses the bytes istting, as shown in line 14 of our
running example.

6.4.2 The Abstract String Syntax

We have designed an intermediate syntax that abstractephesentation of the strings and defines
a common set of functions and predicates that operate awystriThisabstract string syntaxep-
resents the minimal interface we would like a solver, ustniggs as first-order types, to provide.
Table6.1 presents the functions and predicates that comprise otraabstring syntax. The strings
in the abstract string syntax are immutable. Thus, operatinich as modifying a string, copying a
string, translating the string to upper case or concategéaivo strings, always return a new string.

In our abstract string syntax each string can be seen asabletength array, where each el-
ement of the array has no encoding and is of fixed lehgtdaving no string encoding enables
support for both binary and text strings. For simplicity, t&em each element of the arraglarac-
ter, even if they may represent binary data. For text stringglament of the array can be seen as
a Unicode code-poifit Case-insensitive operators rely on tieupperfunction, which forms the

SConverts a wide character to a multi-byte character

Converts a multi-byte character to a wide character

"Our implementation uses 16-bit integers to represent aacker Although a 16-bit integer is not enough to hold
all Unicode code points, it is enough for the applicationsomasider. Each character could be represented as a 32-bit
integer if all Unicode code points are needed.

8A Unicode code-point is different from graphemewhich is closer to what end-users consider as characters. F
example a character with a dieresis (e.g., &) is a graphemepuld be encoded as two Unicode code points.
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Functions
(strlen String) S—1 (strlens) returns the length of
(substr String Int Int) SxIxI—S (substrs ¢ 7) returns the substring afstarting at position and
ending at positiory (inclusive)
(strcat String String) SxS—S (strcatsy s2) returns the concatenation &f andss
(strupper String) S — S (struppers) returns an uppercase versionsof
(strncopy String Int) SxI—S (strncopys %) returns a string of length
that equals the firstcharacters of
(strfromwide String) S— S (strfromwides) returns a narrow character versionsof
(strtostring Char) C—S (strtostringc) returns a string containing only the charaater
(chrat String Int) SxI—C (chrats 2) returns the character at positiom string s
(chrupper Char Char) C—-C (chrupperc) returns an uppercase versioncof
Predicates
(strcontains String String) SxS—B (strcontainss; s2) returns true ifsg is a substring of; at any position

(strcontainsat String String Int) S x S x I — B | (strcontainsat; sg) returns true ifs, is contained ins;
starting at positiori in s1

(= String String) SxS—B (= s1 s2) returns true ifsy is equal taso
(distinct String String) SxS—B (distinct sy s2) returns true ifs; is not equal taso
(strlt String String) SxS—B (strlt s1 s2) returns true ifs; is lexicographically less-thasy
(strle String String) SxS—B (strle s1 s2) returns true ifs; is lexicographically less-or-equab
(strgt String String) SxS—B (strgtsy s2) returns true ifs; is lexicographically greater-thasy
(strge String String) SxS—B (strges: s2) returns true ifs; is lexicographically greater-or-equsyd
(strcaseequal String String) SxS—B (strcaseequal; s2) returns true ifs; is equal tasg case-insensitive
(strcasedistinct String String) | S x S — B (strcasedistinct; sz) returns true ifs; is not equal tase case-insensitive
(strcaselt String String) SxS—B (strcaselts; s2) returns true ifs; is lexicographically
less-thansy case-insensitive
(strcasele String String) SxS—B (strcaselesy s2) returns true ifs; is lexicographically
less-or-equak, case-insensitive
(strcasegt String String) SxS—B (strcasegb; s2) returns true ifs; is lexicographically
greater-thars, case-insensitive
(strcasege String String) SxS—B (strcasege s2) returns true ifs; is lexicographically

greater-or-equalo case-insensitive

Table 6.1: Abstract string syntax.

basis forstrupper Our currentchrupperfunction uses the ASCIl uppercase conversion (i.e., only
code points U+0061 ('a’) through U+007a ('z') have an uppsec version). We plan to enhance
this function to represent the Unicodg@percasecharacter property. Note that it is considered a
valid operation to apply the case-insensitive functionbitary strings, as programs may (either
incorrectly or abusing the semantics of the function) penfsuch operations.

All encoding is removed when converting to the abstrachgtgyntax. For example, conver-
sions from UTF-8 to UTF-16 and vice versa, used by the cordeifing algorithm in Internet
Explorer 7 for theContent-Typestring, are handled during the translation to the absttacigssyn-
tax. Note that, while widening conversions (e.g., UTF-8 fbRJL6) are straightforward to handle,
narrowing conversions (e.g., UTF-16 to UTF-8) can be loagygl thus need a special conversion
function trfromwidg. Our current implementation fatrfromwideonly handles conversions when
all characters in the string belong to the ASCII charsetcilig enough for programs that take as
input ASCII strings.
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String constraint

Abstract String Syntax

STRCMPG1,52) = 0 ; COMPARESTRINGS1,52) = 2,
CFEQUAL(s1,52) = 1; s = STRCPY:1)

=81 82

STRCMPG1,52) # 0 ; COMPARESTRING; ,52) # 2;
CFEQUAL(s1,52) =0

distinctsy s2

STRCMPG1,52) < 0, COMPARESTRING{1,52) < 2

strit S1 82

STRCMPG1,52) > 0, COMPARESTRING{1,52) > 2

strgtsl ED)

STRSTR61,52) £ 0
STRSTR61,52) =0
STRCASECMP{1,s2) = 0
STRCASECMP{1,s2) < 0
STRCASECMP{1,s2) > 0
STRNCMPG1,s2,n) = 0
STRNCMPG1,s2,n) < O
STRNCMP§1,s2,n) > 0
STRNCASECMP§;,52,n) = 0
STRNCASECMPS;,52,n) < 0
STRNCASECMPS;,52,n) > 0
STRCHR(S,C} 0
STRCHR(s,c)=0
MEMCHR(s,c,n)# 0
MEMCHR(s,c,n)= 0

s2 = STRNCPY61,n)

s2 = MBTOWC(s1)

s2 = WCTOMB(s1)

strcontainss, s2

not (strcontains s2)

strcaseequal; s2

strcaselts; s2

strcasegb; s2

= (substrs; 0 (n — 1)) (substrsa 0 (n — 1))

strit (substrs; 0 (n — 1)) (substrsa 0 (n — 1))
strgt (substis; 0 (n — 1)) (substrs 0 (n — 1))
strcaseequal (substi 0 (n — 1)) (substrsz 0 (n — 1))
strcaselt (substs; 0 (n — 1)) (substrse 0 (n — 1))
strcasegt (substr; 0 (n — 1)) (substrsz 0 (n — 1))
strcontainss (strtostringc)

not (strcontains (strtostringc))

strcontains (subsk 0 (n — 1)) (strtostringc)

not (strcontains (subst0 (n — 1)) (strtostringc))
= sg (substrs; 0 (n — 1))

=85281

= g9 (strfromwides;)

Table 6.2: Translation of string constraints to the abssag syntax.

Translating to the abstract string syntax. Table6.2presents the translation from the constraints
generated on the output of the 14 classes of supported $trimgions to the abstract string syn-
tax. Table6.2 shows one of the benefits of using an abstract string syntarst@ints from
functions with different prototypes but similar functiditya (e.g, COMPARESTRING(;,s0) < 2,
STRCMP61,s2) < 0), can be translated to the same basic string operation (exgcographical
less-than). Constraints on individual bytes are trandlaigng the character extraction operator,
chrat®. For example, the constraiift (data[0] == O0xff) {...}inline 14 of our running
example, would be translated @hrat data 0) = Oxff . This is possible because the exe-
cution monitor knows for each memory location if it belongstsymbolic string and the offset into
the string, which can be used to identify the character inttegur running example, if the function
sniff is run with the following inputs:

CT: application/octet-stream
DATA: GIF89a\000\000

the string-enhanced path predicate translated to theaabstring syntax would be:
Currently, we do not deal with unaligned accesses such akngea single byte from a UTF-16 string, but such

accesses could be translated as extracting the charaatesponding to the offset being accessed and then masleéng th
other byte.
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Predicate Translation

= 51 82 I(s1) = U(s2) AN s1[i] = s2d]

strcaseequal; sz I(s1) =1(s2) A /\igsl)fl chrupper(si[i]) = chrupper(sali])
strcontaings; ss VI (Us1) > U(s2) +14) A NS sl + 4] = sal])
= 55 substrs; i j (s2) = j — i+ LA N " s2lk] = s1[i + K]

= s strtostringe l(s)=1As[0]=c

= 55 (strfromwides1) | I(s2) = I(s1) A AZLEY (s1]i] < 256 A s2]i] = s1[i])

Table 6.3: Predicate translation. For simplicity, the niegeof the above predicates is not shown.

(distinct ct "text/plain") &&

(= ct "application/octet-stream”) &&
(strcasedistinct (substr data 0 5) "GIF87a") &&
(strcaseequal (substr data 0 5) "GIF89a")

where the first constraint corresponds to the false brantteigonditional on line 6 of the running

example, the second to the true branch of the conditionainenlll, and the final two correspond
to the two clauses in the conditional on line 12 (false and titanches respectively). The value
returned by the function ignage/gif

6.4.3 Solving the Constraints

We have designed our abstract string syntax so that it aonthie predicates and functions we
expect a solver that supports strings as first-class typedfén However, at the beginning of
this project, no publicly available solver supported gtsiras first-class types. To solve the string
constraints in the path predicate we built a custom stringsiraint solver that leverages the fact
that many off-the-shelf SMT solvers have support for arnag mteger theories. Our custom string
constraint solver first represents each string (i.e., isfnings plus any strings derived from them,
for example througlstrcpy) as a pair of an array of some given maximum size and a lengidble;
and translates the operators in the abstract string syatearistraints on the corresponding arrays
and length variables. Then it uses STP to solve those cantstra

Simultaneous work reports on solvers that support a thebsjrings [L5, 85,103. Given our
design, rather than translating the abstract string opesainto a theory of arrays and integers, we
could as well generate constraints in a theory of stringeats benefiting from any performance
improvements provided by these specialized solvers.

Upper bound on string length. Each string is represented as an array of some given maximum
size (nl) and a length variable. The maximum string size is an imponarameter. If it is too
short the solver might not be able to solve some constralfisexample, in our running example

if the maximum string size is set to 16 bytes, then the coimttgenerated in line 11 would be
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unsolvable sincest could not equakpplication/octet-stream On the other hand the tighter the
maximum length, the less time that it will take the solver tmifa satisfying answer, if there is one.
For some programs, such as content-sniffing algorithmsmidsemum length of the input strings
is known. For example, the maximum length of the conterffiagi buffer, which corresponds to
thedata string in our running example, is 1024 bytes for Safari 3rid 856 bytes for Internet
Explorer 7 B]. In practice, most signatures used by content-sniffingritlyns apply to the first
few bytes in the content-sniffing buffer and we can use evenaller upper bound. In this work we
useml = 64 bytes as the maximum string size.

Translating from the abstract string syntax. Table6.3shows how the constraints on the output
of the string functions are translated to the theory of arrayd integers. Each string varialslés
represented by its lengtlis) and an array of bytes|i], where the index ranges fronm0 to ml — 1.
The maximum lengthn! is a translation-time constant, but the lengths may not be, so unless
the length of a string is constant, bounds that are showrlvimgp/(s) are in fact translated by
expanding them up to a bound basedmehand guarding with additional conditions &fs). Note
that the translation shown for strfromwide is restrictedhe case of 8-bit code-points; a more
complex translation would be needed for applications tlsat characters with longer encodings
(e.g., an Arabic character in Unicode requires two bytes).example, the constraint:

distinct ct "text/plain”

would be translated as:
=((ctlen = 10) A (ct]0] = ‘t°) A (ct[l] = ‘€‘) A (ct[2] = ‘@) A (ct[3] = ) A (ct]4d] =
SN (et]B] = p) A (ct]6] = U°) A (ct[T] = ‘a’) A (ct]8] = ‘i) A (ct[9]

wherect_len is the length integer that represents the length ottteray. Note that the solver only
understands about integers, but we use the text reprasantdthe character here for the reader’s
benefit (e.g., the constraint would use 0x74 instead of ‘t").

Similarly, the constraint:

strcaseequal (substr data 0 5) "GIF89a"

would be translated as:
(ct_len > 6) A (chrupper(ct[0]) = ‘G*) A (chrupper(ct[l]) = ‘I‘) A (chrupper(ct[2]) =
‘F) A (chrupper(ct[3]) = ‘8°) A (chrupper(ct[4]) = ‘9) A (chrupper(ct][5]) = ‘a‘)

Additional constraints. The translation introduces some additional constrainesath query to
the solver. For each input string defined by the user, it adusnatraint to force the length of the
string to be between zero and the predefined maximum lengtiredtring,0 < I(s) < mli(s). In
addition, for ASCII strings it adds constraints to forcelehgte in the string to belong to the ASCII
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HTTP/1.1-200-OK\n
Server:-Apache/2.2.4-(Fedora)\n
Content-Type:-text/plain\n\n
<html>-This- is-html-</htmI>\n\n

Figure 6.5: A complete input with the input strings highligth.
charset,/\jjfbl(s)_1 0 < s[i] < 127. A special case happens when converting to the abstraag) stri
syntax a string constraint from a function that assumesrpetistrings to be null-terminated, such
as the string functions in the C library. In this case the eiien monitor adds some additional
constraints to the path predicate to exclude the null chardiom the possible code values. This
prevents the solver from producing inputs that actuallyatethe generated length constraints. For
example, the condition in line 7 in our running example paauthe following constraint:

strcontains ct "<html>"

If the null character is allowed to be part of thiestring, then the solver could return the following
satisfying assignment fait: I(ct) = 8 As[0] = ‘a‘As[1] = \0'As[2] = < ‘As[2] = ‘h*As[3] =

‘t“ A s[4] = ‘m* A s[B] = I A s[6] = ¢ > ‘. Given the null terminated representation expected by
strstr, that string would have an effective length of 1 characted the generated input would not
traverse the true branch of the conditional.

6.4.4 Input Generation

Once the solver returns a satisfying assignment for a qtlezysystem needs to generate a new in-
put that can be sent to the program, so that another rounc @xploration can happen. However,
the values from the symbolic strings might not completelfirdea program input. For example,
Figure6.5 shows a complete input used in the exploration of the corseiffing algorithm of Sa-
fari 3.1, where the inputs strings are highlighted and ttezep have been replaced by dots. In this
case, the program input is generated by querying the saverfhttp input that satisfies:

= http (strcat(strcat(strcat(strcat "HTTP/1.1 200 OK\n.. oet) "\n\n")
data) "\n\n")

Generating an input that reaches the entry point. The function being explored might run in
the middle of some longer execution. To guarantee that thergéed inputs will reach the function
under study, we need to add all constraints on the inputgstgenerated by the code that executes
before the function under study, as additional constramesach query to the solver. For example,
when analyzing the content-sniffing algorithm in Safari, meed to add any constraints on the
Content-Type header or the HTTP payload that occur in thewti® before the content-sniffing
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algorithm is called. To identify such constraints we run ¢éxecution monitor making the whole
HTTP message symbolit All constraints on the input strings before the call to tlatent-
sniffing algorithm are included as additional constrain&uch constraints may include, among
others, parsing constraints that require the MIME typengtriot to contain any HTTP delimiters
such as end of line characters, or constraints that forcEtmeent-Type value to be one of a list of
MIME types that trigger the content-sniffing algorithm.

6.5 Evaluation

In this section we present our evaluation results. First mioduce our setup. Then we show

statistics from the models of the content-sniffing alganihin two popular browsers that we extract

using string-enhanced white-box exploration and comgagecoverage of string-enhanced white-

box exploration with that of byte-level white-box explacat. Next, we use the extracted models as
well as models for upload filters to automatically generdtanceleon documents that can be used
to launch attacks. Finally, we detail two content-sniffin§Xattacks that affect the Wikipedia web

site and the HotCRP conference management Web application.

6.5.1 Setup

We have extracted models from the content-sniffing algoritf two major browsers, for which
source code is not available: Safari 3.1 and Internet Egplor In both cases we have evaluated the
browser running on a Windows XP Service Pack 3 operatingsyst

In addition, we have manually written a model for the signegwsed by the Unifile tool [66].
The Unixfile tool is an open-source command line tool, deployed in manix Bystems, which
given a file outputs its MIME type and some associated inféiona The signatures of the Unix
file tool are used by the MIME detection functions in PHP (digfp_file). Those functions in turn
are used by the upload filter of many web sites. For exampdeMIME detection functions from
PHP are used by popular open-source code such as Medial8i§i vhich is used by Wikipedia
to handle uploaded content.

As described in Sectiof.4.], a prerequisite for the exploration is to identify the ptgpe of
the function that implements the content-sniffing alganittas well as any string functions used by
that function, for which a hook is not already available. fiis £nd we use available documentation,
commercial off-the-shelf tool®9[], as well as our own binary analysis toolf]. We describe this
step next.

10since there may exist multiple paths to the content-sniffilggrithm, we might have to rerun this step with different
inputs. One indication to rerun this step is if during thelergtion the tool reports that some inputs are not reachieg t
content-sniffing algorithm (i.e., empty path predicates).



CHAPTER 6. FILTERING-FAILURE ATTACK GENERATION 152

Model Seeds| Path | % HTML Avg. Paths | Avg. Time # Inputs Avg. path | #blocks | Avg. blocks
count paths per seed per path generated depth found per seed

Safari 3.1 7 1558 12.4% 222.6 16.8 sec 7166 12.1 205 193.9

IE7 7 948 8.6% 135.4 26.6 sec 64721 2121 450 388.5

Table 6.4: Model statistics.

Content sniffing is performed in Internet Explorer 7 by thedion FindMimeFromDataavail-
able in theurimon.dlllibrary [143. We obtain the function prototype, including the pararmsetnd
return values, from the Microsoft Developer Network (MSDddcumentation141].

Although a large portion of Safari 3.1 is open-source asqfatie WebKit project, the content-
sniffing algorithm is implemented iICFNetwork.dl] the networking library in the Mac OS X
platform, which is not part of the WebKit project. In addii®o extracting the prototype of the
content-sniffing algorithm, we also had to add to the exeaumonitor two string function hooks
for functions that have a publicly available prototyp€oreFoundation.dll::CFEquaknd Core-
Foundation.dll::CFStringCompareSince theCoreFoundation.dllibrary provides the fundamental
data types, including strings, which underlie the MacOS afrfework, these hooks can be reused
by many other applications that use this framework.

6.5.2 Model Extraction

In this section we present some statistics about the modétseacontent-sniffing algorithms of
Internet Explorer 7 and Safari 3.1, extracted using stanganced white-box exploration. We term
the process of exploring from one seed until no more pathéeétréo explore, or a user-specified
maximum run-time is reached, axploration run

Each model is created by combining multiple explorationsyugach starting from a different
seed. To obtain the seeds we first select some common MIME ape then we randomly choose
one file of each of those MIME types from the hard-drive of ofi@uar workstations. For our
experiments each exploration run lasts 6 hours and the seeds from 7 different MIME types:
application/java, image/qgif, image/jpeg, text/html, ttegard, video/avi, video/mpeg. The same
seeds are used for both browsers.

Table 6.4 summarizes the extracted models. The table shows the nuofilsereds used in
the exploration, the number of path predicates that comméch model, the percentage of path
predicates in the previous column where the content-sgiffilgorithm returned the MIME type
text/htm| the average number of paths per seed, the average timedndseneeded to generate a
path predicate, the number of inputs generated, the averagéer of branches in each path (i.e.,
the path depth), the number of distinct program blocks dised during the complete exploration
from the 7 seeds, and the average number of blocks discoperezked.
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The number of paths that retutext/htmlis important because the disjunction of those paths
forms the 2™ model, which we use in Sectidh5.4to find content-sniffing XSS attacks. The
content-sniffing algorithm in Safari 3.1 is smaller becaiideas signatures for 10 MIME types,
while the content-sniffing algorithm in Internet Explorerc@ntains signatures for 32 different
MIME types. This is shown in Tablé.4 by shorter path predicates that require less time to be
produced. The longer path predicates for Internet Explbidso explain why the number of inputs
generated for Internet Explorer 7 is almost an order of mageilarger than for Safari 3.1.

Exploring from multiple seeds helps increase the coveragéternet Explorer 7 because the
content-sniffing algorithm in Internet Explorer 7 decidelsiet signatures to apply to the content
depending on whether it considers the content to be textmarpidata. Thus, it is more efficient
to do one exploration run for 6 hours starting from a binagdsg.g., application/pdf) and another
exploration run for 6 hours from a text seed (e.g., text/htimn to do a single exploration run for
12 hours starting from either a binary or a text seed. We havelmserved this effect in Safari 3.1.

We discuss more about how to compute the number of blockewdised in the next section.

6.5.3 Coverage

In this section we illustrate the increase in coverage pirditime that string-enhanced white-box
exploration exhibits compared to byte-level white-boxlexation. First, we detail how we measure
the number of blocks discovered and then present the caveeaglts.

Methodology. For each execution trace produced during the exploratiogrydime an instruc-
tion that transfers control is seen (e.g., an unconditigmalp, conditional jump, call, or return
instruction), the address of the next instruction to be etaxtis stored. This address represents the
first instruction in a block (i.e., thblock address The number of distinct block addresses is our
coverage metric. This approach may underestimate the nuofilbéocks discovered, but gives a
reasonable approximation of the blocks covered by the exiibm without requiring static analysis
of the binary to extract all basic blocks. A difference witlzZing approaches is that we do not
want to maximize coverage of the whole program, only of threfion that implements the content-
sniffing algorithm. Thus, we are not interested in measuciogerage in auxiliary functions such
as memory allocation functions (e.g., malloc), string fionts (e.g., strcmp), or synchronization
functions for critical sections. Our goal is to count blodkside the content sniffing function, as

When compared to counting basic blocks in a control-flow kyraqur approach may underestimate the number of
basic blocks because one block found during execution dmileépresented as multiple basic blocks in the control-flow
graph. This happens when some path contains a jump whos taecgtion is in the middle of one block previously
discovered dynamically. In the CFG this case counts as twit Isdocks while dynamically, since we deal with each path
separately, it only counts as one.



CHAPTER 6. FILTERING-FAILURE ATTACK GENERATION 154

200
190
180 |-
170 +
160
150
140
130 |-
120
110
100 g
90

Number of blocks

strings —=— |
bytes &

0 5000 10000 15000 20000
Time(seconds)

Figure 6.6: String-enhanced white-box exploration vetsgie-level white-box exploration on the
Safari 3.1 content-sniffing algorithm. Each curve represére average number of blocks discov-
ered for 7 exploration runs each starting from a differeetdsand running for 6 hours.

well as any other function that the algorithm invokes, whdomot belong to the standard Windows
libraries. Our tool approximates this behavior by autooaly ignoring blocks inside functions
that appear in the list of functions exported by name.

Coverage results. Figure6.6 shows the number of blocks that the system discovers overdim
the Safari 3.1 content-sniffing algorithm, when the exglorauses strings (square line) and when
we disable the string processing and the path predicateconiiains byte-level constraints (triangle
line). Each curve represents the average number of bloskewred for 7 exploration runs each
starting from a different seed and lasting 6 hours. Stn@gscurve corresponds to the 7 exploration
runs from which the model of the content-sniffing algorithmSafari 3.1 was extracted (shown in
Table 6.4), while thebytescurve is the average of 7 byte-level exploration runs stgrfiom the
same seeds used for extracting the model.

The graph shows that the string-enhanced white-box exgarachieves higher coverage than
the byte-level exploration on the same amount of time. Thbgtter employs the resources associ-
ated to the exploration. This happens because 61.6% oftaHlbyel constraints occur inside string
functions. Thus, the byte-level exploration expends aersible time exploring inside the string
functions, and no new blocks in the content-sniffing aldyonitare discovered during that time.

6.5.4 Finding Content-Sniffing XSS Attacks

The first step to generate a content-sniffing XSS attack isdlein input that is accepted by the site’s
upload filter and interpreted by the content-sniffing altdpni in the browser as a privileged MIME

type such asext/html We call such an input ehameleordocument. The chameleon document is
basically a content-sniffing XSS attack without the malisiadJavaScript payload. In this Section



CHAPTER 6. FILTERING-FAILURE ATTACK GENERATION 155

Browser HotCRP filter | Unix file tool
Internet Explorer 7 2 6
Safari 3.1 0 6

Table 6.5: Number of MIME types for which a chameleon is gaissfor the different combinations
of content-sniffing algorithms and upload filters.

we show how to automatically find chameleon documents. Tinethe Sectior6.5.5we describe
two examples of content-sniffing XSS attacks based on thessgts.

To generate chameleon documents, we use the models for mbentaniffing algorithms of
Internet Explorer 7 and Safari 3.1, presented in Sedfidn2 In addition, we manually create
models for the HotCRP upload filter and the Uffibe tool [66]. The signatures from the Unifde
tool are used by the MIME detection functions in PHP, whicthum are used in the upload filter
of multiple web sites such as MediaWiki3g. Upload filters usually test the uploaded content
against signatures for the different MIME types that shdaddaccepted. If signature A matches the
content then the MIME type associated with signature A walldent in theContent-Typeneader
when the content is delivered in an HTTP response. For exartifg HotCRP upload filter accepts
only content that it believes to be PDF or PostScript filesr @anually generated model for the

HotCRP upload filted/ 55" = M{L’g{m V M}, 1S the following predicate:

(strcaseequal "%PDF-" (substr content 0 4)) ||
(strcaseequal "%!PS-" (substr content 0 4))

If the first condition M}{’j{m) returns true then the value of ti@ontent-Typeheader in the

HTTP response will bepplication/pdf and if the second condition\(;;, ,,) retumns true then

it will be application/postscript For each MIME type in the upload filter and for each browser,
we query the solver whether a chameleon document can be qaddu-or example, to obtain a
chameleon PostScript document that is interpreted as HTiInternet Explorer 7 we query the

solver for an input that satisfiee/[ A MEoy" ™", which returns:

CT: application/postcript
DATA: %!PS-tRaTwad<Htmlswatarecz

Thus, the solver is able to produce a chameleon documerisindke. Note that the first 5 bytes
of the input correspond to the PostScript signature usedhéyHDtCRP upload filter. Thus, this
input is accepted by HotCRP application/postscriptin addition, the input returned by the solver
contains the substring<HtmI” , which satisfies théext/htmlsignature used by the content-sniffing
algorithm in Internet Explorer 7. Thus, this input is comsiltext/htmlby Internet Explorer 7 and
if JavaScript code is included in the payload, it will be exed by the browser.

We repeat the above procedure for each MIME type in the uplittads that is supported by
at least one of the browsers. Taltlé summarizes the results. For HotCRP, chameleon PDF and
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PostScript documents can be created that will be intemgbrasgext/ntmlby Internet Explorer 7.
For the Unixfile tool, chameleon documents that will be interpretedext/htmlby Internet Ex-
plorer 7 can be created for 6 different MIME typegoplication/postscriptaudio/x-aiff image/qgif
imageftiff text/xm] andvideo/mpeg Chameleon documents that will be interpretecteadg/html

by Safari 3.1 can also be created for 6 different MIME typagplication/postscriptaudio/x-aiff
image/gif image/pngimage/tiff andvideo/mpeg Next, we describe two chameleon documents in
more detail.

Internet Explorer 7 and Unix file tool chameleon. Querying the solver for an input that is ac-
cepted asaudio/x-aiff by the Unixfile tool and is interpreted a®xt/htmlby the content-sniffing
algorithm in Internet Explorer 7 returns the following amesw
CT: audio/x-aiff
DATA: <htmLpfIAIFF\(\t\t\227\t\t\t\003\t\008\201\t

The first 5 bytes of th®ATAstring, “ <htmL”, satisfy one of the HTML signatures used by
Internet Explorer 7 fotext/htm] while the string“AIFF” in bytes 8 — 11 , satisfies traudio/x-
aiff signature for the UniXile tool. This input would not match Internet Exploregsidio/x-aiff
signature which is:
(strncmp(DATA,"MROF",4) == 0) ||
((strncmp(DATA,"FORM",4) == 0) &&

((strncmp(DATA[8],"AIFF",4) == 0) || (strncmp(DATAJ[8]," AIFC",4) == 0)))

Thus, the input will be considereidio/x-aiff by a filter based on the Uniie tool andtext/html

by Internet Explorer 7.

Safari 3.1 and Unix file tool chameleon. Querying the solver for an input that is accepted as
video/mpedy the Unixfile tool and agext/htmlby Safari 3.1 returns:
CT: application/octet-stream
DATA: \000\000\001\187MmM\129\000\002\002TLT\001L\00 2\001\000<hTMI>e\000

Here, the solver returns an input where the first four bytéisfgahe video/mpegsignature of
the Unixfile tool, and the tagchTMI> satisfies theéext/htmlisignature used by the content-sniffing
algorithm in Safari 3.1. Because Safari 3.1 does not havgrasire fovideo/mpegthis input will
be consideredideo/mpedy a filter based on the UniXe tool andtext/htmlby Safari 3.1.

6.5.5 Concrete Attacks

In this section, we detail two content-sniffing XSS attadiet taffect two popular Web applications:
HotCRP and Wikipedia. We implement and confirm the attacksguscal installations of the sites.
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HotCRP. HotCRP is a conference management Web application thatlgtors upload their
papers in PDF or PostScript format.Before accepting an upload, HotCRP checks whether the
file appears to be in the specified format. For PDFs, HotCREkshthat the first bytes of the file
are%PDF-(case insensitive), and for PostScript, HotCRP checkstligatirst bytes of the file are
%!PS- (case insensitive).

HotCRP is vulnerable to a content-sniffing XSS attack bee&last CRP will accept the chameleon
document in Figuré.4as PostScript but Internet Explorer 7 will treat the sameuduwnt as HTML.
To mount the attack, the attacker submits a chameleon papke tconference. When a reviewer
attempts to view the paper, the browser treats the paper BH_HiRhd runs the attacker’s JavaScript
as if the JavaScript were part of HotCRP, which lets the lattagive the paper a high score and
recommend the paper for acceptance.

Wikipedia. Wikipedia is a popular Web encyclopedia that lets usersagplontent in several
formats, including SVG, PNG, GIF, JPEG, and Ogg/The@2f The Wikipedia developers are
aware of content-sniffing XSS attacks and have taken meatupotect their site. Before storing
an uploaded file in its database, Wikipedia performs threekd
1. Wikipedia checks whether the file matches one of the witel MIME types. For example,
Wikipedia’s GIF signature checks if the file begins wiatF . Wikipedia uses PHP’s MIME
detection functions, which in turn use the signature daalham the UniXile tool [66].

2. Wikipedia checks the firgt024 bytes for a set of blacklisted HTML tags, aiming to prevent
browsers from treating the file as HTML.

3. Wikipedia uses several regular expressions to checkhbdile does not contain JavaScript.
Even though Wikipedia filters uploaded content, we uncovaulale content-sniffing XSS attack.
We construct the attack in three steps, each of which detes®f the steps in Wikipedia’s upload
filter:

1. By beginning the file witlGIF88 , the attacker satisfies Wikipedia’s requirement that ttee fil

begin withGIF without matching Internet Explorer 7’s GIF signature, whrequires that
file begin with eitheiGIF87 or GIF89 .

2. Wikipedia’s blacklist of HTML tags is incomplete and caimis only8 of the 33 tags needed.
To circumvent the blacklist, the attacker includes thengtka href , which is not on
Wikipedia’s blacklist but causes the file to match Interngplérer 7's HTML signature.

3. To evade Wikipedia’s regular expressions, the attackerirclude JavaScript as follows:

12A conference organizer can disable either paper format.
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<object src="about:blank"
onerror="... JavaScript ...">
</object>

A file constructed in this way passes Wikipedia’s uploadrflitat is treated as HTML by Internet
Explorer 7. To complete the attack, the attacker uploadsfillei to Wikipedia and directs the user
to view the file. These attacks demonstrate the importanegtadcting precise models because the
attacks hinge on subtle differences between the upload fited by Wikipedia and the content-
sniffing algorithm used by the browser.

The production instance of Wikipedia mitigates conteriffisig XSS attacks by hosting up-
loaded content on a separate domain. This approach do¢sHargeverity of this vulnerability, but
the installable version of WikipedidediaWikj which is used by over50 Web sites in the English
language alonelf3q], hosts uploaded user content on-domain in the default goraiion and is
fully vulnerable to content-sniffing XSS attacks. After veported this vulnerability, Wikipedia has
improved its upload filter to prevent these attacks.

6.6 Related Work

In this section we first present previous work on automast ¢ase generation and automatic sig-
nature generation, which is related to our work in that tHeg ase white-box exploration or related

symbolic execution techniques. Then, we introduce previgark that verifies security properties

using software model checking techniques, which requiredets of the programs to be verified,

and can benefit from automated techniques to extract suclelmodlext, we describe previous

research on cross-site scripting attacks, including crgeiffing XSS attacks, which we automat-

ically find in this work. Finally, we introduce simultaneowsrk on solvers that support a theory of
strings and outline some current defenses against cosiéfiig XSS attacks.

Automatic test case generation. Previous work on automatic test case generation is anogher a
plication of white-box exploration7, 33, 79, 31]. There are two main differences between our
model extraction technique using string-enhanced whotedxploration and previous work on au-
tomatic test case generation. First, the goal is differdmd:goal of automatic test case generation
is to find bugs in a program, while the goal of our model extoacis to generate an accurate
representation of a program that can be used for reasonimgt &b security implications. Sec-
ond, the white-box exploration techniques used by prewaoork on automatic test case generation
are not efficient on programs that heavily rely on string afiens, which are the main target of
our string-enhanced white-box exploration. There is eglatork on compositional approaches to
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white-box exploration that build function summaries as ¢ploration progresses and reuse the
summaries if the function is later encountered in a contlegady covered in the summary4, 3.
Our string-enhanced white-box exploration can be seen ampasitional approach that uses man-
ually generated string function summaries.

Xu et al. R34 use source code annotations to augment white-box exjaratith length ab-
stractions for strings, which allows a tool to reason abbatléngth of a string independent of its
contents. Saxena et al.§8 propose loop-extended symbolic execution that broademsaverage
of dynamic symbolic execution in programs with loops, byadtcing symbolic variables for the
number of times each loop executes. These techniques ceulsEd to replace the manually written
string function summaries we use here, among other apiplisatbut integrating them with a string
decision procedure as in this report is future work. Previwork has also proposed improvements
to white-box exploration techniques to reduce the numbeatlis that need to be explored (i.e., the
path explosion problem) by using a compositional appro@@hdr trying to identify parts of paths
that have already been explorelb]. Such techniques can be combined with our string-enhanced
white-box exploration technique to further enhance thdazagion.

Automatic signature generation. Previous work on automatic signature generation produces
symbolic-execution based vulnerability signatures diydicom the vulnerable program binargT,
21,46, 23]. Such signatures model the conditions on the input requimeexploit a vulnerability in
the program. The difference between those signatures anchadels is that vulnerability signa-
tures try to cover only paths to a specific program point (dgntlee vulnerability) rather than all
paths inside some given function. A significant shortconmohgarly proposals is that the signa-
tures have low coverage, typically covering a single exeaypath B7]. More recent approaches
have proposed to cover more execution paths by removingceseary conditions using path slic-
ing technigues4@], iteratively exploring alternate paths to the vulneripidnd adding them to the
signature 46, 21], or using static analysis techniquez3[. Also related is work that examines the
accuracy of the signatures used by a NIDS by generating iexplgations and checking if those
mutations still exploit the applicatior2]4, 185. The inputs they find are filtering-failure attacks.
Our approach can produce such inputs more efficiently bynglgn models of the filter and the
application, rather than on black-box probing.

Property verification. Model checking techniques can be used to determine whetfeameal
model (including of a program) satisfies a proper][ They have been applied to security prob-
lems such as statically verifying security properti@§][ verifying temporal-logic properties of an
access control system€], and evaluating attack scenarios in a network that costairnerable
applications 183 195. But such technigues typically require the availabiliiyaomodel, which
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limits the applicability to other security problems. Inglgaper we present a technique to automati-
cally extract models from binaries, which can enable thdiegton of model checking techniques
to other applications.

Cross-site scripting attacks. Cross-site scripting (XSS) attacks, where an attackerctsjac-
tive code (e.g., JavaScript) into HTML documents, are anoiigmt and widely studied class of
attacks §8,133 83,155 48]. Content-sniffing XSS attacks are a class of XSS attacksevtie
attacker embeds executable code into different types dieotn Previous references to content-
sniffing XSS attacks focus on the construction of chamelemuchents that Internet Explorer sniffs
as HTML. A blog post from 2004 discusses a JPEG/HTML chanme[@82. A 2006 disclosure
describes a content-sniffing XSS attack that exploits aariect Content-Typéheader §6]. More
recently, PNG and PDF chameleons have been used to launtgmtsniffing XSS attackD,172,
184). Spammers have reportedly used similar attacks to upleadites containing HTML to open
wikis [80]. Previously content-sniffing XSS attacks have been méngeherated. In this work we
show how to automatically generate content-sniffing XS&cH.

String constraint solvers. Simultaneous work reports on solvers that support a thefmtyings [L5,
85,103. Even though during the course of this work no string caistrsolver was publicly avail-
able, we designed our abstract string syntax so that it caggdsuch a solver whenever available.
Thus, rather than translating the abstract string opersiiioto a theory of arrays and integers, we
could easily generate constraints in a theory of stringseat benefiting from any performance
improvements provided by these specialized solvers.

Defenses. Current defenses that can ameliorate content-sniffing X&gks include transforming
the uploaded content (e.g., converting a PNG image to JPEGaf), disabling content-sniffing in
the browser, and hosting the uploaded content in a sepavataid so that the attacker can only
gain access to the domain that hosts the content (e.g.,dipli@media.org) instead of the main
domain (wikipedia.org). For an in-depth discussion onenirdefenses, their shortcomings, as well
as novel defenses based on building more secure contdiimgilgorithms we refer the reader to
our original paper9].

6.7 Conclusion

In this chapter we have presented an automatic approackemerating filtering-failure attacks. Our
approach extracts high coverage models from the filter, dsaéhe application’s functionality that
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the filter is designed to protect. Then it compares those tedeis using a solver to produce inputs
that are accepted by the filter but still can compromise tipdicgtion.

We have proposed string-enhanced white-box exploratianpdel extraction technique that
extracts multi-path models from binary code. String-emleanwhite-box exploration builds on
previous white-box exploration techniques. Unlike pregiavork, it incrementally builds a model
from the explored paths and reasons directly about strimgations. By reasoning directly about
string operations, it increases the coverage achievedebgxploration and improves the fidelity of
the extracted models.

We have applied our approach to generate content-sniffin§ 2ifacks, a class of cross-site
scripting attacks in which an attacker uploads some maigcmontent to a benign web site, which
the user’s browser interprets as HTML, enabling the attattkeun JavaScript, embedded in the
malicious content, in the user’s browser in the context ef $hie that accepted the content. We
have used string-enhanced white-box exploration to extrexdels of the closed-source content-
sniffing algorithms for two widely-used browsers: Interfietplorer 7 and Safari 3.1. We have
used these models to automatically find content-sniffing ¥8& ks that affect two popular Web
applications: MediaWiki, an open-source wiki applicatised by many sites including Wikipedia,
and the HotCRP conference management application.



Chapter 7

Protocol-Level Vulnerability Signature
Generation

7.1 Introduction

Software vulnerabilities are prevalent, with over 4,500 mmublicly disclosed vulnerabilities in
2009 R05 56]. A popular defense for software vulnerabilitiessiginature-based input filtering
which has been widely deployed in Intrusion Prevention YI&%®] Intrusion Detection (IDS) sys-
tems. Signature-based input filtering matches programtsnggainst a set of signatures and flags
matched inputs as attacks. It provides an important megm®tect vulnerable hosts when patches
are not yet available or have not yet been applied. Furthexnfor legacy systems where patches
are no longer provided by the vendor, or critical systemsre/tamy changes to the code might
require a lengthy re-certification process, signaturesthasput filtering is often the only practical
solution to protect the vulnerable program.

The key technical challenge to effective signature-basferse is to automatically and quickly
generate signatures that have zero false positives andfalemnegatives, what we cglerfect
signatures In addition, it is desirable to generate signatures witla@gess to the source code. This
is crucial to wide deployment since it enables third-partie generate signatures for commercial-
off-the-shelf (COTS) programs, without relying on softeaendors, thus enabling a quick response
to newly found vulnerabilities.

Due to the importance of the problem, many different apgreador automatic signature gener-
ation have been proposed. Early work proposed to genexateit-based signaturassing patterns
that appeared in the observed exploits, but such signatarekave high false positive and negative
rates 112 105,197,159 237,118 120,119 220. More recently, researchers proposed to generate
vulnerability-based signaturesvhich are generated by analyzing the vulnerable prograghnitan
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execution and the actual conditions needed to exploit theevability and can guarantee a zero
false positive rateq7, 21].

Vulnerability-based signatures. A vulnerability is a point in a program where execution might
“go wrong”. We call this point therulnerability point A vulnerability is only exploited when a
certain condition, therulnerability condition holds on the program state when the vulnerability
point is reached. Thus, to exploit a vulnerability, the inpaeds to satisfy two conditions: (1) it
needs to lead the program execution to reach the vulneyapiint; (2) the program state needs
to satisfy the vulnerability condition at the vulneralyilppoint. We call the boolean predicate that
denotes whether an input message will make the program txegeach the vulnerability point
thevulnerability point reachability predicaté/PRP).

A vulnerability-based signature can be seen as model (esdinted in Sectiorb.2.1) where
the output state is defined by the pair of the vulnerabilitynpand the vulnerability condition.
Thus, a vulnerability-based signature is simply a conjiemcof the vulnerability point reachability
predicate, which specifies the program inputs that reactutmerability point, and the vulnerability
condition that needs to hold at the vulnerability point. $Hthe problem of automatically generating
a vulnerability-based signature can be decomposed into idemtifying the output state formed
by the vulnerability point and the vulnerability conditioand identifying the vulnerability point
reachability predicate. While both problems are importémtthis chapter we focus on how to
generate vulnerability point reachability predicates.e Phoblems of identifying the vulnerability
point and the vulnerability condition have been addressepaat of a parallel projectlBg. Note
that a vulnerability point reachability predicate can disoused as a signature (i.e., witlrae
post-condition at the output state). However, such sigeatoan have false positives because there
may be inputs that reach the vulnerability point but do ngl@ix the application.

Coverage is a key challenge. One important problem with early vulnerability-based sityme
generation approache41] is that the signatures only capture a single path to theerability point
(i.e., their VPRP contains only one path). However, the nemalb paths leading to the vulnerability
point can be very large, sometimes infinite. Thus, such sigea are easy to evade by an attacker
with small modifications of the original exploit messagestsas changing the size of variable-length
fields, changing the ordering of the fields (e.g., HTTP hegjder changing field values that drive
the program through a different path to the vulnerabilitynhoAcknowledging the importance of
enhancing the coverage of vulnerability-based signatueeent work tries to incorporate multiple
paths into the VPRP either by static analysd§, R3], or by dynamic analysis 4, 55]. However,
performing precise static analysis on binaries is hard dugsuies such as indirection, pointers and
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loops, and current dynamic analysis approaches rely ondtietvased black-box probing, which
is less effective at extending the coverage than white-lpgxaaches.

In this paper, we propogerotocol-level constraint-guided exploratipa new approach to au-
tomatically generate vulnerability point reachabilityedicates with high coverage. Our approach
has 3 main characteristics: 1) it is based on white-box e&ptm (i.e., instead of heuristics-based
exploration as in ShieldGerb}] and Bouncer 4€]), 2) the white-box exploration works at the
protocol-leveland generates protocol-level signatures at the end, artde®gctively mergesex-
plored execution paths to remove redundant exploratiore three points seamlessly weave to-
gether and amplify each others benefit. By using white-bgtagation, our approach significantly
increases the effectiveness and efficiency of the exptoratbmpared to previous heuristics-based
approaches. By using protocol information to lift the syiitboonstraints from the byte level to the
protocol level, our approach reduces the exploration sfirgerograms that use highly-structured
protocols or file formats, and produces protocol-level afgres, which compared to byte-level sig-
natures are more compact and cover variants of the explaitsetl by variable-length fields and
field reordering. By merging paths in the exploration, ouplesation further reduces the explo-
ration space, avoiding the exploration of duplicate paltlas dtherwise could make the exploration
space increase exponentially.

Elcano. We have implemented protocol-level constraint-guidedargtion in a signature gener-
ation tool calledElcana We have evaluated the effectiveness of Elcano using 6 rabiliies on
real-world programs. The generated signatures achievegbenr close-to-perfect results in terms
of coverage. Using a 6 hour time limit for the explorationy approach discovered all possible
paths to the vulnerability point for 4 out of the 6 vulnerithgbk, thus generating a complete VPRP.
For those four signatures, the generation time ranges fraleruone minute to 23 minutes. In ad-
dition, the resulting signatures are compact: the numbepps$traints in the resulting VPRP is in
most cases small and those constraints are often small éhasas Compact signatures can be more
easily understood by humans, which facilitates deployment

Other applications. In addition to signature generation, a high coverage valniéty point reach-
ability predicate is useful for other applications such gsl@t generation 22] and patch testing.
For example, the Microsoft patch MS05-018 missed some pattie vulnerability point and as a
result left the vulnerability still exploitable after thageh [L44]. This situation is not uncommon. A
quick search on the CVE database returns 13 vulnerabittigswere incorrectly or incompletely
patched $6]. Our technique could assist software developers to buddenaccurate patches. Fur-
thermore, our protocol-level constraint-guided apprczaincrease the effectiveness of generating
high-coverage test cases and hence be very valuable toeseftasting and bug finding.
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7.2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automaéineration of protocol-level vulnerability
point reachability predicates, then present our runniragrgte, and finally give the overview of our
approach.

7.2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates. Given a
parser implementing a given protocol specification, thenerdbility point, and a seed input that
reaches the vulnerability point, the problem of automaginegation of protocol-level vulnerability
point reachability predicates is to automatically gerewmatpredicate functio’, such that when
given some input mapped into a message field tree by the parsgaluates over the message field
tree: if it evaluates tarue, then the input is considered to be able to reach the vuliiigygioint,
otherwise it is not.

Parser availability and specification quality. The problem of automatic generation of protocol-
level vulnerability point reachability predicates assgnttee availability of a parser implementing
a given protocol or file specification. The parser given sonmit data can map it into fields,
according to the specification, or fail if the input is maffed. In the latter case, the IDS/IPS could
opt to block the input or let it go through while logging theeator sending a warning. Such a parser
is available for common protocols (e.g., WireshaP27]), and many commercial network-based
IDS or IPS have such a parser built-in. In addition, recentkvias shown how to create a generic
parser that takes as input protocol specifications writteamiintermediate languag&7q3 17].

The quality of the specification used by the parser mattetsle/dbtaining a high quality spec-
ification is not easy, this is a one time effort, which can hesesl for multiple signatures, as well as
other applications. For example, in our experiments weaektd a WMF file format specification.
At the time of writing, there are 37 vulnerabilities relatedVMF in the CVE Databas&p], where
our specification could be reused. Similarly, an HTTP speation could be reused in over 1500
vulnerabilities. In ChapteB, we propose techniques to automatically extract the foohahdocu-
mented protocols from the binary of a program that implesmémg protocol. Those techniques can
be used when the protocol used by the vulnerable programdpsbiic specification.

Vulnerability point availability.  Our problem definition assumes that the vulnerability pant
given. Note that the vulnerability point may be differerdutithe program point where the abnormal
behavior is detected. For example, an integer overflow magelected when a program crashes
due to a memory dereference that uses an invalid pointerinhid pointer was created earlier in
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void service() { 17 void doRequest(char * [ineBuf){
char msgBuf[4096]; 18 char vulBuf[128],uri[256];
char lineBuf[4096]; 19 char ver[256], method[256];
int nb=0, =0, sockfd=0; 20 int is_cgi = O;
nb=recv(sockfd,msgBuf,4096,0); 21 sscanf(lineBuf,
fori = 0; i < nb; i++) { 22 "%255s 9%255s %255s",

if (msgBuf[i] == "\n’) 23 method, uri, ver);

break; 24 if (strcmp(method,"GET")==0 ||
else 25 strcmp(method,"HEAD")==0){
lineBuf[i] = msgBUfi]; 26 if strncmp(uri,"/cgi-bin/",
27 9)==0 is_cgi = 1;

if (lineBuf[i-1] == "\r") 28 else is_cgi = 0;

lineBuf[i-1] = "\0’ 29 if (uri[0] !'= 'I") return;
else lineBuf[i] = "\0’; 30 strepy(vulBuf, uri);
doRequest(lineBuf); 31 }
} 2}

Figure 7.1: Our running example.

the execution by adding the overflown integer to a pointethikcase, the vulnerability point is the
arithmetic instruction that overflows, rather than therinstion that dereferences the invalid pointer.
Identifying the vulnerability point is part of a parallelgject that aims to accurately describe the
vulnerability condition 18§. Such vulnerability points could also be identified usingyious
techniques160,46].

Seed input availability. Our problem definition also assumes that a seed input thehesahe
vulnerability point is given. Note that the seed input doesmeed toexploit the vulnerability, it
only needs taeachthe vulnerability point. This seed input enables focusimg ¢xploration on
paths that are related to the program functionality thataioa the vulnerability. If such seed input
is not available, we could use any other program input ta #ter exploration. In this case, the
exploration would iterate (without adding any paths to tHeRP) until finding the first path that
reaches the vulnerability point. However, it is hard to kneten (or if) such path will be found.

7.2.2 Running Example

Figure7.1shows our running example. We represent the example in Géayegfor clarity, but our
approach operates directly on program binaries. Our exangpiresents a basic HTTP server and
contains a buffer-overflow vulnerability. In the exampleg service function copies one line of
data received over the network iftoeBuf  and passes it to thdoRequest function that parses

it into several field variables (lines 21-23) and performmaahecks on the field values (lines 24—
31). The first line in the exploit message includes the mettwel URI of the requested resource,
and the protocol version. If the method is GET or HEAD (linds-25), and the first character of the



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERAON 167

URI is a slash (line 29), then the vulnerability point is eed at line 30, where the size afilBuf
is not checked by thstrcpy function. Thus, a long URI can overflow thelBuf buffer.

In this example, the vulnerability point is at line 30, ané thulnerability condition is that the
local variablevulBuf  will be overflowed if the size of the URI field in the received ssage is
greater than 127. Therefore, for this example, the vulniégapoint reachability predicate is:
((strcmp(FIELD  METHOD,"GET")==0) Vv(strcmp(FIELD _METHOD,"HEAD")==0))

A (FIELD _URI[O] = /) . The vulnerability condition istength(FIELD _URI) > 127 ,
and the conjunction of the two is a perfect protocol-levghature.

7.2.3 Approach

In this chapter we propose a new approach to generate highram®y, yet compact, vulnerability
point reachability predicates, callpdotocol-level constraint-guided exploratioNext, we give the
motivation and an overview of the three characteristics ¢benprise our approach.

Constraint-guided. Previous dynamic approaches to generate vulnerabiligdbaignatures use
heuristics-based exploratiodd, 55). Heuristic-based exploration suffers from a fundameliail
tation: the number of probes needed to exhaustively sehecliiole space is usually astronomical.
In addition, an exhaustive search is inefficient as manygsand up executing the same path in
the program. Thus, such approaches often rely on heurtbdtsre not guaranteed to significantly
increase the signature’s coverage and can also introdlssefasitives.

For example, ShieldGe®}§] uses the specification of the protocol that correspondsgtexploit
message to generate different well-formed variants of thggnal exploit. It uses various heuristics
to create the variants and then checks whether any of thantarstill exploits the vulnerability.
ShieldGen'’s heuristics first assume that fields can be prioldegendently, and then for fixed-length
fields it samples just a few values of each field, checking drethe vulnerability point is reached
or not for those values. Probing each field independentlynsiéizat constraints involving multiple
fields cannot be found. Take the constréahff?E1 + SIZE2 < MSGSIZE , whereSIZE1 and
SIZE2 are length fields in the input, andSGSIZE represents the total length of the received
message. The authors of ShieldGen acknowledge that tiyemtsires cannot capture this type of
constraints, but such constraints are commonly used byramsyto verify that the input message
is well-formed and failing to identify them will introducdtlker false positives or false negatives,
depending on the particular heuristic.

False positives can be introduced because only a few randbras/of each field are tested. If
all tested values for a field exploit the vulnerability théwey consider that any field value would
also exploit it. Imagine the case where the vulnerabilitpriyy exploited wherFIELD < 100.



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERAON 168

If all random probes tested have values smaller than 10@, dpproach incorrectly generalizes
that any value of the field would exploit the vulnerabilityh@n values larger than 100 would
not. False negatives can be introduced because probingacigy sample values for each field

is likely to miss constraints that are satisfied by only a $ifnattion of the field values. For exam-
ple, a conditional statement suchiegFIELD==10) VvV (FIELD==20) then exploit,

else safe ,where FIELD is a 32-bit integer, creates two paths to thaemalbility point. Finding
each of these paths would requi?® random probes on average to discover. Creating a signature
that covers both paths is critical since if the signaturey @olvers one path (e.gzJELD == 10),

the attacker could easily evade detection by changing FlLEave value 20.

To overcome these limitations, we propose to use white-bgkoeation to increase the cov-
erage of the final signatures by automatically discoveriagy paths that reach the vulnerability
point and adding them to the VPRP. However, simply applyireyipus white-box exploration ap-
proaches33, 78, 79 does not scale well to real-world programs that use comighly structure
inputs such as protocols and file formats. In fact, in Bourid€} the authors acknowledge that
they wanted to use white-box exploration but failed to do se t the large number of paths that
need to be explored and thus had to fall back to the heuristised probing approach. To make
white-box exploration feasible and effective we have ipooated two other key characteristics into
our approach as described below.

Protocol-level path predicates. Previous white-box exploration approaches genebgte-level
path predicateswhich are evaluated directly on the input bytes. Such bitel path predicates
in turn generatdyte-level signatureswvhich are also specified on the input bytes. However, pre-
vious work has shown that signatures are better specifiduegtrotocol-level instead of the byte
level [237,55]. We call such signaturgsrotocol-level signatures

Our contribution here is to show that, by lifting byte-leyalth predicates tprotocol-level path
predicates so that they operate on protocol fields rather than on the imygtes, we can make white-
box exploration scale with highly structured inputs, asgsionstraints at the protocol-level hugely
reduces the number of paths to be explored compared to ugtegdvel constraints. The state
reduction is achieved in two ways. First, the parsing lodierintroduces huge complexity in terms
of the number of execution paths that need to be analyzedexXaonple, in our experiments, 99.8%
of all constraints in the HTTP vulnerabilities are genedldig the parsing logic. While such parsing
constraints need to be present in the byte-level path mtdicthey can be removed in the protocol-
level path predicates. Second, the byte-level constraitisduced by the parsing logic makes the
VPRP match only inputs that have the same field structurecasetd exploit message, for example
same size of the variable-length fields and same field sequaren protocols such as HTTP allow
fields to be reordered). Unless the parsing constraintseaneved the resulting signature would be
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very easy to evade by an attacker by applying small variatiorthe field structure of the exploit
message. Finally, the vulnerability point reachabilitgglicates at the protocol level are smaller and
easier to understand by humans.

Merging execution paths. As the exploration discovers new paths leading to the valvitity
point, they need to be added to the vulnerability point rahity predicate. The simplistic ap-
proach is to blindly explore new paths by reversing constsaand at the end create a vulnerability
point reachability predicate that is a disjunction (i.en,emumeration) of all the discovered paths
leading to the vulnerability point. This is the approacht thar string-enhanced white-box explo-
ration uses in Chaptds to create multi-path models of the content-sniffing aldwns in Internet
Explorer 7 and Safari 3.1. Such approach has two main prablEirst, blindly reversing constraints
produces a search space explosion, since the number oftpatkglore becomes exponential in the
number of constraints, and much larger than the real nunflgtbs that exist in the program. We
explain this in detail in Sectior.4. In addition, merely enumerating the discovered paths ig¢ee
signatures that quickly explode in size.

To address these issues, we utilize the observation thartdggam execution may fork at one
branch condition into different paths for one processirg.tand then merge back to perform an-
other task. For example, a task can be a validation check @intfut data. Each independent
validation check may generate one or multiple new paths, (eaking for a substring in the HTTP
URL generates many paths), but if the check is passed thgrdigeam moves on to the next task,
which usually merges the execution back into the origin&hp@hus, in our exploration, we use a
protocol-level exploration grapko identify such potential merging points. This helps ald# the
search space explosion problem, and allows our exploratiguickly reach high coverage.

7.2.4 Architecture Overview

We have implemented our approach in a system called Elcdie architecture of Elcano is shown
in Figure7.2 It comprises of two main components: tbenstraint extractorand theexploration
module and two off-the-shelf assisting components: élkecution monitqrintroduced in Chapte?,
and theparser.

The overall exploration is an iterative process that in@etally explores new execution paths,
similar to the one introduced in Sectién3.3 In each iteration (that we also call test), an input is
sent to the program under analysis, running inside the ¢éxecmonitor. The execution monitor
produces an execution trace that captures the completatexeof the program on the given input.
The execution monitor also logs the test result, i.e., wiretiie vulnerability point was reached or

!Elcano was a Spanish explorer who completed the first ciremigation of the world.
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Figure 7.2: Elcano architecture overview. The darker catadules are given, while the lighter
color components have been designed and implemented walnks

not during the execution. In addition, the parser extrd@amessage format for the input, according
to the given protocol specification. Then, given the executiace and the message format, the con-
straint extractor obtains tH&ld constraint chainThe field constraint chain is conceptually similar
to the path predicateused in previous chapters, but the constraints are at theqaidevel, the
parsing constraints have been removed, and each consgsré@igged with additional information.
We detall the field constraint chain and its constructionest®n7.3.

The exploration module maintains thetocol-level exploration graplwhich stores the current
state of the exploration, i.e., all the execution paths lia&e been so far explored. Given the field
constraint chain, the exploit message and the test relseléxploration module merges the new field
constraint chain into the current protocol-level explmmagraph. Then, the exploration module uses
the protocol-level exploration graph to select a new pathet@xplored and generates a new input
that will lead the program execution to traverse that pailkiesthe newly generated input, another
iteration begins. We detail the exploration module in Seci.4.

The process is started with the seed exploit message andtetatsvely until there are no more
paths to explore or a user-specified time-limit is reached.that point the exploration module
outputs the VPRP. The VPRPs produced by Elcano are writtieng tise Vine languagelp] with
some extensions for string operations introduced in Chdpte

7.3 Extracting the Field Constraint Chain

In this section we present the constraint extractor, whighrgan execution trace, produces a field
constraint chain. The architecture of the constraint extrais shown in Figure.3. First, given
the execution trace thaath predicate extractoperforms symbolic execution with the input repre-
sented as a symbolic variable and extractsptii predicate which is essentially the conjunction
of all branch conditions dependent on the symbolic inpubh@éxecution captured in the execution
trace. The path predicate extractor has been introduceddno®5.3. It produces a byte-level path
predicate which evaluates on the input bytes.



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERAON 171

Message Protocol
format specification MPut
Stream # Protocol l l Field
[ path | Ievel_path I Field | Ievel'path WConst@mt
. predicate_ - predicate_| L Chain
Executior] Predicate » Condition > Cond|t|pn -
trace Extractor Generator Generalizer

Figure 7.3: Constraint Extractor Architecture. The dam@or module is given, while the lighter
color components have been designed and implemented walnks

To enable constraint-guided exploration, Elcano needstttihé path predicate from the byte-
level to the protocol-level, where the constraints areemdton field variables of the input. In
addition, the constraint extractor needs to remove themaonstraints, which dramatically re-
duces the exploration space and makes the exploratiorbfeadio accomplish this, first thigeld
condition generatotifts the byte-level path-predicate to the protocol-leaid then thdield con-
dition generalizemgeneralizes it by removing the parsing constraints andutsibefield constraint
chain The field constraint chain differs from the protocol-lepalth-predicate in that the parsing
constraints have been removed, each constraint is ando#atie additional information, and the
constraints are ordered as they appeared in the execution.

7.3.1 The Field Condition Generator

Given the byte-level path-predicate generated by the patiiigate extractor and the message for-
mat of the input given by the parser, the field condition gatwroutputs a protocol-level path-
predicate. It performs this in two steps. First, it traresatach byte symb&NPUT[x] in the byte-
level path-predicate into a field symtealELD _fieldname [x - start(fieldname)] us-
ing the message field tree produced by the parser (Segt®rwhich contains the mapping from
each field to the range of bytes that it takes in the messagen8git tries to combine symbols on
consecutive bytes of the same field. For example, the by&-pmth-predicate might include the

following constraint: (INPUT[6] << 8 | INPUT[7]) == . If the message format states
that inputs 6 and 7 belong to the same 16ibitfield, then the constraint first gets translated to
(FIELD _ID[0] << 8 | FIELD D[1]) == and then it is converted tBIELD _ID ==

0 whereFIELD _ID is a 16-bit field symbol.

The message format provided by the parser is in the form of ssage field tree (introduced
in Section3.2), where one parent field may have multiple children and tlo¢ of the tree rep-
resents the whole message. For examplelitteBuf  variable in our running example repre-
sents theRequest-Line  field, which in turn contains 3 other fieldMethod , Request-URI
andHTTP-Version . Thus, a constraint such astrstr(lineBuf,"../") £ 0 would be
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translated astrstr(FIELD _Request-Line, "../") % 0. A constraint on the whole
message would be applied on the rtBHield.

Benefits. This step lifts the byte-level path-predicate to the protdevel, breaking the artificial
constraints that the byte-level path-predicate imposetherposition of fields inside the exploit
message. For example, protocols such as HTTP allow soms field message (i.e., the headers
that follow the Request-Line/Status-Line) to be orderdteddntly without changing the meaning
of the message. Thus, two exploit messages could have the figlds ordered differently and a
byte-level vulnerability point reachability predicatengeated from one of them would not flag that
the other exploit also reaches the vulnerability point.dditon, if variable-length fields are present
in the exploit message, changing the size of such fields aathg position of all fields that come
behind it in the exploit message. Again, such trivial vaomatof the exploit message could defeat
byte-level signatures. Thus, by expressing constraintg) dield symbols, protocol-level signatures
naturally allow a field to move its position in the input.

7.3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protbexd path-predicate generated by the
field condition generator, the protocol specification araittput that was sent to the program and
outputs a field constraint chain where the parsing-relatedtcaints have been removed.

First, the field condition generalizer assigns a symbolitatde to each byte of the input and
processes the input according to the given protocol spatidit. This step generates symbolic con-
straints that capture the constraints on the input whichicethe message format of the input to be
the same as the message format returned by the parser orghéargiut. We term these constraints
the parsing constraints. Then, the field condition germgaliemoves the parsing constraints from
the protocol-level path-predicate by using a fast syntaetjuivalence check. If the fast syntactic
check fails, the field condition generalizer uses a more resipe equivalence check that uses a
constraint solver.

Benefits. The parsing constraints in the protocol-level path-pra@i®ver-constrain the variable-
length fields, forcing them to have some specific size (ehg,same as in the exploit message).
Thus, removing the parsing constraints allows the vulribtypoint reachability predicate to han-
dle exploit messages where the variable-length fields haizealifferent than in the original exploit
message. In addition, for some protocols such as HTTP, thdauof parsing constraints in a sin-
gle protocol-level path-predicate can range from sevaratireds to a few thousands. Such a huge
number of unnecessary constraints would blow up the sizleof/tiinerability point reachability



CHAPTER 7. PROTOCOL-LEVEL VULNERABILITY SIGNATURE GENERAON 173

predicate and negatively impact the exploration that wé pvésent in Sectior7.4 because each
constraint would introduce a new path to be explored. Na@gttre parsing constraints are enforced
by the parser, so we can safely remove them from the proteeelpath-predicate while still having
the constraints enforced during the signature matching.tim

The field constraint chain. To assist the construction of the protocol-level explarmatgraph
(explained in Sectior.4), the constraint extractor constructs fiiledd constraint chairusing the
generalized protocol-level path-predicate (after thesipgrconstraints have been removed). A field
constraint chain is an enhanced version of the protocelgath-predicate where each branch con-
dition is annotated with its execution indeX37, which is unique for each point in an execution
and can be used to identify program points that correspomédth other across executions of the
program. These annotated branch conditions are put in aremtcchain using the same order as
they appear in the execution path.

7.4 The Exploration Module

In this section we present the exploration module. The tchire of the exploration module
is illustrated in Figurer.4. It is comprised of three components: tleplorer, the prioritization
engine and theinput generatoy plus an off-the-shelfolver The exploration module performs 3
main tasks in each iteration of the exploration: (1) givemftbld constraint chain, the explorer adds
it to the current protocol-level exploration graph prodigcan updated graph; (2) given the updated
protocol-level exploration graph, the prioritization @mgydecides which new path to explore next;
(3) given the new path, theput generatorgenerates an input that makes the program execute that
path.

The new input is then used to start another iteration of theleybrocess as shown in Figufe2,
that is, the new input is replayed to the program running éekecution monitor and a new field
constraint chain is generated by the constraint extraatioich is passed to the explorer and so on.
The prioritization engine is in charge of stopping the whalecess once there are no more paths
to explore or a user-specified time-limit is reached. Whendkploration stops, the exploration
module outputs the VPRP.

Section7.4.1details how the field constraint chain is added to the cuipestbcol-level explo-
ration graph and Sectioh4.2describes how to generate a new input from the updated il
exploration graph and Sectiagh4.3shows how the VPRP is output.
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Figure 7.4: Exploration module architecture. The darkdorcmodule is given, while the lighter
color components have been designed and implemented iwadnks

7.4.1 Merging Execution Paths into the Protocol-Level Exgmration Graph

Our exploration builds arotocol-level exploration graplas the exploration progresses. Using a
protocol-level exploration graph makes our exploratigm#icantly different from previous white-
box exploration approacheg§, 77,33]. The protocol-level exploration graph provides two funda
mental benefits: 1) the exploration space is significanttiuced because the constraints are at the
protocol level, and 2) it becomes easy to merge paths, whitlrin further reduces the exploration
space, and reduces the size of the vulnerability point agzitity predicate.

Each node in the protocol-level exploration graph reprissaminput-dependent branching point
(i.e., a conditional jump) in the execution. Each node dosta protocol-level predicate and some
additional information about the state of the program whenltranching point was reached. Each
node can have two edges representing the branch taken ibtiessrpredicate evaluated to trug) (
or false ). We call the node where the edge originates gdherce nodeand the node where the
edge terminates thdestination nodelf a node has anpen edgdi.e, one edge is missing), it means
that the corresponding branch has not yet been exploredré=igsillustrates the exploration graph
for our running example after discovering two paths to thimexability point. Note that nodes B,
C, and D have open edges because one of their branches haet heeyn explored.

Intuition. When a new field constraint chain is added to the protocatlexploration graph, it
is important to merge all constraints in the field constrainain that are already present in the
graph. Failure to merge a constraint creates a duplicate,ngtich in turn effectively doubles
the exploration space because the subtree hanging froneplieated node would need to be ex-
plored as well. Thus, as the number of duplicated nodesasess the exploration space increases
exponentially.

The key intuition behind why merging is necessary is that dtdmmon for new paths generated
by taking a different branch at one node, to quickly mergeliato the original path. This happens
because programs may fork execution at one constraint fopmtessing task, and then merge back
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stremp(METHOD, “HEAD”)==0

Figure 7.5: An example exploration graph for our runningregke. Note that nodes B, C, and D
all have open edges because their false branches have itereexplored.

to perform another task. One task could be a validation cbadke input data. Each independent
check may generate one or multiple new paths (e.g., looking substring in the URI generates
many paths), but if the check is passed then the program navés the next task (e.g., another
validation check), which usually merges the execution Hatk the original path. For example,
when parsing a message the program needs to determine ifatsage is valid or not. Thus, it
will perform a series of independent validity checks to fyetie values of the different fields in the
message. As long as checks are passed, the program stitlemnthe message to be valid and the
execution will merge back into the original path. But, if ack fails then the program will move
into a very different path, for example sending an error gss

The intuition on the merging is that two nodes can be mergendif represent the same program
point and they are reached with the same program state. méfidéhe program point, each con-
straint in the field constraint chain is annotated with iteastion index 232, which is unique for
each point in an execution and can be used to identify pdiaisdorrespond to each other across
executions of the program. To identify the program state s& altechnique similar to the one
introduced in 6] where we compute the set of all values (both concrete andbslyo) written by
the program during the execution up to the point where thetcaimt is executed. Thus, we merge
nodes that satisfy 4 conditions: same instruction addszsag execution index, equivalent predi-
cate, and same program state. Note that using the progréamisimportant to avoid introducing
errors due to implicit flows. For example, in Figufeit could happen that before the D constraint
the program sets the string variahi¢o the string “GET". In this case, there exists an implicitiflo
from the constraint A to the variable. Then, before the C constraint, the program could check
if the variablex has value “GET”, but the variable would not be symbolic due to the implicit
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flow and such constraint would not be added to the graph. Tiol @oorrectly merging nodes with
different state, we use the write set to approximate therprogstate at the time the constraint is
evaluated.

Merging a new path into the exploration graph. To insert a new field constraint chain into the
protocol-level exploration graph, the explorer startsgimay from the top until it finds a node that
it cannot merge, either because it is not in the graph yeteoatlse the successor in the new field
constraint chain is not the same one as in the graph. We egfirddecessor of the node that cannot
be merged (i.e., the last node merged)<pkt node To check if a node is already in the graph, the
explorer checks if the node to be inserted is equivalent ésastruction address, same execution
index, equivalent predicate, and same state) to any othigr aloeady in the graph.

Once a split node has been identified the graph keeps tryimgtge the rest of the nodes in the
new field constraint chain until it finds a node that it can reesghich we term thgoin node At
that point, the explorer adds all the nodes in the new fielditaimt chain between the split node
and the join node as a sequence of nodes in the graph hangmgHe split node and merging at
the join node. The process of looking for a split node and fbem join node is repeated until the
sink of the new field constraint chain is reached. At that fdfithe explorer was looking for a join
node then all nodes between the last split node and the sinadated to the graph as a sequence
that hangs from the last split node and ends at the sink.

For example, Figuré.6 illustrates the graph construction for our running examgie Fig-
ure 7.6A the graph contains only the original field constraint chgémerated by sending the seed
exploit message to the program, which contains the threesnodroduced by lines 24, 26, and
29 in our running example (since the parsing constrainte ladéready been removed). The sink of
the original field constraint chain is the vulnerability ppbnode ¥P). Figure7.6B shows the sec-
ond field constraint chain that is added to the graph, which elmained by creating an input that
traverses the false branch of node A. When adding the fieldtnt chain in Figur&.eB to the
graph in Figurer.6A, the explorer merges node A and determines that A is a spiie fbecause A's
successor in the new field constraint chain is not A's sucreassthe graph. Then, at node B the
explorer finds a join node and adds node D between the splé and the join node in the graph.
Finally node C is merged and we show the updated graph in &ga6cC.

7.4.2 Generating a New Input

Even after removing the parsing constraints from the padttevel path predicate and merging
duplicated constraints, the number of paths to explore tilhheslarge. Since we are only interested
in paths that reach the vulnerability point, we have impleteé a simple prioritization scheme that
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stremp (
METHOD,
"GET") ==0
stremp (
VERSION ,
strncmp (URI,"/ "HTTP/0.97)

cgi-bin/",9) == 0 =0
stremp (

VERSION ,

URI[0] != /

Figure 7.6: Building the protocol-level exploration grajeh our running example.

favors paths that are more likely to reach it. The priortia engine uses a simple weight scheme,
where there are three weights 0, 1, and 2. Each weight hastitsode queue and the prioritization
engine always picks the first node from the highest weightemopty queue. The explorer assigns
the weights to the nodes when adding them to the graph. Nbdésepresent loop exit conditions
get a zero weight (i.e., lowest priority). Nodes in a field stwaint chain that has the vulnerability
point as sink get a weight of 2 (i.e., highest priority). Ather nodes get a weight of 1. We favor
nodes that are in a path to the vulnerability point becaua@&éw path does not quickly lead back to
the vulnerability point, then the message probably faifeldurrent check or went on to a different
task and thus it is less likely to reach the vulnerabilitymdater. We disfavor loop exit conditions
to delay unrolling the same loop multiple times. Such héigrfselps achieve high coverage quickly.

We define anode reachability predicatéo be the predicate that summarizes how to reach a
specific node in the protocol-level exploration graph froim$tart node, which includes all paths
in the graph from thé&tart  to that node. Similarly, we definelmanch reachability predicatéo
be the predicate that summarizes how to traverse a spedficthiof a node. A branch reachability
predicate is the conjunction of a node reachability predigegth the node’s predicate (to traverse
the true branch), or the negation of the node’s predicatedt@rse the false branch). To compute
a new input that traverses the specific branch selected bprtbgtization engine, the explorer
first computes the branch reachability predicate. Theniriiet generator generates an input that
satisfies the branch reachability predicate.

To compute the branch reachability predicate, the explingtrcomputes the node reachability
predicate. The node reachability predicate is essentibéyweakest pre-condition (WP§]] of
the source node of the open edge over the protocol-levebeatmn graph—by definition, the WP
captures all paths in the protocol-level exploration grépt reach the node. Then, the explorer
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computes the conjunction of the weakest pre-condition thi#node’s predicate or with the negated
predicate depending on the selected branch. Such corgaristthe branch reachability predicate,
which is passed to the input generator.

For example, in Figur@.6C if the prioritization engine selects the false branch afed to be
explored next, then the branch reachability predicate ywed by the explorer would bed A D.
Similarly, in Figure7.6D if the prioritization engine selects the false branch ale to be explored
next, then the branch reachability predicate produced égxplorer would be{ AV (AA D)) A B.

The input generator generates a new input that satisfiegamelo reachability predicate using
a 3-step process. First, it uses a constraint solver to genéeld values that satisfy the branch
reachability predicate. If the constraint solver retutmet ho input can reach that branch, then the
branch is connected to thénreachable node. Second, it extracts the values for the remaining
fields (unconstrained by the solver) from the seed explogsage. Third, it checks the message
format provided by the parser to identify any fields that nimeble updated given the dependencies
on the modified values (such as length or checksum fieldsk et here we assume the message
field tree output by the parser provides such dependencteentlise, we need to use the techniques
in Chapter3 to identify the length fields and the techniques that we wiitaduce in Chaptes to
identify the checksum fields. Using all the collected fieltliea it generates a new input that starts
a new iteration.

7.4.3 Extracting the Vulnerability Point Reachability Predicate

Once the exploration ends, the protocol-level exploratjcaph contains all the discovered paths
leading to the vulnerability point. To extract the VPRP frtime graph the explorer computes the
node reachability predicate for the VP node. For our runexgmple, represented in Figurese
the VPRP is:( A V (A A D)) A C. Note that, a mere disjunction of all paths to the VP, would
generate the following VPRRAA BAC)V (AANDABAC)V (AANBAC)V(ANDABAC) .
Thus, Elcano’s VPRP is more compact using 4 conditions dunlsteé 14.

7.5 Evaluation

In this section, we present the results of our evaluationeVéduate Elcano using 6 vulnerabilities,
summarized in Tablé.1 The table shows the program, the CVE identifier for the wahgity [56)],

the protocol used by the vulnerable program, the protoqu# {y.e., binary or text), the guest oper-
ating system used to run the vulnerable program, and thedfypalnerability. We select the vul-
nerabilities to cover file formats as well as network protecmultiple operating systems, multiple
vulnerability types, and both open-source and closed progr where no source code is available.
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Program CVE Protocol Type Guest OS Vuln. Type

gdi32.dll (v3159) CVE-2008-1087| EMFfile | Binary | Windows XP | Buffer overflow
gdi32.dll (v3099) CVE-2007-3034| WMF file | Binary | Windows XP | Integer overflow
Windows DCOM RPC| CVE-2003-0352 RPC Binary | Windows XP | Buffer overflow
GHttpd CVE-2002-1904| HTTP Text Red Hat 7.3 | Buffer overflow
AtpHttpd CVE-2002-1816| HTTP Text Red Hat 7.3 | Buffer overflow
Microsoft SQL Server| CVE-2002-0649| Proprietary| Binary | Windows 2000| Buffer overflow

Table 7.1: Vulnerable programs used in the evaluation.

Program Original | Non-parsing Program All branches
constraints explored VPRP
Gdi-emf 860 65 Gdi-emf no 72
Gdi-wmf 4 4 Gdi-wmf yes 5
DCOM RPC 535 521 DCOM RPC no 1651
GHttpd 2498 5 GHttpd yes 3
AtpHttpd 6034 10 AtpHttpd yes 10
SQL Server 2447 7 SQL Server yes 3

Table 7.2: Constraint extractor results for the Table 7.2: Exploration results, including
first test, including the number of constraints whether all open edges in the protocol-level
in the protocol-level path-predicate and the exploration graph were explored and the
number of remaining constraints after pars- number of constraints remaining in the vul-
ing constraints have been removed. nerability point reachability predicate.

In addition, the older vulnerabilities (i.e., last foureamlso selected because they have been ana-
lyzed in previous work, and this allows us to compare ouresy& results to previous ones. Next,
we present the constraint extractor results (Sectidnl), the exploration results (Sectiah5.2),

and the produced signatures (Sectioh.3.

7.5.1 Removing the Parsing Constraints

In this section we evaluate the effectiveness of the canstextractor, in particular of the field
condition generalizer, at removing the parsing constsairdm the protocol-level path-predicate.
For simplicity, we only show the results for the protocoldepath-predicate produced by the field
condition generator from the execution trace generatedh®yséed exploit. Note that, during ex-
ploration this process is repeated once per newly geneirgtetl Table7.2summarizes the results.
The Original column represents the number of input-dependent contstrairthe protocol-level
path-predicate and is used as the base for comparisonNdigarsing constraintsolumn shows
the number of remaining constraints after removing theiparsonstraints.

The removal of the parsing constraints is very successfall iexperiments except the DCOM-
RPC. Overall, in the four vulnerable programs that includdable-length strings (i.e., excluding
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Gdi-wmf and DCOM-RPC), the parsing constraints accounBi% to 99.8% of all constraints.

For formats that include arrays, such as DCOM RPC, the numibparsing constraints is much

smaller but it is important to remove such constraints; tse they constrain the array to have
the same number of elements as in the exploit message. Byimgrtbe parsing constraints, each
field constraint chain represents many program executidmsgaoduced by maodifying the format
of the exploit message (e.g., extending variable-lengttisfier reordering fields). This dramatically
decreases the exploration space making the exploratisibfea

7.5.2 Exploration Results

Table7.2shows the results for the exploration phase. We set a u§i@eeddime-limit of 6 hours for
the exploration. If the exploration has not completed by time Elcano outputs the intermediate
VPRP and stores the current state of the exploration. Thig san later be loaded to continue
the exploration at the same point where it was interruptdtk first column indicates whether the
exploration completes before the specified time-limit. $beeond column presents the number of
constraints in the intermediate VPRP that is output by thogation module once there are no
more paths to be explored or the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano exglatepossible paths, thus gen-
erating a complete VPRP (i.e., a VPRP that covers all patlibetovulnerability point). For the
DCOM RPC and Gdi-emf experiments, the 6 hour time-limit weeched, thus the VPRPs are not
complete. They also show that the number of constraintseWV#PRP is in most cases small. The
small number of constraints in the VPRP and the fact that inyntcases those constraints are small
themselves, makes the signatures easy for humans to anasyapposed to previous white-box ap-
proaches where the large number of constraints in the sighatade it hard to gain insight on the
quality of the signature. We do that by labeling the nodeséngraph with the full protocol-level
constraints.

Performance. Table 7.3 summarizes the performance measurements for Elcano. Adbune-
ments were taken on a desktop computer with a 2.4GHz IntdZbuo CPU and 4 GB of mem-
ory. The first column presents the VPRP generation time iorstx For the Gdi-emf and DCOM
RPC examples, the 6 hour (21,600 sec.) time-limit is reachast the rest, the generation time
ranges from under one minute for the GHttpd vulnerabilitta@3 minutes for the Microsoft SQL
vulnerability. Most of the time (between 60% and 80% depeagdin the example) is spent by
the constraint extractor. The remaining columns show thmbmu of tests in the exploration, the
average time per test in seconds, and the average size irbytegaf the execution trace.
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16-hit

) .
0 FileType H_gszder?
2 HeaderSize =9
Gener. Avg. test | Trace | 4  Version omfzosw%)
Program time | # tests time size| % Fiesize H_Version
Gdi-emf 21600| 502 430| 288| || =000 b Vs
Gdi-wmf 98 6 163| 3.0 ., ) == 0x100
DCOM RPC| 21600 235 92.0 35 MaxRecordSize | H_FileSize Oxrr20azb
GHttpd 55 6 9.1 3.0 | 16] NoParameters >o;771f§3f67
AtpHttpd 282 12 235 8.6 | 8 size R_Size
SQL Server | 1384 11 125.8] 275 <~ 8183
22 Function

. 24
Table 7.3: Performance evaluation. The genera- ! parameters i
tion time and the average test time are given in -----------

seconds, and the trace size is given in Megabytes.
Table 7.3: On the left, the format of the Gdi-

wmf exploit file. On the right the vulnerability
point reachability predicate.

Compared to Bouncer, where the authors also analyze the 8@erSand GHttpd vulnerabil-
ities, the signatures produced by Elcano have higher cgeefize., less false negatives) and are
smaller. For example, Bouncer spends 4.7 hours to geneatmature for the SQL Server vul-
nerability, and the generated signature only covers aifmracif all the paths to the vulnerability
point. In contrast, Elcano spends only 23 minutes, and tinergéed signature covers all input-
dependent branches to the vulnerability point. Similaidy,the GHttpd vulnerability the authors
stop the signature generation after 24 hours, and againghatsre only covers a fraction of all
input-dependent branches to the vulnerability point, @liilcano generates a complete signature
that covers all input-dependent branches to the vulnérapibint in under one minute (according
to the ShieldGen authors, who studied this vulnerability bad access to the source code).

7.5.3 Signatures

For the two vulnerabilities in open-source programs (GtHtpd AtpHttpd), we extract the perfect
signatures for the vulnerability through manual analy$ithe source code. The results show that
Elcano’s VPRPs exactly match or are very close to the pediees that we manually extract. For
AtpHttpd the signature misses one path to the vulnerakhiliiynt where the server uses thiat
function to check whether a prefix of the URI field is a diregton disk. To add this constraint to
the final VPRP we could use a function summary for the stattfoncimilar to the ones we used
in Chapter6 for the string functions. In that case the system that témtssignature would have
to be identically configured to the vulnerable system. Aaptipproach would be to ignore such
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constraints that test local configuration, assuming theyabways satisfied. Such approach makes
configuration easier but may introduce false positives. tRerother signatures we compare with
previous results when available. Next, we detail the SQlv&eaand Gdi-wmf signatures.

SQL server. The parser returns that there are two fields in the seed éxphgisage: the Command
(CMD) and the Database name (DB). The protocol-level patiipate for the path corresponding
to the seed contains 7 constraints, which after simplificatian be reduced to three. The explo-
ration covers the open edges of those 3 nodes and finds thatafdhe newly generated inputs
reaches the vulnerability point. Thus, no new paths are chdiniehe exploration graph and the
VPRP is:

(FIELD _.CMD==4) A (strcmp(FIELD _DB,™)/=0) A (strcasecmp(FIELD _DB,"MSSQLServer")/ =0).

In addition, the vulnerability condition for this vulneraty states that the length of the DB field
needs to be larger than 64 bytd8§, which makes the last two constraints in the VPRP redundant
Thus, the final protocol-level signature would ELD .CMD == 4) A length(FIELD _DB) > 64.
According to the ShieldGen authors, who had access to theesaode, this would be a perfect
signature.

Gdi-wmf. Figure7.3shows on the left the field structure for the seed exploit filg an the right
the VPRP. The original protocol-level path-predicate aored the 4 aligned nodes on the left of the
graph, while the exploration discovers one new path leafitige vulnerability point that introduces
the node on the right. The graph shows that the program cheulther the/ersion field is 0x300
(Windows 3.0) or 0x100 (Windows 1.0). Such constraint iskaty to be detected by probing ap-
proaches, since they usually sample only a few values. tpifaBhieldGen they analyze a different
vulnerability in the same library but run across the samesttamt. The authors acknowledge that
they miss the second constraint of the disjunction. Thustt@tker could easily avoid detection by
changing the value of the Version field. The vulnerabilitp@ition is(2 - FIELD RSIZE) >> 2)

< 0 [18§. Thus, the final signature i$FIELD _HSIZE == 9) A ((FIELD _VERSION == 0x300) V
(FIELD VERSION == 0x100)) A (FIELD FILESIZE > 12) A (FIELD RSIZE < 8183) A (((2

FIELD _RSIZE) >> 2) < 0).

7.6 Related Work

In this section, we present related work on automatic sigeajeneration. We refer the reader to the
related work sections in earlier chapters for a descriptiorelated research on symbolic execution
(Section5.7), automatic test case generation (SecBds), compositional approaches to white-box
exploration (Sectiof®.6), and automatic protocol reverse-engineering (Se@&ién
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Exploit-based signatures. Early works on automatic signature generation proposergéng
exploit-based signatures using machine learning techksidiat identify patterns in the observed
exploits [L12, 105 197,159 237,118 22(. However, exploit-based signatures are not guaranteed
to correctly describe the vulnerability, require a largé afeattack samples, can introduce false
positives, and can be easily defeated with exploit variahkere is also work on using host infor-
mation to increase signature accuracy and generation $féédL20 119 233. However, these
approaches only use limited host information, and stillncarmodel the vulnerability accurately.
Venkataraman et al. show the limits of using machine legrt@chniques for signature generation
in an adversarial environmer213.

Vulnerability-based signatures. A more recent line of work generates symbolic-executiorebas
vulnerability signatures directly from the vulnerable gram binary #7,21,46,23]. The vulnerability-
based signatures are guaranteed to have no false posiivessign. Vigilante uses dynamic sym-
bolic execution to produce signatures that are booleanigatas that cover a single path to the
vulnerability point 7]. Compared with Vigilante, Elcano also produces booleadisates as sig-
natures but our signatures have higher coverage becayseaver multiple execution paths to the
vulnerability point. Brumley et al. analyzes three typessiginatures: Turing machines, boolean
signatures, and regular expressions, and demonstratea aafect vulnerability-based signature
must be in at least the same language class as the vulngré&biljuage 21]. More recently, Brum-
ley et al. propose a static analysis technique based on wiepierondition to generate boolean
signatures that cover multiple paths to the vulnerabilibgnp [23]. Our approach uses dynamic
analysis instead of static analysis and can achieve momspmme in the presence of indirection,
pointers and loops.

Bouncer extends previous dynamic symbolic execution ambres that produce boolean pred-
icates on inputs as signatureto]. Even though Bouncer makes improvements in increasing the
coverage of the generated signatures, it still suffers femweral limitations. First, it generates
byte-level signatures instead of protocol-level sigregurAs a result, it is difficult for Bouncer to
handle evasion attacks using variable-length fields and fesrdering. Second, Bouncer's explo-
ration is inefficient and largely heuristic-based. As maméid in their paper, the authors tried to use
white-box exploration to explore the program executioncsep@a identify different paths reaching
the vulnerability point, but couldn’t make the approachedtareal-world programs and thus had to
resort to heuristics such as duplicating or removing pdrte@input message or sampling certain
field values to try to discover new paths leading to the vahiity point. To make white-box ex-
ploration feasible and effective, Elcano incorporates otfer key characteristics. It uses protocol
information to lift the byte-level path predicates to thetpcol level, and it merges protocol-level
path predicates to avoid a search space explosion, sintieated constraints can make the number
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of paths to explore exponential in the number of constraartsl much larger than the real number
of paths that exist in the program.

Protocol-level signatures. Shield proposes a framework for protocol-level vulneigblbased
signatures, which are created manually by modeling netwodtocols P18. ShieldGen pro-
poses an approach to automatically generate such prdmedlsignaturesgs]. ShieldGen takes
a probing-based approach using protocol format informatind does not use information about
the program execution. Using the given protocol format.eimerates different well-formed vari-
ants of the original exploit using various heuristics arghtibhecks whether any of the variants still
exploits the vulnerability. ShieldGen’s heuristics firssame that fields can be probed indepen-
dently, and then for fixed-length fields it samples just a falugs of each field, checking whether
the vulnerability point is reached or not for those valuesbihg each field independently means
that constraints involving multiple fields cannot be fourlttobing only a few sample values for
each field is likely to miss constraints that are satisfiedly a small fraction of the field values.
Moreover, the type of constraints in ShieldGen are limitedither “a field has the same value as in
the seed exploit message” or “a field can have any value”. htrast, our approach supports more
granular constraints such as “a field can have only valugsidhan five”. Compared to ShieldGen
our approach does not uses heuristics but uses white-bdoratipn to increase the coverage of the
signature, addressing the above limitations.

7.7 Conclusion

In this chapter we have proposed protocol-level constigiided exploration, an approach for auto-
matically generating vulnerability point reachabilityeplicates, with application to signature gener-
ation, exploit generation and patch verification. Our apphoproduces high coverage, yet compact,
vulnerability point reachability predicates that captovany paths to the vulnerability point and thus
are more difficult to evade using exploit variants.

Compared to previous white-box exploration approachestppol-level constraint-guided ex-
ploration provides two key characteristics to make the angplon scale to programs that parse
complex, highly-structured inputs such as protocols amdffitmats. First, our approach lifts the
byte-level path predicates in previous approaches to thtqol-level, so that they evaluate on
symbolic variables that represent the fields in the inpuis Tifting provides two main benefits. It
removes the parsing constraints that produce a huge ambpatts that otherwise would need to
be explored, greatly reducing the exploration space. litiadg it produces predicates that match
exploit variants that modify the field structure of an expla@.g., by increasing the size of the
variable-length fields or reordering the fields in the explogssage. Second, our approach merges
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protocol-level path predicates into a protocol-level exation graph. Such merging removes re-
dundant constraints that otherwise would have to be exglovéithout merging, the search space
could exponentially increase and become much larger trearetdi number of paths in the program.
We have applied our approach to generate signatures forn@naldilities on real-world pro-
grams. The generated vulnerability point reachabilitydmates achieve perfect or close-to-perfect
coverage. Using a 6 hour time limit for the exploration, oxipleration generates a complete vul-
nerability point reachability predicate, covering all piide paths to the vulnerability point for 4
out of 6 vulnerabilities. In addition, the number of constta in the resulting vulnerability point
reachability predicate is in most cases small, which makestmore suitable for human analysts.



Chapter 8

Stitched Vulnerability Discovery

8.1 Introduction

Vulnerability discovery inbenignprograms has long been an important task in software sgcurit
identifying software bugs that may be remotely exploitabie creating program inputs to demon-
strate their existence. However, little research has addrevulnerabilities imalware Do mali-
cious programs have vulnerabilities? Do different birmakthe same malware family share vulner-
abilities? How do we automatically discover vulneral@ktiin malware? What are the implications
of vulnerability discovery in malware to malware defensay kenforcement and cyberwarfare? In
this chapter we take the first step toward addressing thessigns. In particular, we propose new
symbolic reasoning techniques for automatic input geimrah the presence of complex func-
tions such as decryption and decompression, and demansteaeffectiveness of our techniques
by finding bugs in real-world malware. Our study also shove thulnerabilities can persist for
years across malware revisions. Vulnerabilities in botfients are valuable in many applications:
besides allowing a third party to terminate or take contfa bot in the wild, they also reveal ge-
nealogical relationships between malware samples. We twpeork will spur discussions on the
implications and applications of malware vulnerabilitgatvery.

Dynamic symbolic execution techniques0f have recently been used for a variety of in-
put generation applications such as vulnerability disppy&8, 33, 79], automatic exploit gener-
ation 22,104, and finding deviations between implementatio@6]] By computing symbolic
constraints on the input to make the program executionvioligparticular path, and then solving
those constraints, dynamic symbolic execution allows teqy$o automatically generate an input to
execute a new path. Repeating this process gives an autcerptoration of the program execution
space. However, traditional dynamic symbolic executiomédfective in the presence of certain
common computation tasks, including the decryption andehpression of data, and the computa-
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tion of checksums and hash functions; we call threaseoding functionsEncoding functions result
in symbolic formulas that can be difficult to solve, which @& surprising, given that cryptographic
hash functions are designed to be impractical to invEt]} Encoding functions are used widely
in malware as well as benign applications. In our experimetite traditional dynamic symbolic
execution approach fails to explore the execution spadeeofrialware samples effectively.

To address the challenges posed by the presence of encadiotiohs, we propose a new
approachstitcheddynamic symbolic executior2ff]. This approach first automatically identifies
potential encoding functions and their inverses (if agtlle). Then it decomposes the symbolic
constraints from the execution, separating the constrgiemerated by each encoding function from
the constraints in the rest of the execution. The solver dotsttempt to solve the (hard) constraints
introduced by the encoding functions. Instead it focusesabving the (easier) constraints from the
remainder of the execution. Finally, the approach retstécthe solver’s output using the encoding
functions or their inverses, creating a program input thatloe fed back to the original program.

For instance, our approach can automatically identify ahadrticular function in an execution is
performing a computation such as decrypting the input. &attan using symbolic execution inside
the decryption function, it applies symbolic execution be butputs of the decryption function,
producing constraints for the execution after the decoyptiSolving those constraints generates
an unencrypted message. Then, it executes the inverseygéon) function on the unencrypted
message, generating an encrypted message that can beleabhihe input to the original program.

More generally, we decompose two kinds of computationsalseomputations that transform
data into a new form that replaces the old data (e.g., deassjon and decryption), and side
computations that generate constraints that can be sdtigfiehoosing values for another part of the
input (e.g., checksums). For clarity, we explain our teghas in the context of dynamic symbolic
execution, but they equally apply to concrete fuzz testé8)145 and taint-directed fuzzingrg).

Our stitched dynamic symbolic execution approach appbgsrodgrams that use complex en-
coding functions, regardless if benign or malicious. Irstbhapter, we use it to enable the first
automated study of bugs in malware. The closest previouk werknow of has focused on find-
ing bugs on the remote administration tools that attacksesta control the malware, as opposed
to the malware programs themselves, running on the compeahtiosts79,64]. Using stitched
dynamic symbolic execution we find 6 new, remotely triggeledugs in 4 prevalent malware fam-
ilies that include botnet clients (Cutwail, Gheg, and Mepabd trojans (Zbot). A remote network
attacker can use these bugs to terminate or subvert the nealwa least one of the bugs can be
exploited, e.g., by an attacker different than the botnmasidake over the compromised host. To
confirm the value of our approach, we show that traditionatevhox exploration would be unable
to find most of the bugs we report without the new techniquesweduce.
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Malware vulnerabilities have a great potential for diff@r@pplications such as malware re-
moval or cyberwarfare. Some malware programs such as bateets are deployed at a scale that
rivals popular benign applications. For instance, thermtigalisabled Mariposa botnet was sending
messages from more than 12 million unique IP addresses abtheit was taken down, and stole
data from more than 800,000 use#b]f Our goal in this research is to demonstrate that finding
vulnerabilities in widely-deployed malware such as botrieints is technically feasible. However,
the implications of the usage of malware vulnerabilitieguiee more investigation. For example,
some of the potential applications of malware vulnerabgitraise ethical and legal concerns that
need to be addressed by the community. Thus, another gdas sésearch is to raise awareness and
spur discussion in the community about the positives andties of the different uses of malware
vulnerabilities.

The remainder of this chapter is organized as follows: 8e@i2 defines the problem we
address, Sectio8.3 describes our approach in detail, Sect®4 gives additional practical details
of our implementation, Sectid®.5 describes our case studies finding bugs in malware, Segiton
discusses the implications of our results, Sec8dnsurveys related work, and finally, Secti8r8
concludes.

8.2 Problem Definition & Approach Overview

In this section, we describe the problem we address and gieserview of our approach.

8.2.1 Problem Definition

Often there are parts of a program that are not amenable @naigrsymbolic execution. A class
of common culprits, which we caéincoding functionsincludes many instances of decryption, de-
compression, and checksums. For instance, consider tleeicdegure8.1, which is an example
modeled after a botnet client. A C&C message for this botoetprises 4 bytes with the mes-
sage length, followed by 20 bytes corresponding to a SHAsh lfie6]], followed by an encrypted
payload. The bot casts the received message into a messagferst, decrypts the payload using
AES [57], verifies the integrity of the (decrypted) message bodypgishe SHA-1 hash, and then
takes a malicious action such as sending spam based on a cohmthe message body. Dynamic
symbolic execution attempts to create a new valid input Ihyirsg a modified path predicate. Sup-
pose we run the program on a message that causes the bot¢gpptetin a DDoS attack: at a high
level, the path condition takes the form

m' = Dedm) A hy = SHAL(m') Am/[0] = 101 (8.1)



© O N o g A W N B

NN B B R R R s R R
P O © ® N ® O A W N B O

CHAPTER 8. STITCHED VULNERABILITY DISCOVERY 189

struct msg {
long msg_len;
unsigned char hash[20];
unsigned char message][];
%
void process(unsigned char * network _data) {
unsigned char  *p;
struct msg *m = (struct msg *) network_data;
aes_cbc_decrypt(m->message, m->msg_len, key);
p = compute_shal(m->message, m->msg_len);
if (memcmp(p, m->hash, 20))
exit(1);
else {
int cmd = m->message[0];
if (cmd == 101)
ddos_attack(m);
else if (cmd == 142)
send_spam(m);
[+ . *]

Figure 8.1: A simplified example of a program that uses layarput processing, including decryp-
tion (line 9) and a secure hash function for integrity vesifion (lines 10-12).

wherem andh; represent two relevant parts of the program input treatesyabolic: m is the
encrypted payloach->message , andh is the message checksum>hash . Dec represents the
AES decryption, while SHAL is the SHA-1 hash function. To sdether it can create a message
to cause a different action, dynamic symbolic executiori atlempt to solve the modified path
condition

m’ = Dedm) A hy = SHALm') A m/[0] # 101 (8.2)

which differs from the original in inverting the last coridit.

However, solvers tend to have a very hard time with condstisach as this one. As seen by
the solver, the Dec and SHA1L functions are expanded into glentombination of constraints
that mix together the influence of many input values and are ttareason aboubp]. The solver
cannot easily recognize the high-level structure of thepatation, such as that the internals of the
Dec and SHAL functions are independent of the parsing dondit’[0] # 101. Such encoding
functions are also just as serious an obstacle for relatduhigues like concrete and taint-directed
fuzzing. Thus, the problem we address is how to perform igpuaeration, using dynamic symbolic
execution, for programs that use encoding functions.
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Figure 8.2: Architectural overview of our approach. Theygreodules comprise stitched dynamic
symbolic execution, while the white modules are the sama &®dlitional dynamic symbolic exe-
cution.

8.2.2 Approach Overview

We propose an approach stitcheddynamic symbolic execution to perform input generatiorhim t
presence of encoding functions. The insight behind ourcaar is that it is possible to avoid the
problems caused by encoding functions, by identifying therd) constraints they introduce and
bypassing them to concentrate on the (easier) constraitrtduced by the rest of the program.
Then, we can used concrete execution of the encoding fursctiad their inverses to re-stitch an
input. For instance, in the path predicate of form@il3 the first and second constraints come from
encoding functions. Our approach can verify that thosetcainss are independent from each other
and from the message parsing process (exemplified by théramsn'[0] # 101). Thus, those
two constraints can be decomposed, and the solver can doateean the remaining constraints.
Solving the remaining constraints gives a partial inpuhform of a value forn/, and our tool can
then re-stitch this into a complete program input by comdyedxecuting the encoding functions or
their inverses, specifically, as SHAIm') andm as Dec!(m/).

Stitched dynamic symbolic execution. Figure8.2 presents the architectural overview of our ap-
proach. Stitched dynamic symbolic execution comprisesetinnodules: identification, decomposi-
tion, and re-stitching. The identification module finds theaing functions present in a program
execution (such as decryption and checksums) and looksforemuired inverses both in the ex-
ecution as well as in external sources that we describe iméle paragraph. The identification
module can be run in each iteration of the exploration or émly subset of iterations. We describe
the identification module in Sectid3.3 The decomposition and re-stitching modules run in every
iteration of the exploration. On each iteration, the decositipn module separates the constraints
in the path predicate into two groups: those introduced byeticoding functions and those intro-
duced by the rest of the execution. We describe the decotiggosnodule in Sectior8.3.1 The
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decomposition module passes the constraints from the s @xecution to the input generation
module, which is similar to the one in Chapt&and7. The input generation module produces a
partial input that explores a new path inside the programezgtion. The re-stitching module takes
as input the partial input, as well as the encoding functiand inverses from identification and
re-stitches the partial input into a complete program iripat can be used to start another iteration
of the exploration. If as in Figur8.1there are multiple layers of encoding functions, each l&yer
decomposed in turn, and then the layers are re-stitchedanse order. We describe the re-stitching
module in SectiorB.3.2

Identifying encoding functions and their inverses. For identifying encoding functions, the iden-
tification modules performs a trace-based dependency sisdhat is a general kind of dynamic
tainting. This analysis detects functions that highiix their input, i.e., an output byte depends on
many input bytes. The intuition is that high mixing is whatkega constraints difficult to solve. For
example, a block cipher in CBC mode highly mixes its input iiedconstraints it introduces during
decryption are hard to solve, but a stream cipher does noitmirput and thus the constraints it
introduces can be easily solved. Although this may be coumtétive, note that a stream cipher
such as RC4 decrypts the input by performing, for each inpi#, lan xor operation with a pseudo-
random key stream. For the solver, the pseudo-random kegrstis concrete and thus it only needs
to revert a simple xor operation between the input and a aahskn other words, keys that are not
derived from the input are simply constants for the solvéiust our identification technique targets
encoding functions that highly mix their inputs.

In addition to the encoding functions, our approach may edsmire their inverses (e.g., for
decryption and decompression functions). The intuitiohitié finding inverses is that encoding
functions and their inverses are often used in concert, &o ithplementations can often be found
in the same binaries or in widely-available libraries (e@penSSL 165 or zlib [24Q). In this
chapter, we propose a technique that given a function, iftentvhether its inverse is present in
a set of other functions. We detail the identification of eting functions and their inverses in
Section8.3.3 We further discuss the availability of inverse functionsSiection8.6.2

8.3 Stitched Dynamic Symbolic Execution

In this section we describe the three modules that comptitehed dynamic symbolic execution:
decomposition (Sectio@.3.]), re-stitching (Sectio.3.2, and identification (Sectio8.3.3.
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Figure 8.3: On the left a graphical representation of theodgaosition of our running example
in Figure8.1 The other two figures represent the two types of decompasitiat our approach
supports: serial decomposition (B) and side-conditiorodgmosition (C).

8.3.1 Decomposition

Decomposition is the process of breaking down a programdntaller components. FiguB3A
shows a decomposition diagram for our running example inr€ig.1, where components are rep-
resented by boxes and diamonds, and arrows represent thte an outputs of those components,
that is, the dependencies between components. Analyzimgfaprogram separately corresponds
to cutting the dependencies that link its inputs to the régte@execution.

For a formula generated by symbolic execution, we can makeopthe formula independent
by renaming the variables it refers to. Following this apgtg it is not necessary to extract a com-
ponent as if it were a separate program. Our tool can simpfpme dynamic symbolic execution
on the entire program, and achieve a separation betweenot@nis by using different variable
names in some of the extracted constraints. We propose tmarigdorms of decomposition: serial
decomposition (Figur8.3B) and side-condition decomposition (Fig@8&C). For each form of de-
composition, we explain which parts of the program are ifiedtfor decomposition, and describe
what local and global dependency conditions are necessatiid decomposition to be correct.

Serial decomposition. The first style of decomposition our approach performs isvbeh suc-
cessive components, in which the first layer is a transfaomatroducing input to the second layer.
More precisely, it involves what we callsurjective transformationThere are two conditions that
define a surjective transformation. First, once a value legs liransformed, the pre-transformed
form of the input is never used again. Second, the transfiimmanust be an onto function: every
element in its codomain can be produced with some input. ¥amele, if a functiony = 2 returns
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a signed 32-bit integer, the codomain contafselements. In that case, the image is a subset of the
codomain that does not include for example the value -1, iasivt a possible output of the func-
tion. In Figure8.3B, f; is the component that must implement a surjective transfbaon. Some
examples of surjective transformations include deconswasand decryption. The key insight of
the decomposition is that we can analyze the part of the pnogiownstream from the transforma-
tion independently, and then simply invert the transfoiamato re-stitch inputs. For instance, in
the example of Figur&.1, the decryption operation is a surjective transformattmat tnduces the
constraintm’ = Dedm). To analyze the rest of the program without this encodingtion, we

can just rename the other usesigfto a new variable (say:”) that is otherwise unconstrained, and
analyze the program assif” were the input. Bypassing the decryption in this way gives

hy = SHAL(m) A m[0] = 101 (8.3)
as the remaining path condition.

Side-condition decomposition. The second style of decomposition our approach performs sep
arates two components that operate on independent parte afame input. Intuitively, &ree
side-conditionis a constraint on part of a program’s input that can effetgibe ignored during
analysis of the rest of a program, because it can always isdty choosing values for another
part of the input. We can be free to change this other part @firiput if it does not participate
in any constraints other than those from the side-conditidare precisely, a program exhibiting a
free side-condition takes the form shown in Fig8r&C. The side-condition is the constraint that the
predicatep must hold between the outputs@fandg,. The side-condition is free because whatever
value Input;, takes,p can be satisfied by making an appropriate chdieguto. An example of a
free side-condition is that the checksum computed over grano’s input §; applied onlnput;)
must equaly) the checksum field parsed from a message hegdepplied on/nputs). Note that

go is often the identity function but could also be anotherdfarmation.

To perform decomposition given a free side-condition, wemy replace the side-condition
with a value that is always true. For instance the SHA-1 hddfigure 8.1 participates in a free
side-conditionh; = SHA1(m") (assuming we have already decomposed the decryption duresi
mentioned above). But; does not appear anywhere else among the constraints, sowaaaigze
the rest of the program as if this condition were just theditgue. This gives the path condition:

true A m”[0] = 101 (8.4)
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Multiple encoding layers. If a program has more than one encoding function, we can tepea
approach to decompose the constraints from each encodintidn in turn, creating a multi-layered
decomposition. The decomposition operates from the autsidn the order the encoding functions
are applied to the input, intuitively like peeling the lagaf an onion. As shown, in the example of
Figure 8.1, our tool decomposes first the decryption function and therhash-checking function,
finally leaving only the botnet client's command parsing amalicious behavior for exploration.

8.3.2 Re-stitching

After decomposing the constraints, our tool solves thetcaims corresponding to the remainder of
the program (excluding the encoding function(s)), as in-sitiched dynamic symbolic execution,
to give a partial input. The re-stitching step builds a cagtglprogram input from this partial input
by concretely execution encoding functions and their iswer If the decomposition is correct,
such a complete input is guaranteed to exist, but we constragplicitly so that the exploration
process can re-execute the program from the beginning. @adeave found a bug, a complete
input confirms (independent of any assumptions about thiysiedechnique) that the bug is real,
allows easy testing on other related samples, and is thestistin creating a working exploit.

For serial decomposition, we are given an inputfipand the goal is to find a corresponding
input to f; that produces that value. This requires access to an infaisgon for f;; we discuss
finding one in Sectio®.3.3 (If f; is many-to-one, any inverse will suffice.) For instance hia ¢x-
ample of FigureB.1, the partial input is a decrypted message, and the full irgatlie corresponding
AES-encrypted message.

For side-condition decomposition, the solver returns aevébr the first part of the input that is
processed by, andgs. The goal is to find a matching value for the rest of the inpat thprocessed
by ¢-, such that the predicateholds. For instance, in Figu®1l, g; corresponds to the function
compute_shal , g» is the identity function copying the valua->hash , andp is the equality
predicate. We find such a value by executingorwards, finding a value related to that value by
p, and applying the inverse gf. A common special case is that is the identity function and the
predicatep is just equality, in which case we only have to re-gan For Figure8.1, our tool must
simply re-applycompute_shal to each new message.

8.3.3 Identification

In this section we address the question of how to autombti@entify candidate decomposition
sites. Specifically, we first discuss how to identify encgdfanctions, then how to test if the
decomposition is possible, and finally how to find inverseho$e encoding functions when needed.
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Identifying encoding functions. There are two properties of an encoding function that make it
suitable for decomposition and re-stitching. First, theosling function should be difficult to reason
about symbolically. Second, the way the function is usedilshmatch one of the decomposition
patterns described in Secti@mB3.1 Our identification approach checks for these two propgrtie

An intuition that partially explains why many encoding ftioos are hard to reason about is that
they produce constraints that mix together many parts gbtbgram input, which makes constraint
solving difficult. For instance, this is illustrated by a t@st between an encryption function that
uses a block cipher in CBC mode, and one that uses a streaer.ciifough the functions perform
superficially similar tasks, the block cipher encryptioraibarrier to dynamic symbolic execution
because of its high mixing, while a stream cipher is not. Beeaf the lack of mixing, a constraint
solver can efficiently determine that a single plaintextebgan be modified by making a change
to the corresponding ciphertext byte. We use this intuifiendetecting encoding functions for
decomposition: the encoding functions we are interestéehid to mix their inputs. But we exclude
simple stream ciphers from the class of encoding functioesensider, since it is easy enough to
solve them directly.

For identifying encoding functions, we perform a tracedshslependency analysis that is a
general kind of taint propagation. Given the selection of subset of the program state as a taint
source, the analysis computes which other parts of the pnogtate have a data dependency on that
source. We can potentially track the dependencies of valnesy earlier part of the program state,
e.g., by treating every output of a function as a dependetaigt) source. But for this work we
confine ourselves to using the inputs to the entire prograan from system calls) as dependency
sources. To be precise our analysis assigns an identifiesicio ieput byte, and determines, for
each value in an execution, which subset of the input bytdsgends on. We call the number of
such input bytes the valuetaint degree If the taint degree of a byte is larger than a configurable
threshold, we refer to it as high-taint-degree. We grougtiogr a series of high-taint-degree values
in adjacent memory locations as a single buffer; our decaitipa applies to a single such buffer.

This basic technique could apply to buffers anywhere in @tetion, but we further enhance
it to identify functions that produce high-taint-degredférs as output. This has several benefits:
it reduces the number of candidate buffers that need to bekelen later stages, and in cases
where the tool needs to later find an inverse of a computatida,convenient to search using a
complete function. Our tool considers a buffer to be an adutfpa function if it is live at the point
in time that a return instruction is executed. Also, to easue identify a function that includes the
complete encoding functionality, our tool uses the depeagl@nalysis to find the first high-taint-
degree computation that the output buffer depends on, apakels the function that encloses both
this first computation and the output buffer.
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In the example of Figur8.1, the output buffers ahies_cbc_decrypt andcompute_shal
would both be found as candidates by this technique, sineg Iloth would contain bytes that
depend on all of the input bytes (the final decrypted byte,alhaf the hash value bytes).

This identification process may need to be run in each itaraif the exploration because new
encoding functions may appear that had not been seen iropeeiterations. As an optimization,
the tool runs the identification on the first iteration of thapleration, and then, on each new iter-
ation, it checks whether the solver times out when solving@mstraint. If it does, it re-runs the
identification on the current execution trace.

Checking dependence conditions. Values with a high taint degree as identified above are can-
didates for decomposition because they are potentiallglenoatic for symbolic reasoning. But to
apply decomposition to them, they must also appear in a paapegext in the program. Intuitively,
the structure of the program must be like those in FiliB8 and Figure8.3C. To be more pre-
cise, we describe (in-)dependence conditions that limatwdarts of the program may use values
produced by other parts of the program. The next step in antiiication approach is to verify
that the proper dependence conditions hold (on the obsexemltion). This checking is needed to
avoid improper decompositions, and it also further filtbespotential encoding functions identified
based on taint degree.

Intuitively, the dependence conditions require that theoding function be independent of the
rest of the program, except for the specific relationshipsexgect. For serial decomposition, our
tool checks that the input bytes that were used as inputetsutjective transformation are not used
later in the program. For example, if a program has the fatigueode:

m’ = Dec(m);
if (m[0] == 5) && (M’[0] == 5) then {

process();
}
our approach flags that serial decomposition is not posbistause the input is used after it is
decrypted byDec. Otherwise the solver would return that in order to reachptioeess()function
bothm/[0] andm [0] need to have value 5 but it has no way of generating a progrpot in that
satisfies those two constraints since the relationshipdoted byDec has been removed by the
decomposition step (and if it had not been removed it woultblwbfficult to reason about).

For side-condition decomposition, our tool checks thatéseilt of the free side-condition pred-
icate is the only use of the value computed from the main ifg.gt, the computed checksum), and
that the remaining input (e.g., the expected checksum fréwmaaler) is not used other than in the
free side-condition. Our tool performs this checking uding same kind of dynamic dependency
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analysis used to measure taint degree. In the example ofeRigly our tool checks that the en-
crypted input tcaes_cbc_decrypt  is not used later in the program (it cannot be, because it is
overwritten). It also checks that the hash buffer pointeloptp is not used other than in th,eemcmp

on line 11, and that the buffen->hash , containing the expected hash value, is not used elsewhere.

Identifying inverse functions. Recall that to re-stitch inputs after serial decomposjtiour ap-
proach requires the inverses of surjective transformdtiactions. This requirement is reasonable
because surjective functions like decryption and decossjwa are commonly the inverses of other
functions (encryption and compression) that apply to ehtdata. These functions and their in-
verses are often used in concert, so their implementatianoften be found in the same binaries
or in publicly available libraries (e.g.240 165).

To locate the relevant inverse functions in the code beirdyard, as well as in publicly avail-
able libraries, we check whether two functions are eachrstieverses by random testing. ffand
/' are two functions, and for several randomly-choseandy, f'(f(x)) = z and f(f'(y)) = v,
then f and f’ are likely inverses of each other over most of their domafspposef is the en-
coding function we wish to invert. Starting with all the fdions from the same binary module that
were exercised in the trace, we infer their interfaces usingBCR tool (described in Chaptéj.
To prioritize the candidates, we use the intuition that thergption and decryption functions likely
have similar interfaces. Note that here it does not matfut semantics of the parameters, just
the syntax and the limited semantics we extract like paintiemgths, and keys. For example, it
does not matter for an asymmetric function that the enapttikes as input the public key and the
decryption takes as input the private key; both are justidensd keys. For each candidate inverse
g, we compute a 4-element feature vector counting how manigeoparameters are used only for
input, only for output, or both, and how many are pointers.thiés sort the candidates in increasing
order of the Manhattan distances (sum of absolute differ®nioetween their features and those of
I

For each candidate inverge we executef o g andg o f on k random inputs each, and check
whether they both return the original inputs in all casesolfwe consideg to be the inverse of.
To match the output interface gfwith the input interface of, and vice versa, we generate missing
inputs either according to the semantics inferred by BCRHsas buffer lengths), or randomly;
if there are more outputs than inputs we test each possibfwimg Increasing the parameter
improves the confidence in the resulting identification, thetchoice of the parameter is not very
sensitive: test buffers have enough entropy that even desfatpe positive is unlikely, but since
the tests are just concrete executions, they are inexpgeniwe do not find an inverse among the
executed functions in the same module, we expand the seathdr functions in the binary, in
other libraries shipped with the binary, and in standardhliles.
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For instance, in the example of Figu8€, our tool requires an AES encryption function to invert
the AES decryption used by the bot program. In bots, it is comifior the encryption function to
appear in the same binary, since the bot often encryptsplg messages with the same cipher, but
in the case of a standard function like AES we could also fiedtkierse in a standard library like
OpenSSL 165.

Once an inverse function is identified, we use BCR to extiaetftinction P4]. The hybrid
disassembly technique used by BCR extracts the body of timi€un, including instructions that did
not appear in the execution, which is important because wdatitching a partial input branches
leading to those, previously unseen, instructions may kentaWe further discuss the availability
of inverse functions in Sectio8.6.2

8.4 Implementation

In this section we provide some implementation detailsudicig the vulnerability detection tech-
niques we use and our Internet-in-a-Workstation envirartme

Vulnerability detection.  Our tool supports several techniques for vulnerabilityedéon and re-
ports any inputs flagged by these techniques. It detectggrotermination and invalid memory
access exceptions. Executions that exceed a timeout agedlas potential infinite loops. It also
uses TEMU's taint propagation module to identify whether itiput (e.g., network data) is used in
the program counter or in the size parameter of a memoryaitot

Decomposition and re-stitching details. Following the approach introduced in Sect®.], our
tool implements decomposition by making local modificasibmthe constraints generated from ex-
ecution, with some additional optimizations. For seriaalaposition, it uses hooks (SectidrB.2

to implement the renaming of symbolic values. As a furthdimoeigation, the hook temporarily dis-
ables taint propagation inside the encoding function sbritbasymbolic constraints are generated.
To save the work of recomputing a checksum on each iteratitimei case of side-condition decom-
position, our tool can also directly force the conditionedrdch implementing the side condition to
take the same direction it did on the original execution.

Internet-in-a-workstation. We have developed an environment where we can run malware in
isolation, without worrying about the containment probjem., without worrying about malicious
behavior leaking to the Internet. Many malware prograntg, bots, act as network clients that start
connections to remote C&C servers. Thus, the input thataalrrteeds to feed to the program in
each iteration is often the response to some request senelpragram.
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All network traffic generated by the program, running in tixe@ition monitor, is redirected
to the local workstation in a manner that is transparent égptftogram under analysis. In addition,
we have developed two helper tools: a modified DNS serveriwten respond to any DNS query
with a preconfigured or randomly generated IP address, amherig replay server. The generic
replay server takes as input an XML file that describes a métwi@log as an ordered sequence
of connections, where each connection can comprise naliygssages in either direction. It also
takes as input the payload of the messages in the dialog. &geheric server simplifies the task
of setting up different programs and protocols. Given a ndtwrace of the communication we
generate the XML file describing the dialog to explore, ane gfe replay server the seed messages
for the exploration. Then, at the beginning of each expionateration our tool hands new payload
files (i.e., the re-stitched program input) to the replayeseso that they are fed to the network client
program under analysis when it opens a new connection.

8.5 Evaluation

This section evaluates our approach by finding bugs in malteat uses complex encoding func-
tions. It demonstrates that our decomposition and rehstigcapproach finds some bugs in malware
that would not be found without it, and that it significanthcreases the efficiency of the exploration
in other cases. It presents the malware bugs we find and shaivhese bugs have persisted in the
malware families for long periods of time, sometimes years.

Malware samples. The first column of Tablé.1 presents the four popular families of malware
that we have used in our evaluation. Three of them (Cutwdied; and MegaD) are spam bots,
while Zbot is a trojan used for stealing private informatifioom compromised hosts. All four
malware families act as network clients, that is, when riay #ittempt to connect to a remote C&C
server rather than opening a listening socket and awaitngdmmands. All four of them use
encryption to obfuscate their network communication, dwignature-based NIDS detection, and
make it harder for analysts to reverse-engineer their C&iogol. Cutwail, Gheg, and MegaD
use proprietary encryption algorithms, while Zbot uses whdl-known RC4 stream cipher. In
addition to encryption, Zbot also uses an MD5 cryptograplaish function to verify the integrity of
a configuration file received from the server.

Experimental setup. For each bot we are given a network trace of the bot commundcatith
the C&C server, while it runs in a contained network. Fromrikevork trace we extract an XML
representation of the dialog between the bot and the C&Cegeas well as the payload of the
network packets in that dialog. This information is needgthle replay server to provide the correct



CHAPTER 8. STITCHED VULNERABILITY DISCOVERY 200

Name Program | Inputsize| # Inst. Decryption Checksum/hash Runtime
size (KB) | (bytes) | (x103) Algorithm | MTD | Algo. | MTD (sec)
Zbot 126.5 5269 1307.3 RC4-256 1 | MD5 | 4976 92
MegaD 71.0 68 4687.6 | 64-bit block cipher 8 | none n/a 105
Gheg 32.0 271 84.5 | 8-bit stream ciphery 128 | none n/a 5
Cutwail 50.0 269 23.1 | byte-based cipher 1 | none n/a 2

Table 8.1: Summary of the applications on which we perforidedtification of encoding functions.
MTD stands for maximum taint degree.

sequence of network packets to the bot during exploration.ekample, this is needed for MegaD
where the response sent by the replay server comprises tiketpdahat need to be sent sequentially
but cannot be concatenated together due to the way that theduts from the socket. As a seed for
the exploration we use the same content observed in thegdialatured in the network trace. Other
seeds can alternatively be used. Although our setup carogugxploring multiple connections,
we focus the exploration on the first connection started bybtht. For the experiments we run our
tool on a 3GHz Intel Core 2 Duo Linux workstation with 4GB of RIArunning Ubuntu Server
9.04. The emulated guest system where the malware prograsrsa Microsoft Windows XP SP3
image with 512MB of emulated RAM.

8.5.1 Identification of Encoding Functions and Their Inverges

The first step in our approach is to identify the encoding fiems. The identification of the encod-
ing functions happens on the execution trace produced bgdbd at the beginning of the explo-
ration. We set the taint degree threshold to 4, so that arg tngtt has been generated from 5 or
more input bytes is flagged. TalBel summarizes the results. The identification finds an encoding
function in three of the four samples: Gheg, MegaD, and Zbot. Cutwail, no encoding function
is identified. The reason for this is that Cutwail's ciphesiimiple and does not contain any mix-
ing of the input, which is the property that our encoding fiow identification technique detects.
Without input mixing the constraints generated by the dire not complex to solve. We show
this in the next section. In addition, Cutwail’s trace does ¢ontain any checksum functions. The
identification does not throw any false positives.

For Zbot, the encoding function flagged in the identificattonresponds to the MD5 checksum
that it uses to verify the integrity of the configuration fitedbwnloads from the C&C server. In
addition to the checksum, Zbot uses the RC4 cipher to pratecommunication, which is not
flagged by our technique. This happens because RC4 is a stiphar that does no mixing of the
input, i.e., it does not use input bytes to update its intestae, only the key which is a constant for
the solver. The input is simply combined with a pseudo-raméteystream using bit-wise exclusive-
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or. Since the keystream is not derived from the input but feckey in the data section, itis concrete
for the solver. Thus, the solver only needs to invert the westeé-or computation to generate an
input, which means that RC4 introduces no hard-to-solvesttamts.

For the other two samples (Gheg and MegaD) the encodingifumitagged by the identification
corresponds to the cipher. MegaD uses a 64-bit block ciptt@ach mixes 8 bytes from the input
before combining them with the key. Gheg’s cipher uses abyte-key that is combined with the
first input byte to produce a one-byte output that is used adskey to encode the next byte. This
process repeats and the mixing (taint degree) of each nguuthyte increases by one. Neither
Gheg nor MegaD uses a checksum.

Once the encoding functions have been identified, our tdobdaces new symbols for the
outputs of those encoding functions, effectively decorimgpghe constraints in the execution into
two sets and ignoring the set of hard-to-solve constramtsduced by the encoding function.

The results of our encoding function identification, for fiirst iteration of the exploration,
are summarized in Tabk 1, which presents on the left the program name and program thiee
size of the input seed, and the number of instructions in Xeewdion trace produced by the seed.
The decryption and checksum columns describe the algotighsand the maximum taint degree
(MTD) the algorithm produces in the execution. The righttrmdumn shows the runtime of the
identification algorithm, which varies from a few secondsckose to two minutes. Because the
identification is reused over a large number of iteratione,amortized overhead is even smaller.

Identifying the inverse functions. For Gheg and MegaD, our tool needs to identify the inverse
of the decryption function so that it can be used to re-stitehinputs into a new program input for
another iteration. The encryption function for MegaD is shene one identified in Chaptéusing
the technique that flags functions with a high ratio of binwéad arithmetic instructions. We use it
to check the accuracy of our new identification approach.

As described in Sectio.3.3 our tool extracts the interface of each function in the akea
trace that belongs to the same module as the decoding faneti@ then prioritizes them by the
similarity of their interface to the decoding function. Hmth Gheg and MegaD, the function with
the closest prototype is the encryption function, as ourdonfirms by random testing with = 10
tests. These samples illustrate the common pattern of &amgtencryption function being included
for two-way communication, so we did not need to search &urdtield for an inverse.

8.5.2 Stitched vs. Non-Stitched

In this section we compare the number of bugs found by ourwd@n it uses decomposition and
re-stitching, which we calull exploration, and when it does not, which we aadhilla exploration.
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Vulnerability Disclosure Encoding | Search time (min.
Name o o . >
type public identifier functions | full | vanilla
Null dereference| OSVDB-66499 17(0 | checksum| 17.8| >600
Zbot Infinite loop OSVDB-66500 169 | checksum| 129.2| >600
Buffer overrun | OSVDB-66501 168§ | checksum| 18.1| >600
MegaD Process exit n/a decryption 8.5| >600

| Gheg | Null dereference] OSVDB-66498 |67 | decryption| 16.6| 1445 |
| Cutwail | Buffer overrun | OSVDB-66497 166 | none | 39.4] 39.4 |

Table 8.2: Description of the bugs our tool finds in malwarée Tolumn “full” shows the results
using stitched dynamic symbolic execution, while the “Yahicolumn gives the results with tradi-
tional (non-stitched) dynamic symbolic execution-600” means the tool run for 10 hours and did
not find the bug.

Full exploration uses the identified decoding functionsdoampose the constraints into two sets,
one with the constraints introduced by the decryption/kbem function and the other with the re-
maining constraints after that stage. In addition, eachtittn of the MegaD and Gheg explorations
uses the inverse function to re-stitch the inputs into aaumoginput. Vanilla exploration is compa-
rable to previous dynamic symbolic execution tools. In Hathand vanilla cases, our tool detects
bugs using the techniques described in Seddidn

In each iteration of the exploration, our tool collects tReaution trace of the malware program
starting from the first time it receives network data. It sttfpe trace collection when the malware
program sends back a reply, closes the communication soaket bug is detected. If none of
those conditions is satisfied the trace collection is stdpgfter 2 minutes. For each collected
trace, our tool analyzes up to the first 200 input-dependemiral flow branches and automatically
generates new constraints that would explore new pathgiprtigram. It then queries STP to solve
each generated set of constraints, uses the solver's msporgenerate a new input, and adds it
to the pool of inputs to test on future iterations. Becausgstraint solving can take a very long
time without yielding a meaningful result, our tool discaua set of constraints if STP runs out of
memory or exceeds a 5-minute timeout for constraint solving

We run both vanilla and full explorations for 10 hours andor¢ghe bugs found, which are
summarized in Tabl8.2 Detailed descriptions of the bugs follow in Secti®®.3 We break the
results in TableB.2 into three categories. The first category includes Zbot aeda®d for which
full exploration finds bugs but vanilla exploration does.rfatll exploration finds a total of 4 bugs,
three in Zbot and one in MegaD. Three of the bugs are found deiuA0 minutes and the second
Zbot bug is found after 2 hours. Vanilla exploration doesfirad any bugs in the 10-hour period.
This happens due to the complexity of the constraints beaitrgduced by the encoding functions.
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In particular, using full exploration the 5-minute timedaot constraint solving is never reached and
STP never runs out of memory, while using vanilla exploratinore than 90% of the generated
constraints result in STP running out of memory.

The second category comprises Gheg for which both vaniliefahexplorations find the same
bug. Although both tools find the same bug, we observe thala@xploration requires almost ten
times as long as full exploration to do so. The cipher used lhgdglises a one-byte hard-coded key
that is combined with the first input byte using bitwise estla-or to produce the first output byte,
that output byte is then used as key to encode the secondlbgtasing bitwise exclusive-or and so
on. Thus, the taint degree of the first output byte is one Hersecond output byte is two and so on
until the maximum taint degree of 128 shown in TaBl& The high maximum taint degree makes
it harder for the solver to solve and explains why vanillalesgtion takes much longer than full
exploration to find the bug. Still, the constraints introdddy the Gheg cipher are not as complex
as the ones introduced by the Zbot and MegaD ciphers and ler swentually finds solutions for
them. This case shows that even in cases where the solveewgifitually find a solution, using
decomposition and re-stitching can significantly imprdwe performance of the exploration.

The third category comprises Cutwail for which no encodiagctions with high taint degree
are identified and thus vanilla exploration and full exptimnma are equivalent.

In summary, full exploration using decomposition and itelsing clearly outperforms vanilla
exploration. Full exploration finds bugs in cases wherellaagkploration fails to do so due to the
complexity of the constraints introduced by the encodingcfions. It also improves the perfor-
mance of the exploration in other cases were the encodingtredmts are not as complex and will
eventually be solved.

8.5.3 Malware Vulnerabilities

In this section we present the results of our manual analgsimderstand the bugs discovered by
our tool and our experiences reporting the bugs. Note thatikderabilities have been validated by

replaying the inputs found by the exploration to the bot progs and monitoring how they crash

the bot's process. In addition, for the Zbot buffer overrutnerability we have created an exploit

that hijacks execution.

Zbot. Our tool finds three bugs in Zbot. The first one is a null pointereference. One of the
C&C messages contains an array size field, which the progea® as the size parameter in a call
to RtlAllocateHeap When the array size field is larger than the available mertedtyn its local
heap, the allocation returns a null pointer. The returnevalfithe allocation is not checked by the
program, which later attempts to write to the buffer, craghwhen it dereferences the null pointer.
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The second bug is an infinite loop condition. A C&C messagep@es of a sequence of
blocks. Each block has a 16-byte header and a payload. Ohe €ietds in the header represents
the size of the payload, When the trojan program finishes processing a block, wiitegly moves
to the next one by adding the block sizet 16, to a cursor pointer. When the value of the payload
size iss = —16, the computed block size becomes zero, and the trojan keepsgsing the same
block over and over again.

The last bug is a stack buffer overrun. As mentioned above&@ @essage comprises of a
sequence of blocks. One of the flags in the block header dietesmvhether the block payload is
compressed or not. If the payload is compressed, the trojagrgan decompresses it by storing
the decompressed output into a fixed-size buffer locatechenstack. When the length of the
decompressed payload is larger than the buffer size, thgrasrowill write beyond the buffer. If
the payload is large enough, it will overwrite a functionuret address and can eventually lead to
control flow hijacking. Thus, this vulnerability is explaftle and we have successfully crafted a
C&C message that exploits the vulnerability and hijacksetkecution of the malware.

MegaD. Our tool finds one input that causes the MegaD bot to exit tfeave analyzed this
behavior using the MegaD grammar in Appendirand found that the bug is present in the handling
of the ping message (typ6x27 ). If the bot receives a ping message and the bot identifieraflys
set by a previously received C&C message) has not been setjttkends a replpong message
(type 0x28 ) and terminates. This behavior highlights the fact thagddition to bugs, our stitched
dynamic symbolic execution can also discover C&C messdgsscause the malware to cleanly
exit (e.g., kil commands), if those commands are availabkhe C&C protocol. These messages
cannot be considered bugs but can still be used to disabiedlveare. They are specially interesting
because they may have been designed to completely remaxecath of the malware running in the
compromised host. In addition, their use could raise fewldcal and legal questions than the use
of an exploit would.

Gheg. Our tool finds one null pointer dereference bug in Gheg. Thgibsimilar to the one in
Zbot. One of the C&C messages contains an array size fieldsewrdue is multiplied by a constant
(Ox1e8) and the result used as the size parameter in a datlAtlocateHeap The program does
not check the return value of the allocation and later wiitesthe allocated buffer. When the array
size field value is larger than the available memory in itald®ap, the allocation fails and a null
pointer is returned. The program fails to check that thernetth value is a null pointer and tries to
dereference it.
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Family MD5 First seen | Reported by
Obf2df85*7f65 | Jun-23-09 Prevx
Zbot 1c9d16db*7fc8 | Aug-17-09 Prevx
7a4b9ceb*77d§ Dec-14-09| ThreatExpert
700f9d28*0790| Feb-22-08 Prevx
22a9c61c*ed4le Dec-13-08 Prevx
d6d00d00*35db| Feb-03-10| VirusTotal
09ef89ff*4959 | Feb-24-10| VirusTotal
287b835b*b5b8| Feb-06-08 Prevx
edde4488*401¢ Jul-17-08 Prevx
Gheg | 83977366*b0b6| Aug-08-08| ThreatExpert
cdbd8606*6604| Aug-22-08 Prevx
f222e775*68c2| Nov-28-08 Prevx
1fb0dad6*1279| Aug-03-09 Prevx
3b9c3d65*07de Nov-05-09 Prevx

MegaD

Cutwail

Table 8.3: Bug reproducibility across different malwar@aats. The shaded variants are the ones
used for exploration.

Cutwail. Our tool finds a buffer overrun bug that leads to an out-ofrasuwrite in Cutwail. One
of the received C&C messages contains an array. Each racting array has a length field speci-
fying the length of the record. This field is used as the sizapater in a call t&RtlAllocateHeap
The returned pointer is appended to a global array that chnhmid 50 records. If the array in
the received message has more than 50 record$,1theecord will be written outside the bounds
of the global array. Near the global array, there exists atpoito a private heap handle and the
out-of-bounds write will overwrite this pointer. Furthealls to RtlAllocateHeapwill then attempt

to access the malformed heap handle, and will lead to heapptimn and a crash.

Reporting the bugs. We reported the Gheg bug to the editors of the Common Vuliigied
and Exposures (CVE) databadsf] Our suggestion was that vulnerabilities in malware stioul
be treated similarly to vulnerabilities in commercial oreopsource programs, of course without
reporting back to the developers. However, the CVE editeltsliat malware vulnerabilities were
outside the scope of their database. Subsequently, wetedpbie Gheg vulnerability to the Open
Source Vulnerability Database (OSVDB) moderators who pateckit. Since then, we have reported
all other vulnerabilities except the MegaD one, which magdesidered intended functionality by
the botmaster. Tabl@.2 presents the public identifiers for the disclosed vulnditas. We further
address the issue of disclosing malware vulnerabiliti€Sdotion8.6.
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8.5.4 Bug Persistence over Time

Bot binaries are updated very often to avoid detection bianis tools. One interesting question
is how persistent over time are the bugs found by our tool. vBduate this, we retest our crashing
inputs on other binaries from the same malware familieslel@l3 shows all the variants, with the
shaded variants corresponding to the ones explored by oland mentioned in Tablg.1

We replay the input that reproduces the bug our tool founchershaded variant on the rest of
variants from the same family. The bugs are reproduciblesacall the variants we tested. These
means for instance that the MegaD bug has been present &asatWwo years (the time frame cov-
ered by our variants). In addition, the MegaD encryption @acryption functions (and the key they
use), as well as the C&C protocol have not changed, or baxelyed, through time. Otherwise
the bug would not be reproducible in older variants. Theltegar Gheg are similar. The bug re-
produces across all Gheg variants, although in this casmost recent sample is from November,
2008. Note that, even though the sample is relatively oltllit/gorks, meaning that it still connects
to a C&C server on the Internet and sends spam. For Zbot,rak thugs reproduce across all vari-
ants, which means they have been present for at least 6 mdiitese results are important because
they demonstrate that there are components in bot softwaoh, as the encryption functions and
C&C protocol grammar, that tend to evolve slowly over time #mus could be used to identify the
family to which an unknown binary belongs, one widespreaiblem in malware analysis.

8.6 Discussion

In light of our results, this section provides additionaalission on the applications for the discov-
ered bugs and associated ethical considerations. Themsieuts a potential scenario for using the
discovered bugs, and describes some limitations of oucagphr

8.6.1 Applications and Ethical Considerations

Malware vulnerabilities could potentially be used in diffat “benign” applications such as reme-
diation of botnet infestations, for malware genealogy sim@ have shown that the bugs persist
over long periods of time, as a capability for law enforcetagencies, or as a strategic resource in
state-to-state cyberwarfaré7l. However, their use raises important ethical and legaktioes.

For example, there may be a danger of significant negativeegpuences, such as adverse effects to
the infected machines. Also, it is unclear which legal gntibuld perform such remediation, and
whether there exists any entity with the legal right to talkehsaction. On the other hand, having a
potential avenue for cleanup and not making use of it alsesasome ethical concerns since if such
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remediation were effective, it would be a significant sexuic the malware’s future third-party vic-
tims (targets of DDoS attacks, spam recipients, etc.). $uelstions belong to recent and ongoing
discussions about ethics in security research (e&g)) fhat have not reached a firm conclusion. In
our view, malware vulnerabilities are a capability thatiddanly be used as a last resort when other
solutions such as detection and cleanup are not possilbileagee because the infected computers
cannot be easily disconnected from the network or immedietien is required.

Malware vulnerabilities could also be used for malign psgs For instance, there are already
indications that attackers are taking advantage of knownevabilities in web interfaces used to
administer botnets to hijack each others’ botn&g.[ This raises concerns about disclosing such
bugs in malware. In the realm of vulnerabilities in benigfiware, there has been significant de-
bate on what disclosure practices are socially optimal hrdetis a partial consensus in favor of
some kind of “responsible disclosure” that gives authorsnétéd form of advance notice. How-
ever, it is not clear what the analogous best practice fomara vulnerabilities should be. We have
faced this disclosure issue when deciding whether to pyldisclose the vulnerabilities we found
and to which extent we should describe the vulnerabilitid&e have decided in favor of disclos-
ing the vulnerabilities we found to raise awareness of tlo¢ teat such vulnerabilities exist and
can be exploited. We also believe further discussion on thpgy avenue for disclosing malware
vulnerabilities would be beneficial.

Potential application scenario. While we have not used our crashing inputs on bots in the
wild, here we hypothetically discuss one possible scer@frtmow one might do so. The malware
programs we analyze start TCP connections with a remote @@s To exploit the vulnerabilities
we have presented, we need to impersonate the C&C serveeaddnputs in the response to the
initial request from the malware program. This scenariemmtiappens during a botnet takedown,
in which law enforcement or other responding entities ifgrihe IP addresses and DNS names
associated with the C&C servers used by a botnet, and appealevant ISPs and registrars to
have them de-registered or redirected to the respondeesreBponders can then impersonate the
C&C server: one common choice issankhole servethat collects statistics on requests but does
not reply. But such responders are also in a position to parfoore active communication with
bots, and for instance vulnerabilities like the ones wegaresould be used for cleanup if the botnet
does not support cleanup via its normal protocol. For examgich a scenario happened recently
during the attempted MegaD takedown by FireEYB87. For a few days FireEye ran a sinkhole
server that received the C&C connections from the bots. 3ihishole server was later handed to
the Shadowserver FoundatiatOf].
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8.6.2 Limitations

We have found our techniques to be quite effective agaimsttinrent generation of malware. But
since malware authors have freedom in how they design emgddinctions, and an incentive to
avoid analysis of their programs, it is valuable to consigdhat measures they might take against
analysis.

Preventing access to inverses. To stitch complete inputs in the presence of a surjectivesfa-
mation, our approach requires access to an appropriatsafunction: for instance, the encryption
function corresponding to a decryption function. So far, vaee been successful in finding such
inverses either within the malware binary, or from standswdrces, but these approaches could
be thwarted if malware authors made different choices gbtographic algorithms. For instance,
malware authors could design their protocols using asymen@ublic-key) encryption and digital
signatures. Since we would not have access to the privatedey by the C&C server, we could
not forge the signature in the messages sent to the bot. We stilliuse our decomposition and
re-stitching approach to find bugs in malware, because tivasire verification is a basically a
free side-condition that can be ignored. However, we coulg build an exploit for our modified
bot, as other bots will verify the (incorrect) signature lie tmessage and reject it. Currently, most
malware does not use public-key cryptography, but that neynge. In the realm of symmetric
encryption, malware authors could deploy different namdard algorithms for the server-to-bot
and bot-to-server directions of communication: thoughthebretically infeasible, the construction
of an encryption implementation from a binary decryptiompliementation might be challenging to
automate. For instance, Kolbitsch et dl0f] faced such a situation in recreating binary updates for
the Pushdo trojan, which was feasible only because the plg@nyalgorithm used was weak enough
to be inverted by brute force for small plaintexts.

Obfuscating encoding functions. Malware authors could potentially keep our tool from finding
encoding functions in binaries by obfuscating them. Gdmarepose packing is not an obstacle to
our dynamic approach, but more targeted kinds of obfustatmuld be a problem. For instance, our
current implementation recognizes only standard funatiis and returns, so if a malware author
rewrote them using non-standard instructions our tool doeduire a corresponding generalization
to compensate. Further along the arms race, there are aldarfiental limitations arising from
our use of a dynamic dependency analysis such as the use lafiirfipws (e.g.,if (x == 1)

then y = 1 ) for obfuscation. Such limitations are similar to previlyustudied limitations of
dynamic taint analysis3fl]. Other targeted evasion technigues could take advantaper checks
for whether decompoasition is possible by using the recemmctypted data after decryption, so
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that our approach decides that serial decomposition is osgilple. To partially handle this case
we could generalize our analysis to identify uses of thetiripat do nothing useful with it. In
addition, malware authors could add non-encoding funstianith high ratios of arithmetic and
bitwise instructions to try to disguise the real encodingctions by increasing the number of false
positives of our detection technique.

8.7 Related Work

One closely related recent project is Wang et al.'s Taim8ceystem 219. Our goals partially
overlap with theirs in the area of checksums, but our wortedifin three key aspects. First, Wang
et al.’s techniques do not apply to decompression or deoryptSecond, TaintScope performs
exploration based on taint-directed fuzzingff], while our approach harnesses the full generality
of symbolic execution. (Wang et al. use symbolic executialy dor inverting theencodingsof
checksums, i.e., simple transformations on the input cheuoksuch as converting from little-endian
to big-endian or from hexadecimal to decimal, a task whictrivgal in our applications.) Third,
Wang et al. evaluate their tool only on benign software, g/hie perform the first automated study
of vulnerabilities in malware.

The encoding functions we identify can also be extractecetaded elsewhere. Our BCR tool
(presented in Chaptd) as well as the Inspector Gadg&0f tool can be used to extract encryption
and checksum functionalities, including some of the sanes @ur tool identifies. This work uses
BCR’s interface identification techniques to compare thierfaces of functions while identifying
inverses. Inspector Gadget(9 can also perform so-called gadget inversion, which isulsef
the same reasons as we search for existing inverse functidawever, their approach does not
work on strong cryptographic functions.

Previous work has used alternative heuristics to identifyptographic operations. For instance
ReFormat 221] proposes detecting such functions by measuring the raaoithmetic and bitwise
instructions to other instructions. We have extended tblenigues in ReFormat in Secti@®6. Our
use of taint degree as a heuristic in this chapter is morafg@dly motivated by the limitations of
symbolic execution: for instance a simple stream cipher@vbe a target of the previous approaches
but is not for this work.

Decomposition is a broad class of techniques in programysisahnd verification, but most
previous decomposition techniques are symmetric in theesdrat each of the sub-components of
the program are analyzed similarly, while a key aspect ofapproach is that different components
are analyzed differently. In analysis and verification,ateposition at the level of functions, as in
systems like Saturr2B1], is often called a compositional approach. In the contéxbols based
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on dynamic symbolic execution, there is work on compos#ti@pproaches that performs dynamic
symbolic execution separately on each function in a prodrééy3]. Because this is a symmetric
technique, it would not address our problem of encodingtfans too complex to analyze even in
isolation. More similar to our approach is grammar-basexzifig [77, 25], an instance of serial
decomposition. However parsers require different spizeidltechniques than encoding functions.

8.8 Conclusion

We have presented a new approach, stitched dynamic syne@aution, to allow analysis in the

presence of complex functions such as decryption and deessipn, that would otherwise be
difficult to analyze. Our techniques for automated ideratftin, decomposition, and re-stitching
bypass encoding functions like decryption and hashing tblirgs in core program logic. Specifi-
cally, these technigues enable the first automated studyleérabilities in malware. Our tool finds

6 unique bugs in 4 prevalent malware families. These bugseaniggered over the network to

terminate or take control of a malware instance. They haveigied across malware revisions for
months, and even years. Our results demonstrate that findingrabilities in malware is tech-

nically feasible. In addition, we start a discussion on trenynstill unanswered questions about
the applications and ethical concerns surrounding malwakeerabilities, an important security

resource.
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Chapter 9

Conclusion

9.1 Discussion

In this section we provide further discussion on the chgkeof working with malware that uses
obfuscation to defeat analysis and some lessons learnediiloing an execution trace capture
infrastructure.

9.1.1 Evasion and the Malware Arms Race

While the techniques presented in this thesis apply to aogrpm in binary form, one important
class of programs that we use to evaluate our techniquesliganga Automatic program binary
analysis techniques are specially well-suited for malwmeause malware is only distributed in
binary form and is highly dynamic, with new malware famileasd versions being constantly intro-
duced, and polymorphic and metamorphic variants of eadioregenerated on a daily (or hourly)
basis. However, working with malware poses some additiohallenges compared with working
with benign programs.

One important challenge in working with malware is obfuggabecause malware authors have
an incentive to avoid analysis of their programs. Thus, th&y a wide array of obfuscation tech-
nigues to complicate the analysis of their programs’ furality and data. As it often happens in
security, there exists an arms race between new obfusdatitmiques being developed that take
advantage of limitations in state-of-the-art analysis] aBw analysis techniques being deployed
to fix those limitations. For example, historically, maleavriters have used encryption, polymor-
phism, metamorphism, and other obfuscation methods tegtrtiteir programs from anti-virus and
static analysis tool€206,42,216. Those anti-static-analysis techniques do not hampedyamic
analysis. Malware can target the limited coverage of dynamnalysis by employing trigger-based
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behaviors such as time or logic bombs, but white-box exptomraechniques like the ones intro-
duced in Chapter§—7 can be used to increase the coverage of dynamic analysis rah@uch
behaviors. Sharif et al. propose using conditional codesazftion to hamper analysis techniques
based on white-box exploratiod9Z. Their obfuscation technigue leverages hashing and pncry
tion to introduce hard-to-solve constraints for dynamimbyplic execution. However, in Chaptér
we have proposed stitched dynamic symbolic execution, andposition and re-stitching approach
that enables white-box exploration in the presence of cexghcoding functions.

A fundamental premise of dynamic analysis is that the behmeawa analyze can be observed
by running the program. At the time of writing, the main olfation technique used to defeat
dynamic analysis is stopping the execution or changingetsabior if a virtualized or emulated
environment is detecte®7, 69. Recent research has addressed how to identify and bypeks s
anti-virtualization checksl0]]. Another fundamental premise of our protocol reverseisagying
and model extraction technigues is that we can learn the Btpucture or model a code fragment's
behavior by monitoring its execution. However, if the codattwe monitor does not correspond
to the code that implements the functionality under study.(e¢he parser or the content sniffing
algorithm), our results would be incorrect. Thus, anoth#uscation vector is to translate a binary
program into an intermediate language (IL) and ship the lisie@ along with an abstract machine
or emulator that interprets it. With such approach, ourysiglmay extract information about
the emulator itself rather than the emulated program. Th&eady exist commercial programs
that enable such obfuscatiodl] 207, 215. To defeat such obfuscation, we need to extract the
IL code that is executed, as well as its semantics (e.g., tygpmg from IL instructions to x86
code) and perform our analysis using that information. &kaal. [193 have studied the problem
of automatic reverse-engineering a certain class of malwarulators. We believe more work is
needed to produce solutions that generalize to any classl@fare emulators.

In the long run, we can expect that if the techniques predentéhis thesis become prevalent,
malware authors may design obfuscations that specificattyet our techniques. For example,
malware authors could design their code to be hard to reyseixing unrelated functionality,
adding unnecessary parameters, or inlining functionsh@y tould design polymorphic protocols,
which constantly change structure. Although such arms cacesometimes be disheartening for
a researcher, in this thesis we have found that malware ixegllent playground for applying
program analysis techniques because it quickly exposésiions and hidden assumptions, making
the final proposed techniques and their implementations modoust.
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9.1.2 Instruction-Level Execution Traces

Our offline approach to dynamic program binary analysisireguapturing information logs during
execution. The most expensive of these logs to capture amitan traces because their size grows
linearly with the number of instructions executed. For lgagning programs (e.g., network servers)
it is often not possible to capture execution traces of cetegbrograms runs. In this thesis we have
focused on the analysis of specific security-relevant fanetity in programs such as the code that
parses and builds protocol messages, cryptographic fursgtand content-sniffing algorithms. Our
experience has been that, to obtain execution traces tpaireathe functionality of interest, an
execution trace capture infrastructure needs to providedmined triggers that allow an analyst to
select when to start and stop trace capture.

One important design goal of an instruction-level executi@ce capture infrastructure is to
minimize the amount of data that needs to be logged per ee@dustruction, without losing any
information about the execution. However, our experienug that of other related worklp],
shows that there exist numerous engineering issues thdttodee addressed to obtain a balance
between the run-time and space constraints of executioa trallection and the speed of accessing
the information in the traces by external applications twstsume them.

9.2 Conclusion

Closed-source programs are prevalent in computer systhmihis thesis we have developed dy-
namic program binary analysis techniques that enable dgsineith no access to the program’s
source code, to extract the grammar of undocumented proggauts, to reuse fragments of binary
code, and to model security-relevant functionality digefrom program binaries. We have applied
our techniques to enable and enhance a variety of secuniticafions: active botnet infiltration,
deviation detection, finding filtering-failure attacks,Inverability-based signature generation, and
vulnerability discovery.

To extract the grammar of undocumented program inputs, we peesented a new approach
for automatic protocol reverse-engineering that usesmymprogram binary analysis to reverse the
protocol from the binary of an application that implement&¥hen the protocol specification is not
available, the applications implementing the protocolthesrichest source of information about the
protocol. We have proposed dynamic analysis techniqueméssage format extraction and field
semantics inference. Our techniques can extract the fanthsemantics of the protocol messages
in both directions of the communication, even when an andigs access only to the application
implementing one side of the communication. We have usegmtocol reverse-engineering tech-
niques to extract the grammar of the previously undocundertecrypted, C&C protocol used by
MegaD, a prevalent spam botnet.
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To reuse binary code, we have developed automatic tectmiiquéentifying the interface and
extracting the instructions and data dependencies of aftagment from a program binary. Our
techniques extract a fragment of binary code so that it fscegitained and can be reused by external
source code, independently of the rest of the functiondaiitthe program binary. We have applied
our binary code reuse techniques to extract cryptograpimictions used by malware, including the
encryption, decryption, and key generation functions MegaD bots use to protect its C&C pro-
tocol. Using the C&C protocol grammar extracted by our protageverse-engineering techniques
and the cryptographic functions extracted by our binaryecadise techniques, we have enabled a
network intrusion detection system to decrypt a C&C mes$lageng through the network, parse
the message contents, rewrite some fields in the messagecmgpt it, and send it on the network.
We have used this enhanced network intrusion detectioersyk&i enable active botnet infiltration
by rewriting messages to convince the botmaster that a lgrusur control can send spam, when
all the spam traffic sent by the bot is blocked, enabling usgahe spam-related information sent
by the botmaster.

To model security-relevant functionality we have proposeadel extraction techniques that
work directly on program binaries. Our model extractiorhtgéques use white-box exploration to
produce high coverage models of the functionality. We eobarevious white-box exploration
techniques in three ways. For programs that use stringstong-enhanced white-box exploration
improves the exploration by reasoning directly on strimgther than individual bytes that form the
strings. For programs that parse complex, highly-strectunputs, our protocol-level constraint-
guided exploration improves the exploration by using thatqmol grammar to reason directly on
protocol fields rather than individual input bytes. For peogs that use complex encoding functions
such as hashing or encryption, our stitched dynamic symileakcution enables exploring beyond
those encoding functions and into the core functionalitghef program. For this, it decomposes
the symbolic constraints into hard-to-solve constraintiiced by the encoding functions and easier
constraints induced by the rest of the execution, solvesdbier constraints to obtain a partial input,
and re-stitches a complete input using the encoding fumetamd their inverses. We have used our
model extraction techniques to model security-relevanttionality on a variety of real-world pro-
grams that include malware, Web browsers, and network eré@ur models enable applications
such as finding deviations between two implementationseofttme protocol, discovering content-
sniffing XSS attacks on Web applications, generating pattevel vulnerability-based signatures,
and discovering vulnerabilities in malware.

Altogether, we have built a platform that provides protomlerse-engineering, binary code
reuse, and model extraction modules of functionality foalgring security-relevant code from
program binaries, as well as a variety of tools for dynamisgpam binary analysis. We have



CHAPTER 9. CONCLUSION 216

demonstrated the utility of our novel dynamic program bynamalysis techniques and approaches
on a variety of real world security problems and providedsidir further techniques to be built on
top of our work. We envision techniques that would addresblpms such as further integration of
dynamic and static analysis, deconstruction of the prognémrfunctional components, fine-grained
analysis of the program state, and analysis of control digrere and implicit flows.



Appendix A

MegaD BinPac grammar

type MegaD_Message(is_inbound: bool) = record {
msg_len : uintl6;
encrypted_payload(is_inbound):
bytestring &length = 8 * msg_len;
} &byteorder = bigendian;

type encrypted_payload(is_inbound: bool) = record {
version : uintl6; # Constant(0x0100 or 0x0001)
mtype : uintl6;
data : MegaD_data(is_inbound, mtype);

# Known message types
type MegaD_data(is_inbound: bool, msg_type: uintl6) =
case msg_type of {

0x00 -> mO00: msg_0xO0;
0x01 -> mOl1l: msg_Ox1;
0x02 -> m02: msg_0x2;
0x03 -> mO03: msg_0x3;
0x04 -> mO04: msg_0x4;
0x05 -> mO05: msg_O0x5;
0x06 -> mO06: msg_0x6;
0x07 -> mO07: msg_O0x7;
0x09 -> m09: msg_0x9;
0x0a -> mOa: msg_Oxa;
0x0d -> mOd: msg_0xd;
0x0e -> mOe: msg_Oxe;
0x15 -> m15: msg_0x15;
0x16 -> ml16: msg_0x16;
0x18 -> m18:. msg_0x18;
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0x1c -> milc: msg_Oxlc(is_inbound);

0x1d -> mld: msg_0x1d;

0x21 -> m21l: msg_0x21;

0x22 -> m22: msg_0x22;

0x23 -> m23: msg_0x23;

0x24 -> m24:. msg_0x24;

0x25 -> m25: msg_0x25;

0x27 -> m27: msg_0x27;

0x28 -> m28:. msg_0x28;

default -> unknown : bytestring &restofdata;

type msg_0x0 = record {
msg0_type : uint8; # Type of message 0
msg0_data : MegaD_msg0(msg0_type);

I3

# Direction: outbound (To: CC server)
# MegaD supports two subtypes for type zero
type msg_0x0 = record {
fld_00 : uint8; # <unknown>
fld_01 : MegaD_msgO(fld_00);
I3

type MegaD_msg0(msgO0_type: uint8) =
case msg0_type of {
0x00 -> mO0 : msg_0x0_init;
0x01 -> mO1 : msg_0x0_idle;
default -> unknown : bytestring &restofdata;

type msg_0x0_init = record {
fld_00 : bytestring &length=16; # Constant(0)
fld_01 : uint32; # Constant(Oxd)
fld_02 : uint32; # Constant(0x26)
fld_03 : uint32; # IP address
pad : bytestring &restofdata; # Padding

h

type msg_0x0_idle = record {
fld_00 : bytestring &length=8; # Bot ID
fld_01 : uint32; # Constant(0)
pad : bytestring &restofdata; # Padding

h



APPENDIXA. MEGAD BINPAC GRAMMAR

219

# Direction: inbound (From: CC server)
type msg_0x1 = record {
fld_00 : bytestring &length=16; # Cookie
fld_01 : uint32; # Sleep Timer
fld_02 : bytestring &length=8; # Bot ID

# Direction: inbound (From: CC server)
type msg_0x2 = record {

fld_00 : uintl6; # <unknown>

pad : bytestring &restofdata; # Padding

# Direction: outbound (To: CC server)
type msg_0x3 = record {

fld_00 : uint32; # Cookie

fld_01 : bytestring &length=8; # Bot ID

h

# Direction: inbound (From: CC server)
type msg_0x4 = record {
pad : bytestring &restofdata; # Padding

h

# Direction: outbound (To: CC server)
type msg_0x5 = record {
fld_00 : uint32; # Error code
fld_01 : uint32; # Cookie
fld_02 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

h

# Direction: outbound (To: CC server)
type msg_0x6 = record {
fld_00 : uint32; # Cookie
fld_01 : bytestring &length=8; # Bot ID
fld_02 : uint32; # Constant(0)
pad : bytestring &restofdata; # Padding

h

# Direction: inbound (From: CC server)
type msg_0x7 = record {
pad : bytestring &restofdata; # Padding

h
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# Direction: outbound (To: CC server)
type msg_0x9 = record {
fld_01 : bytestring &length=8; # Bot ID
fld_02 : uint32; # Constant(0)
2
# Direction: inbound (From: CC server)
type msg_Oxa = record {
pad : bytestring &restofdata; # Padding

h

# Direction: inbound (From: CC server)
type msg_0Oxd = record {
fld_00 : uint32; # Cookie
fld_01 : uint32; # <unused>
fld_02 : uintl6; # Length(fld_03)
fld_03 : bytestring &length=fld_02; # URL
pad : bytestring &restofdata; # Padding

# Direction: inbound (From: CC server)
type msg_Oxe = record {
pad : bytestring &restofdata; # Padding

# Direction: inbound (From: CC server)
type msg_0x15 = record {
pad : bytestring &restofdata; # Padding

type host_info = record {
fld_00 : uint32; # CPU identifier

fld_01 : uint32; # Tick difference
fld_02 : uint32; # Tick counter

fld_03 : uintl6; # OS major version
fld_04 : uintl6; # OS minor version
fld_05 : uintl6; # OS build number
fld_06 : uintl6; # Service pack major
fld_07 : uintl6; # Service pack minor
fld_08 : uint32; # Physical memory(KB)
fld_09 : uint32; # Available memory(KB)
fld_10 : uintl6; # Internet conn. type
fld_11 : uint32; # IP address
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# Direction: outbound (To: CC server)
type msg_0x16 = record {
fld_00 : bytestring &length=8; # Bot ID
fld_01 : uintl6; # Length(fld_02)
fld_02 : host_info; # Host information
pad : bytestring &restofdata; # Padding

h

# Direction: inbound (From: CC server)
type msg_0x18 = record {
pad : bytestring &restofdata; # Padding

h

# Direction: inbound or outbound (Template server)
type msg_0x1c(is_inbound: bool) =
case is_inbound of {
true -> mlc_inbound : msg_O0xlc_inbound;
false -> mlc_outbound : msg_Oxlc_outbound;

h

# Direction: inbound (From: Template server)
type msg_O0x1lc_inbound = record {
fld_00 : uint32; # Stored data
fld_01 : uint32; # Length
fld_02 : uint32; # Length(fld_03)
fld_03 : bytestring &length = fld_02; # Compressed
pad : bytestring &restofdata; # Padding

# Direction: outbound (To: Template server)
type msg_Ox1lc_outbound = record {
fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)

# Direction: outbound (To: Template server)
type msg_0x1d = record {
fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)
I3
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# Direction: inbound (From: CC server)
type msg_0x21 = record {
fld_00 : uint32; # <unknown>
fld_01 : uintl6; # Port
fld_02 : uint8[] &until($element == 0); # Hostname
pad : bytestring &restofdata; # Padding

h

# Direction: outbound (To: CC server)
type msg_0x22 = record {
fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

h

# Direction: outbound (To: CC server)
type msg_0x23 = record {

fld_00 : uint32; # Error code

fld_01 : bytestring &length=8; # Bot ID

# Direction: inbound (From: CC server)
type msg_0x24 = record {

fld_00 : uint32; # IP address

fld_01 : uintl6; # Port

pad : bytestring &restofdata; # Padding

h

# Direction: outbound (To: CC server)
type msg_0x25 = record {
fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

# Direction: inbound (From: CC server)
type msg_0x27 = record {
pad : bytestring &restofdata; # Padding

# Direction: outbound (To: CC server)
type msg_0x28 = record {
fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding
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