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Abstract
Attackers often take advantage of vulnerabilities in benign
software, and the authors of benign software must search
their code for bugs in hopes of finding vulnerabilities be-
fore they are exploited. But there has been little research
on the converse question of whether defenders can turn
the tables by finding vulnerabilities in malware. We pro-
vide a first affirmative answer to that question. We intro-
duce a new technique, stitched dynamic symbolic execu-
tion, that makes it possible to use exploration techniques
based on symbolic execution in the presence of function-
alities that are common in malware and otherwise hard
to analyze, such as decryption and checksums. The tech-
nique is based on decomposing the constraints induced
by a program, solving only a subset, and then re-stitching
the constraint solution into a complete input. We imple-
ment the approach in a system for x86 binaries, and ap-
ply it to 4 prevalent families of bots and other malware.
We find 6 bugs that could be exploited by a network at-
tacker to terminate or subvert the malware. These bugs
have persisted across malware revisions for months, and
even years. We discuss the possible applications and eth-
ical considerations of this new capability.

1 Introduction
Vulnerability discovery in benign programs has long been
an important task in software security: identifying soft-
ware bugs that may be remotely exploitable and creating
program inputs to demonstrate their existence. However,
little research has addressed vulnerabilities in malware.
Do malicious programs have vulnerabilities? Do different
binaries of the same malware family share vulnerabilities?
How do we automatically discover vulnerabilities in mal-
ware? What are the implications of vulnerability discov-
ery in malware to malware defense, law enforcement and
cyberwarfare? In this paper we take the first step toward
addressing these questions. In particular, we propose new
symbolic reasoning techniques for automatic input gen-

eration in the presence of complex functions such as de-
cryption and decompression, and demonstrate the effec-
tiveness of our techniques by finding bugs in real-world
malware. Our study also shows that vulnerabilities can
persist for years across malware revisions. Vulnerabilities
in botnet clients are valuable in many applications: be-
sides allowing a third party to terminate or take control of
a bot in the wild, they also reveal genealogical relation-
ships between malware samples. We hope our work will
spur discussions on the implications and applications of
malware vulnerability discovery.

Dynamic symbolic execution techniques [24] have re-
cently been used for a variety of input generation applica-
tions such as vulnerability discovery [7,20,21], automatic
exploit generation [3, 23], and finding deviations between
implementations [2]. By computing symbolic constraints
on the input to make the program execution follow a par-
ticular path, and then solving those constraints, dynamic
symbolic execution allows a system to automatically gen-
erate an input to execute a new path. Repeating this pro-
cess gives an automatic exploration of the program ex-
ecution space for vulnerability discovery and other ap-
plications. However, traditional dynamic symbolic exe-
cution is ineffective in the presence of certain common
computation tasks, including the decryption and decom-
pression of data, and the computation of checksums and
hash functions; we call these encoding functions. Encod-
ing functions result in symbolic formulas that can be dif-
ficult to solve, which is not surprising, given that crypto-
graphic hash functions are designed to be impractical to
invert [32]. Encoding functions are used widely in mal-
ware as well as benign applications. In our experiments,
the traditional dynamic symbolic execution approach fails
to explore the execution space of the malware samples ef-
fectively.

To address the challenges posed by the presence of en-
coding functions, we propose a new approach, stitched
dynamic symbolic execution. This approach first auto-
matically identifies potential encoding functions and their
inverses (if applicable). Then, it decomposes the symbolic
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constraints from the execution, separating the constraints
generated by each encoding function from the constraints
in the rest of the execution. The solver does not attempt
to solve the (hard) constraints induced by the encoding
functions. Instead it focuses on solving the (easier) con-
straints from the remainder of the execution. Finally, the
approach re-stitches the solver’s output using the encod-
ing functions or their inverses, creating a program input
that can be fed back to the original program.

For instance, our approach can automatically identify
that a particular function in an execution is performing a
computation such as decrypting the input. Rather than us-
ing symbolic execution inside the decryption function, it
applies symbolic execution on the outputs of the decryp-
tion function, producing constraints for the execution after
the decryption. Solving those constraints generates an un-
encrypted message. Then, it executes the inverse (encryp-
tion) function on the unencrypted message, generating an
encrypted message that can be fed back as the input to the
original program.

More generally, we identify two kinds of computa-
tion that make such decomposition possible: computa-
tions that transform data into a new form that replaces the
old data (such as decompression and decryption), and side
computations that generate constraints that can always be
satisfied by choosing values for another part of the input
(such as checksums). For clarity, we explain our tech-
niques in the context of dynamic symbolic execution, but
they are equally applicable to concrete fuzz (random) test-
ing [14, 30] and taint-directed fuzzing [17].

We implement our approach in BitFuzz, a tool for auto-
mated symbolic execution of x86 binaries, implemented
using our BitBlaze infrastructure [1, 42]. Our stitched dy-
namic symbolic execution approach applies to programs
that use complex encoding functions, regardless if benign
or malicious. In this paper, we use it to enable the first
automated study of bugs in malware. The closest previ-
ous work we know of has focused on finding bugs on the
remote administration tools that attackers use to control
the malware, as opposed to the malware programs them-
selves, running on the compromised hosts [15, 40].

BitFuzz finds 6 new, remotely trigger-able bugs in
4 prevalent malware families that include botnet clients
(Cutwail, Gheg, and MegaD) and trojans (Zbot). A re-
mote network attacker can use these bugs to terminate or
subvert the malware. We demonstrate that at least one of
the bugs can be exploited, e.g., by an attacker different
than the botmaster, to take over the compromised host. To
confirm the value of our approach, we show that BitFuzz
would be unable to find most of the bugs we report with-
out the new techniques we introduce.

Malware vulnerabilities have a great potential for dif-
ferent applications such as malware removal or cyberwar-
fare. Some malware programs such as botnet clients are
deployed at a scale that rivals popular benign applications.
For instance, the recently-disabled Mariposa botnet was
sending messages from more than 12 million unique IP
addresses at the point it was taken down, and stole data
from more than 800,000 users [26]. Our goal in this
research is to demonstrate that finding vulnerabilities in
widely-deployed malware such as botnet clients is techni-
cally feasible. However, the implications of the usage of
malware vulnerabilities require more investigation. For
example, some of the potential applications of malware
vulnerabilities raise ethical and legal concerns that need
to be addressed by the community. Thus, another goal of
this research is to raise awareness and spur discussion in
the community about the positives and negatives of the
different uses of malware vulnerabilities.

In summary, this paper makes the following contribu-
tions:

• We propose a general approach, stitched dynamic
symbolic execution, that incorporates techniques of
identification, decomposition and re-stitching, to en-
able input generation in the presence of encoding
functions.

• We implement our approach in BitFuzz, a tool for
exploration of x86 binaries.

• Applying BitFuzz, we perform the first automated
study of vulnerabilities in malware.

• We find several bugs in malware that could be trig-
gered remotely, and verify that they persist across
versions.

The remainder of this paper is organized as follows:
Section 2 defines the problem we address, Section 3 de-
scribes our approach in detail, Section 4 gives additional
practical details of our implementation, Section 5 de-
scribes our case studies finding bugs in malware, Section 6
discusses the implications of our results, Section 7 surveys
related work, and finally, Section 8 concludes.

2 Problem Definition & Overview
In this section, we describe the problem we address and
give an overview of our approach.

2.1 Problem Definition

Our problem is how to perform dynamic symbolic execu-
tion in the presence of encoding functions.
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Background: dynamic symbolic execution. Dynamic
symbolic execution [7,20] is a technique to automatically
generate inputs to explore a program’s execution space.
In particular, it marks the input as symbolic and performs
symbolic execution along a path. The conjunction of the
symbolic branch conditions forms the path predicate. By
solving a modified path predicate with a solver, it auto-
matically generates an input to make the program execu-
tion follow a new path. By repeating this process, dy-
namic symbolic execution can automatically find inputs
to explore different execution paths of the program.

The challenge of dynamic symbolic execution with en-
coding functions. Often there are parts of a program
that are not amenable to dynamic symbolic execution. A
class of common culprits, which we call encoding func-
tions, includes many instances of decryption, decompres-
sion, and checksums. For instance, consider the code in
Figure 1, which is an idealized example modeled after a
botnet client. A C&C message for this botnet comprises 4
bytes with the message length, followed by 20 bytes cor-
responding to a SHA-1 hash, followed by an encrypted
payload. The bot casts the received message into a mes-
sage structure, decrypts the payload using AES [10], ver-
ifies the integrity of the (decrypted) message body using
the SHA-1 hash [32], and then takes a malicious action
such as sending spam based on a command in the mes-
sage body. Dynamic symbolic execution attempts to cre-
ate a new valid input by solving a formula corresponding
to the path condition for an execution path. Suppose we
run the program on a message that causes the bot to partic-
ipate in a DDOS attack: at a high level, the path condition
takes the form

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] = 101 (1)

where m and h1 represent two relevant parts of the
program input treated as symbolic: m is the message
body m->message, and h1 is the message checksum
m->hash. Dec represents the AES decryption, while
SHA1 is the SHA-1 hash function. To see whether it can
create a message to cause a different action, dynamic sym-
bolic execution will attempt to solve the modified path
condition

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] 6= 101 (2)

which differs from the original in inverting the last condi-
tion.

However, solvers tend to have a very hard time with
conditions such as this one. As seen by the solver, the
Dec and SHA1 functions are expanded into a complex
combination of constraints that mix together the influence

1 struct msg {
2 long msg_len;
3 unsigned char hash[20];
4 unsigned char message[];
5 };
6 void process(unsigned char* network_data) {
7 int *p;
8 struct msg *m =
9 (struct msg *) network_data;

10 aes_cbc_decrypt(m->message,
11 m->msg_len, key);
12 p = compute_sha1(m->message, m->msg_len);
13 if (memcmp(p, m->hash, 20))
14 exit(1);
15 else {
16 int cmd = m->message[0];
17 if (cmd == 101)
18 ddos_attack(m);
19 else if (cmd == 142)
20 send_spam(m);
21 /* ... */
22 }
23 }

Figure 1: A simplified example of a program that uses lay-
ered input processing, including decryption (line 9) and a
secure hash function for integrity verification (lines 10-
12).

of many input values and are hard to reason about [12].
The solver cannot easily recognize the high-level structure
of the computation, such as that the internals of the Dec
and SHA1 functions are independent of the parsing con-
dition m′[0] 6= 101. Such encoding functions are also just
as serious an obstacle for related techniques like concrete
and taint-directed fuzzing. Thus, the problem we address
is how to perform input generation (such as via dynamic
symbolic execution) for programs that use encoding func-
tions.

2.2 Approach Overview

We propose an approach of stitched dynamic symbolic ex-
ecution to perform input generation in the presence of en-
coding functions. We first discuss the intuition behind it,
outline the steps involved, and then explain how it applies
to malware vulnerability finding.

Intuition. The insight behind our approach is that it is
possible to avoid the problems caused by encoding func-
tions, by identifying and bypassing them to concentrate
on the rest of the program, and re-stitching inputs using
concrete execution. For instance in the path condition of
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formula 2, the first and second constraints come from en-
coding functions. Our approach can verify that they are
independent from each other and the message parser (ex-
emplified by the constraint m′[0] 6= 101) within the high-
level structure of input processing and checking. Thus
these constraints can be decomposed, and the solver can
concentrate on the remainder. Solving the remaining con-
straints gives a partial input in the form of a value for
m′, and our system can then re-stitch this into a complete
program input by concretely executing the encoding func-
tions or their inverses, specifically h1 as SHA1(m′) and
m as Dec−1(m′).

Stitched dynamic symbolic execution. In outline, our
approach proceeds as follows. As a first phase, our ap-
proach identifies encoding functions (such as decryption
and checksums) based on a program execution. Then
in the second phase, our approach augments exploration
based on dynamic symbolic execution by adding decom-
position and re-stitching. On each iteration of exploration,
we decompose the generated constraints to separate those
related to encoding functions, and pass the constraints un-
related to encoding functions to a solver. The constraint
solution represents a partial input; the approach then re-
stitches it, with concrete execution of encoding functions
and their inverses, into a complete input used for a future
iteration of exploration. If as in Figure 1 there are mul-
tiple layers of encoding functions, the approach decom-
poses each layer in turn, and then reverses the layers in
re-stitching. We detail our decomposition and re-stitching
approach in Section 3.1.

Identifying encoding functions and their inverses. For
identifying encoding functions, we perform a trace-based
dependency analysis that is a general kind of dynamic
tainting. This analysis detects functions that highly mix
their input, i.e., an output byte depends on many input
bytes. The intuition is that high mixing is what makes
constraints difficult to solve. For example, a block cipher
in CBC mode highly mixes its input and the constraints
it introduces during decryption are hard to solve, but a
stream cipher does not mix its input and thus the con-
straints it introduces can be easily solved. Thus, our iden-
tification technique targets encoding functions that highly
mix their inputs. In addition to the encoding functions,
our approach may also require their inverses (e.g., for de-
cryption and decompression functions). The intuition be-
hind finding inverses is that encoding functions and their
inverses are often used in concert, so their implementa-
tions can often be found in the same binaries or in widely-
available libraries (e.g., OpenSSL [33] or zlib [46]). In
this paper, we propose a technique that given a function,
identifies whether its inverse is present in a set of other

Figure 2: A graphical representation of the two styles of
decomposition used in our approach. Ovals and diamonds
represent computations, and edges represent the depen-
dencies (data-flow constraints) between them. On the left
is serial layering, while on the right is side-condition lay-
ering.

functions. We detail the identification of encoding func-
tions and their inverses in Section 3.2. We further discuss
the availability of inverse functions in Section 6.2.

3 Stitched Dynamic Symbolic
Execution

In this section we describe key aspects of our approach:
the conditions under which a program’s constraints can
be decomposed and re-stitched (Section 3.1), techniques
for choosing what components’ constraints to decompose
(Section 3.2), and how to repeat the process when there
are multiple encoding layers. (Section 3.3). An overview
of the system architecture is shown in Figure 3.

3.1 Decomposition and Re-Stitching
In this section we describe the principles of our decom-
position and re-stitching approach at two levels: first at
the level of constraints between program values, and then
more abstractly by considering a program as a collection
of functional elements.

3.1.1 Decomposing Constraints

One perspective on decomposition is to consider a pro-
gram’s execution as inducing constraints among program
values. These are the same constraints that are represented
by formulas in symbolic execution: for instance, that one
value is equal to the sum of two other values. The con-
straints that arise from a single program execution have
the structure of a directed acyclic graph whose sources
represent inputs and whose sinks represent outputs; we
call this the constraint graph. The feasible input-output
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Figure 3: Architectural overview showing the parts of our decomposition-based input generation system. The steps
labeled decomposition and re-stitching are discussed in Section 3.1, while identification is discussed in Section 3.2.
The parts of the system shown with a gray background are the same as would be used in a non-stitching dynamic
symbolic execution system. The steps above the dotted line are performed once as a setup phase, while the rest of the
process is repeated for each iteration of exploration.

pairs for a given execution path correspond to the values
that satisfy such a constraint system, so input generation
can be viewed as a kind of constraint satisfaction problem.

In this constraint-satisfaction perspective, analyzing
part of a program separately corresponds to cutting the
constraints that link its inputs to the rest of the execu-
tion. For a formula generated by symbolic execution, we
can make part of a formula independent by renaming the
variables it refers to. Following this approach, it is not
necessary to extract a component as if it were a separate
program. Our tool can simply perform dynamic symbolic
execution on the entire program, and achieve a separation
between components by using different variable names in
some of the extracted constraints.

We propose two generic forms of decomposition,
which are illustrated graphically in Figure 2. For each
form of decomposition, we explain which parts of the pro-
gram are identified for decomposition, and describe what
local and global dependency conditions are necessary for
the decomposition to be correct.

One set of global dependency conditions are inherent
in the graph structure shown in Figure 2. If each node
represents the constraints generated from one component,
then for the decomposition to be correct, there must not
be any constraints between values that do not correspond
to edges in Figure 2. For instance the component f2 in
serial decomposition must not access the input directly.

Serial decomposition. The first style of decomposition
our approach performs is between successive operations
on the same information, in which the first layer is a trans-
formation producing input to the second layer. More pre-
cisely, it involves what we call a surjective transforma-
tion. There are two conditions that define a surjective
transformation. First, once a value has been transformed,
the pre-transformed form of the input is never used again.
Second, the transformation must be an onto function: ev-
ery element in its codomain can be produced with some
input. For example, if a function y = x2 returns a signed

32-bit integer, the codomain contains 232 elements. In
that case, the image is a subset of the codomain that does
not include for example the value -1, as it is not a pos-
sible output of the function. In Figure 2, f1 is the com-
ponent that must implement a surjective transformation.
Some examples of surjective transformations include de-
compression and decryption. The key insight of the de-
composition is that we can analyze the part of the pro-
gram downstream from the transformation independently,
and then simply invert the transformation to re-stitch in-
puts. For instance, in the example of Figure 1, the decryp-
tion operation is a surjective transformation that induces
the constraint m′ = Dec(m). To analyze the rest of the
program without this encoding function, we can just re-
name the other uses of m′ to a new variable (say m′′) that
is otherwise unconstrained, and analyze the program as if
m′′ were the input. Bypassing the decryption in this way
gives

h1 = SHA1(m′′) ∧m′′[0] = 101 (3)

as the remaining path condition.

Side-condition decomposition. The second style of de-
composition our approach performs separates two compo-
nents that operate on the same data, but can still be consid-
ered mostly independent. Intuitively, a free side-condition
is a constraint on part of a program’s input that can effec-
tively be ignored during analysis of the rest of a program,
because it can always be satisfied by choosing values for
another part of the input. We can be free to change this
other part of the input if it does not participate in any con-
straints other than those from the side-condition. More
precisely, a program exhibiting a free side-condition takes
the form shown in the right-hand side of Figure 2. The
side-condition is the constraint that the predicate p must
hold between the outputs of f1 and f2. The side-condition
is free because whatever value the first half of the input
takes, p can be satisfied by making an appropriate choice
for the second half of the input. An example of a free side-
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condition is that the checksum computed over a program’s
input (f1) must equal (p) the checksum parsed from a
message header (f2).

To perform decomposition given a free side-condition,
we simply replace the side-condition with a value that is
always true. For instance the SHA-1 hash of Figure 1
participates in a free side-condition h1 = SHA1(m′′) (as-
suming we have already removed the decryption function
as mentioned above). But h1 does not appear anywhere
else among the constraints, so we can analyze the rest of
the program as if this condition were just the literal true.
This gives the path condition:

true ∧m′′[0] = 101 (4)

3.1.2 Re-Stitching

After decomposing the constraints, our system solves the
constraints corresponding to the remainder of the pro-
gram (excluding the encoding function(s)), as in non-
stitched symbolic execution, to give a partial input. The
re-stitching step builds a complete program input from
this partial input by concretely execution encoding func-
tions and their inverses. If the decomposition is correct,
such a complete input is guaranteed to exist, but we con-
struct it explicitly so that the exploration process can re-
execute the program from the beginning. Once we have
found a bug, a complete input confirms (independent of
any assumptions about the analysis technique) that the bug
is real, allows easy testing on other related samples, and
is the first step in creating a working exploit.

For serial decomposition, we are given an input to f2,
and the goal is to find a corresponding input to f1 that
produces that value. This requires access to an inverse
function for f1; we discuss finding one in Section 3.2.2.
(If f1 is many-to-one, any inverse will suffice.) For in-
stance, in the example of Figure 1, the partial input is a
decrypted message, and the full input is the correspond-
ing AES-encrypted message.

For side-condition decomposition, we are given a value
for the first part of the input that is processed by f1. The
goal is to find a matching value for the rest of the input
that is processed by f2, such that the predicate p holds.
For instance, in Figure 1, f1 corresponds to the function
compute_sha1, f2 is the identity function copying the
value m->hash, and p is the equality predicate. We find
such a value by executing f1 forwards, finding a value
related to that value by p, and applying the inverse of f2.
A common special case is that f2 is the identity function
and the predicate p is just equality, in which case we only
have to re-run f1. For Figure 1, our tool must simply re-
apply compute_sha1 to each new message.

3.1.3 The Functional Perspective

A more abstract perspective on the decomposition our
technique performs is to consider the components of the
program as if they were pure functions. Of course the real
programs we analyze have side-effects: a key aspect of
our implementation is to automatically analyze the depen-
dencies between operations to understand which instruc-
tions produce values that are read by other instructions.
We summarize this structure to understand which oper-
ations are independent from others. In this section, we
show this independence by modeling a computation as a
function that takes as inputs only those values the com-
putation depends on, and whose outputs encompass all of
its side effects. This representation is convenient for for-
mally describing the conditions that enable decomposition
and re-stitching.

Serial decomposition applies when a program has the
functional form f2(f1(i)) for input i, and the function
f1 (the surjective transformation) is onto: all values that
might be used as inputs to f2 could be produced as out-
puts of f1 for some input. Observe that the fact that i
does not appear directly as an argument to f2 implies that
f2 has no direct dependency on the pre-transformed in-
put. For re-stitching, we are given a partial input x2 in
f(x2), and our tool computes the corresponding full input
as x1 = f−1

1 (x2).

For side-condition decomposition, we say that a predi-
cate p is a free side-condition in a program that has the
functional form f4(f3(i1), p(f1(i1), f2(i2))), where the
input is in disjoint parts i1 and i2. Here f2 is a surjective
transformation and p is a surjective or right-total relation:
for all y there exists an x such that p(x, y) is true. When
p is a free side-condition, the effect of decomposition is
to ignore f1, f2, and p, and analyze inputs i1 as if the
program were f4(f3(i1), true). This gives a partial input
x1 for the computation f4(f3(x1), true). To create a full
input, we must also find an additional input x2 such that
p(f1(x1), f2(x2)) holds. Our tool computes this using the
formula x2 = f−1

2 (p−1(f1(x1))).

3.2 Identification

The previous section described the conditions under
which decomposition is possible; we next turn to the ques-
tion of how to automatically identify candidate decompo-
sition sites. Specifically, we first discuss finding encod-
ing functions 3.2.1, and then how to find inverses of those
functions when needed 3.2.2.
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3.2.1 Identifying Encoding Functions

There are two properties of an encoding function that
make it profitable to use for decomposition in our ap-
proach. First, the encoding function should be difficult to
reason about symbolically. Second, the way the function
is used should match one of the decomposition patterns
described in Section 3.1. Our identification approach is
structured to check these two kinds of properties, using a
common mechanism of dynamic dependency analysis.

Dynamic dependency analysis. For identifying encod-
ing functions, we perform a trace-based dependency anal-
ysis that is a general kind of dynamic tainting. The anal-
ysis associates information with each value during execu-
tion, propagates that information when values are copied,
and updates that information when values are used in an
operation to give a new value. Equivalently, this can be
viewed as propagating information along edges in the con-
straint graph (taking advantage of the fact that the execu-
tion is a topological-order traversal of that graph). Given
the selection of any subset of the program state as a taint
source, the analysis computes which other parts of the
program state have a data dependency on that source.

Identifying high taint degree. An intuition that partially
explains why many encoding functions are hard to reason
about is that they mix together constraints related to many
parts of the program input, which makes constraint solv-
ing difficult. For instance, this is illustrated by a contrast
between an encryption function that uses a block cipher
in CBC mode, and one that uses a stream cipher. Though
the functions perform superficially similar tasks, the block
cipher encryption is a barrier to dynamic symbolic execu-
tion because of its high mixing, while a stream cipher is
not. Because of the lack of mixing, a constraint solver
can efficiently determine that a single plaintext byte can
be modified by making a change to the corresponding ci-
phertext byte. We use this intuition for detecting encoding
functions for decomposition: the encoding functions we
are interested in tend to mix their inputs. But we exclude
simple stream ciphers from the class of encoding func-
tions we consider, since it is easy enough to solve them
directly.

We can potentially use dynamic dependency analysis
to track the dependencies of values on any earlier part of
the program state; for instance we have experimented with
treating every input to a function as a dependency (taint)
source. But for the present paper we confine ourselves to
using the inputs to the entire program (i.e., from system
calls) as dependency sources. To be precise our analysis
assigns an identifier to each input byte, and determines,
for each value in an execution, which subset of the in-

put bytes it depends on. We call the number of such in-
put bytes the value’s taint degree. If the taint degree of
a byte is larger than a configurable threshold, we refer
to it as high-taint-degree. We group together a series of
high-taint-degree values in adjacent memory locations as
a single buffer; our decomposition applies to a single such
buffer.

This basic technique could apply to buffers anywhere
in an execution, but we further enhance it to identify
functions that produce high-taint-degree buffers as output.
This has several benefits: it reduces the number of candi-
date buffers that need to be checked in later stages, and
in cases where the tool needs to later find an inverse of a
computation (Section 3.2.2), it is convenient to search us-
ing a complete function. Our tool considers a buffer to be
an output of a function if it is live at the point in time that a
return instruction is executed. Also, to ensure we identify
a function that includes the complete encoding functional-
ity, our tool uses the dependency analysis to find the first
high-taint-degree computation that the output buffer de-
pends on, and chooses the function that encloses both this
first computation and the output buffer.

In the example of Figure 1, the buffers containing the
outputs of aes_cbc_decrypt and compute_sha1
would both be found as candidates by this technique, since
they both would contain bytes that depend on all of the
input bytes (the final decrypted byte, and all of the hash
value bytes).

Checking dependence conditions. Values with a high
taint degree as identified above are candidates for decom-
position because they are potentially problematic for sym-
bolic reasoning. But to apply our technique to them, they
must also appear in a proper context in the program to
apply our decomposition. Intuitively the structure of the
program must be like those in Figure 2. To be more pre-
cise, we describe (in-)dependence conditions that limit
what parts of the program may use values produced by
other parts of the program. The next step in our identi-
fication approach is to verify that the proper dependence
conditions hold (on the observed execution). This check-
ing is needed to avoid improper decompositions, and it
also further filters the potential encoding functions identi-
fied based on taint degree.

Intuitively, the dependence conditions require that the
encoding function be independent of the rest of the pro-
gram, except for the specific relationships we expect. For
serial decomposition, our tool checks that the input bytes
that were used as inputs to the surjective transformation
are not used later in the program. For side-condition de-
composition, our tool checks that the result of the free
side-condition predicate is the only use of the value com-
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puted from the main input (e.g., the computed checksum),
and that the remaining input (e.g., the expected check-
sum from a header) is not used other than in the free
side-condition. Our tool performs this checking using the
same kind of dynamic dependency analysis used to mea-
sure taint degree.

In the example of Figure 1, our tool checks that the
encrypted input to aes_cbc_decrypt is not used later
in the program (it cannot be, because it is overwritten).
It also checks that the hash buffer pointed to by h is not
used other than in the memcmp on line 11, and that the
buffer m->hash, containing the expected hash value, is
not used elsewhere.

Identifying new encoding functions. The identification
step may need to be run in each iteration of the explo-
ration because new encoding functions functions may ap-
pear that had not been seen in previous iterations. As an
optimization, BitFuzz runs the identification on the first it-
eration of the exploration, as shown in Figure 3, and then,
on each new iteration, it checks whether the solver times
out when solving any constraint. If it does, it re-runs the
identification on the current execution trace.

A graph-based alternative. Our taint-degree depen-
dency analysis can be seen as simple special case of a
broader class of algorithms that identify interesting parts
of a program from the structure of its data dependency
(data-flow) graph. The approach we currently use has ef-
ficiency and simplicity advantages because it can oper-
ate in one pass over a trace, but in the future we are also
interested in exploring more general approaches that ex-
plicitly construct the dependency graph. For instance, the
interface between the two stages in a serial decomposition
must be a cut in the constraint graph, and we would gener-
ally expect it to be minimal cut in the sense of the subset
partial order. So we can search for candidate serial de-
compositions by using a maximum-flow-minimum-cut al-
gorithm as in McCamant and Ernst’s Flowcheck tool [28].

3.2.2 Identifying Inverse Functions

Recall that to re-stitch inputs after serial decomposition,
our approach requires the inverses of surjective transfor-
mation functions. This requirement is reasonable because
surjective functions like decryption and decompression
are commonly the inverses of other functions (encryption
and compression) that apply to arbitrary data. These func-
tions and their inverses are often used in concert, so their
implementations can often be found in the same binaries
or in publicly available libraries (e.g., [33, 46]). Thus, we
search for relevant inverse functions in the code being an-
alyzed as well as in publicly available libraries.

Specifically, we check whether two functions are each
others’ inverses by random testing. If f and f ′ are
two functions, and for several randomly-chosen x and y,
f ′(f(x)) = x and f(f ′(y)) = y, then f and f ′ are likely
inverses of each other over most of their domains. Sup-
pose f is the encoding function we wish to invert. Start-
ing with all the functions from the same binary module
that were exercised in the trace, we infer their interfaces
using our previous BCR tool [4]. To prioritize the can-
didates, we use the intuition that the encryption and de-
cryption functions likely have similar interfaces. For each
candidate inverse g, we compute a 4-element feature vec-
tor counting how many of the parameters are used only for
input, only for output, or both, and how many are point-
ers. We then sort the candidates in increasing order of
the Manhattan distances (sum of absolute differences) be-
tween their features and those of f .

For each candidate inverse g, we execute f ◦g and g ◦f
on k random inputs each, and check whether they both re-
turn the original inputs in all cases. If so, we consider g
to be the inverse of f . To match the output interface of g
with the input interface of f , and vice-versa, we generate
missing inputs either according to the semantics inferred
by BCR (such as buffer lengths), or randomly; if there are
more outputs than inputs we test each possible mapping.
Increasing the parameter k improves the confidence in re-
sulting identification, but the choice of the parameter is
not very sensitive: test buffers have enough entropy that
even a single false positive is unlikely, but since the tests
are just concrete executions, they are inexpensive. If we
do not find an inverse among the executed functions in the
same module, we expand the search to other functions in
the binary, in other libraries shipped with the binary, and
in standard libraries.

For instance, in the example of Figure 1, our tool re-
quires an AES encryption function to invert the AES de-
cryption used by the bot program. In bots it is common
for the encryption function to appear in the same binary,
since the bot often encrypts its reply messages with the
same cipher, but in the case of a standard function like
AES we could also find the inverse in a standard library
like OpenSSL [33].

Once an inverse function is identified, we use our previ-
ous BCR tool to extract the function [4]. The hybrid dis-
assembly technique used by BCR extracts the body of the
function, including instructions that did not appear in the
execution, which is important because when re-stitching a
partial input branches leading to those, previously unseen,
instructions may be taken.
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3.3 Multiple Encoding Layers

If a program has more than one encoding function, we can
repeat our approach to decompose the constraints from
each encoding function in turn, creating a multi-layered
decomposition. The decomposition operates from the
outside in, in the order the encoding functions are ap-
plied to the input, intuitively like peeling the layers of
an onion. For instance, in the example of Figure 1, our
tool decomposes first the decryption function and then
the hash-checking function, finally leaving only the bot-
net client’s command parsing and malicious behavior for
exploration.

4 Implementation
In this section we provide implementation details for our
BitFuzz tool and describe our Internet-in-a-Workstation
environment.

4.1 BitFuzz

We have implemented our approach in a tool called Bit-
Fuzz. BitFuzz’s operation is similar to previous explo-
ration tools for program binaries such as SAGE [21],
SmartFuzz [31], and Elcano [5], but with the addition
of our stitched dynamic symbolic execution techniques.
BitFuzz shares some underlying infrastructure with our
previous tools including Elcano, but it lacks support for
protocol information and adds other new features such as
distributed operation on computer clusters.

BitFuzz is implemented using the BitBlaze [42] plat-
form for binary analysis, which includes TEMU, an exten-
sible whole-system emulator that implements taint prop-
agation, and Vine, an intermediate language and analy-
sis library that represents the precise semantics of x86 in-
structions in terms of a few basic operations. BitFuzz uses
TEMU to collect execution traces and Vine to generate
a symbolic representation of the program’s computations
and path condition. To solve modified path conditions, the
experiments in this paper use STP [16], a complete de-
cision procedure incorporating the theories of arrays and
bit-vectors.

BitFuzz maintains two pools, of program inputs and ex-
ecution traces: each input gives a trace, and each trace can
yield one or more new inputs. To bias this potentially un-
bounded feedback towards interesting paths, it performs
a breadth-first search (i.e., changing a minimal number of
branches compared to the original input), prioritizes traces
that cover the most new code blocks, and only reverts one
occurrence of a loop condition.

Vulnerability detection. BitFuzz supports several tech-
niques for vulnerability detection and reports any inputs
flagged by these techniques. It detects program termi-
nation and invalid memory access exceptions. Execu-
tions that exceed a timeout are flagged as potential infinite
loops. It also uses TEMU’s taint propagation module to
identify whether the input (e.g., network data) is used in
the program counter or in the size parameter of a memory
allocation.

Decomposition and re-stitching details. Following the
approach introduced in Section 3.1.1, our system imple-
ments decomposition by making local modifications con-
straints generated from execution, with some additional
optimizations. For serial decomposition, it uses a TEMU
extension mechanism called a hook to implement the re-
naming of symbolic values. As a further optimization, the
hook temporarily disables taint propagation inside the en-
coding function so that no symbolic constraints are gen-
erated. To save the work of recomputing a checksum on
each iteration in the case of side-condition decomposition,
our tool can also directly force the conditional branch im-
plementing the predicate p to take the same direction it
did on the original execution.

4.2 Internet-in-a-Workstation

We have developed an environment where we can run
malware in isolation, without worrying about malicious
behavior leaking to the Internet. Many malware programs,
e.g., bots, act as network clients that start connections to
remote C&C servers. Thus, the input that BitFuzz needs
to feed to the program in each iteration is often the re-
sponse to some request sent by the program.

All network traffic generated by the program, running
in the execution monitor, is redirected to the local work-
station in a manner that is transparent to the program un-
der analysis. In addition, we have developed two helper
tools: a modified DNS server which can respond to any
DNS query with a preconfigured or randomly generated,
IP address, and a generic replay server. The generic replay
server takes as input an XML file that describes a network
dialog as an ordered sequence of connections, where each
connection can comprise multiple messages in either di-
rection. It also takes as input the payload of the messages
in the dialog. Such generic server simplifies the task of
setting up different programs and protocols. Given a net-
work trace of the communication we generate the XML
file describing the dialog to explore, and give the replay
server the seed messages for the exploration. Then, at
the beginning of each exploration iteration BitFuzz hands
new payload files (i.e., the re-stitched program input) to
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the replay server so that they are fed to the network client
program under analysis when it opens a new connection.

5 Experimental Evaluation

This section evaluates our approach by finding bugs in
malware that uses complex encoding functions. It demon-
strates that our decomposition and re-stitching approach
finds some bugs in malware that would not be found with-
out it, and that it significantly increases the efficiency of
the exploration in other cases. It presents the malware
bugs we find and shows that these bugs have persisted in
the malware families for long periods of time, sometimes
years.

Malware samples. The first column of Table 1 presents
the four popular families of malware that we have used
in our evaluation. Three of them (Cutwail, Gheg, and
MegaD) are spam bots, while Zbot is a trojan used for
stealing private information from compromised hosts. At
the time of writing MegaD accounts for over 15% of the
spam in the Internet, Cutwail/Pushdo for over 7% [27].
Gheg is a smaller spam contributor but is still significant
with an estimated size over 60,000 bots [22].

All four malware families act as network clients, that
is, when run they attempt to connect to a remote C&C
server rather than opening a listening socket and await
for commands. All four of them use encryption to ob-
fuscate their network communication, avoid signature-
based NIDS detection, and make it harder for analysts
to reverse-engineer their C&C protocol. Cutwail, Gheg,
and MegaD use proprietary encryption algorithms, while
Zbot uses the well-known RC4 stream cipher. In addi-
tion to encryption, Zbot also uses an MD5 cryptographic
hash function to verify the integrity of a configuration file
received from the server.

Experimental setup. For each bot we are given a net-
work trace of the bot communication from which we ex-
tract an XML representation of the dialog between the bot
and the C&C server, as well as the payload of the network
packets in that dialog. This information is needed by the
replay server to provide the correct sequence of network
packets to the bot during exploration. For example, this is
needed for MegaD where the response sent by the replay
server comprises two packets that need to be sent sequen-
tially but cannot be concatenated together due to the way
that the bot reads from the socket. As a seed for the ex-
ploration we use the same content observed in the dialog
captured in the network trace. Other seeds can alterna-
tively be used. Although our setup can support exploring
multiple connections, currently, we focus the exploration
on the first connection started by the bot.

For the experiments we run BitFuzz on a 3GHz Intel
Core 2 Duo Linux workstation with 4GB of RAM running
Ubuntu Server 9.04. The emulated guest system where the
malware program runs is a Microsoft Windows XP SP3
image with 512MB of emulated RAM.

5.1 Identification of Encoding Functions
and Their Inverses

The first step in our approach is to identify the encoding
functions. The identification of the encoding functions
happens on the execution trace produced by the seed at
the beginning of the exploration. We set the taint degree
threshold to 4, so that any byte that has been generated
from 5 or more input bytes is flagged. Table 1 summarizes
the results. The identification finds an encoding function
in three of the four samples: Gheg, MegaD, and Zbot. For
Cutwail, no encoding function is identified. The reason
for this is that Cutwail’s cipher is simple and does not con-
tain any mixing of the input, which is the property that our
encoding function identification technique detects. With-
out input mixing the constraints generated by the cipher
are not complex to solve. We show this in the next sec-
tion. In addition, Cutwail’s trace does not contain any
checksum functions.

For Zbot, the encoding function flagged in the identi-
fication corresponds to the MD5 checksum that it uses to
verify the integrity of the configuration file it downloads
from the C&C server. In addition to the checksum, Zbot
uses the RC4 cipher to protect its communication, which
is not flagged by our technique. This happens because
RC4 is a stream cipher that does no mixing of the input,
i.e., it does not use input or output bytes to update its in-
ternal state. The input is simply combined with a pseudo-
random keystream using bit-wise exclusive-or. Since the
keystream is not derived from the input but from a key in
the data section, it is concrete for the solver. Thus, the
solver only needs to invert the exclusive-or computation
to generate an input, which means that RC4 introduces no
hard-to-solve constraints.

For the other two samples (Gheg and MegaD) the en-
coding function flagged by the identification corresponds
to the cipher. MegaD uses a 64-bit block cipher, which
mixes 8 bytes from the input before combining them with
the key. Gheg’s cipher uses a one-byte key that is com-
bined with the first input byte to produce a one-byte out-
put that is used also as key to encode the next byte. This
process repeats and the mixing (taint degree) of each new
output byte increases by one. Neither Gheg nor MegaD
uses a checksum.

Once the encoding functions have been identified, Bit-
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Name
Program Input size # Instruction Decryption Checksum/hash Runtime
size (KB) (bytes) (×103) Algorithm MTD Algorithm MTD (sec)

Zbot 126.5 5269 1307.3 RC4-256 1 MD5 4976 92
MegaD 71.0 68 4687.6 64-bit block cipher 8 none n/a 105
Gheg 32.0 271 84.5 8-bit stream cipher 128 none n/a 5

Cutwail 50.0 269 23.1 byte-based cipher 1 none n/a 2

Table 1: Summary of the applications on which we performed identification of encoding functions. MTD stands for
maximum taint degree.

Fuzz introduces new symbols for the outputs of those en-
coding functions, effectively decomposing the constraints
in the execution into two sets and ignoring the set of hard-
to-solve constraints introduced by the encoding function.

The results of our encoding function identification, for
the first iteration of the exploration, are summarized in
Table 1, which presents on the left the program name and
program size, the size of the input seed, and the number of
instructions in the execution trace produced by the seed.
The decryption and checksum columns describe the algo-
rithm type and the maximum taint degree the algorithm
produces in the execution. The rightmost column shows
the runtime of the identification algorithm, which varies
from a few seconds to close to two minutes. Because the
identification is reused over a large number of iterations,
the amortized overhead is even smaller.

Identifying the inverse functions. For Gheg and MegaD,
BitFuzz needs to identify the inverse of the decryption
function so that it can be used to re-stitch the inputs into a
new program input for another iteration. (The encryption
function for MegaD is the same one identified in previ-
ous work [4]; we use it to check the accuracy of our new
identification approach.)

As described in Section 3.2.2, BitFuzz extracts the in-
terface of each function in the execution trace that belongs
to the same module as the decoding function, and then
prioritizes them by the similarity of their interface to the
decoding function. For both Gheg and MegaD, the func-
tion with the closest prototype is the encryption function,
as our tool confirms by random testing with k = 10 tests.
These samples illustrate the common pattern of a match-
ing encryption function being included for two-way com-
munication, so we did not need to search further afield for
an inverse.

5.2 Decomposition vs. Non-Decomposition

In this section we compare the number of bugs found
by BitFuzz when it uses decomposition and re-stitching,
which we call full BitFuzz, and when it does not, which

we call vanilla BitFuzz. Full BitFuzz uses the identified
decoding functions to decompose the constraints into two
sets, one with the constraints introduced by the decryp-
tion/checksum function and the other with the remaining
constraints after that stage. In addition, each iteration of
MegaD and Gheg uses the inverse function to re-stitch the
inputs into a program input. Vanilla BitFuzz is compa-
rable to previous dynamic symbolic execution tools. In
both full and vanilla cases, BitFuzz detects bugs using the
techniques described in Section 4.

In each iteration of its exploration, BitFuzz collects the
execution trace of the malware program starting from the
first time it receives network data. It stops the trace col-
lection when the malware program sends back a reply,
closes the communication socket, or a bug is detected. If
none of those conditions is satisfied the trace collection is
stopped after 2 minutes. For each collected trace, BitFuzz
analyzes up to the first 200 input-dependent control flow
branches and automatically generates new constraints that
would explore new paths in the program. It then queries
STP to solve each generated set of constraints, uses the
solver’s response to generate a new input, and adds it to
the pool of inputs to test on future iterations. Because con-
straint solving can take a very long time without yielding
a meaningful result, BitFuzz discards a set of constraints
if STP runs out of memory or exceeds a 5-minute timeout
for constraint solving.

We run both vanilla and full BitFuzz for 10 hours and
report the bugs found, which are summarized in Table 2.
Detailed descriptions of the bugs follow in Section 5.3.
We break the results in Table 2 into three categories. The
first category includes Zbot and MegaD for which full Bit-
Fuzz finds bugs but Vanilla BitFuzz does not. Full BitFuzz
finds a total of 4 bugs, three in Zbot and one in MegaD.
Three of the bugs are found in under 20 minutes and the
second Zbot bug is found after 2 hours. Vanilla BitFuzz
does not find any bugs in the 10-hour period. This hap-
pens due to the complexity of the constraints being in-
troduced by the encoding functions. In particular, using
full BitFuzz the 5-minute timeout for constraint solving is
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Name Vulnerability Disclosure Encoding Search time (min.)
type public identifier functions full vanilla

Zbot
Null dereference OSVDB-66499 [38] checksum 17.8 >600

Infinite loop OSVDB-66500 [37] checksum 129.2 >600
Buffer overrun OSVDB-66501 [36] checksum 18.1 >600

MegaD Process exit n/a decryption 8.5 >600
Gheg Null dereference OSVDB-66498 [35] decryption 16.6 144.5

Cutwail Buffer overrun OSVDB-66497 [34] none 39.4 39.4

Table 2: Description of the bugs our system finds in malware. The column “full” shows the results from the BitFuzz
system including our decomposition and re-stitching techniques, while the “vanilla” column gives the results with
these techniques disabled. “>600” means we run the tool for 10 hours and it is yet to find the bug.

never reached and STP never runs out of memory, while
using vanilla BitFuzz more than 90% of the generated
constraints result in STP running out of memory.

The second category comprises Gheg for which both
vanilla and full BitFuzz find the same bug. Although both
tools find the same bug, we observe that vanilla BitFuzz
requires almost ten times as long as full BitFuzz to do so.
The cipher used by Gheg uses a one-byte hardcoded key
that is combined with the first input byte using bitwise
exclusive-or to produce the first output byte, that output
byte is then used as key to encode the second byte also
using bitwise exclusive-or and so on. Thus, the taint de-
gree of the first output byte is one, for the second out-
put byte is two and so on until the maximum taint degree
of 128 shown in Table 1. The high maximum taint de-
gree makes it harder for the solver to solve and explains
why vanilla BitFuzz takes much longer than full BitFuzz
to find the bug. Still, the constraints induced by the Gheg
cipher are not as complex as the ones induced by the Zbot
and MegaD ciphers and the solver eventually finds solu-
tions for them. This case shows that even in cases where
the solver will eventually find a solution, using decompo-
sition and re-stitching can significantly improve the per-
formance of the exploration.

The third category comprises Cutwail for which no en-
coding functions with high taint degree are identified and
thus vanilla BitFuzz and full BitFuzz are equivalent.

In summary, full BitFuzz using decomposition and re-
stitching clearly outperforms vanilla BitFuzz. Full Bit-
Fuzz finds bugs in cases where vanilla BitFuzz fails to
do so due to the complexity of the constraints induced by
the encoding functions. It also improves the performance
of the exploration in other cases were the encoding con-
straints are not as complex and will eventually be solved.

5.3 Malware Vulnerabilities
In this section we present the results of our manual analy-
sis to understand the bugs discovered by BitFuzz and our
experiences reporting the bugs.

Zbot. BitFuzz finds three bugs in Zbot. The first one is a
null pointer dereference. One of the C&C messages con-
tains an array size field, which the program uses as the
size parameter in a call to RtlAllocateHeap. When
the array size field is larger than the available memory left
in its local heap, the allocation returns a null pointer. The
return value of the allocation is not checked by the pro-
gram, which later attempts to write to the buffer, crashing
when it tries to dereference the null pointer.

The second bug is an infinite loop condition. A C&C
message comprises of a sequence of blocks. Each block
has a 16-byte header and a payload. One of the fields in
the header represents the size of the payload, s. When the
trojan program finishes processing a block, it iteratively
moves to the next one by adding the block size, s + 16,
to a cursor pointer. When the value of the payload size
is s = −16, the computed block size becomes zero, and
the trojan keeps processing the same block over and over
again.

The last bug is a stack buffer overrun. As mentioned
above, a C&C message comprises of a sequence of blocks.
One of the flags in the block header determines whether
the block payload is compressed or not. If the payload is
compressed, the trojan program decompresses it by stor-
ing the decompressed output into a fixed-size buffer lo-
cated on the stack. When the length of the decompressed
payload is larger than the buffer size, the program will
write beyond the buffer. If the payload is large enough,
it will overwrite a function return address and can even-
tually lead to control flow hijacking. This vulnerability is
exploitable and we have successfully crafted a C&C mes-
sage that exploits the vulnerability and hijacks the execu-
tion of the malware.
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MegaD. BitFuzz finds one input that causes the MegaD
bot to exit cleanly. We analyzed this behavior using
the MegaD grammar produced by previous work [6] and
found that the bug is present in the handling of the ping
message (type 0x27). If the bot receives a ping message
and the bot identifier (usually set by a previously received
C&C message) has not been set, then it sends a reply pong
message (type 0x28) and terminates. This behavior high-
lights the fact that, in addition to bugs, our stitched dy-
namic symbolic execution can also discover C&C mes-
sages that cause the malware to cleanly exit (e.g., kill
commands), if those commands are available in the C&C
protocol. These messages cannot be considered bugs but
can still be used to disable the malware. They are spe-
cially interesting because they may have been designed to
completely remove all traces of the malware running in
the compromised host. In addition, their use could raise
fewer ethical and legal questions than the use of an exploit
would.

Gheg. BitFuzz finds one null pointer dereference bug in
Gheg. The bug is similar to the one in Zbot. One of the
C&C messages contains an array size field, whose value
is multiplied by a constant (0x1e8) and the result used
as the size parameter in a call to RtlAllocateHeap.
The return value of the allocation is not checked by the
program and the program later writes into the allocated
buffer. When the array size field value is larger than the
available memory in its local heap, the allocation fails and
a null pointer is returned. The program fails to check that
the returned value is a null pointer and tries to dereference
it.

Cutwail. BitFuzz finds a buffer overrun bug that leads
to an out-of-bounds write in Cutwail. One of the re-
ceived C&C messages contains an array. Each record in
the array has a length field specifying the length of the
record. This field is used as the size parameter in a call to
RtlAllocateHeap. The returned pointer is appended
to a global array that can only hold 50 records. If the array
in the received message has more than 50 records, the 51st

record will be written outside the bounds of the global ar-
ray. Near the global array, there exists a pointer to a pri-
vate heap handle and the out-of-bounds write will over-
write this pointer. Further calls to RtlAllocateHeap
will then attempt to access the malformed heap handle,
and will lead to heap corruption and a crash.

Reporting the bugs. We reported the Gheg bug to the
editors of the Common Vulnerabilities and Exposures
(CVE) database [9]. Our suggestion was that vulnerabili-
ties in malware should be treated similarly to vulnerabil-
ities in commercial or open source programs, of course
without reporting back to the developers. However, the

Family MD5 First seen Reported by

Zbot
0bf2df85*7f65 Jun-23-09 Prevx
1c9d16db*7fc8 Aug-17-09 Prevx
7a4b9ceb*77d6 Dec-14-09 ThreatExpert

MegaD

700f9d28*0790 Feb-22-08 Prevx
22a9c61c*e41e Dec-13-08 Prevx

d6d00d00*35db Feb-03-10 VirusTotal
09ef89ff*4959 Feb-24-10 VirusTotal

Gheg

287b835b*b5b8 Feb-06-08 Prevx
edde4488*401e Jul-17-08 Prevx
83977366*b0b6 Aug-08-08 ThreatExpert
cdbd8606*6604 Aug-22-08 Prevx
f222e775*68c2 Nov-28-08 Prevx

Cutwail
1fb0dad6*1279 Aug-03-09 Prevx
3b9c3d65*07de Nov-05-09 Prevx

Table 3: Bug reproducibility across different malware
variants. The shaded variants are the ones used for ex-
ploration.

CVE editors felt that malware vulnerabilities were out-
side the scope of their database. Subsequently, we re-
ported the Gheg vulnerability to the Open Source Vulner-
ability Database (OSVDB) moderators who accepted it.
Since then, we have reported all other vulnerabilities ex-
cept the MegaD one, which may be considered intended
functionality by the botmaster. Table 2 presents the pub-
lic identifiers for the disclosed vulnerabilities. We further
address the issue of disclosing malware vulnerabilities in
Section 6.

5.4 Bug Persistence over Time

Bot binaries are updated very often to avoid detection by
anti-virus tools. One interesting question is how persis-
tent over time are the bugs found by BitFuzz. To evaluate
this, we retest our crashing inputs on other binaries from
the same malware families. Table 3 shows all the vari-
ants, with the shaded variants corresponding to the ones
explored by BitFuzz and mentioned in Table 1.

We replay the input that reproduces the bug BitFuzz
found on the shaded variant on the rest of variants from
the same family. As shown, the bugs are reproducible
across all the variants we tested. These means for in-
stance that the MegaD bug has been present for at least
two years (the time frame covered by our variants). In
addition, the MegaD encryption and decryption functions
(and the key they use), as well as the C&C protocol have
not changed, or barely evolved, through time. Otherwise
the bug would not be reproducible in older variants. The
results for Gheg are similar. The bug reproduces across
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all Gheg variants, although in this case our most recent
sample is from November, 2008. Note that, even though
the sample is relatively old it still works, meaning that it
still connects to a C&C server on the Internet and sends
spam. For Zbot, all three bugs reproduce across all vari-
ants, which means they have been present for at least 6
months. These results are important because they demon-
strate that there are components in bot software, such as
the encryption functions and C&C protocol grammar, that
tend to evolve slowly over time and thus could be used to
identify the family to which an unknown binary belongs,
one widespread problem in malware analysis.

6 Discussion
In light of our results, this section provides additional dis-
cussion on the applications for the discovered bugs and as-
sociated ethical considerations. Then, it presents a poten-
tial scenario for using the discovered bugs, and describes
some limitations of our approach.

6.1 Applications and Ethical Considera-
tions

Malware vulnerabilities could potentially be used in dif-
ferent “benign” applications such as remediating botnet
infestations, for malware genealogy since we have shown
that the bugs persist over long periods of time, as a ca-
pability for law enforcement agencies, or as a strategic
resource in state-to-state cyberwarfare [39]. However,
their use raises important ethical and legal questions. For
example, there may be a danger of significant negative
consequences, such as adverse effects to the infected ma-
chines. Also, it is unclear which legal entity would per-
form such remediation, and whether currently there exists
any entity with the legal right to take such action. On the
other hand, having a potential avenue for cleanup and not
making use of it also raises some ethical concerns since if
such remediation were effective, it would be a significant
service to the malware’s future third-party victims (targets
of DDoS attacks, spam recipients, etc.). Such questions
belong to recent and ongoing discussions about ethics in
security research (e.g., [13]) that have not reached a firm
conclusion.

Malware vulnerabilities could also be used for malign
purposes. For instance, there are already indications that
attackers are taking advantage of known vulnerabilities in
web interfaces used to administer botnets to hijack each
others’ botnets [11]. This raises concerns about disclos-
ing such bugs in malware. In the realm of vulnerabilities
in benign software, there has been significant debate on

what disclosure practices are socially optimal and there is
a partial consensus in favor of some kind of “responsible
disclosure” that gives authors a limited form of advance
notice. However, it is not clear what the analogous best
practice for malware vulnerabilities should be. We have
faced this disclosure issue when deciding whether to pub-
licly disclose the vulnerabilities we found and to which
extent we should describe the vulnerabilities in the paper.
We hope this paper strikes a fine balance but we also be-
lieve further discussion is needed on the proper avenue for
disclosing malware vulnerabilities.

Potential application scenario. While we have not used
our crashing inputs on bots in the wild, here we hypothet-
ically discuss one possible scenario of how one might do
so. The malware programs we analyze start TCP connec-
tions with a remote C&C server. To exploit the vulner-
abilities we have presented, we need to impersonate the
C&C server and feed inputs in the response to the initial
request from the malware program. This scenario often
happens during a botnet takedown, in which law enforce-
ment or other responding entities identify the IP addresses
and DNS names associated with the C&C servers used
by a botnet, and appeal to relevant ISPs and registrars to
have them de-registered or redirected to the responders.
The responders can then impersonate the C&C server: one
common choice is a sinkhole server that collects statistics
on requests but does not reply. But such responders are
also in a position to perform more active communication
with bots, and for instance vulnerabilities like the ones
we present could be used for cleanup if the botnet does
not support cleanup via its normal protocol. For example,
such a scenario happened recently during the attempted
MegaD takedown by FireEye [29]. For a few days Fire-
Eye ran a sinkhole server that received the C&C connec-
tions from the bots. This sinkhole server was later handed
to the Shadowserver Foundation [41].

6.2 Limitations

We have found our techniques to be quite effective against
the current generation of malware. But since malware
authors have freedom in how they design encoding func-
tions, and an incentive to avoid analysis of their programs,
it is valuable to consider what measures they might take
against analysis.

Preventing access to inverses. To stitch complete in-
puts in the presence of a surjective transformation, our
approach requires access to an appropriate inverse func-
tion: for instance, the encryption function corresponding
to a decryption function. So far, we have been success-
ful in finding such inverses either within the malware bi-
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nary, or from standard sources, but these approaches could
be thwarted if malware authors made different choices of
cryptographic algorithms. For instance, malware authors
could design their protocols using asymmetric (public-
key) encryption and digital signatures. Since we would
not have access to the private key used by the C&C server,
we could not forge the signature in the messages sent to
the bot. We could still use our decomposition and re-
stitching approach to find bugs in malware, because the
signature verification is a basically a free side-condition
that can be ignored. However, we could only build a ex-
ploit for our modified bot, as other bots will verify the
(incorrect) signature in the message and reject it. Cur-
rently, most malware do not use public-key cryptography,
but that may change. In the realm of symmetric encryp-
tion, malware authors could deploy different non-standard
algorithms for the server-to-bot and bot-to-server direc-
tions of communication: though not theoretically infea-
sible, the construction of an encryption implementation
from a binary decryption implementation might be chal-
lenging to automate. For instance, Kolbitsch et al. [25]
faced such a situation in recreating binary updates for the
Pushdo trojan, which was feasible only because the de-
cryption algorithm used was weak enough to be inverted
by brute force for small plaintexts.
Obfuscating encoding functions. Malware authors
could potentially keep our system from finding encoding
functions in binaries by obfuscating them. General pur-
pose packing is not an obstacle to our dynamic approach,
but more targeted kinds of obfuscation would be a prob-
lem. For instance, our current implementation recognizes
only standard function calls and returns, so if a malware
author rewrote them using non-standard instructions our
tool would require a corresponding generalization to com-
pensate. Further along the arms race, there are also funda-
mental limitations arising from our use of a dynamic de-
pendency analysis, similar to the limitations of dynamic
taint analysis [8].

7 Related Work
One closely related recent project is Wang et al.’s
TaintScope system [43]. Our goals partially overlap with
theirs in the area of checksums, but our work differs
in three key aspects. First, Wang et al.’s techniques
do not apply to decompression or decryption. Second,
TaintScope performs exploration based on taint-directed
fuzzing [17], while our system harnesses the full gener-
ality of symbolic execution. (Wang et al. use symbolic
execution only for inverting the encodings of checksums,
a task which is trivial in our applications.) Third, Wang

et al. evaluate their tool only on benign software, while
we perform the first automated study of vulnerabilities in
malware.

The encoding functions we identify within a program
can also be extracted from a program to be used else-
where. The Binary Code Reuse [4] and Inspector Gad-
get [25] systems can be used to extract encryption and
checksum functionalities, including some of the same
ones our tool identifies, for applications such as network
defense. Our application differs in that our system can
simply execute the code in its original context instead of
extracting it. Inspector Gadget [25] can also perform so-
called gadget inversion, which is useful for the same rea-
sons as we search for existing inverse functions. However,
their approach does not work on strong cryptographic
functions.

Previous work in protocol reverse engineering has used
alternative heuristics to identify cryptographic operations
in malware binaries. For instance ReFormat [44] proposes
detecting such functions by measuring the ratio of arith-
metic and bitwise instructions to other instructions. Our
use of taint degree as a heuristic is more specifically mo-
tivated by the limitations of symbolic execution: for in-
stance a simple stream cipher would be a target of the
previous approaches but is not for this paper.

Decomposition is a broad class of techniques in pro-
gram analysis and verification, but most previous decom-
position techniques are symmetric in the sense that each
of the sub-components of the program are analyzed simi-
larly, while a key aspect of our approach is that different
components are analyzed differently. In analysis and veri-
fication, decomposition at the level of functions, as in sys-
tems like Saturn [45], is often called a compositional ap-
proach. In the context of tools based on symbolic execu-
tion, Godefroid [18] proposes a compositional approach
that performs dynamic symbolic execution separately on
each function in a program. Because this is a symmetric
technique, it would not address our problem of encoding
functions too complex to analyze even in isolation. More
similar to our approach is grammar-based fuzzing [5, 19],
an instance of serial decomposition. However parsers re-
quire different specialized techniques than encoding func-
tions.

8 Conclusion
We have presented a new approach, stitched dynamic
symbolic execution, to allow analysis in the presence of
functionality that would otherwise be difficult to analyze.
Our techniques for automated identification, decomposi-
tion, and re-stitching allow our system to bypass functions
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like decryption and checksum verification to find bugs in
core program logic. Specifically, these techniques enable
the first automated study of vulnerabilities in malware.
Our BitFuzz tool finds 6 unique bugs in 4 prevalent mal-
ware families. These bugs can be triggered over the net-
work to terminate or take control of a malware instance.
These bugs have persisted across malware revisions for
months, and even years. There are still many unanswered
questions about the applications and ethical concerns sur-
rounding malware vulnerabilities, but our results demon-
strate that vulnerabilities in malware are an important se-
curity resource that should be the focus of more research
in the future.
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