
1

Abstracting Runtime Heaps for Program
Understanding

Mark Marron Cesar Sanchez Zhendong Su Manuel Fahndrich

Abstract—Modern programming environments provide extensive support for inspecting, analyzing, and testing programs based
on the algorithmic structure of a program. Unfortunately, support for inspecting and understanding runtime data structures during
execution is typically much more limited. This paper provides a general purpose technique for abstracting and summarizing
entire runtime heaps. We describe the abstract heap model and the associated algorithms for transforming a concrete heap
dump into the corresponding abstract model as well as algorithms for merging, comparing, and computing changes between
abstract models. The abstract model is designed to emphasize high-level concepts about heap-based data structures, such as
shape and size, as well as relationships between heap structures, such as sharing and connectivity. We demonstrate the utility
and computational tractability of the abstract heap model by building a memory profiler. We use this tool to identify, pinpoint, and
correct sources of memory bloat for programs from DaCapo.

Index Terms—Heap structure, runtime analysis, memory profiling, program understanding.

F

1 INTRODUCTION

M ODERN programming environments provide excel-
lent support for visualizing and debugging code, but

inspecting and understanding the high-level structure of the
data manipulated at runtime by said code is typically not
well supported. Visualizing entire runtime heap graphs is a
non-trivial problem, as the number of nodes and edges is
typically so large that displaying these graphs directly—
even with excellent graph visualization tools—results in
useless jumbles of nodes and edges. As a result, little of
interest can be gleaned from such visualizations.

In this paper, we propose an abstract domain for runtime
heap graphs that captures many fundamental properties of
the data structures on the heap, such as shape, connectivity,
and sharing, but abstracts away other often less useful
details. The abstract heap graphs we compute are both
small enough to visualize and navigate, and at the same
time precise enough to capture essential information useful
in interactive debugging and memory profiling scenarios.
Further, the abstract heaps can be computed efficiently from
a single concrete heap and further merged/compared with
other abstract heap graphs. These graphs can come from
across a set of program runs, or from multiple program
points in order to get an even more general view of the
heap configurations that occur during program execution.
Example. Figure 1(a) shows a heap snapshot of a simple
program that manipulates arithmetic expression trees. An
expression tree consists of binary nodes for Add, Sub, and
Mult, and leaf nodes for Constants and Variables.
The local variable exp (rectangular box) points to an
expression tree consisting of 4 interior binary expression

• M. Marron – Imdea Software Institute. mark.marron@imdea.org
• C. Sanchez – Imdea Software Institute, CSIC. cesar.sanchez@imdea.org
• Z. Su – University of California, Davis. su@ucdavis.edu
• M. Fahndrich – Microsoft Research. maf@microsoft.com

objects, 2 Var, and 2 Const objects. Local variable env
points to an array representing an environment of Var
objects that are shared with the expression tree.

Figure 1(b) shows the abstract heap produced by our
tools from this concrete heap with the default visualization
mode.1 Additional information can be obtained by hovering
over the nodes, the edges, or by restyling for a specific
task as in our case studies (Section 6). The abstraction
summarizes the concrete objects into three distinct sum-
mary nodes in the abstract heap graph: (1) an abstract node
representing all interior recursive objects in the expression
tree (Add, Mult, Sub), (2) an abstract node representing
the two Var objects, and (3) an abstract node representing
the two Const objects. Specific details about the order
and branching structure of expression nodes are absent in
the abstraction, but other more general properties are still
present. For example, the fact that there is no sharing or
cycles among the interior expression nodes is apparent in
the abstract graph by looking at the self-edge representing
the pointers between objects in the interior of the expression
tree. The label tree{l,r} on the self-edge expresses that
pointers stored in the l and r fields of the objects in this
region form a tree structure (i.e., no sharing and no cycles).

The abstract graph maintains another useful property
of the expression tree, namely that no Const object is
referenced from multiple expression objects. On the other
hand, several expression objects might point to the same
Var object. The abstract graph shows possible sharing
using wide orange colored edges (if color is available),
whereas normal edges indicate non-sharing pointers. The
abstract graph shows pointer nullity via full vs. dashed lines
– in our example all pointers, except in the environment
array, are non-null.

1. The code for the HeapDbg abstraction/visualization tool is available
online at: http://heapdbg.codeplex.com.

http://heapdbg.codeplex.com

2

(a) A Concrete Heap Dump. (b) Corresponding Abstract Heap.

Fig. 1. A concrete heap dump from an arithmetic expression evaluation program and the corresponding abstract
heap visualization produced by the HeapDbg tool.

Rudimentary information on the number of objects rep-
resented by each node is encoded in the shading. Nodes
that always abstract a single object are given a white
background while nodes which represent multiple objects
are shaded (silver if color is available). Size information of
arrays and other containers is encoded by annotating the
type label with the container size (Var[3] to indicate an
array is of length 3).

Overview. This paper addresses the problem of turning
large concrete runtime heaps into compact abstract heaps
while retaining many interesting properties of the original
heap in the abstraction. Our abstraction is safe in the
sense that properties stated on the abstract heap graph also
hold in the corresponding concrete heaps. To achieve this
abstraction safety, we adopt the theory for the design of
abstract domains developed in abstract interpretation [1],
[2]. The theory of abstract interpretation provides a gen-
eral framework for (1) defining an abstract domain and
relating it to possible concrete program states and (2)
a method for taking an abstract domain and computing
an over-approximation of the collecting semantics for a
given program as a static analysis. The static analysis
component of the abstract interpretation framework is not
relevant here, as we are interested in abstracting runtime
heaps. However, the framework provides theoretical struc-
ture and guarantees when constructing the abstract domain
and the operations for comparing (v) and merging (t̃)
abstract domain elements. The theory provides a formal
relationship between the abstract heap graphs with their
concrete counterparts, and ensures that the operations for
comparing and summarizing heaps from different program
points or different program runs are safe and semantically
meaningful. The guarantees provide confidence that all
inferences made from the abstract model are valid.

Our abstract heap domain encodes a fixed set of heap
properties identified in previous work on static heap analy-
sis [3], [4], [5] that are fundamental properties of heaps and
can be computed efficiently. These properties include the
summarization of recursive and composite data structures,
the assignment of shape information to these structures and
injectivity of fields (given two distinct objects does the field
f in each object point to a distinct target). The abstraction
is also able to provide information on the number and
types of objects in the various structures, as well as nullity
information. Our focus on a fixed set of heap properties (as
opposed to user defined properties) enables the abstraction
to be computed efficiently in time O((Ob+Pt)∗ log(Ob)),
where Ob is the number of objects and Pt is the number
of pointers in the concrete heap.
The contributions of this paper are:

• An abstract domain for heap graphs and its con-
cretization function formalizing the safe relationship
to concrete heaps.

• Efficient O(E ∗ log(N)) algorithms for computing the
abstract heaps and for comparing or merging them.

• Graphical representations of abstract heap graphs that
allow on-demand collapsing or expansion of sub-
structures, allowing a form of semantic zoom [6] from
a very abstract view of the heap down to the level of
individual objects.

• The construction of a general purpose heap memory
profiler and analysis tool that augments the basic
abstraction with specialized support for profiling and
identifying common memory problems in a program.

• A qualitative evaluation of the visualization and mem-
ory profiler in tracking down and identifying solutions
to memory inefficiencies in a range of programs (up
to a 25% reduction in memory use).

3

2 ABSTRACT HEAP GRAPH

We begin by formalizing concrete program heaps and the
relevant properties of concrete heaps that will be captured
by the abstraction. Later, we define the abstract heap graph
and formally relate the abstraction to its concrete heap
counterparts using a concretization (γ) function from the
framework of abstract interpretation.

2.1 Concrete Heaps
For the purposes of this paper, we model the runtime state
of a program as an environment, mapping variables to
values, and a store, mapping addresses to values. We refer
to an instance of an environment together with a store as
a concrete heap. Formally, a concrete heap is a labeled
directed graph (root,null,Ob,Pt,Ty), where the nodes are
formed by the set of heap objects (Ob) and the edges
(Pt) correspond to pointers. We assume a distinguished
heap object root ∈ Ob whose fields are the variables from
the environment. This representation avoids dealing with
distinct sets of variable locations and makes the formal-
ization more uniform. We also assume a distinguished
object null among Ob to model null pointers. The set of
pointers Pt⊆Ob×Ob×Label connect a source object to a
target object with a pointer label from Label. These labels
are either a variable name (if the source object is root),
a field name (if the source object is a heap object), or
an array index (if the source object is an array). Finally,
Ty : Ob→ Type is a map that assigns a concrete program
type to each object. We assume the concrete set of types
in Type contains at least object types and array types. We
use the notation o1

p−→ o2 to indicate that object o1 refers to
o2 via pointer label p.

A region of memory C ⊆ Ob \ {null, root} is a subset
of the concrete heap objects, not containing the root node
or null. It is handy to define the set of pointers P(C1,C2)
crossing from a region C1 to a region C2 as:

P(C1,C2) = {o1
p−→ o2 ∈ Pt | o1 ∈C1,o2 ∈C2}

2.2 Concrete Heap Properties
We now formalize the set of concrete properties of objects,
pointers, and entire regions of the heap that we later use
to create the abstract heap graph.

Type. The set of types associated with a region C is
the union of all types of the objects in the region:
{Ty(o) | o ∈C}.

Cardinality. The cardinality of a region C is the number
of objects in the region |C|.

Nullity. A pointer o1 → o2 is a null pointer if o2 = null
and non-null pointer if o2 6= null.

Injectivity. Given two regions C1 and C2, we say that
pointers labeled p from C1 to C2 are injective, written
inj(C1,C2, p), if for all pairs of pointers o1

p−→ t1 and o2
p−→ t2

drawn from P(C1,C2), o1 6= o2 ⇒ t1 6= t2. In words, the
pointers labeled p from two distinct objects o1 and o2 point
to distinct objects t1 and t2.

This definition captures the general case of a mathemati-
cal injective relation being defined from a set of objects and
a field label to a set of target objects. This definition could
be generalized further to use a set of field labels (instead
of a single field label) but this generalization provides little
benefit in precision [7] while increasing the complexity and
computational cost of performing the abstraction.

We note that the notion of injectivity presented here is
very strong. It asserts a complete absence of aliasing on
the set of pointers, and perhaps counter-intuitively it holds
for the vast majority of non-null pointer sets identified
by the abstraction in real-world programs [7]. Thus, this
information enables a much more precise understanding
of non-aliasing information than is possible otherwise.

Shape. We characterize regions of memory C by shape
using standard graph theoretic notions of trees and general
graphs. For additional precision, we consider the shape of
subgraphs formed from C, and P(C,C)↓L, i.e., the subgraph
consisting of objects from C and pointers with labels l ∈ L.
• The predicate tree(C,L) holds, if P(C,C)↓L is acyclic

and the subgraph P(C,C)↓L does not contain any cross
edges.

• The predicate any(C,L) is simply true for any graph.
We use it only to clarify shapes in visualizations that
don’t satisfy the more restrictive tree property.

These two predicates, combined with variations on the
label sets, are sufficient to describe a range of useful heap
shapes. For example we can encode that a tree structure
with parent pointers is still a tree if we only consider the
left and right pointers, but not the parent pointers. Similarly,
a singly-linked list is a tree with a single label in the
label set L. Some applications may benefit from having
more detailed shape properties. For example the work by
Caballero et. al. [8] extend the shape domain described in
this work to capture a wide range of shapes to generate data
structure signatures from binary programs. However, for the
task in this paper, identifying poor memory utilization, the
simple tree and any predicates are sufficient.

2.3 Heap Graph Abstraction

An abstract heap graph is an instance of a storage shape
graph [3]. More precisely, the abstract heap graphs used in
this paper are tuples:

(root,null,Ob#,Pt#,Ty#,Cd#, Ij#,Sh#)

where Ob# is a set of abstract nodes (each of which
abstracts a region of the concrete heap), and Pt# ⊆ Ob#×
Ob# × Label# is a set of graph edges, each of which
abstracts a set of pointers. Each edge is annotated with a
label from Label#. The set Label# consists of field labels and
the special label []. The special label [] abstracts the indices
of all array or container elements (i.e., array smashing).

4

We distinguish a root node in Ob# for modeling the
variable environment as fields on root. Another distin-
guished node null is used to represent the null pointer.
The remaining parts of an abstract heap (Ty#,Cd#, Ij#,Sh#)
capture abstract properties of the heap graph. The map
Ty# : Ob# 7→ 2Type abstracts nodes to the set of types of the
concrete nodes represented by the abstraction. Cd# : Ob# 7→
{[l,u]|l ∈ N∧u ∈ N∪{∞}} abstract the number of objects
(cardinality) of a region.

The abstract injectivity Ij# : Pt#→ bool expresses whether
the set of pointers represented by an abstract edge is
injective. Finally, the abstract shape Sh# is a set of tuples
(n,L,s) ∈ Ob#×2Label

7→ {tree,any} indicating the shape
s of a region represented by n with edges restricted to L.

2.4 Abstraction Relation
We are now ready to formally relate the abstract heap graph
to its concrete counterparts by specifying which heaps are
in the concretization of an abstract heap:

(root,null,Ob,Pt,Ty) ∈
γ(root,null,Ob#,Pt#,Ty#,Cd#, Ij#,Sh#)⇔

∃µ .Embed(µ,Ob,Pt,Ob#,Pt#)

∧Typing(µ,Ob,Ty,Ob#,Ty#)

∧Counting(µ,Ob,Ob#,Cd#)

∧ Injective(µ,Pt,Pt#, Ij#)

∧Shape(µ,Pt,Pt#,Sh#)

A concrete heap is an instance of an abstract heap, if there
exists an embedding µ : Ob→ Ob# satisfying the graph
embedding, typing, counting, injectivity, and shape relation
between the graphs. The auxiliary predicates are defined as
follows.

Embed(µ,Ob,Pt,Ob#,Pt#)⇔
µ(root) = root∧µ(null) = null

∧∀o1
l−→ o2 ∈ Pt .∃l.µ(o1)

l#
−→ µ(o2) ∈ Pt#∧ l ∈ γL(l#)

The embed predicate makes sure that all edges of the
concrete graph are present in the abstract graph, connecting
corresponding abstract nodes, and that the edge label in the
abstract graph encompasses the concrete edge label (where
γL : Label# 7→ Label). The embedding mapping µ must also
map the special objects root and null to their exact abstract
counterparts.

Typing(µ,Ob,Ty,Ob#,Ty#)⇔∀o ∈ Ob .Ty(o) ∈ Ty#(µ(o))

The typing relation guarantees that the type Ty(o) for every
concrete object o is in the set of types Ty#(µ(o)) of the
abstract node µ(o) of o.

Counting(µ,Ob,Ob#,Cd#)⇔∀n ∈ Ob# . |µ−1(n)| ∈ Cd#(n)

The counting relation guarantees that for each abstract node
n, the set of concrete nodes µ−1(n) abstracted by n has a
cardinality in the numeric interval Cd#(n).

Injective(µ,Pt,Pt#, Ij#)⇔∀(n1,n2, l) ∈ Pt#

Ij#(n1,n2, l)⇒∀p ∈ γL(l) . inj(µ−1(n1),µ
−1(n2), p)

The injectivity relation guarantees that every pointer set
marked as injective corresponds to injective pointers be-
tween the concrete source and target regions of the heap.

Shape(µ,Pt,Pt#,Sh#)⇔
∀(n,L, tree) ∈ Sh# . tree(µ−1(n),γL(L))

Finally, the shape relation guarantees that for every ab-
stract shape tuple (n,L,s), the concrete subgraph µ−1(n)
abstracted by n restricted to labels L satisfies the corre-
sponding concrete shape predicate (tree and implicitly any).

2.5 Visual Representation of Abstract Graphs

In the iconography for our abstract graph visualizations, the
screen shots in Figure 1(a), Figure 1(b), and Section 6, we
leverage a number of conventions to convey information.

An edge (root,o, p) whose source is the root node
represents the content of variable p. Instead of drawing
a root node with such edges, we simply draw a variable
node p and an unlabeled edge to o. Thus, the root node
is never drawn, as it does not appear as the target of any
edge in concrete or abstract graphs.

The set of abstract types of an abstract node is repre-
sented as the label of the abstract node. Shape information
is represented as labels on the recursive self edges of
abstract nodes. An abstract node with cardinality 1 is
represented by a white background. Other cardinalities are
represented with shaded abstract nodes.

We do not draw explicit edges which only point to null.
If an edge is associated with a label that contains both
pointers to null and pointers to other heap objects we fold
the possibility into the edge by using a dashed edge instead
of a full edge. Finally, injective edges are represented
with normal thin edges, whereas non-injective edges are
represented by wide edges (and if color is available are
also highlighted in orange).

3 COMPUTING THE ABSTRACTION

This section describes the computation of our style of ab-
stract graph from a given concrete heap. The transformation
is performed in three phases. 1) recursive data structures are
identified and collapsed based on identifying cycles in the
type definitions, 2) nodes that represent objects in the same
logical heap region based on equivalent edges originating
from the same abstract node are merged, and finally 3)
abstract properties like cardinality, injectivity, and shape are
computed for the abstract edges and nodes.

3.1 Partition (µ) Computation

Initially, we associate with each concrete object oi an
abstract partition ni representing an equivalence using a
Tarjan union-find structure. The mapping µ from concrete
objects to abstract partitions is given at any point in time by:
µ(oi) = ecr(ni), i.e., by the equivalence class of the original
ni associated with oi. The union-find structure maintains the
reverse mapping µ−1 providing the set of concrete objects

5

abstracted by a node. The abstract type map Ty# can be
maintained efficiently in the union-find structure as well.

Figure 2(a) shows the initial state of these equivalence
partitions for our example from Figure 1(a) (one partition
per object, plus the roots, and a special partition for null).
Each node is labeled with its partition id and the types of
the objects in that partition.

The first abstraction identifies parts of the heap graph
that represent potentially unbounded depth recursive data
structures. The basic approach consists of examining the
type information in the program and the heap connectivity
properties [9], [10], [11], [12] and ensures that any heap
graph produced has a bounded depth. We say types τ1
and τ2 are recursive (τ1 ∼ τ2) if they are part of the same
recursive type definition. Using this definition of recursive
types we can identify objects which are part of the same
recursive data structure in the concrete heap as follows:

Definition 1 (Same Recursive Data Structure Objects). Two
distinct objects o1, o2 are part of the same recursive data
structure if there is a reference o1

p−→ o2 in the heap and
the types of the two objects are part of the same recursive
type definition Ty(o1)∼ Ty(o2).

The recursive components are identified by visiting each
pointer oi→ o j in the heap and if oi and o j are in the same
data structure according to Definition 1, then we union the
corresponding abstract nodes ni and n j.

Figure 2(b) shows the result of merging the recursive data
structures on the initial partitions shown in Figure 2(a). The
algorithm identified objects 1,2,4,5 (the Add, Sub, and
Mult objects from the interior of the expression tree) as
being part of the recursive data structure and replaced them
with a single representative summary node.

Next we group objects based on predecessor partitions.
The motivation for this abstraction can be seen in Fig-
ure 2(b) where Var objects in partitions 7 and 8 represent
“variables in the environment”. There’s no need to distin-
guish them as they are both referenced from the environ-
ment array. Similarly, the two constant objects referenced
from the recursive component both represent “constants in
the expression tree”.

Definition 2 (Equivalent on Abstract Predecessors). Given
two pointers o1

l−→ o2 and o′1
l′−→ o′2 where µ(o1) = µ(o′1),

we say that their target nodes are equivalent whenever: The
labels agree l = l′, and the target nodes have some types
in common, i.e., Ty#(µ(o2))∩Ty#(µ(o′3)) 6= /0.

The algorithm for grouping equivalent objects is based
on a worklist where merging two partitions may create
new opportunities for merging. The worklist consists of
partitions. When processing a partition from the worklist
we check if we need to perform any merges based on the
equivalence rules and, as needed, we perform the merge
operations. Finally, all partitions with pointers that are
incident to the merged partitions are added to the worklist.
Due to the properties of the Tarjan union-find algorithm,
each partition can enter the work list at most log(N) times,
where N is the number of abstract partitions. Thus the

(a) Initial Partition.

(b) Merge Recursive Data Structures.

(c) Merge Predecessors.

Fig. 2. Steps in abstraction computation.

complexity of this step is O(E ∗ log(N)) where E is the
number of pointers.

Figure 2(c) shows the result of performing the required
merge operations on the partitions from Figure 2(b). The
algorithm has merged the Var regions into a new summary
region (since the objects represented by partitions 7 and 8 in
Figure 2(b) are referred to from the same array). Similarly
the Const partitions from Figure 2(b) have been merged
as they are both stored in the same recursive structure (the
expression tree).

Figure 2(c) differs from the abstract graph in Figure 1(b)

6

where there is only one edge between the expression
tree node and the variables node. The reason is that,
despite the underlying abstraction being a multi-graph,
our visualization application collapses multi-edges as they
frequently lead to poor graph layouts and rarely provide
useful information to the developer. Also, note that there are
explicit references to null and that these were not merged
since we associate no types with the null object.

3.2 Abstract Property Computation
Type, Cardinality, and Nullity. The abstract type map
Ty# has already been computed as part of the union-find
operation on abstract nodes. Similarly, the union-find
operation computes the exact cardinality, which results in
a precise interval value [i, i] if a node abstracts exactly i
objects. The nullity information is represented as explicit
edges to the null abstract object.

Injectivity. The Injectivity information for an abstract edge
n1

l−→ n2 is computed by iterating over all pointers from
objects oi represented by n1 to objects o j represented by n2
with label l. We determine if every concrete target object
is referenced at most once, in which case the abstract edge
is injective. Otherwise, the edge is not injective.

Shape. The fundamental observation that enables
interesting shape predicates to be produced for the
abstract graphs is that the shape properties are restricted to
the subgraphs represented by an abstract node. In addition,
we allow the examination of a variety of further subgraphs
by restricting the set of labels considered in the subgraph.
Restricting the label set allows e.g., to determine that the
{l,r} edges in a tree actually form a tree, even though
there are also parent pointers p, which if included would
allow no interesting shape property to be determined.
Selecting the particular subsets of edge labels to consider
in the subgraph selection is based on heuristics. We
can start with all labels to get an overall shape and use
that computation to guess which labels to throw out and
try again. For small label sets, all combinations can be tried.

After partitioning the heap as shown in Figure 2(c) the final
map for the objects is:

µ
−1 =

n1 7→ {o1,o2,o4,o5}
n3 7→ {o3,o6}
n7 7→ {o7,o8}
n9 7→ {o9}

Thus, for Figure 1(b) we determine the abstract edge
representing the cross partition pointer set n1

l−→ n7 is
not injective, since it abstracts the two concrete pointers
o4

l−→ o7 and o5
l−→ o7 both refer to the same Var object o7.

On the other hand, since the two Const objects o3, o6 are
distinct, the algorithm will determine that edge representing
the cross partition pointer set n1

r−→ n3 is injective. The
Shape computation for the node representing partition 1
requires a traversal of the four objects. As there are no
cross or back edges the layout for this is tree{l,r}.

4 MERGE AND COMPARISON OPERATIONS

Many program analysis and understanding tasks require the
ability to accumulate and to compare abstract graphs, both
from the same program execution and across executions.
For example, these operations are needed when computing
differences in the heap state during profiling activities or for
computing likely heap invariants [7]. In these scenarios we
cannot simply track object identities and use them to control
the merge and compare operations. Thus, the definitions
must be entirely based on the abstract graph structure.

4.1 Compare
Formally, the order between two abstract graphs g1v g2 can
be defined via our abstraction relation from Section 2.4 as:
g1 v g2⇔∀h.h ∈ γ(g1)⇒ h ∈ γ(g2).

Unfortunately, this is not directly computable. Instead,
we implement an approximation of this relation that first
determines the structural equality of the abstract graphs
by computing an isomorphism, followed by an implication
check that all abstract edge and node properties in g2 cover
the equivalent node and edge properties of g1.

To efficiently compute the subgraph isomorphism be-
tween g1 and g2 we use a property of the abstract graphs
established by Definition 2. From this definition we know
that every pair of out edges from a node either differ
in the label or have the same label but non-overlapping
sets of types in the nodes they refer to. Thus, to compute
an isomorphism between two graphs we can simply start
pairing the global root object and then match up edges
based on their label and type sets, leading to new pairings.
This either results in an isomorphism map, or it results in a
pair of nodes reachable from the roots along the same path
that have incompatible edges. Any such edge differences
can then be reported. With the subgraph isomorphism φ ,
we define the ordering relation:

g1 vφ g2⇔∀n ∈ Ob#
1.Ty#

1(n)⊆ Ty#
2(φ(n))

∧ ∀n ∈ Ob#
1.Cd#

1(n)v Cd#
2(φ(n))

∧∀φ(e) ∈ Pt#
2.Ij

#
2(φ(e))⇒ Ij#1(e)

∧ ∀(φ(n),L2,s2) ∈ Sh#
2

∃(n,L1,s1) ∈ Sh#
1 .L2 ⊆ L1∧ s1 v s2

Note how abstract shape predicates are contra-variant in
the label set L. In other words, if a shape property holds
for the subgraph based on L1, then it holds for the smaller
subgraph based on the smaller set L2.

4.2 Merge
The merge operation takes two abstract graphs and pro-
duces a new abstract graph that is an over approximation
of all the concrete heap states that are represented by the
two input graphs. In the standard abstract interpretation
formulation this is typically the least element that is an
over approximation of both models. However, to simplify
the computation we do not enforce this property (formally
we define an upper approximation instead of a join). Our

7

approach is to leverage the existing definitions from the
abstraction function in the following steps.

Given two abstract heap graphs, g1 and g2 of the form gi
= (rooti, nulli, Ob#

i , Pt#
i , Ty#

i , Cd#
i , Ij#i , Sh#

i) we can define
the graph, g3, that is the result of their merge as follows.
First we produce the union of the two graphs by taking the
union of the node and edge sets from the graphs. Once we
have taken the union of the two graphs we merge the global
root objects. Then we use Definition 1 and Definition 2 to
merge nodes and edges, again using a union-find structure
and a worklist, until no more changes are occurring. During
the merge we build up two mappings η1 : g1→ g3 and η2 :
g2→ g3 from nodes (edges) in the original graphs, g1 and
g2 respectively, to the nodes (edges) in the merged graph.
Using these mappings, we define upper approximations of
all the graph properties:

Ty#
3(n) =

⋃
n1∈η

−1
1 (n)

Ty#
1(n1)∪

⋃
n2∈η

−1
2 (n)

Ty#
2(n2)

Cd#
3(n) = ∑

n1∈η
−1
1 (n)

Cd#
1(n1)t ∑

n2∈η
−1
2 (n)

Cd#
2(n2)

Ij#3(e) = (|η−1
1 (e)|= |{n2 | n1

l−→ n2 ∈ η
−1
1 (e)}|)

∧(|η−1
2 (e)|= |{n2 | n1

l−→ n2 ∈ η
−1
2 (e)}|)

∧
∧

e1∈η
−1
1 (e)

Ij#1(e1)∧
∧

e2∈η
−1
2 (e)

Ij#2(e2)

The set of types associated with the result is just the union
of all types abstracted by the node in both graphs. The
cardinality is more complicated to compute. It computes
the abstract sums over intervals from all nodes abstracted
from the input graphs separately, and then joins the re-
sulting interval (or depending on the application widens
as defined in [1]). Injectivity is the logical conjunction of
the injectivity of all the source edges, provided that all the
edges in the respective graphs that are merged had different
target nodes (the equality of the edge and target sets). When
merging two injective edges from the same graph we cannot
guarantee that the resulting set of edges is injective, in the
case that they target the same node, and if we encounter this
we conservatively assume the result edge is not injective.

For computing the shape predicates we need to take into
account not only the shape properties of the original graphs,
but also the connectivity among the input nodes that map
to the same node in the joined graph. We define a very
conservative check for treeness during the merge:

treeµ(n,L,µ,g)⇔ |Pt#
g↓µ−1(n),L | ≤ 1

∧∀n′ ∈ µ
−1(n).∃L′ ⊇ L(n′,L′, tree) ∈ Sh#

g

where Pt#
g↓µ

−1
i (n),L is the subgraph of Pt#

g made up of nodes
that map to n under µ and non-self2 edges incident to
them and restricted to labels L. Note that tree can only be
inferred, if at most one node is in the partition from each
graph and the node represents a tree. The abstract shape

2. Self-edges need not be considered as they are already accounted for
in the shape.

for a merged node in the graph can be defined as:

(n,L, tree) ∈ Sh#
3⇔ treeµ(n,L,µ,g1)∧ treeµ(n,L,µ,g2)

5 REDUCED AND INTERACTIVE VIEWS

While the abstract heap graph presented thus far produces
models that scale in size with the number of logical regions
in the program — independently of heap size and loosely
correlated with the number of types used in the program —
the graphs are often still too large to visualize and explore
effectively. A second issue, particularly in a debugger
scenario, is that after identifying a region of interest the
developer wants to zoom into a more detailed view of the
objects that make up the region.

While the DGML viewer [13] we use is quite effective
at zooming, slicing, and navigating though large graphs
we can directly address the above two issues by providing
additional support for zooming between abstraction levels:
the developer can zoom incrementally from a very high
level view based on dominators in the abstract heap graph
all the way down to individual objects in the concrete heap
without losing track of the larger global context of the heap
structure3.

Given an abstract heap graph we can compute dominator
information in a fairly standard way [14]. We deviate
slightly since we want to ensure that interesting nodes
which are directly pointed to by variables, and nodes that
are immediate neighbors of these nodes remain expanded.
In our experience this heuristic seems to strike a nice
balance between collapsing large portions of the graph,
to aid in quickly getting a general overview of the heap,
while preserving structure around local variables, which are
frequently of particular interest and we want extra detail
on. This can be done by simply asserting that all of the
nodes we want to keep expanded do not have any non-
self dominators (equivalently ignoring all in-edges to these
nodes during dominator computation). Using our modified
dominator computation we can replace every node n (which
has not been marked interesting) and all of the nodes
nd

1 . . .n
d
k that n dominates with a single reduced node. This

simple transformation results in a substantial reduction in
the size of the graph while preserving much of the large
scale heap structure and, since we can track the set of
abstract graph nodes that each reduced node corresponds
to, we can move easily between the two views of the
heap. Furthermore, since the notion of domination and
ownership [15] are closely related, this reduction has a
natural relation with the developer’s concept of ownership
encapsulation of heap structures. This view is conceptually
similar to the approach taken in [16], [17], although the
dominator construction is on the abstract graph, where data
structures have already been identified and grouped, instead
of on the concrete heap graph.

3. In a way that is similar to the semantic zoom of [6].

8

6 IMPLEMENTATION AND EVALUATION

To evaluate the utility of our abstraction, we examine 1) the
cost of computing abstract heaps from realistically sized
heaps in real programs, 2) the feasibility of visualizing the
abstract graphs, and 3) whether the abstract graphs pro-
duced are precise enough for understanding the program’s
behavior and to identify and correct various defects.

We implemented the algorithms4 for computing and ma-
nipulating abstract heap graphs in C#. In order to visualize
the resulting graphs we use the DGML [13] graph format
and the associated viewer in Visual Studio 2010. This graph
format and viewer support conditional styles to control
changes between the levels of abstraction described in this
paper, and to perform selective highlighting of nodes/edges
with given properties. For example, we can highlight edges
that represent non-injective pointers, or we can apply a
heat-color map to the nodes based on the amount of
memory the objects they represent are using.

In order to evaluate the utility of the abstraction in
the inspection and understanding of heap related problems
(and in their solutions) we implemented a memory profiler
tool. This profiler rewrites a given .Net assembly with
sampling code to monitor memory use and to compute
heap snapshots, along with the associated abstractions, at
points where memory use is at a high point in the execution
profile. The rewriter is based on the Common Compiler
Infrastructure (CCI) [18] framework. As performing full
heap abstractions at each method call would be impractical
we use a per-method randomized approach with an expo-
nential backoff based on the total reachable heap size (as
reported by the GC). If we detect that the program may
have entered a new phase of computation, the reachable
heap size grows or shrinks by a factor of 1.5× from
the previous threshold, then we begin actively taking and
abstracting heap snapshots. A snapshot of the heap is the
portion reachable from the parameters of a single method
call and from static roots. Depending on the size of the
snapshot relative to previously seen heaps, we either save
the snapshot as likely capturing some interesting heap state
or discard it and increase the random backoff for the method
that produced it. This use of random backoff sampling
based on GC reported memory use and snapshot size results
in a program that outputs between 2 and 10 snapshots
from a program execution. The execution time is around
20× to 100× slower than the uninsturmented program. We
compared the results obtained by sampling uniformly at
random and found that, in addition to having a much larger
overhead, the uniform sampling approach produced results
that were no more useful for memory debugging then the
backoff sampling approach.

In order to help the developer quickly identify structures
of interest we implemented a number of simple post-
processing operations on the abstract graphs which allow
the DGML viewer to flag nodes (regions) of the heap that
display common types of poor memory utilization [19].

4. Code available online at http://heapdbg.codeplex.com and a web
accessible demo is available at http://rise4fun.com/HeapDbg.

The properties we identify are percentage of memory used,
small object identification, sparse container or small con-
tainers, and over-factored classes. The memory percentage
property uses a heat map, coloring any nodes that contain
more than 5%, 15%, or 25% of the heap respectively.
The small object property highlights any nodes where the
object overheads (assumed to be 4 bytes per object) are
more than half the actual data stored in the objects. The
poor collection utilization property highlights nodes that
represent regions which are containers and, for which all
the containers are either very small (contain 3 or fewer
elements) or are more than half empty (over half the entries
are null). While the first three properties are fairly standard,
the final property, over-factored classes, is a less well
known issue. We consider a structure overfactored if (1)
there exists a node n that consists of small objects and (2)
n has a single incoming edge that is injective (i.e., each
object represented by the node n is uniquely owned by
another object). These two features appear commonly when
the objects represented by the node n could be merged with
the objects that have the unique pointers to them (i.e., the
class definitions can be merged). Alternatively in languages
that support value types (i.e., structs in C#) the memory
savings can be obtained by changing the by reference type
to a value type. The Face[] and Point objects in the
raytracer study, Section 6.1, are an example of this.

From the viewpoint of a userspace tool handling the
types provided by the base class or system libraries, e.g.,
the Base Class Library (BCL) for .Net or the java.*
in Java, are an important consideration. For user space
applications the internal structure of say, FileStream
or StringBuilder, is not interesting, We identify these
objects by simply examining the namespace of the type
and treat them as single opaque objects. However, some
classes in these libraries have features that are relevant
to userspace code even though the details of the internal
representation are not of particular interest. Examples of
these types are List<T> or Dictionary<K,V>, which
we treat as ideal algebraic data structures, showing the
links to the contained elements but still treating the internal
implementations as opaque as done in [20], [21].

For this paper we converted raytracer from from SPEC
JVM98 [22] and six programs from DaCapo suite [23]
to .Net bytecode using the ikvm compiler [24]5. As the
DaCapo suite contains a number of large and complex
programs we also timed the extraction, comparision, and
merge operations on each heap snapshot that was taken.

6.1 Raytracer: Extended Case Study
In this section we study the raytracer program from SPEC
JVM98. The program implements a raytracer which renders
a user provided scene. Using this example, we illustrate
how the heap visualization looks for a well know program,
and how the information can be used in a debugging
scenario to investigate memory use.

5. Unfortunately, ikvm is not able to process the remaining DaCapo
benchmarks.

http://heapdbg.codeplex.com
http://rise4fun.com/HeapDbg

9

Fig. 3. HeapDbg output for the Shade method in the Scene class.

Running the program in the heap profiler, we obtain as
one of the snapshots an abstract heap from the entry of
the shade method. This abstract heap represents ∼168K
objects (a total of ∼4MB of memory). Applying the heap
graph abstraction followed by the dominator reduction pro-
duces the visualization shown in Figure 3. This figure shows
the entire heap structure for the render while preserving
most structural features of interest. In this heap we see
the root nodes this, tree, and eyeRay representing the
argument variables to the method. The this variable refers
to a scene object. This object has a field octree that
represents a space decomposition tree structure which is
also referred to by the tree argument variable. The larger
nodes with the chevron are dominator reduced nodes that
represent multiple dominated regions and can be expanded
to inspect the internal structure in more detail.

The raytracer octree space decomposition structure is
represented by the dominator reduced node labeled #20. It
is directly noticeable that there are pointers from this data
structure to ObjNode objects, represented by node #7.
The shape tree{nextLink} of node #7 indicates that this is
a list (a tree with out-degree 1). The list in turn contains
shapes (SphereObj, TriangleObj, . . .) that are in the
associated quadrants of the space decomposition structure.
This list is used to enumerate all the shapes that appear in
a given quadrant. There are also references from objects
in the space decomposition tree structure to the dominator
reduced node #19, which contains more information on
the composite structure of Face objects.

Memory Use. Memory usage is an important concern
for many applications. There are many reasons why an
application may use more memory than is really required.
Common problems in object-oriented, garbage collected
languages are leaks [25], where unused objects are still
reachable, and bloat [19], where encapsulation and layering

have added excessive overhead. Ideally, a programmer
would like to see what types are using the most memory
and where these objects are being used. Our visualization
uses the conditional styling support in the DGML renderer
to color nodes based on the percentage of total used live
memory. Enabling this coloring results in the dominator
reduced node representing the Face structures (node #19)
being colored.

Fig. 4. Expanded face dominator node.

Node #19 represents a large amount of memory, ∼107K
objects representing nearly half of the the total live heap.
By expanding the node #19 we get the graph (Figure 4)
representing the internal structure of the dominator reduced
node. This reveals node ($48), abstracting a region of
∼18K Face objects, node ($23), abstracting a region of
∼18K Point[], and node ($49), abstracting a region of
∼72K Point objects. The raytracer program is known to
have poor memory health [19], in the sense that it exhibits a
high rate of object overhead associated with a large number
of very small objects. The Point objects here are a major
factor in that.

10

At first glance it may not be clear how to reduce the
overhead of these Point objects. However, turning on
the over-factored highlighting or inspecting the injectivity
information in Figure 4, provides additional guidance. The
edge from node $23 to node $49—representing all the
pointers stored in the arrays—is shown as a normal edge
and not shaded and wide. Therefore, the set of pointers
abstracted by the edge is injective and each index of
each array points to a unique Point object. This likely
ownership relation, and the fact that all of the arrays are
of length 4, suggests that flattening the Face data structure
would reduce memory use substantially (i.e., this satisfies
our conditions for being an over factored structure).

An inspection of the source code for the Face class
shows that these ownership and length properties do in
fact hold universally. Thus, we can flatten each Point[4]
and associated Point objects into a float[12] (alter-
natively in C# we could declare the Point type as a
struct). This transformation eliminates one object header
per Point object (at 4 bytes each) and the 4 pointers
stored in the Point[4] (at 4 bytes per pointer). Given
that we have ∼72K Point objects and ∼18K Point[],
this change works out to ∼0.6MB of savings or ∼18% of
the total live heap. Using similar reasoning we could further
flatten the float[12] arrays into the Face implementa-
tions for another ∼0.22MB of savings, or another ∼6% of
the live heap. These two refactorings then represent a 24%
reduction in the total live heap size.

This case study shows how the multi-level abstraction
allows the developer to navigate around the heap at the
desired level of detail, zoom-in and out of specific areas
of interest, all while maintaining the larger context. This
ability to put the problem in context and interactively
explore the heap is critical to aiding the developer in
quickly identifying the source of a problem, understanding
the larger context, and thus being confident in formulating
the correct remedy.

6.2 Evaluation With Profiler

A number of papers have identified and explored memory
use issues in the DaCapo benchmark suite. Hence, we
decided to evaluate the effectiveness of the abstraction
techniques described in this paper by using our profiling
tool to analyze several programs from the DaCapo suite
for memory utilization issues.

After running the profiler we inspected the output
abstract graphs to find nodes (regions) that contained
potential problems. Then we attempted to determine what
(if anything) could be done to resolve the issues or if the
memory use appeared appropriate. This task was performed
via manual inspection of the graph, the use of the heap
inspection and highlighting tools in the profiler, and
inspecting the associated source code. In all cases at most
7 nodes were colored by the profiler tools and the total
time to inspect the graph, identify the relevant structures,
inspect the associated source code, and determine if the
memory use was generally appropriate was always less

than 10 minutes. Also, as we had not previously worked
with the code, sometimes we needed to spend additional
time to understand more about the intent of the classes and
their structure in order to fully determine if the code could
be successfully refactored and how. This was particularly
important when multiple classes/subclasses were used to
build recursive data structures. However, this inspection
never required more than an additional 20 minutes.

Antlr. For the Antlr benchmark, our tool reports one of
the larger heaps being reachable from a method in the
JavaCodeGenerator class. We inspected this heap
with our visualization turning on the memory use heat
map, we were able to quickly identify one dominator
node as containing around 72% of the reachable memory.
This region was dominated by a set of RuleSymbols
each of which stores information representing various
aspects of the parser. Further inspection did not reveal
any obvious memory use problems or obvious areas
where data structures could be refactored to substantially
improve memory utilization. These findings match those
of previous studies of the benchmark which is not known
to have any reported memory leaks and is reported to have
good utilization of memory (in particular [19] reports a
good health score).

Chart. For the Chart benchmark our tool reports the
largest heaps being reachable from a method in the
JFreeChart class. Our highlighting tools indicate that
a region (Figure 5) of potential interest is dominated by
a set of XYSeries objects. Expanding this dominator
node shows that the memory is being used by a large
number of XYDataItem objects and the Double objects
they own (similar to the case in the raytracer case study).
By hovering over these objects we discovered that they
consume about 3MB of heap space. The actual data
contained in these objects (in particular the Double
objects) is small compared to the object overhead and
there is an ownership relation between each of the
XYDataItem objects and the Double objects. This
indicates that we could inline these structures to save
space. An inspection of the XYDataItem class shows
that it declares the x/y fields as Number types to allow
for some level of polymorphism. Therefore, we need to
subclass our new flattened classes to allow for storing
both integer and floating point x,y pairs. This refactoring
results in a savings of around 1MB, which is around 25%
of the total live memory at this point in the program. To
the best of our knowledge this memory issue has not been
reported in previous work.

FOP. For the fop benchmark the tool reports the largest
heap being reachable from a method in the Page class.
The highlighted region consists of a large number of
objects that contains various parts of the document to
render, for example, the WordArea and TableArea
objects. After some inspection of the source code we
concluded that the data structure was not particularly

11

Fig. 5. HeapDbg output for the Chart program. High memory use regions are automatically highlighted and
expanded (3 nodes out of 110 total).

amenable to refactoring. As reported in [25], we note that
the data structure is needed later in the computation and
thus is not a leak.

PMD. For the pmd program, our tool reports one of the
larger heaps as occurring in the JavaParser class. The
section highlighted by the memory utilization coloring uses
over 10MB of memory and consists of a data structure
which is a tree via the children field and container
offsets, along with a parent back pointer on the parent
field. This data structure represents the AST of the program
that is being analyzed. Hovering over the node reports
that it represents more than 50 types (with names like
ASTExpression and ASTPrimitiveType) that all
inherit from the SimpleNode class. On inspection we
see that this base class has many data fields (line numbers,
the children array, the parent field, etc.) which the
subclasses add to with additional AST specific information.
Given this structure we did not see any obviously poor
memory use or memory leaks. This finding appears to
contradict [19] which reports a high rate of object header
overhead in this benchmark. However, in this case the over-
head is actually encoding important structural information
about the AST that is being processed. This case study
demonstrates how the visualization can be used to augment
the information provided by existing analysis tools.

6.3 Industrial Experience
We have a small number of industrial users who have
been evaluating the tools described in this paper on large
production codebases. The initial feedback mirrors our
experiences. Users have reported that while the time to run
the profiler (and associated abstractions) is non-trivial it is
not a major issue in using the tools. Similar to our case
studies they have identified and fixed a range of memory
inefficiency issues. They have also reported that they found
it useful to manually explore the graph to see what the data
structures in the programs look like and if this matches their
intuition. In cases where there was a mismatch it was often
due to unintentional sharing which had not yet appeared
as a bug (e.g., partial copying). For both the memory

inefficiencies and the reachability items the users indicate
that they felt the issues would have been significantly more
difficult to find and fix without a tool like the one presented
in this paper.

6.4 Computational Costs
Table 1 contains information on the sizes of the largest
abstract representations produced during the runs of the
profiler and the cost of extracting and comparing these
abstract heap graphs. The first column lists the benchmark
and the second column the number of objects in the largest
concrete heap snapshot that was encountered. The following
columns are the size of the largest abstract heap graph
produced for any heap snapshot (AbsNode), and the size of
the corresponding dominator reduced representation from
Section 5 (Reduced). Some of these sizes seem to be at
(or beyond) the upper end of what can be conveniently
visualized. However, our experience in Section 6.1 shows
the combination of the conditional graph styles, the ability
to zoom between levels of detail, and the navigational
tools provided by the DGML viewer made inspecting and
understanding the relevant parts of the graphs quite easy.

The next issue we wanted to evaluate was the compu-
tational costs of performing the abstraction, comparison,
and merge operations. The columns AbsTime, EqTime, and
MergeTime columns shows the maximum time taken to
abstract a concrete heap during the profiler run and to
merge/compare it with previously taken snapshots.

The current abstraction implementation creates a com-
plete shadow copy of the concrete heap during abstraction.
Despite this large constant time overhead, the cost of
computing the abstractions is quite tractable. The running
time scales very closely to the asymptotic complexity of
O(E ∗ log(N)). The current implementation uses C# and
computes the abstraction inside the process that is instru-
mented. The combination of this implementation choice and
the construction of a full shadow heap for each snapshot
results in a large memory overhead. It was not possible
to precisely measure the exact memory overhead of the
abstraction operations. However, using the difference in
the total memory consumed by the process as reported by

12

Bench Objects AbsNode Reduced AbsTime EqTime MergeTime
raytracer ∼168K 48 21 1.37s 0.04s 0.11s
antlr ∼12K 606 201 0.41s 0.03s 0.11s
chart ∼189K 198 110 3.22s 0.09s 0.21s
fop ∼120K 531 150 2.67s 0.11s 0.41s
luindex ∼2K 87 36 0.50s 0.01s 0.02s
pmd ∼178K 146 28 4.11s 0.09s 0.15s
xalan ∼40K 451 127 2.42s 0.07s 0.17s

TABLE 1
AbsNodes and Reduced are the number of nodes in the largest abstract and dominator reduced graphs.

AbsTime is the largest time needed to compute the abstraction of a concrete heap. EqTime and MergeTime are
the largest times to compare or merge any pair of abstract heaps.

the system monitor indicates a factor of a 40× increase
in memory use (never exceeding 800MB). For our profil-
ing applications this overhead is large but acceptable. In
applications which may need to deal with heaps that are
hundreds of MB, we note that the algorithm in Section 3 can
be restructured to compute the equivalence classes online
during the heap walk. This restructuring eliminates the large
cost of creating a full shadow heap and allows the concrete
heap to be processed incrementally.

7 RELATED WORK

Developing debugger support for the program heap is an
ongoing active research area. The work in [26] outlines
many of the basic issues that arise when attempting to
visualize concrete program heaps and [27] presents some
abstractions to help alleviate some of these issues. There
is a large body of work on techniques to improve the
efficiency and effectiveness of debugging [28], [29], [30],
[31], [32], [33]. Work in [34] takes the same general
approach as this work but focuses on the interactive aspects
of visualizing the heap, in particular allowing the developer
to inspect individual objects in a larger structure.

Work by Mitchell et. al. [16], [17] has a number of
similarities to the work in this paper. Both approaches use
a set of grouping heuristics to partition structures in the
heap and then extract information about the partitions, but
the partitioning strategy and information extracted differ
substantially. The approach to abstraction taken in this
work focuses on identifying structures and sharing/aliasing
relations using type information and predecessor fields.
In contrast [16], [17] focus on ownership and memory
consumption using dominator relations plus information
on predecessor types. On the SPEC JVM98 raytracer [17]
produces a graph with 4 nodes and does not resolve
the Face and Point structure. As shown in our case
study, Section 6.1, the abstraction in this paper produces
a graph with 50 nodes and provides detailed information
on memory use and sharing in the Face and Point
structure. Given these differences in grouping heuristics
there is also a large difference in the focus on what type of
information is extracted. In particular, the abstraction in this
paper is designed to aid programmer understanding of the
structure and connectivity of various heap structures and so
it explicitly extracts information on shape, edge injectivity,

pointer nullity, container sizes, in addition to information
on the sizes of various data structures. While some of
these properties can, in some cases, be reconstructed using
fanin/fanout and object count information, the majority of
the information computed in [16], [17] focuses on the
specific task of identifying memory inefficiencies in large
Java programs. We also note that the approach taken in [16],
[17] has the same asymptotic cost as the work in this paper.

There is a substantial amount of work on the develop-
ment of heap models for use in static program analysis [9],
[4], [35], [36]. Whereas program analysis is concerned with
computability and obtaining enough precision at reasonable
cost, the main challenge in abstracting runtime heaps is
to obtain very small models that can be visualized, while
retaining many useful properties of the original heap. We
believe though that insights in static heap analysis can
inform the abstractions of runtime heaps and vice versa.
For example, it would be interesting to provide program-
mers with more control over the abstractions produced via
instrumentation predicates [9], [36]. The approach in [35]
uses a less descriptive model than the one presented in this
paper for example, it does not consider information such as
injectivity or shape. Work in [37], [10] use a related idea
of taking a concrete heap from a C/C++ or Java program
and inferring the types [37] or basic shapes [10] of heap
structures.

8 CONCLUSION

This paper introduces a new runtime technique for program
understanding, analysis and debugging. The heap abstrac-
tion presented in this work constructs compact represen-
tations of the runtime heap in order to allow effective
visualization and navigation. At the same time the abstrac-
tion retains crucial high-level properties of the heap, such
as pointer relations and shape of various subgraphs. The
construction of the abstraction ensures that the abstract
graph is a safe representation of the concrete heap, allowing
the programmer (or other tools) to confidently reason about
the state of the memory by looking at the abstract represen-
tation. Our benchmarks and case studies demonstrate that
abstract heap graphs can be efficiently computed, contain
interesting information on the heap structure, and provide
valuable information for identifying and correcting memory
use related defects. Given the utility of the abstraction

13

in these studies we believe there are a number of other
applications including thread races, refactoring for paral-
lelism, interactive debugging, and computing runtime heap
invariants, where this abstraction would be useful.

ACKNOWLEDGMENT
We would like to thank Peli de Halleux for setting up
the online interface at RiSE4fun and Chris Lovett for his
help with DGML. Additionally, we would like to thank
Todd Mytkowicz, Wolfram Schulte, and the reviewers for
their input and constructive comments on this work. This
work was supported in part by NSF grants CCF-1117603
and CNS-0917392, the EU project FET IST-231620 HATS,
MICINN project TIN-2008-05624 DOVES, CAM project
S2009TIC-1465 PROMETIDOS, the COST Action IC0901
Rich Model Toolkit, and a 2012 Microsoft SEIF Award.

REFERENCES
[1] P. Cousot and R. Cousot, “Systematic design of program analysis

frameworks.” in POPL, 1979.
[2] F. Nielson, H. Nielson, and C. Hankin, Principles of Program

Analysis. Springer-Verlag New York, Inc., 1999.
[3] D. Chase, M. Wegman, and K. Zadeck, “Analysis of pointers and

structures.” in PLDI, 1990.
[4] R. Ghiya and L. Hendren, “Is it a tree, a dag, or a cyclic graph? A

shape analysis for heap-directed pointers in C.” in POPL, 1996.
[5] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic,

and D. Kapur, “Sharing analysis of arrays, collections, and
recursive structures,” in PASTE, 2008.

[6] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in ICSE, 2010.

[7] E. Barr, C. Bird, and M. Marron, “Collecting a Heap of Shapes,”
Microsoft Research, Technical Report MSR-TR-2011-135, Dec.
2011.

[8] J. Caballero, G. Grieco, M. Marron, Z. Lin, and D. Urbina,
“ARTISTE: Automatic generation of hybrid data structure
signatures from binary code executions,” IMDEA Software
Institute, Tech. Rep. TR-IMDEA-SW-2012-001, August 2012,
http://software.imdea.org/∼juanca/papers/artiste-TR.pdf.

[9] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn,
T. Wies, and H. Yang, “Shape analysis for composite data
structures,” in CAV, 2007.

[10] M. Jump and K. McKinley, “Dynamic shape analysis via degree
metrics,” in ISMM, 2009.

[11] A. Deutsch, “Interprocedural may-alias analysis for pointers:
Beyond k-limiting.” in PLDI, 1994.

[12] M. Marron, D. Kapur, and M. Hermenegildo, “Identification of
logically related heap regions,” in ISMM, 2009.

[13] “DGML Specification,”
http://schemas.microsoft.com/vs/2009/dgml.

[14] S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[15] D. Clarke, J. Potter, and J. Noble, “Ownership types for flexible
alias protection,” in OOPSLA, 1998.

[16] N. Mitchell, E. Schonberg, and G. Sevitsky, “Making sense of
large heaps,” in ECOOP, 2009.

[17] N. Mitchell, “The runtime structure of object ownership,” in
ECOOP, 2006.

[18] “Common Compiler Infrastructure,”
http://ccimetadata.codeplex.com.

[19] N. Mitchell and G. Sevitsky, “The causes of bloat, the limits of
health,” in OOPSLA, 2007.

[20] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur, “Heap
analysis in the presence of collection libraries,” in PASTE, 2007.

[21] I. Dillig, T. Dillig, and A. Aiken, “Precise reasoning for programs
using containers,” in POPL, 2011.

[22] “Standard Performance Evaluation Corporation. JVM98 Version
1.04, August 1998,” http://www.spec.org/jvm98.

[23] S. Blackburn, R. Garner, C. Hoffman, A. Khan, K. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis (2006-mr2),” in OOPSLA, 2006.

[24] “ikvm,” http://www.ikvm.net/.
[25] M. Jump and K. McKinley, “Cork: Dynamic memory leak

detection for garbage-collected languages,” in POPL, 2007.
[26] T. Zimmermann and A. Zeller, “Visualizing memory graphs,” in

Software Visualization, 2001.
[27] S. Pheng and C. Verbrugge, “Dynamic data structure analysis for

Java programs,” in ICPC, 2006.
[28] A. Zeller, “Isolating cause-effect chains from computer programs,”

in FSE, 2002.
[29] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable

statistical bug isolation,” in PLDI, 2005.
[30] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, “Sober: Statistical

model-based bug localization,” SIGSOFT, vol. 30, no. 5, 2005.
[31] A. Potanin, J. Noble, and R. Biddle, “Snapshot query-based

debugging,” in ASWEC, 2004.
[32] T. Hill, J. Noble, and J. Potter, “Scalable visualizations of

object-oriented systems with ownership trees,” Journal of Visual
Languages and Computing, 2002.

[33] W. D. Pauw and G. Sevitsky, “Visualizing reference patterns for
solving memory leaks in Java,” in ECOOP, 1999.

[34] E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. Su, and
S. Guyer, “Heapviz: Interactive heap visualization for program
understanding and debugging,” in SOFTVIS, 2010.

[35] C. Lattner, A. Lenharth, and V. S. Adve, “Making context-sensitive
points-to analysis with heap cloning practical for the real world,”
in PLDI, 2007.

[36] S. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via
3-valued logic.” in POPL, 1999.

[37] M. Polishchuk, B. Liblit, and C. Schulze, “Dynamic heap type
inference for program understanding and debugging,” in POPL,
2007.

http://software.imdea.org/~juanca/papers/artiste-TR.pdf
http://schemas.microsoft.com/vs/2009/dgml
http://ccimetadata.codeplex.com
http://www.ikvm.net/

14

Mark Marron is a Researcher at the Imdea
Software Institute and was a Visiting Re-
searcher at Microsoft Research during part
of this work. His research interests focus on
developing practical techniques for modeling
program behavior and using this information
to support error detection and optimization
applications. His work to date has focused
on the development of analysis tools for the
program heap to infer region, sharing, foot-
print and data-dependence information. He

received his Ph.D. from the University of New Mexico in 2008 and
a B.A. in Mathematics from the University of California at Berkeley.

Cesar Sanchez is an Assistant Research
Professor at the IMDEA Software Institute
and a Research Scientist at the Spanish
Council for Scientific Research (CSIC). His
research interests include formal methods, in
particular formal verification of software and
embedded systems, and applications of logic
for the design and understanding of robust
computational systems. He received a PhD
and MS degree in Computer Science from
Stanford University, and a MSEE from UPM,

Spain.

Zhendong Su is a Professor in Computer
Science and a Chancellor’s Fellow at the
University of California at Davis, where he
specializes in programming languages, soft-
ware engineering, and computer security. He
received both his M.S. and Ph.D. degrees
in Computer Science from the University of
California at Berkeley, and both his B.S. de-
gree in Computer Science and B.A. degree
in Mathematics from the University of Texas
at Austin.

Manuel Fahndrich is a senior researcher
at Microsoft. He is passionate about code
analysis techniques and getting tools onto
programmer’s desktops. He is currently inter-
ested in enabling people to program on smart
phones and tablets. Prior projects include
CodeContracts, tools for specification and
verification usable by ordinary programmers,
designing and implementing the Sing# pro-
gramming language for Singularity, non-null
types for Spec#, and API protocols through

Fugue and Vault. He obtained his Ph.D. from UC Berkeley in 1999
on constraint-based program analysis, and his Bachelor in Computer
Engineering from ETH Lausanne, Switzerland, in 1993.

