
Collecting a Heap of Shapes

Earl T. Barr1 Christian Bird2 Mark Marron3

1UC Davis 2Microsoft Research 3IMDEA Software Research

Abstract. A large gap exists between the wide range of admissible heap structures
and those that programmers actually build. To understand this gap, we empirically
study heap structures and their sharing relations in real-world programs. Our goal
is to characterize these heaps. Our study rests on a heap abstraction that uses
structural indistinguishability principles to group objects that play the same role.
Our results shed light on prevalence of recursive data-structures, aggregation, and
the sharing patterns that occur in programs. We find, for example, that real-world
heaps are dominated by atomic shapes (79% on average) and the majority of
sharing occurs via common programming idioms. In short, the heap is, in practice,
a simple structure constructed out of a small number of simple structures. Our
findings imply that garbage collection and program analysis may achieve a high
return by focusing on simple heap structures.

1 Introduction

The program heap is fundamentally a simple mathematical concept — a set of objects and
a connectivity relation on them. This clean formalism lends itself well to the application
of powerful deductive mathematical analyses. However, the formalisms — objects,
pointers, types, and fields — that define the program heap in modern object-oriented
languages such as Java or C# are fundamentally under-constrained; a large gap exists
between the range of heap structures that are admissible under the weak constraints
imposed by the type system and the possibly much more limited set of structures
that programmers build in practice. We seek to fill in this gap and understand more
precisely the heap structures in real world programs. We approach these questions via a
naturalistic empirical analysis of real-world heaps. The results of this analysis indicate
that, in practice, the heap is a fundamentally simple structure that is constructed in large
part out of a small number of simple structures and sharing idioms.

This result has substantial implications for programming language research, particu-
larly type and annotation systems [5, 6, 9, 17, 28] and the design of static heap analysis
techniques [7, 26, 27, 29]. Work in these areas generally considers the heap to be an
adversarial setting where the analysis or specification system must effectively handle
a wide range of complex heap structures that could appear. Our results imply that this
pessimistic view does not reflect the reality of how object-oriented programs organize
the heap and may artificially limit the scalability and utility of analysis or annotation
systems built under this assumption.

A major consideration when studying heap structures is to decide the level of abstrac-
tion to employ. A natural idea is to look at how individual objects are related and perhaps
shared [10, 15, 17]. We hypothesize that developers actually think primarily in terms

of the roles that objects play in a program and the relations between these roles rather
than thinking in terms of individual objects. Further, we hypothesize that these relations
are encoded in where pointers to the objects that play each role are stored, i.e. objects
that play the same roles are stored in the same containers or structures while objects
that play different roles are segregated. This allows us to study the heap structures,
and relations between them, at a higher level of abstraction that is closer to what the
developer envisions.

In this paper, we examine the heaps of real-world programs from the DaCapo
suite [4] and find with a high degree of statistical confidence that for object-oriented
programs: unique referencing (a sub-relation of ownership [6]) is an important but not
dominant organization concept (mean of 43% ± 12% of types), that aggregation is
the dominant form of composition (mean of 79% ± 21% of types), and that all types
sharing can be well organized by a small set of developer-centric concepts (mean of
89% ± 6% of types can be precisely categorized). We obtain similar results for the
structures that are built. These results provide information about the relative importance
of set vs. inductive reasoning (aggregate vs. recursive structures) for developing shape
analysis techniques [7, 29], and what structural properties occur frequently in real-world
code [18] (i.e. they must be represented accurately in order to achieve precise results).
The results also imply that, while ownership [5, 6, 17] is important to the design of
object-oriented programs, the strict ownership discipline is often violated. We quantify
these violations and how complex the resulting aliasing relations are [20]. We show that
the majority of sharing that actually occurs can be categorized using a small number
of programming idioms. These results provide possible directions for work on heap
annotation and type systems.

This paper makes the following contributions:

– We use runtime sampling to produce a range of statistically meaningful measure-
ments of the heaps produced by the DaCapo [4] benchmark, a well-known bench-
mark that encompasses a real-world object-oriented programs, selected to represent
a range of application domains and programming idioms;

– We provide evidence that components, as described in [18, 21], usefully and closely
correspond to the roles that developer assign to objects; and

– We identify a small number of idiomatic sharing patterns that describe the majority
of sharing that occurs in practice.

These results confirm some commonly held beliefs about the heap – programmers
avoid sharing and builtin containers are preferred to custom implementations – and pro-
vide actionable information – strict ownership is not the dominant form of organization
and sharing generally occurs in a small number of idiomatic ways – for rethinking the
designs of annotation systems and program analyses.

Section 2 presents the theory that informs that the research questions we address in
this study. Section 3 introduces the formalism upon which our heap analysis tool depends
and defines the measures we use to answer our research questions. Section 4 describes
how we process concrete heaps and compute the data that we analyze. Section 5 presents
the results of our study and answers our research questions. Finally, we examine previous
work on empirical heap studies in Section 6 and summarize our results in Section 7.

2

2 Theory

Classically, object-oriented programming provides two ways, (1) inheritance and poly-
morphism (2) encapsulation and aggregation, for a programmer to transform abstract
concepts in the problem space into classes that implement these concepts. A programmer
can use inheritance and polymorphism to build up hierarchies of types via the use of
the is-a relationship. How this is-a relation is used in the organization and construction
of real world object-oriented programs has been studied extensively [4, 5, 16]. In this
work, we turn to the question of how programmers use encapsulation and aggregation,
i.e. has-a relation, to organize objects in real world, object-oriented programs. Simply
stated, we ask “How do programmers organize the heaps of real world object-oriented
programs?”

In this work, we hypothesize that developers often think of objects in terms of
the roles they play in the programs [21]. These roles implicitly aggregate objects into
conceptually related sets. Thus, the simple view of a heap as a set of concrete objects is
insufficient since a programmer may think of all the objects in a graph as one conceptual
entity or all the objects in a binary tree as a single tree. Similarly, one cannot simply
equate conceptual components with types since programs often use the same type for
different purposes. For example, a program may use List both to handle collisions in a
hash table and to hold the neighbors of a vertex in a graph.

To accommodate these challenges, we build a role-based heap abstraction to mirror
the roles a programmer assigns to objects. First, we introduce some terminology. A
recursive data structure consists of two sets of objects — the infrastructural objects that
realize it, like instances of a ListNode class, and those objects stored in it, like instances
of a Profile class. The backbone of a recursive data structure comprises the infrastructural
objects and their sharing relations. Objects are structurally indistinguishable if they 1)
are members of the same backbone or 2) have the same type and are stored together.
We formalize what “stored together” means in Section 3. We use these two structural
indistinguishability principles to partition the concrete heap into conceptual components.

Figure 1 shows the output of HeapDbg [21], a conceptual component visualization
tool; it illustrates how we apply these principles to the concrete heap of a program that
manipulates arithmetic expression trees. Figure 1(a) shows a concrete heap snapshot as
computed by the sampling framework for a simple program that manipulates expression
trees. The expression nodes have l and r operand fields. The local variable exp points
to an expression tree consisting of four interior binary expression objects and four leaves
— two Var and two Const objects. For efficiency, the program has interned all variable
names into the env array to avoid string comparison during expression evaluation.

Figure 1(b) shows the graph of conceptual components and relations between them
as produced by the application of the indistinguishability principles. To ease discussion,
we label each node graph with a unique id. The abstraction summarizes the concrete
objects into four components, which become nodes in the graph: 1) a node representing
all interior recursive objects in the expression tree (viz. Add, Mult, Sub), 2) a node repre-
senting the two Var objects, 3) a node representing the two Const objects, and 4) a node
representing the environment array. The backbone indistinguishability principle groups
the four expression objects into node $1 in Figure 1(b). The container indistinguishability
principle groups the two Var objects into node $2 and the two Const into node $3. They

3

(a) A Concrete Heap. (b) Corresponding Abstract Heap.

Fig. 1. Running example.

are not abstracted into a single object because their type distinguishes them. Since no
principle applies to the environment array env, it acquires its own node $4. The edges
represent possible sets of pointers and their associated field labels. The parallel edges
from $1 to $2 are discussed below in Section 2.3.

2.1 Heap Structure

Given a set of conceptual components, a natural question is

Research Question 1: What proportion of conceptual components are simple vs.
recursive?

Here, a conceptual component is simple when it is a set, without internal relations,
and complex when it abstracts objects that form structures such as trees or cyclic
graphs. Answering this question provides insight into the relative importance of inductive
and set based reasoning in shape analysis tools [7, 18, 29]. This also provides insight
into the role that recursive structures and container libraries play in the design of
programs [3] specifically: are simple recursive structures defined and used frequently or
do programmers tend to define a small number of application specific recursive structures
and otherwise avoid recursive definitions in favor of builtin collections?

In our running example, Figure 1(b), we have four conceptual components the
recursive expression tree in node $1, the set of Var objects in node $2, the env array in
node $4, and the Const objects into node $3. These components include one recursive
structure, the tree in $1, and one builtin collection object, the array in $4.

2.2 Ownership

Encapsulation is a fundamental concept in OOP and has traditionally been expressed as
a binary property in terms of ownership [6]. This strict definition with transitivity leads

4

to the same issues as encountered in the classic const problem where use of const in
one location leads to required cascading uses throughout. In this work we utilize the
slightly weaker notion of unique-ref [17] that specifies that the address of an object is
stored in at most one memory location although objects transitively reachable from it
may be shared. For us, an object that has a unique-ref is locally owned. This definition
allows some data is to be hidden, while other data may be shared, i.e. locally owned but
not necessarily (transitively) owned.

Questions about ownership, local ownership, and sharing are fundamental throughout
research in programming language design [5, 6, 9, 28] and program analysis research [7,
17, 18, 26, 29]. Despite a number of valuable empirical studies [10, 12, 14, 15, 17, 21,
22, 24] the question of what sharing is actually present in real-world programs and why
this sharing occurs is still an open question. In the case of programming language design
there is substantial interest in developing type or annotation systems that can express
rich encapsulation and exposure properties. The construction of an annotation or type
system for sharing that can be applied to real-world programs remains and open problem.
Similarly, in the area of static heap analysis there has been a substantial amount of work
on possible approaches for modeling sharing but it remains unclear what sharing is
actually present in real-world programs and thus is critical to producing useful results.

In this study, we hypothesize that ownership in real object-oriented programs is
important but that a non-trivial amount of sharing also occurs. Further, we hypothesize
that this sharing idiomatic and that much of it can be classified by a small number of
common programming idioms. Thus, we first want to understand how common local
ownership is within a program.

Research Question 2: What percentage of objects are locally owned?

2.3 Sharing

For the objects that are shared we want to understand more about how this sharing occurs.
There are two possible ways sharing could occur 1) there are objects in several different
components that all contain pointers to the same object or 2) there are multiple objects
in the same component that contain pointers to the same object. In the first case, the
sharing likely involves objects of multiple types or at least objects that play different
roles in the program; in the second case, the sharing likely involves objects of a single
type that all play the same roles in the program. This distinction provides insight the
degree to which a codebase localizes interactions with shared objects.

Research Question 3: What percentage of sharing occurs between objects in the
same conceptual component vs. across conceptual components?

A set of pointers that do not alias is injective, i.e. the set is a one-to-one map of
pointers to objects. Figure 1(b) shows that the Const objects are always locally owned,
since it has a single (narrow), injective in-edge. In contrast, several expression objects

5

might point to the same Var object; Figure 1(b) depicts this aliasing (non-injectivity)
using wide, orange colored edges, if color is available. The Var exhibits both types of
sharing (the node has multiple incoming cross edges). Multiple objects within the expr,
the tree component, alias objects with Var; in addition to the aliasing from expr, the
environment array env also points to objects within Var.

To understand why sharing does occur we examine the non-injective edges and cross
edges that occur through the lens of a number of common programming idioms.

Research Question 4: What percentage of sharing involves 1) immutable objects,
2) singleton or intern table objects, or 3) contained objects, i.e. sharing is contained
in an immediately enclosing object?

The first idiom we look at is the sharing of immutable objects such as strings, which
are always immutable in C# and Java. When the objects are known to be immutable,
developers are much less concerned about sharing them and in fact for performance
reasons often do so intentionally. Another common idiom is the use of the singleton
design pattern or, very similarly, an intern table that maps objects that are equal based
on value type to objects that are equal on reference identity. Common examples of this
are the String.intern method in Java or compiler symbol tables. Our final idiom
is based on the notion that a key role of many classes is to aggregate and provide the
appropriate views of the contained data. This often requires the resulting objects to
store the data in multiple ways. For example a class may store its object in both a List
and a HashSet. Objects in such a class are shared but a single class closely manages
their sharing. We consider sharing to be localized if, in all cases, the shared objects are
recaptured by a unique dominator that is no more that two pointer dereferences away.
We hypothesize that, in practice, these three types of sharing dominate the sharing that
occurs in real-world programs, so we ask:

Research Question 5: What percentage of sharing relationships remain unclassi-
fied?

The answer to this question has direct implications for the design of both annotation
(or type) systems and static heap analysis tools. If much of the heap remains unclassified,
then more expressive (and unappealing to practitioners) annotations will be needed
and static heap analysis tools must be both deep and broad. If, on the other hand, our
classification scheme captures most of the sharing in the heap, we will have shown (1)
that it is possible to relate idiomatic code designs to the heap structures they produce
and (2) that, in practice, programmers form and combine the components in a small
number of simple and often idiomatic ways. This means that an annotation system or
analysis tool that is capable of expressing the concepts used in this study will be able
to precisely (and compactly) annotate (analyze) the features that appear in real-world
programs. Further, since these system would be built on a small number of concepts
and designed to reflect programmer intent, these systems should be relatively simple to
implement in an abstract domain and both simple and intuitive for programmers to use.

6

2.4 Abstraction Hypothesis

This work empirically explores how developers translate informal design specifications
into class definitions. The following hypothesis underpins our analysis: Conceptual
components, defined using our indistinguishability principles, accurately1 partition the
heap. If this hypothesis does not hold and our conceptual components poorly approximate
developer intent, then we would expect them to contain unrelated objects and the resulting
measurements of their properties to produce low information, indeterminate values. We
present evidence for this hypothesis as part of the empirical analysis in Section 5.4.

3 Formalism

As is standard, we model the state of a program heap with an environment, mapping
variables to addresses, and a store, mapping addresses to objects. We refer to an instance
of an environment together with a store as a heap. Given a program that defines a set of
types, ProgramTypes, we define the set of concrete labels in the program, StorageLabels,
as the set of all member fields and array indices in the program. We then construct a
heap as a tuple (Env,σ ,Ob) where:

Env ∈ Environment = Vars⇀ Addresses

σ ∈ Store = Addresses→ Objects∪{null}
Objects = ProgramTypes× (StorageLabels⇀ Addresses)

Ob ∈ 2Objects

Each object o ∈ Ob is a tuple consisting of the type of the object and a map from field
labels to addresses for the fields defined in the object. We assume that the objects in
Ob and the variables in the environment Env, as well as the values stored in them, are
well typed according to the store (σ) and the types/labels in the sets ProgramTypes and
StorageLabels.

In the following definitions, Type(o) refers to the type of an object. The usual
notation o.l to refers to the value of the field (or array index) l in the object. To simplify
and clarify our definitions, we define a non-null pointer p associated with an object o
and a label as l in a specific heap (Env,σ ,Ob) as p = (o, l,σ(o.l)) where σ(o.l) 6= null.
We define a helper function Field(type) to return the set of all fields that are defined for
a given type (or array indices for an array type).

Conceptual Component A conceptual component in memory C ⊆Ob is simply a subset
of the heap objects. As defined below in Section 3.1, our abstraction computes a partition
of Ob and maps each partition to a conceptual component. Where clear from context,
we refer to conceptual components simply as components.

Component Types Given a component of the heap C we can define the type set associated
with it as the types of all objects that are contained in the component: Typec(C) =
{Type(o) | o ∈C}.

1 Here, we use the definition of accuracy from measurement theory, i.e. the closeness of a
measurement to the actual (true) value.

7

Component Pointer Injectivity Given two disjoint components C1 and C2 in the heap
(Env,σ ,Ob) and the non-null pointers with the label l from C1 to C2,

inj(C1,C2, l,σ)⇔ os 6= o′s⇒ σ(os.l) 6= σ(o′s.l),

for all pairs of non-null pointers (os, l,σ(os.l)) and (o′s, l,σ(o′s.l)). As a special case
for array objects, we have inj[](C1,C2,σ)⇔ i 6= j⇒ σ(os[i]) 6= σ(os[j]), for all pairs of
non-null pointers (os, i,σ(os.i)) and (os, j,σ(os. j)) where i, j are valid array indices.

These definitions capture the general case of an injective relation from a set of objects
and fields to target objects. They also capture the special, but important case of arrays
where each index in an array contains a pointer to a distinct object. We say a set of
component pointers P between the components C1 and C2 is injective, which we denote
Inj(P), if the pointers have the same label l and inj(C1,C2, l,σ) or they are stored in
arrays and inj[](C1,C2,σ).

A set of pointers that do not alias is injective, i.e. the set is a one-to-one map of
pointers to objects. Figure 1(b) shows that the

Shape We characterize the shape of components using standard graph theoretic notions
of trees and directed-acyclic graphs (dags), treating the objects as vertices in a graph and
non-null pointers as the (labeled) edge set. In this style of definition, the set of graphs
that are trees is a subset of the set of graphs that are dags, and dags are a subset of general
graphs. Given a component C then:

any(C) holds for any graph. We use it as the most general shape that does not satisfy a
more restrictive property.

dag(C) holds if the subheap restricted to C is acyclic.
tree(C) holds if dag(C) holds and the subheap restricted to C contains no pointers that

create cross edges.
none(C) holds if the edge set in the subheap restricted to C is empty.

3.1 Identifying Conceptual Components

To identify the components in a program heap we want to group together the objects that
play the same conceptual roles in the program. Our hypothesis is that, in object-oriented
programs, our indistinguishability principles (Section 2) determine if two objects are
conceptually indistinguishable and therefore have the same conceptual roles, and belong
in the same conceptual component. In more detail, our indistinguishability principles are
(1) objects in the same recursive data-structure belong to the same component; (2) objects
that are stored in the same container or are pointed to by fields of objects in the same
conceptual component are indistinguishable (3) unless the objects have different types
then there is one conceptual component per type. Here, principles 2 and 3 decompose
the single, more abstract storage principle in Section 2.

This organizational hypothesis, which is also used in [18, 21], forms a set of equiv-
alence relations on the objects and connectivity from the underlying heap structure.
Thus, we can formulate the identification of conceptual components as a congruence

8

closure computation. To construct the closure we first build a map from the objects in the
heap to equivalence sets (conceptual components) using a Tarjan union-find structure.
Formally, Π : Ob→{π1, . . . ,πk} where πi ∈ 2Ob and {π1, . . . ,πk} partition Ob. We start
with a partition per object, then apply the following equivalence relations on this set of
equivalence classes until the set of partitions is closed under the relations. At this point
the resulting equivalence classes are the desired conceptual components.

The first equivalence relation that defines conceptual components identifies objects
that are part of the same recursive data structure. It examines the type system of the pro-
gram under analysis and identifies all the types, τ1 and τ2 whose definitions are mutually
recursive; we denote such types τ1 ∼ τ2. Our goal is to distinguish types that represent
unbounded recursive structures (e.g. a linked-list) from types that represent relations
among a finite set of different concepts whose definitions are mutually referential (e.g.
an iterator and its container reference each other).

To distinguish types in unbounded structures from finite mutual dependencies we
use a simple heuristic: the types τ1 and τ2 are part of the same unbounded recursive
type definition, written τ1 ' τ2, if τ1 ∼ τ2 ∧ (∀τ ∈ {τ ′|τ ′ ∼ τ1∧ τ ′ ∼ τ2} where τ is a
builtin library type ∨ the least common super-type of τ,τ1,τ2 is a user-defined type).
This definition determines whether all the types in the recursive set (excluding any
builtin types such as arrays or hashsets) have a common and nontrivial super-type. If this
holds then they all expose some uniform representation that makes them conceptually
equivalent.

Definition 1 (Recursive Structure). Given two partitions π1 and π2, the unbounded re-
cursive structure congruence relation is π1 ≡Π

r π2⇔∃τ1 ∈ Typec(π1),∃τ2 ∈ Typec(π2)
s.t. τ1 ' τ2∧∃o ∈ π1,∃l ∈ Field(o) s.t. σ(o.l) ∈ π2.

The other part of congruence closure computation identifies conceptual compo-
nents that have equivalent successors. The partition π1 is a successor π2 on l iff
∃o ∈ π2,∃l ∈ Field(o) s.t. σ(o.l) ∈ π1. To define equivalent successors, we define the
relation Compatible(π1,π2)⇔ Typec(π1)∩Typec(π2) 6= /0.

Definition 2 (Equivalent Successors). For the partition π with successors π1 on label
l1 and π2 on l2, π1 and π2 are equivalent successors when π1 ≡Π

s π2⇔ (l1 = l2∨ l1, l2 ∈
N)∧Compatible(π1,π2).

Using the recursive structure relation and the equivalent successor relations we
can efficiently compute the congruence closure of for a concrete heap which yields the
desired conceptual components. In many contexts, it is useful to view the conceptual
components and component pointers as a graph in which each conceptual component
(set of objects) is a node and each set of component pointers is an edge.

Definition 3 (Conceptual Component Graph). Given a concrete heap (Env,σ ,Ob)
and the partition Π , a conceptual component graph is G = (N,E) where

– ∀πi ∈ {π1, . . . ,πk},∃n ∈ N
– ∀ sets of component pointers P = {(ns,nt , l) | ns,nt ∈ N ∧ l ∈ StorageLabels},
∃e ∈ E corresponding to P where πs corresponds to ns and πt corresponds to nt .

9

Example Heap Components. We can see how this technique for identifying conceptual
components works by applying it to the heap in Figure 1(a). The computation of the
equivalence classes for the objects identifies the objects with the types Add, Sub, and
Mult as belonging to the same partition since they are part of the same recursive structure.
The grouping of these objects then causes the Const type objects (nodes 4, 7) to be
identified as equivalent successors of the tree partition. Finally, either due to the tree
partition or the fact that the Var[] node references all the Var type objects triggers the
identification of all the Var type partition as equivalent successors. This results in the
conceptual component graph shown in Figure 1(b).

3.2 Features Under Study

We next define predicates over the conceptual component graph G = (N,E) and define
the features that we measure and use to evaluate the research questions posed in Section 2.
These measures are computed as percentages for both the of nodes (or edges) in the
graphs that satisfy a property and for the types (or fields) that satisfy a property. We
classify our predicates into four classes, based on their focus (nodes vs. edges) and their
locality (purely local vs. involving multiple nodes/edges). To provide intuition for each
definition, we refer back to our running example in Section 2.

Single Component Properties A node n in the component graph represents a single
conceptual component of a concrete heap. The types and the shape of the data structure
that the component represents are frequently of interest in program analysis/specification.
We consider a type to be immutable when it is a known primitive type such as String,
Int, etc. which is immutable according to the language definition. A builtin type is any
type from the standard JDK libraries.

A node n ∈ N is:

Immutable iff ∀τ ∈ Typec(n),τ is immutable.
System iff ∀τ ∈ Typec(n),τ is a builtin.

Singleton iff |Typec(n)|= 1 and there exists a static field that holds a pointer to n and
∀n′ ∈ N−{n},Typec(n)∩Typec(n′) = /0.

Global iff |Typec(n)| = 1 and there exists a static field that holds a pointer to a
container object that holds pointers to n and ∀n′ ∈ N −{n},Typec(n)∩
Typec(n′) = /0.

In our running example (Figure 1), none of the nodes contain immutable types so
there are no immutable nodes. It contains one system type and one system node, the
node representing the Var[]. Our example contains no singleton objects (and thus no
singleton nodes or types). We use the global shared property to identify sets of objects
that are intended to be globally shared, such as values stored in an intern table or some
set of special sentinel objects. In Figure 1, the region containing the Var objects is a
globally shared region since it represents only Var objects stored in a container (the
array) to which the static field env refers. Thus, our examples contains one globally
shared node and one globally shared type.

10

A node n ∈ N has shape:

Atomic iff Shapec(n) = none, i.e., there are no pointers between any of the objects.
Linear iff Shapec(n) = tree∨Shapec(n) = dag, i.e., there is a tree or a dag structure.
Cyclic iff ∃ a strongly-connected component of pointers in the objects in n.

Figure 1 contains three nodes with atomic shape — the nodes representing the Const,
Var, and Var[] objects — and three corresponding atomic shape types. It contains one
node whose shape is linear, the node with the self edges (labeled tree(l, r)) that represents
the Add, Mult, and Sub objects. Since this node represents multiple types, there are three
linear shape types. None of the nodes in Figure 1 have self-edges labeled any so it has
no cyclic nodes or types.

Cross Component Pointer Set Properties We next distinguish between sets of pointers
that are internal to a single component and those that cross between distinct components.
We also want to extract information on the prevalence of injective and non-injective
pointer sets.

An edge e ∈ E is:
Internal iff e is a self edge.
External iff e is not a self edge.
Injective iff e is external and Inj(e), i.e., e contains no aliases.

Our running example contains only one internal edge, the self-edge on the expression
tree exp and, since this edge represents pointers in the l and r fields of Exp, it contains
two Internal fields. It contains four external edges: the three outgoing edges from exp

and the edge representing the pointers in the Var[]. However, since the l and r fields
also appear as Internal fields, there is only one external field. The example contains four
Injective edges, the local exp variable edge, the static field env, the edge representing
the pointers stored in the environment array that refer to Var objects and the pointers in
the expression tree that refer to constant objects. Since these edges represent pointers
stored the l and [] fields, the example contains two injective fields.
The edge e ∈ E s.t. e is external and ¬Inj(e) is

NonInjectiveToImmutable iff its target node nt is an immutable node.
NonInjectiveToSingleton iff its target node nt is a singleton node.

NonInjectiveToGlobal iff its target node nt is a globally shared node.

Our example (Figure 1) does not contain any immutable or singleton components, so
it has no edges (or fields) that interfere only on immutable or singleton objects. The Var
region is globally shared, so our example contains a non-injective edge, the l edge from
the expression tree to Var. Thus, we have one NonInjectiveToGlobal edge. Since all the
other edges are either Injective or Internal, we have one NonInjectiveToGlobal field.

Ownership Properties Next we define the ownership properties and in-degree of the
nodes. Let d+ : N → N denote the in-degree, including self edges, of a node. For all
nodes n ∈ N, when d+(n) = 1 and its single in-edge e is injective (Inj(e)), the node n is
locally owned and its in-edge e is a local owner.

11

When an conceptual component is locally owned, a single (unique) pointer points to
each of the objects in it. This can be seen as the dual of local owner fields where, instead
of asking if a location contains a local owner pointer to a target object, we ask if there
exists a unique location that contains a pointer to a target object. In our running example,
Figure 1, two nodes — of type Var[] and Const — are locally owned. Since the edge
with the r label ending at the node containing the Const objects is injective and is the
node’s only in-edge, this edge and the l field are local owners.

Graph Structure Properties Next we define predicates to capture the graph theoretic
properties of the component graphs, particularly sharing information.

An edge e ∈ E that ends at node nt is:
TreeEdge iff e is external and d+(nt) = 1.

CrossEdge iff e is external and d+(nt)> 1 where DFS from the program root
set would label e a cross edge.

BackEdge iff e is an external edge and d+(nt) > 1 where DFS from the
program root set would label e a back edge.

CrossToImmutable iff e is a cross edge and nt is immutable.
CrossToSingleton iff e is a cross edge and nt is a singleton.

CrossToGlobal iff e is a cross edge and nt is globally shared.
CrossToLocalEscape iff e is a cross edge and ∃nd ∈ N s.t. nd dominates nt and the

longest acyclic path from nd to nt has two or fewer edges, i.e. the
sharing is highly localized and encapsulated.

Figure 1 contains three TreeEdges — the local exp variable edge, the static field
env, and the r edge pointing to the Const objects. It has one TreeField, the static
field env; the r field is not a tree field since its label also appears on non-tree edges.
It has three CrossEdges all ending at Var. Thus, it contains three CrossFields in the
heap — the l, r fields as well as the [] field from the array. It contains a globally
shared node, Var, and the cross edges that end at this node, viz. the l, r edges from the
expression tree, and the [] edge from the Var[]. Thus we have three CrossToGlobal
edges and since all the other edges labeled with l, r, or [] are either TreeEdges or are
internal tree edges, we have three CrossToGlobal fields. Our example does not contain
any back edges, immutable nodes or singletons, so it does not illustrate the BackEdge,
CrossToImmutable, or CrossToSingleton features.

4 Methodology

The main objective in this work is to understand, in a general sense, what kinds of
structures real world programs build; in particular, we are interested in features that
express developer intent, i.e. class invariants. Thus, HeapDbg extracts heap information,
at program points and from those parts of the heap, that are involved in these invariants.
In standard object-oriented program design these points are the entry/exit of public
methods and, in the heap, all objects reachable from the parameters and in-scope static

12

Fig. 2. Overview of the study methodology.

fields. As the runtime analysis infrastructure we use in this paper operates on .Net
bytecode, we translate the Java programs into .Net bytcode using the ikvm compiler [13].

Figure 2 shows the workflow of the execution, sampling, collection, and measure-
ments of the heaps produced for a input program. At the entry and exit of every public
method in the program, the profiler rewrites the program’s .Net assembly with sam-
pling code to compute heap snapshots and to identify the conceptual components in the
snapshot, as depicted by the Instrument Bytecode box in Figure 2. A snapshot of the
heap is the portion reachable from the parameters of a the current method call and from
static roots. The rewriter is based on the heap profiler work from [11]. Since extracting
heap snapshots at each method call is impractical we use a per-method randomized
approach with an exponential backoff, which occurs when the current heap snapshot
and previously taken snapshots differ with respect to the components and the relations
on these components. If we detect that the program may have entered a new phase
of computation, viz. the current snapshot differs from all previously taken snapshots,
then we add the component graph corresponding to the current heap snapshot to the
accumulated set of component graphs and reset the sampling rate (the control edge from
the accumulate flow edge to the execution in Figure 2). On smaller runs we compared the
results obtained by sampling uniformly at random with the results from the exponential
backoff approach and found that, in addition to having a much larger overhead, the
uniform sampling approach produced results that were no more useful.

We ran the profiler tool to compute likely heap invariants for each class declared
in the program. To avoid biasing the results heavily toward features of simple classes,
we exclude any heap invariant graphs that are subgraphs in a larger component graph.
Thus, in the Identify Components and Accumulate step in Figure 2, we check if the
newly extracted component graph is actually a subgraph of some other previously seen
state (and visa-versa). If so, we discard the redundant information. In the case of our
example in Figure 1(b), we discard the graph computed for the Const objects since
this component graph is a subgraph of the component graph computed for the Add (or
Sub/Mult) class. Finally, we take the set of likely invariant component graphs for the
program and compute the measurements described in Section 3.

13

5 Evaluation

The DaCapo suite is designed to exercise a wide range of memory system behaviors [4];
thus, its authors selected programs and inputs from a number of real-world applications
to represent a range of application domains and to cover many different heap structure
behaviors. These features make its benchmarks ideal choices for this work. To perform
our study, we translated six programs from DaCapo into .Net bytcode using the ikvm
compiler [13] (ikvm is not able to process the remaining DaCapo benchmarks). All of
the programs we examine in this section are (1) user-space applications, (2) relatively
mature and well tested, (3) implemented in an object oriented fashion, and (4) in a
language with garbage collection. Thus, it is not clear whether these results generalize
to domains such as low-level systems code, languages which use other programming
paradigms (e.g. functional programming languages), programs in environments that do
not have fully automatic memory management (e.g. as C++), or programs not written in
a standard object-oriented programming style.

We use inferential quantitative methods (t-tests, confidence intervals, tests of bino-
mial distributions, and chi-square tests [8]) and generalize our results. These techniques
indicate of there is statistical significance (i.e. if the results from the sample are simply
program-specific noise or are indicative of a more general trend) and they rely on an
underlying assumption of a random sample. Thus, our conclusions are only valid for the
population of programs for which DaCapo is representative. The fact that we are able
to identify statistically significant trends in a sample of just six programs indicates that
our data does indeed contain a strong signal. As we collect observations of all of the
types in the six programs and the number of types range from hundreds to thousands,
one might be tempted to treat the set of all types as a sample of the population of all
types in programs of which the DaCapo suite is representative. Such a large sample
would certainly provide more statistical power and perhaps tighter confidence bounds.
However, such an approach would fatally neglect one of the core assumptions of most
statistical techniques, that of independence. The set of types so constructed would not
be not independent of each other (they are related and in the same program) and are
certainly not drawn at random from the larger population of types in all programs of
which DaCapo is representative.

As the majority of our research questions relate to the effective categorization of
sharing in object-oriented programs we use t-tests extensively to compare different
categories or classifications of fields and edges to determine if particular categories
are more prevalent than others. Where appropriate, we compute the confidence bounds
on the proportion of edges, fields, types, etc. that fall under a particular classification.
The confidence bound for a classification indicates an interval that with 95% certainty
contains the true mean proportion of that classification across the population of all
programs of which DaCapo is representative.

5.1 Properties of Conceptual Components

We begin our evaluation with a number of basic descriptive statistics for the conceptual
components that are produced. While not directly applicable to our research questions in

14

Benchmarks Types Conceptual Components
Name Objects Total Singleton% GloballyShared% Total Immutable% System%
antlr ∼12K 63 0.0 0.0 606 25.5 26.9
chart ∼189K 119 15.9 3.3 198 19.5 27.2
fop ∼120K 450 57.3 0.7 531 7.5 8.2
luindex ∼2K 48 4.1 12.5 87 15.0 20.6
pmd ∼178K 186 0.5 0.0 146 20.0 21.0
xalan ∼40K 355 13.8 1.9 451 6.9 11.1

Table 1. Descriptive statistics of heap features.

Section 2, these results provide context when answering these questions and insight into
how the conceptual components relate to the objects that make up a concrete heap.

A basic property of interest is the amount of compression that is obtained from the
grouping of heap objects into conceptual components and how this number relates to
the number of distinct types used by the program. Table 1 shows the number of objects
in the largest heap snapshot seen for each program along with the number of object
types which are allocated and the number of conceptual components in the resulting
component graph. This table shows that the number of components is only loosely
correlated to the number of objects in the heap and that even in the largest cases the
heap can be precisely decomposed into a relatively small number of components. This
result indicates that even for large programs the partition is able to identify a relatively
small number of components and to produce a relatively compact representation. Further,
there are anywhere from 1 to 6 times as many components as there are types, but the
range is usually from 1 to 2 times as many. This indicates that objects of the same type
are frequently used in multiple distinct roles even within the same program (and heap
snapshot).

The singleton and globally shared columns in Table 1 list the percentages of types
that are singletons or interned in global tables. The percentages in these columns indicate
that, not surprisingly, the singleton and global intern table design patterns occur with
non-negligible frequency and are a significant feature of the heap structure of some
benchmarks. The 95% confidence interval for singleton types is 0%–38%; for globally
shared types, it is 0%–8%. Last two columns report the percentage of components known
to contain only immutable objects or only objects from the builtin libraries. These results
highlight the importance of both the use of immutable objects (the 95% confidence
interval for the mean number of immutable objects is 8%–24%) and the prevalent use of
builtin library objects (11%–28% of the components).

Now we explore what sorts of heap structures conceptual components form, first
answering RQ1: What proportion of conceptual components are simple vs. recursive?
Figure 3 shows the ratios of purely compositional data structures (Atomic), simple recur-
sive data structures such as trees or dags (Linear), and more complex cyclic structures
(Cyclic). We measure these ratios both in terms of the number of types that appear — at
any time — in a recursive structure and the relative number of nodes identified by the
abstraction that have the given shape.

As can be seen, atomic shapes dominate the other, more complex components. To
assess the level of significance of this finding, we used a two sample t-test to compare

15

the proportions of atomic shapes to all other shapes (i.e., linear and cyclic shapes). Our
sample size of six projects is fairly small for inferential analysis, but still allows for
significant results if the differences are extreme with low variance. Such is the case for
our type shape analysis where we found that atomic shapes dominate to statistically
significant degree (p� 0.01), with a 95% confidence interval for the proportion of
shapes that are atomic of 79%±21%. Having established that atomic shapes are most
prevalent, we also examined the proportion of cyclic shapes to determine if they are
more common that linear shapes. Although they appear more frequently in our six
project sample, a t-test did not show a statistically significant difference (p = 0.07). We
performed a similar analysis for our examination of ratios of shapes per component.
Again, atomic shapes dominate all other shapes by a large degree (p� 0.01). In fact the
confidence interval for the proportion of atomic shapes is 98.5%±1.5%. Neither cyclic
nor linear shapes were more prevalent than the other to a statistically significant degree.
In short, the answer to RQ1 is that simple conceptual components dominate recursive
components: for types, the proportion of atomic shapes is 79%±21%; for components,
98.5%±1.5%.

antlr chart fop luindex pmd xalan

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3. Percentage of types whose shape
is cyclic �, linear �, or atomic �.

Although the use of recursive structures in the
program is limited to a few components, these com-
ponents can involve a large number of types (e.g.,
antlr, pmd, and xalan). This result is not surprising
as object-oriented programming languages encour-
age composition of classes in layers and often pro-
vide extensive container libraries which are used in
lieu of custom list and search tree structures. These
features lead to heaps that feature relatively few
recursive structures. Similarly, the ability to define
a general abstract BaseNode class, on which a re-
cursive structure is based, in conjunction with the
ability to easily subclass it leads to construction of
a relatively few, complex and application-specific
recursive structures out of many types, e.g. pmd

builds an abstract syntax tree from the code that it analyzes.

5.2 Ownership

Figure 4 shows the distributions (via violin plots2) of in-degree over the components and
the types in them. While the number of components and types with in-degree k decreases
fairly rapidly as k increases there are a nontrivial number of components (types) with
high in-degree. One factor in this is large recursive structures (with many types in the
recursive structure) that have many references to them. Thus, even though the in-degree
of the individual objects is low, the overall in-degree of the structure they are in is high.
A second contributing factor is the high degree of sharing of singleton (and other global)

2 A violin plot is similar to a box plot in that it enables the comparison of distributions, but gives a
more detailed view of the shape of the distribution. Each plot is essentially a probability density
distribution. See Wikipedia http://en.wikipedia.org/wiki/Violin_plot

16

http://en.wikipedia.org/wiki/Violin_plot

 1
 3

10
32

10
0

31
6

antlr chart fop luindex pmd xalan

● ●

●

● ● ●

(a) In-degree distribution per type.

 1
 3

10
32

10
0

31
6

antlr chart fop luindex pmd xalan

● ● ● ● ● ●

(b) In-degree distribution per component.

Fig. 4. In-degree distributions (log-scale).

antlr chart fop luindex pmd xalan

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Property per field.

antlr chart fop luindex pmd xalan

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Property per component edge.

Fig. 5. Percentage of pointers that are internal �, nonnull �, or owners ut.

objects. The high portion of in-degree 2 types in Figure 4(a) is a result of this kind of
structure. The outlier program, fop, has a large number of singleton type objects that are
also stored in dictionaries. This figure provides some initial insight into the value and
limitations of using local ownership to describe heap structures in real programs.

To understand how much ownership (Section 3) exists that researchers (and even-
tually practitioners) can expect to exploit to improve program analysis or to build
annotation systems, we examine its prevalence to answer RQ2: What percentage of
objects are locally owned?

Consider the components and types with in-degree 1. If their in-edge is injective, then
we know a single pointer points to each object in the component or type. The fraction for
the types is around 50% on average (confidence interval 31%–55%), showing that being
locally owned is used as the organizing principle for many parts of the heap. However,
the fact that the remaining 45%–70% of the types in the program have references to
them stored in multiple locations shows that the principle of local ownership captures
a large but not dominate portion of real world heap structures. We see higher ratios of
in-degree 1 with a confidence interval of 51%–76% for the components.

17

antlr chart fop luindex pmd xalan

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unclassified
Globally Shared
Singleton
Immutable
Injective

(a) Injectivity per field.
antlr chart fop luindex pmd xalan

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unclassified
Globally Shared
Singleton
Immutable
Injective

(b) Injectivity per component edge.

Fig. 6. The percentage of field and edge pointers that are injective or non-injective, where the
non-injective pointers are further subclassified into immutable, singleton, non-singleton globals,
or unclassified.

Figure 5 shows the percentage of fields (edges) in the heaps that are involved in
the internal structure of a conceptual component and represent pointers that are always
local owner pointers. Edges are created from each snapshot; their origin is a concrete
field in their source conceptual component. Here, we define a field to be a lattice join
on the pointer classifications of the edges in which the field participates. For instance,
there are two edges labeled ’r’ in our running example, Figure 1. One edge is a tree
edge and the other is a cross edge; because cross subsumes tree, we classify ’r’ as
a cross field. From these figures, we see that overall most of the connectivity in the
program is through pointers (fields) between conceptual components instead of within a
single component. This matches our observation in Figure 3, now from the viewpoint
of fields and component edges instead of types and components, that many programs
have a central recursive data structure built using a small number of fields which is then
augmented with a large number of simpler aggregate structures. Figure 5(a) shows that
on average 50% of the fields in the program always contain pointers that are the local
owners of their target object.

Thus, our answer to RQ2 is that local ownership, both in terms of fields and edges as
well as types and components, is an important but not dominant organizing principle for
data structures in object oriented programs. For fields, the calculated confidence interval
on the true mean based on our six project sample is 42%–63%. This ratio of translates
over almost equivalently into the ratio of edges that represent these types of pointers, a
mean of 51% with a confidence interval on the true mean of 34%–68%.

5.3 Sharing

The non-dominance of ownership brings us to the issue of why and how sharing occurs
in practice. Our component graphs represent sharing in two ways: either a node has an
in-edge that is non-injective or multiple in-edges.

Figure 6 classifies the injectivity (i.e. interference) of field and component edge
pointers. Figure 6 shows the ratio of fields and edges that always contain injective
pointers to those fields and edges that at some point contain an non-injective pointers.
In the non-injective case, it further classifies the sharing is into sharing occurs on an

18

Classification antlr chart fop luindex pmd xalan Confidence Interval

Per Field
Tree 56% 63% 57% 59% 73% 59% 54% – 68%*
Cross† 25% 31% 35% 38% 25% 27% 24% – 36%*
Back 19% 6% 8% 3% 2% 14% 1% – 16%

Per Edge
Tree 63% 66% 48% 61% 81% 63% 53% – 75%*
Cross† 26% 31% 51% 38% 18% 28% 20% – 44%*
Back 11% 3% 1% 1% 1% 9% 0% – 9%

Cross Field
LocalEscape 2% 10% 6% 11% 6% 4% 3% – 10%
Global 0% 0% 3% 1% 0% 0% 0% – 2%
Singleton 0% 3% 1% 7% 0% 0% 0% – 5%
Immutable? 21% 5% 10% 11% 16% 14% 7% – 19%
Unclassified 4% 16% 16% 15% 4% 10% 5% – 17%

Cross Edge
LocalEscape 0% 4% 2% 10% 2% 3% 0% – 7%
Global 0% 0% 1% 5% 0% 0% 0% – 3%
Singleton 0% 1% 19% 2% 0% 0% 0% – 11%
Immutable? 17% 6% 24% 12% 12% 17% 8% – 21%
Unclassified 9% 21% 5% 12% 5% 9% 4% – 18%

Table 2. Sharing classification per field and per component edge. The per field and per edge rows
sum to 100%. The cross field and cross rows further categorize the cross edges using the graph
structure properties defined in Section 3.2; they do not always sum to their corresponding entry
in their cross row marked † because of rounding. The ’*’ designates a category that occurs more
frequently than the categories below it (within each grouping) to a statistically significant degree.

immutable object, a singleton, globally shared non-singleton, and a catch all for otherwise
unclassified sharing. These figures show that most fields and edges are injective and,
when they are not, it is frequently because they are sharing an immutable object. These
two cases cover nearly 90% of all fields (with a confidence interval of 89%–96%) and
95% of all edges (confidence interval of 93%–98%). The addition of the singleton and
globally shared types pushes these numbers up a few percent.

We now turn to how multiple nodes and edges (type and field definitions) combine
into larger structures on the heap. The first measure we examine uses the standard
graph theory definitions of tree, cross, and back edges. We then using programming
idioms to further breakdown the cross edges. Table 2 again shows both field and edge
centric breakdowns of the various ratios the classifications of the fields and edges in
the conceptual component graph of each program. The far right columns shows the
confidence interval for the mean proportion of occurrence of each category based on our
six project sample. In most cases, tree edges account for a slim majority of the fields
(edges) in the heaps; in fact, a t-test indicates that tree offsets are the most common
category of edge to a statistically significant degree (p� 0.05). Further these results

19

show that cross edges appear quite frequently and dominate back edges to a statistically
significant degree (p� 0.05).

We are now in a position to answer RQ3: What percentage of sharing occurs
between objects in the same conceptual component vs. across conceptual components?
Our analysis groups pointers that originate in one conceptual component into a single
edge, while assigning pointers from different conceptual component to different edges,
as defined in Section 3. The non-dominance of local ownership in Figure 5 means that
sharing is occurring regularly — the 95% confidence interval of the true mean of sharing
is 37%–59% for fields and 32%–66% for edges. Tree edges dominate both edge and
field views of pointers. The only way a tree field or edge can exhibit sharing is through
non-injectivity, because they are, by definition, the only in-edge to their target. Thus, the
high degree of injectivity in Figure 6 indicates that the sharing that we have observed is
mostly due to components whose in-degree is greater than one, viz. either because of
incoming cross or back edges. Thus, most of the sharing we observe must span different
conceptual components, as the prevalence of cross edges, the two rows marked † in
Table 2, makes clear. Thus, we compute the raw count of cross fields (edges) over the
raw count of shared fields (edges) and answer RQ3. Of all sharing, 48%-82% (field) and
59%–71% (edge) occur between objects in different conceptual components while only
18%–52% (field) and 29%–41% (edge) occur between objects in the same conceptual
component. A t-test indicates that sharing occurs more frequently between objects in the
different conecptual components to a statistically significant degree (p� 0.05).

Having answered RQ3, we turn to RQ4: What percentage of shared conceptual
components represent 1) immutable objects, 2) singleton or intern table objects, or 3)
contained objects, i.e. sharing is contained in an immediately enclosing object? Table 2
shows a classification of cross edges based on their involvement in programmatic idioms,
again as a function of both field declarations and edges in the conceptual component
graph. We did not collect statistics on back edges because they are relatively uncommon;
we leave their further investigation for future work. Thus, our answer to RQ3 is restricted
to cross fields and edges because they are the most general, i.e. when a field participates
in both a cross and a tree edge, its classification is cross. Pointers to immutable objects
account for the largest fraction of cross edges, as the rows designated with ? make
clear. Indeed, Figure 6 shows that immutable objects are a major source of the sharing
that occurs in practice (confidence interval 18%–71% of all sharing for fields and
28%–66% for edges). The LocalEscape category shows that even our relatively simple
definition of localized sharing captures contained objects and shows that they form an
important structure in these programs, accounting for 11%–31% of the edges on a per
field (field) basis and 0%–23% of the edges (edge). Finally, singletons and globals are
the least frequent, comprising 0%–16% (field) and 0%–27% (edge) of the sharing. Thus,
our answer to RQ4 is, of all sharing, immutable objects account for the majority of
sharing conceptual components (via a t-test with p� 0.05), with singletons, globals,
and contained objects making up a smaller, but still non-trivial (up to 31%) amount of
the sharing.

Combined, our answers to RQ3 and RQ4 conclusively show that, although the shar-
ing relations in the heap can be arbitrarily complex in theory, they are overwhelmingly
simple in practice and can be mapped back to common development idioms. One simple

20

threat to this result is if our abstraction failed to classify a large percentage of sharing
relationships, so we conclude with RQ5: What percentage of sharing relationships
remain unclassified? In short, RQ5 is a measure of the effectiveness of our abstraction.
For instance, good classification coverage is necessary to use these results as a basis
for designing simple annotations to express the simple and common structures that our
results indicate dominate heaps.

When we consider how much sharing information our current categorization scheme
captures in Table 2, we see that our abstraction captures at least 75% of fields and in
some cases over 90% of the sharing relations of fields. The confidence interval for the
mean proportion of relations that our approach leaves unclassified is 5%–17%. For
edges, the breakdown is more variable but the mean proportion of unclassified edges is
only 4%–18%. Further, our analysis is unaware of used-defined immutable types or the
sharing of singleton or global not defined in Section 3.2, so some portion of the sharing
we report is uncategorized is actually simple and well-behaved. While further study is
warranted to investigate other common sharing patterns, this study demonstrates that
a surprisingly large percentage of the heap in real world programs exhibits relatively
simple structure.

5.4 Conceptual Component Accuracy

Our results rest on accurately identifying a programmer’s intended, role-based groupings
of heap objects. We used our structural indistinguishability principles introduced in
Section 2 and formalized in Section 3 to approximate these grouping as equivalence
classes of heap objects. Thus, our results rest on abstraction hypothesis: conceptual
components, defined using our indistinguishability principles, accurately partition the
heap. Our abstraction could fail in two ways: it could generate conceptual components
that lose structural information or that do not reflect programmer intent.

If our abstraction lost structural information, we posit that our results would be
much noisier, because it would tend to group together unrelated objects. However, this
is not the case: our results contain strong signal: for each of the reported measures, the
measurements correlate with widely used program analysis concepts such as aliasing
and shape and they are ordered in terms of their information content. For example the
tree measurement contains more information than a dag measurement – i.e. it is a more
restrictive property as tree(n)⇒ dag(n). Also, in most of our reported measures, the
simpler (from a programmer standpoint) outcome dominates the other outcomes to
a statistically significant degree. For example, the injective result dominates the non-
injective result even though in a uniformly generated random partitioning we would
expect the non-injective result to be more frequent. Finally, we note that we can precisely
describe most of the remaining sharing with a small set of categories motivated by
programming idioms. This fact provides strong evidence that our abstraction is capturing
actual features of the heaps that real-world programs build.

It is possible that, although the computed conceptual components effectively capture
actual heap structures, these structures do not correspond to how a developer thinks about
a program’s heap. Although further study is needed, we present two reasons to believe
that our indistinguishability principles do capture developer intent. First, int the HeapDbg
work [21], the tool that realizes our heap abstraction has been successfully used to identify

21

and fix memory issues in the DaCapo benchmarks. Second, we informally interviewed
developers who had used the HeapDbg tools. They reported that HeapDbg was useful
for finding memory bloat in production software. They also found HeapDbg to be useful
for program understanding and that it generally grouped objects into components in
the expected ways: “I found simply scanning around the structure graph to be very
interesting and found a number of places where it did not match my understanding of the
code. However, on further investigation most of these mismatches were due to bugs in
the program which were causing unintended sharing.” These testimonials provide further
confidence that the structures on which we performed our measurements were good
approximations of the developers’ intent and conceptualization of the heap structures in
their programs.

The combination of quantitative evidence provided by the high information content
of the conceptual component graphs on which we perform our measurements and the
initial qualitative developer experience with the HeapDbg visualization tool provides
evidence supporting our hypothesis.

5.5 Threats to Validity

There are a number of possible confounding factors that may impact this study as well
as several limitations on what can be inferred from the results. There are of course
the standard set of problems that can confound an empirical study such as bugs in the
implementation or mistakes performed in analysis. However, there are a number of issues
that are particularly relevant for the study done in this paper.

We have used inferential statistical tests and analysis such as t-tests and confidence
intervals to make conclusions about a large set of Java programs based on observations
from a smaller set. A potential threat to external validity for any empirical study is that
the sample examined is not representative of the larger population and thus the results
do not generalize. To mitigate this threat, we have chosen to examine a benchmark that
has been independently selected as a representative set of real-world Java programs and
which has been used in a number of prior studies. Internal validity is related to how
well associations or correlations are indicative of causal effects. The goal of this study
has been more to empirically examine characteristics of program heaps rather then look
at causes, so it does not suffer from threats to its internal validity. Finally, a study has
construct validity when its conclusions are based on the correct use of measures and
analyses. This largely rests on the validity of our computation of conceptual components
as meaningful partition of a concrete heap. We addressed this threat in the previous
section. No oracle exists for heap abstraction, so our approach and results rest on a
particular abstraction of the heap and our study may suffer from construct validity to the
degree that the reader does not accept our abstraction.

6 Related Work

A variety of questions about the structure of the program heap have been explored in
previous empirical studies using runtime analysis. Often these studies have focused
on the shape of the data structures [3, 14, 24] that appear in the programs and use

22

type or reachability from root locations to define the sets of objects over which to
compute shape information. This, relatively coarse, decomposition of the heap resulted
in lower resolution information [24] than our approach extracts (although the results
are broadly similar), while Jump et. al. [14] and Albiz et. al. [3] focused primarily on
library data structures. Mitchell et. al. [22, 23] and Noble et. al. [25] look at the heap
through the lens of ownership and dominator structures; in constract, our work uses
conceptual components and injectivity as introduced by Marron in [19–21]. The work
in [12] performs an extensive evaluation of reachability in the context of understanding
object lifetime for garbage-collection applications. The original paper [4] introducing
the DaCapo benchmarks (used in this work) also includes an extensive evaluation of
both general properties of the benchmarks and a variety of information on how these
programs allocate and use memory.

Other empirical studies have been based on static analysis information [10, 17] or
on using runtime information to explore the precision of various static heap analysis
approaches [15]. The work by Hackett and Aiken in [10] explores how aliasing is used
in systems software and, much like the work in this paper, attempts to relate the types
of aliasing relations that are seen to concepts in the source code. This work is focused
specifically on aliasing and does not explore as wide a range of properties as the work
here and also looks only at relations between individual objects instead of larger scale
conceptual components. Work by Ma and Foster [17] explores a rich set of sharing and
structural annotations that would be suitable for use as method pre/post conditions and
develops a static analysis to extract these conditions. Their empirical study employs their
static analysis, by construction a conservative over-approximation of actual program
behavior, to compute the prevalence of various relations. Thus, their work provides an
lower bound (possibly a very conservative on) on these numbers while our work uses
runtime sampling to compute an upper bound (which we believe is quite precise) for
the prevalence of the properties measured. Finally, Linag et. al. [15] compare runtime
aliasing information with the results of several static points-to analyses to evaluate
the absolute precision of which they are capable and how this impacts a number of
client optimization applications. Empirical studies of heap structures have also been
performed from a developer perspective: Work by Abi-Antoun and Alderich has used
static analysis to compute possible ownership domain information that is then evaluated
via end developers [1, 2].

7 Future Work and Conclusion

In an effort to understand the heaps of real-world programs have, we have analyzed the
heap structures of a number of DaCapo applications. Using an empirical and inferential
statistical approach, we were able to identify properties (e.g. confidence intervals on
categories of sharing) and relationships (e.g. the dominance of atomic shapes over linear
and cyclic) that were statistically significant and thus generalize to the population of
programs of which DaCapo is representative. We found that the shape of heap structures
are fairly simple, with the vast majority made up of atomic shapes and that approximately
half of all data structures on the heap have local ownership. Sharing occurs between
conceptual components more often than within them and although a high proportion (up

23

to 66%) of objects are shared, the majority of sharing is occurs over immutable types,
with a smaller proportion of singletons and globals. That is, in practice, sharing occurs
via fairly simple and common development idioms. Lastly, our abstraction not only
classifies a large majority (up to 75% of fields and 90% of edges), but also partitions the
heap into categories that 1) show clear differences in occurrence, 2) model simple and
common programming practices, and 3) are useful and intuitive to practitioners. These
findings have implications for future research directions. Work on technologies such as
garbage collection and other dynamic program analysis will achieve a high return by
focusing on simple heap structures. Our results imply that simple annotations that are
more accessible to practitioners will be capable of expressing most heap structures and
sharing that occur in practice and that program analyses may improve their scalability
by viewing the heap as a weaker adversary without losing much precision.

References

[1] M. Abi-Antoun and J. Aldrich. A field study in static extraction of runtime
architectures. In PASTE, 2008.

[2] M. Abi-Antoun, N. Ammar, and T. LaToza. Questions about object structure during
coding activities. In CHASE, 2010.

[3] S. Albiz and P. Lam. Implementation and use of data structures in Java programs.
In Tech. Report., 2011.

[4] S. Blackburn, R. Garner, C. Hoffman, A. Khan, K. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis (2006-mr2). In OOPSLA, 2006.

[5] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In OOPSLA, pages
618–633, 2010.

[6] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA, 1998.

[7] I. Dillig, T. Dillig, and A. Aiken. Symbolic heap abstraction with demand-driven
axiomatization of memory invariants. In OOPSLA, 2010.

[8] S. Dowdy, S. Wearden, and D. Chilko. Statistics for research. John Wiley & Sons,
third edition, 2004.

[9] M. Fahndrich and R. DeLine. Adoption and focus: practical linear types for
imperative programming. SIGPLAN Not., 37:13–24, May 2002.

[10] B. Hackett and A. Aiken. How is aliasing used in systems software? In FSE, 2006.
[11] Heap abstraction code. http://heapdbg.codeplex.com/.
[12] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connectivity of

heap objects. In ISMM, 2002.
[13] ikvm. http://www.ikvm.net/.
[14] M. Jump and K. McKinley. Dynamic shape analysis via degree metrics. In ISMM,

2009.
[15] P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of the precision

of static heap abstractions. In OOPSLA, 2010.

24

http://heapdbg.codeplex.com/
http://www.ikvm.net/

[16] B. Liskov. Data abstraction and hierarchy. In OOPSLA, 1987.
[17] K.-K. Ma and J. Foster. Inferring aliasing and encapsulation properties for Java. In

OOPSLA, 2007.
[18] M. Marron. Structural analysis: Combining shape analysis information with points-

to analysis computation. In Submission, 2012.
[19] M. Marron, D. Kapur, and M. Hermenegildo. Identification of logically related

heap regions. In ISMM, 2009.
[20] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and D. Kapur.

Sharing analysis of arrays, collections, and recursive structures. In PASTE, 2008.
[21] M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. Abstracting runtime heaps for

program understanding. In Submission, 2012.
[22] N. Mitchell. The runtime structure of object ownership. In ECOOP, 2006.
[23] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health. In OOPSLA,

2007.
[24] S. Pheng and C. Verbrugge. Dynamic data structure analysis for java programs. In

ICPC, 2006.
[25] A. Potanin, J. Noble, and R. Biddle. Checking ownership and confinement: Re-

search articles. Concurrency and Computation: Practice and Experience, 2004.
[26] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

In POPL, 1999.
[27] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well: under-

standing object-sensitivity. In POPL, 2011.
[28] P. Wadler. Linear types can change the world! In Programming Concepts and

Methods. North, 1990.
[29] H. Yang, O. Lee, J. Berdine, C. C. andByron Cook, D. Distefano, and P. O’Hearn.

Scalable shape analysis for systems code. In CAV, 2008.

25

	Collecting a Heap of Shapes

