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Abstract
Existing pattern-based compiler technology is unable to effectively
exploit the full potential of SIMD architectures. We present a new
program synthesis based technique for auto-vectorizing perfor-
mance critical innermost loops. Our synthesis technique is appli-
cable to a wide range of loops, consistently produces performant
SIMD code, and generates correctness proofs for the output code.
The synthesis technique, which leverages existing work on rela-
tional verification methods, is a novel combination of deductive
loop restructuring, synthesis condition generation and a new induc-
tive synthesis algorithm for producing loop-free code fragments.
The inductive synthesis algorithm wraps an optimized depth-first
exploration of code sequences inside a CEGIS loop. Our technique
is able to quickly produce SIMD implementations (up to 9 instruc-
tions in 0.12 seconds) for a wide range of fundamental looping
structures. The resulting SIMD implementations outperform the
original loops by 2.0×-3.7×.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.4 [Programming Lan-
guages]: Processors-Optimization; C.1.1 [Single Data Stream Ar-
chitectures]: VLIW architectures

General Terms Algorithms, Performance, Verification

Keywords Program Vectorization, Program Synthesis, Relational
Program Verification

1. Introduction
Single Instruction Multiple Data (SIMD) instructions sets (such as
SSE on x86 or NEON on ARM) provide high throughput and power
efficient data-parallel operations. These operations can process 128
bits in a single instruction and can often do so in the same number
of cycles (and power usage) needed to process a single 32 bit value
via the standard ALU execution path. These features have proven
invaluable in accelerating multimedia and high performance com-
puting applications, and are critical to achieving both good applica-
tion performance and battery life in many mobile computing envi-
ronments. Despite these advantages and their proven value in prac-
tice, the use of SIMD operations has been limited to a relatively
small set of (often hand optimized) applications. Extending these
benefits to a wider range of programs via automatic compiler vec-
torization has, in practice, been limited by three major challenges:
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/ / S i mp le w i d g e t s t r u c t w i t h a t a g and a s c o r e v a l u e
s t r u c t { i n t t a g ; i n t s c o r e ; } wi dg e t ;

i n t e x i s t s ( w i dge t∗ v a l s , i n t l en , i n t tv , i n t sv ) {
f o r ( i n t i = 0 ; i < l e n ; ++ i ) {

i n t t a g o k = v a l s [ i ] . t a g == t v ;
i n t s c o r e o k = v a l s [ i ] . s c o r e > sv ;
i n t andok = t a g o k & s c o r e o k ;
i f ( andok ) re turn 1 ;

}
re turn 0 ;

}

Figure 1. Initial Loop.

i n t e x i s t s s s e ( w idg e t∗ v a l s , i n t l en , i n t tv , i n t sv ) {
m128i v e c t v = [ tv , tv , tv , t v ] ;
m128i vecsv = [ sv , sv , sv , sv ] ;

i n t i = 0 ;
f o r ( ; i < ( l e n − 3 ) ; i += 4) {

m128i b l c k 1 i = l o a d 1 2 8 ( v a l s + i ) ;
m128i b l c k 2 i = l o a d 1 2 8 ( v a l s + i + 2 ) ;

i n t t v s w i z z l e = SHF ORDER( 0 , 2 , 0 , 2 ) ;
i n t s v s w i z z l e = SHF ORDER( 1 , 3 , 1 , 3 ) ;

m128i t a g v s = s h u f f l e i 3 2 ( b l c k 1 i , b l c k 2 i , t v s w i z z l e ) ;
m128i s c o r e v s = s h u f f l e i 3 2 ( b l c k 1 i , b l c k 2 i , s v s w i z z l e ) ;

m128i cmpr l = cmpeq i32 ( vec tv , t a g v s ) ;
m128i cmprh = c m p g t i 3 2 ( vecsv , s c o r e v s ) ;
m128i cmpr = a n d i 1 2 8 ( cmprl , cmprh ) ;

i n t match = ! a l l z e r o s ( cmpr ) ;
i f ( match ) re turn 1 ;

}

f o r ( ; i < l e n ; i ++) {
i n t t a g o k = v a l s [ i ] . t a g == t v ;
i n t s c o r e o k = v a l s [ i ] . s c o r e > sv ;
i f ( t a g o k & s c o r e o k ) re turn 1 ;

}
re turn 0 ;

}

Figure 2. SIMD Implementation.

the presence of pointers, sub-optimal data layout, and complex data
driven control flow. In this paper we explore a new approach to
auto-vectorization that is intended to address the last two of these
challenges. This approach allows us to produce efficient SIMD im-
plementations for many loops that are present in foundational li-
braries such as the STL for C++ or the BCL for C#.

Motivating Example. Consider the program fragment in Fig-
ure 1, which consists of a loop that traverses an array of widget
structs (of length len). The loop body checks if the values in the
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(variables) a : Array | i, x : Int32 | s : Struct| v : Vector
(fields) f ∈ Field

(constants) c ::= Z | SHF ORDER(c, c, c, c)
(expr) e ::= c | x | a[i] | e.f | x ◦ x, where ◦ ∈ {+,=,&, . . .} | allzeros(v)

(vector expr) ve ::= v | 〈e, e, e, e〉 | load 128(a, i) | shuffle i32(v,v, c)
| op(v,v), where op ∈ {add i32, cmpeq i32,and i128, . . .}

(stmts) st ::= x:= e | a[i]:=x | e.f:=x | skip | v:=ve | store 128(a, i,v)
(block) b ::= st | b; b | if x then b else b

(flowblock) f ::= b | return x | break | f ; f | if x then f else f
(loop) ` ::= for i:= e; i ./ e′; i = i ± c; do f,where ./∈ {=, 6=, <,>,≤,≥} ∧ e′ : Int32 ∧ e′ is invariant in f

(fragment) δ ::= f ; `; `∗; f

Figure 3. Program Fragment Language and SIMD extensions (in bold)

tag and score fields satisfy certain properties and if so returns 1
immediately. If no such widget is found then 0 is returned.

This loop contains two major challenges from the viewpoint of
automatic vectorization. First is that since the loop can exit on any
iteration (i.e. return 1) the loop carries a control flow dependence
on all previous iterations. Second is the fact that the data is poorly
laid out for SIMD processing – it is in an array of structs. Thus,
doing a block load from the array will get a mixture of the tag
and score fields. Since these fields are processed differently in the
loop body (tag == tv vs. score > sv) the mixture prevents the
direct use of SIMD operations (which apply the same operation
to each value). Thus, this loop body does not fit into a standard
vectorization template form. Attempting to write a compiler that
recognizes and transforms this loop appropriately based on a set of
pattern matching rules is unattractive from both an implementation
effort and complexity standpoint.

Despite these complications it is possible to construct an effi-
cient SIMD implementation using the SSE instructions found in
x86 processors (see Figure 2). The program first loads two data
blocks of 128 bits each (two widget structs per load) from the
array via the load 128 operation. The SSE implementation han-
dles the array-of-struct issue by swizzling [14] the four tag values
into one SSE register (tagvs) and the four score fields into a sec-
ond SSE register (scorevs). This is done by computing two swiz-
zle masks, tvswizzle and svswizzle, and using them to control
how the data that was loaded from the array is unpacked by the
shuffle i32 operations. The tvswizzle mask indicates that the
0th and 2nd entries, which contain the tag fields, should be loaded
from blck1i and blck2i, and these four values should be placed
into tagvs. Similarly the 1st and 3rd values, which contain the
score fields, should be placed into scorevs. Once these values are
unpacked it is then simple to apply the appropriate SIMD equality
(cmpeq i32) and greater than (cmpgt i32) operations to compare
the four tag fields and the four score fields. These comparison op-
erations produce bitmasks in the result vector, all 1’s if the test re-
sult is true and all 0’s if the result is false, for each 32 bit value. The
results of these comparisons are then bitwise anded in one step via
the and i128 operation. The final test (!allzeros(cmpr)) checks
if any of the widgets processed satisfy the constraints and if one
does then the match value will be 1. Since the original loop sim-
ply returns on finding a matching widget the SSE loop returns 1 if
any of the four widgets being processed match (i.e. the allzeros
value is 0). The resulting SSE implementation outperforms the sim-
ple loop by well over a factor of 2× for large numbers of iterations
and is 25% faster even on small iteration counts.

There are a number of challenges present when designing a
system to automatically vectorize loops, such as the one in Fig-
ure 1. The first challenge is structuring the vectorization algorithm
such that it is applicable to a wide range of loops and variations in
how they are implemented [21]. This is critical to ensuring that the
auto-vectorization is consistently able to find optimized implemen-

tations for loops in the input programs and thus improve perfor-
mance in practice. The next challenge is that the process of vector-
izing code often adds complexity and overhead. In order to avoid
slowing down the program instead of speeding it up, it is useful to
be able to predict if (and when) the SIMD implementation will reli-
ably improve the performance of the program relative to the initial
implementation. Finally, a fundamental issue in any compiler opti-
mization is correctness. Since compiler bugs may introduce errors
into every program that is compiled, it is critical to ensure that the
resulting SIMD code is equivalent to the input program.

Contributions. To construct an auto-vectorization algorithm that
achieves the desired applicability, reliable improvement, and cor-
rectness objectives, this paper makes the following contributions:

• A new methodology for program optimization (Section 4) based
on a novel combination of: deductive rewriting of loop and
control-flow structures, inductive synthesis of the desired code
blocks, and a novel construction based on relational program
verification to connect the deductive and inductive steps.
• The methodology is applied to the problem of auto-vectorization

of irregular loops that have sub-optimal data layouts and com-
plex data driven control flow. In particular we look at library
code from the C++ STL or the C# Base Class Libraries.
• An efficient technique for inductive synthesis of loop-free code

fragments, based on a novel combination of concrete program
execution, bounded search techniques, and symbolic counter
example generation methods (Section 5).
• An experimental evaluation of the auto-vectorizer on a set of

challenge loops and real-world applications (Section 7). The
results show that the technique performs well in practice: pro-
ducing SIMD implementations which outperform the original
implementations by 2.0×-3.7×. We also apply the technique
to vectorize loops in the SPEC 483.Xalan benchmark to obtain
a 5.5% reduction in runtime.

2. Relational Verification
We begin by reviewing relational verification [8, 42] and explain
how this technique can be used to reason about the equivalence of
two implementations of a loop. We will then introduce two novel
forms of equivalence relations on program variables for showing
the equivalence of a scalar and a vectorized loop.

2.1 Relational Verification Background
The key insight in relational verification is that given two similar
programs one does not need to know the exact functionality of the
two programs in order to show that they are equivalent. It is suffi-
cient to show that, at the appropriate synchronization points during
their execution, the states of the two programs are equivalent under
some relation. Consider the loops:
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i n t j = −1;
i n t sum = 0 ; i n t sum = 0 ;
f o r ( i n t i = 0 ; i < n ; i ++) f o r ( i n t i = 0 ; i < n ; i ++) {

sum += i ; j ++;
sum += j ;

}

We begin by renaming any variables v which appear in both pro-
grams as v〈1〉 for the value of the variable in the first program on the
left and v〈2〉 for the value of the variable in second program on the
right. After this renaming then the equality relation for the states of
the two programs is i〈1〉 = i〈2〉 ∧ j = i〈1〉− 1∧ sum〈1〉 = sum〈2〉.

Using this relationship we can show these two loops compute
the same value. We begin by checking that, when the loop iterations
are run in lockstep, at every iteration the states of the programs
are equivalent under the relation. Once we have shown that the
equivalence relations hold at every loop iteration we can show that
they hold after the exit of the loop as well. Thus, we can generate a
proof that the two loops compute the same values for the final sums
and are observationally equivalent, i.e. sum〈1〉 = sum〈2〉.

A critical step in this process is obtaining suitable equality rela-
tions. Techniques for obtaining some of these relations, particularly
relating to loop structure and conditional control flow, have been
developed in previous work [4]. Loop splitting and unrolling are
standard transformations which make latent data-parallelism in the
loop body more easily exploitable. As SIMD operations operate on
k values at a time we need to restructure the loop so that (1) the
iteration count of the loop is a multiple of k and (2) that there are
k exposed values to operate on. Similarly we can separate the ex-
pected hot path in the loop body from the branches that may lead to
abnormal loop exits. This restructuring can be viewed as a variation
on the hot-trace with a guarded trace-exit flow restructuring that is
commonly done in Tracing Just-In-Time Compilers [1, 7].

2.2 Relational Verification of SIMD Loops
In this work we are primarily interested in showing the equivalence
of a scalar loop and a loop using SIMD instructions. Thus, to
leverage the relational verification machinery we need to identify
a suitable set of equivalence relations that may hold between a
scalar loop and the corresponding SIMD implementation. We have
identified two commonly occurring forms for these equivalence
relations, invariant and reduction expressions Section 4, which are
sufficient to enable the scalar/SIMD loop equivalence verifications
we are interested in. Consider the following loops which illustrate
the needed equivalence relations:
i n t x = . . . ; i n t x = . . . ;
i n t hash , i = 0 ; i n t hash , i = 0 ;

m128i hv = [ 0 , 0 , 0 , 0 ] ;
m128i xv = [ x , x , x , x ] ;

f o r ( ; i < n ; i += 4) { f o r ( ; i < n ; i += 4) {
hash ˆ= A[ i ] & x ; m128i d = l o a d 1 2 8 (A + i ) ;
hash ˆ= A[ i +1] & x ; m128i t = a n d i 1 2 8 ( d , xv ) ;
hash ˆ= A[ i +2] & x ; hv = x o r i 3 2 ( hv , t ) ;
hash ˆ= A[ i +3] & x ; }

} hash = ( hv . r0 ˆ hv . r1 ˆ
hv . r2 ˆ hv . r3 ) ;

The first loop on the left contains several variables with live
ranges that span multiple iterations of the loop. The variable x is
an invariant value in the loop on the left and a vectorized invariant
version xv is used in the second loop on the right. The variable
hash is a reduction variable in the first loop. The loop on the right
represents these accumulated values in four i32 values in the vector
variable hv and adds a final reduction at the exit of the loop. Thus,
the relations needed to show these loops are equivalent on each
lockstep iteration are: i〈1〉 = i〈2〉 ∧ xv = [x〈1〉, x〈1〉, x〈1〉, x〈1〉] ∧
hash〈1〉 = (hv.r0 ˆ hv.r1 ˆ hv.r2 ˆ hv.r3).

Given these relations it is straight forward to use a relational
verification technique to show the program fragments are equiva-

lent. In practice we use a product program construction [4] with
off the shelf SMT solvers to solve the generated verification condi-
tions. The equivalence relation is clearly satisfied on the first entry
to the loop. Then inductively we can see that if the equivalence
holds on iteration k then in iteration k + 1 it will again hold after
executing both loop bodies. The final step is then simply to show
that when the loop exits, and after executing the final reduction af-
ter the loop when the relational equivalence invariant holds, that
hash〈1〉 = hash〈2〉.

In practice these new relations, invariant expression vectoriza-
tion and reduction variable vectorization, along with previously
known relations (Section 2.1) for reasoning about loop control-flow
restructuring are sufficient to verify the equivalence of the loops
that are of interest in this work. In Section 4 we will formalize the
definitions for the invariant and reduction vectorization equivalence
relations. Additionally, we show how to leverage the relational ver-
ification methodlogy to construct the constraints needed to synthe-
size a vectorized body given a scalar implemention of a loop.

3. Problem Description & Algorithm Overview
This section presents a formalization of the program fragment lan-
guage that we want to vectorize and the language with SIMD in-
structions that the auto-vectorization algorithm produces as output.
We also provide an overview of the auto-vectorization algorithm.

3.1 Input and Output Loop Languages
Input Language. The work in this paper operates on a core im-
perative language shown in the non-bold portion of Figure 3. For
simplicity, this language consists of variables and operations on
three types: 32-bit integers, user defined structures (with named
fields) and arrays of either structures or integers. This language ex-
tends naturally to include other integer sizes, floating point values,
etc. The expressions e in the language cover the standard sets of
arithmetic, bitwise, comparison, and access operations. The lan-
guage admits the standard suite of assignments to locals, array lo-
cations, and fields in structs.

To focus on blocks of code that are suitable for vectorization, we
distinguish between blocks consisting of simple assignments with
conditional flow inside a single iteration b, and blocks of statements
that may contain non-local control flow f . The grammar describes
the structure of the loops that we are interested in vectorizing
and which are likely to benefit most from the conversion to a
SIMD implementation – innermost loops that are free of function
calls. However, in practice the technique can be applied more
aggressively by explicit inlining of function calls or by providing
explicit pre/post semantics for an inner loop or method call.

To ensure that the loop is amenable to vectorization, we also
impose some semantic restrictions: (1) the loop limit expression
e′ is invariant, (2) the iteration variable is only updated by linear
operations, and (3) the updates are done uniformly on all paths of
the loop. Finally, we define a program fragment δ as a single loop
with possible loop initialization and clean-up code.

SIMD Output Language. The output of the auto-vectorization
algorithm is a program in the SIMD extended language shown in
Figure 3, including the terms in bold. The output language extends
the input language with a set of SIMD instructions similar to what
is present in the Intel SSE4 instruction set. For simplicity, we
assume that all of the vectors (v ∈ V ) are 128 bits which can
contain 4 integers of 32 bits each. We extend the constant set with
macros for shuffle constants and add the allzeros operation to
the set of expressions that produce integer values (e). The SIMD
expressions (ve) treat each 128 bit vector either as a single bit
set of 128 bits for logical operations (e.g. or i128 or and i128)
and as four 32 bit integer values for arithmetic and comparison
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operations (e.g. add i32 or cmpgt i32). We add operations to load
(load 128) and store (store 128) 128 bits at a time. Finally, we
allow the fragment to contain a sequence of loops.

3.2 Algorithm Overview
The auto-vectorization algorithm is depicted in Figure 4. This flow
diagram shows how we first apply deductive restructuring to the
loop to expose data parallelism using deductive rewritings. From
this restructured loop and the associated equivalence relations from
Section 2 we extract a loop-free block of code from the loop
body which will be replaced with a sequence of synthesized SIMD
instructions. This synthesized code is then patched back into the
loop. Finally we compute a cost scoring function and a proof of
correctness for the final code fragment.

Restructuring and Pre/Post Generation. The loop is first re-
structured via standard loop splitting/unrolling and if-conversion.
We also introduce vector variables (Section 4) which are used in
the synthesis phase. The condition generator examines the restruc-
tured program and equivalence relations that are built up during the
resturcturing to construct the needed synthesis pre/post conditions.

Inductive Concolic Synthesis. The synthesis phase (Section 5)
takes the pre/post conditions produced by the previous step and
produces a sequence of instructions that realize the specified behav-
ior. The synthesizer uses a novel combination of concrete program
execution and counter example generation, which we call concolic
synthesis. This combined search approach quickly produces an ef-
ficient sequence of instructions that satisfies the pre/post conditions
and this sequence of instructions is the output of this phase.

Merge and Cost Ranking Function. The final step in the algo-
rithm is to patch in the synthesized code for the hole in the program
and to clean up any dead or loop invariant code that may have been
created in the vectorization step. The final program is passed to the
cost ranking computation (Section 6), and a proof of correctness is
computed for the program.

Output. The output of the algorithm is (1) the SIMD optimized
program, (2) a proof of equivalence between the SIMD implemen-
tation and the original program, and (3) a cost ranking function.

This approach provides the ability to use deductive heuristic
rules to quickly rewrite a loop to expose parallelism and enables
the reduction of the synthesis problem to small blocks of code. The
synthesis component provides a simple inductive method to con-
struct efficient code blocks that is robust to a wide range of struc-
tures, and variations on these structures, that appear in the loop bod-
ies. The relational verification methodology provides a connection
between the inductive and deductive approach allowing them to
co-operate to maximize the strengths of each approach. As an addi-
tional benefit the correctness certificate enables the pre-compilation
of code in a managed language, such as C#, to assembly code which
can be deployed and JITed without violating the safety guarantees
of the language [26, 27].

4. From Relational Verification to Synthesis
We borrow the general concept of turning an appropriate verifi-
cation methodology into a synthesis algorithm from [38] and ex-
tend the core idea to apply it to our problem domain. The approach
in [38] requires a specification of the program to be synthesized as
a pre/post condition pair (φ, ψ) and a template T (with only first-
order holes) that form the full-correctness proof for the program.
In our setting there are two natural possibilities for constructing
the pre/post conditions: (1) the minimal loop invariant required for
correctness and (2) the precondition and postcondition for the loop

body. Unfortunately, both of these options are unsatisfactory. The
computation of loop invariants (even with the limited language in
Figure 3) is an undecidable problem. Conversely, pre/post condi-
tions based on only the loop body can be computed efficiently.
However, the resulting conditions are highly restrictive and can-
not be used for loops that require certain vector registers to be live
across loop iterations (such as reduction variables).

We use results from the area of Relational Program Verifica-
tion [4, 8, 30] and the transformation/verification rules outlined in
Section 2 to generate the synthesis pre/post conditions. To expose
or create data parallelism which can be exploited in the SIMD syn-
thesis step we utilize standard loop restructuring rules (splitting,
unrolling, and if-conversion) and rules for introducing vectorized
variables or constants. Each rule consists of (1) a loop rewriting
template and (2) a template for the equivalence relation between the
original loop and the rewritten version. The equivalence relations
are used to generate the desired synthesis condition and an equiv-
alence proof between the original loop and the vectorized version
(or to reject the vectorized version if a proof cannot be generated).

4.1 Introduction of Vectorized Variables/Constants
Vectorization of Loop Invariant Expressions. We identify vari-
ables and expressions e that are invariant across loop iterations
in the standard manner – either none of the values used in e are
modified in the loop body or they are assigned the result of an-
other loop invariant expression. For each invariant expression, e
of type Int32, we introduce the corresponding vectorized version,
vece:= 〈e, e, e, e〉, where vece is a fresh variable name and the
initialization is done before the loop. We accumulate the loop in-
variant expressions and the corresponding vector variables as tuples
(e, vece) in the set Ve. The equality relationship that should exist
between the scalar and vector forms is given by:

Inv(Ve) =
∧

(e,v)∈Ve

v = [e〈1〉, e〈1〉, e〈1〉, e〈1〉]

Vectorization of Reduction Variables. We define a reduction
variable x as a candidate for reduction variable vectorization when:
x is not used as an array index and all paths through the loop con-
tain an assignment of the form x:=x • e where • is commutative.
This definition heuristically identifies a reduction variable x, intro-
duces a vector version vecx, and adds the appropriate initialization
before the loop with reduction at loop exit. This definition is unsafe
to use in general as we have ignored the effects of the rest of the
loop body and their interaction with the reduction operator. How-
ever, in the case where the transformation is unsafe we will not be
able to produce a proof of equivalence in the relational verification
step and will reject the resulting program. The equality relationship
that should exist between the scalar and vector forms is given by:

Reduce(Vr) =
∧

(x,v,•)∈Vr

(
v = [r0, r1, r2, r3]∧
x〈1〉 = x〈2〉 • (r0 • r1 • r2 • r3)

)
4.2 Final Equivalence Relation
Once we have the identified the loop invariant expressions, the
reduction variables, and the input and output variables (I andO) for
the loop, the next step is to construct the final equivalence relations
at the desired synchronization points.

In our setting the synchronization points correspond to the pro-
gram points at the normal control-flow entries and exits of the loop
bodies. By definition the variables in Ve or Vr are in scope at both
the loop body entry and exit points so the special equality condi-
tions for them are the same at both points. For the variables not in
the Ve or Vr sets we check if they are in the input or output vari-
able sets (I or O) and if so add an equality condition between the
versions in the two programs. We say a variable x is simple at a
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Figure 4. Overview of the auto-vectorization algorithm.

program point if it is defined at that point and it is not an invari-
ant or reduction variable. We define the equivalence relation for the
loop entries Epre and exits Epost as:

Epre = Inv(Ve) ∧ Reduce(Vr) ∧
∧
x∈X

x〈1〉 = x〈2〉

where X = {x ∈ I|x simple at the loop entries}

Epost = Inv(Ve) ∧ Reduce(Vr) ∧
∧
x∈X

x〈1〉 = x〈2〉

where X = {x ∈ I ∪O|x simple at the loop exits}

4.3 Partial Program and Condition Generation
As the natural candidate code for conversion to a SIMD implemen-
tation is the normal control-flow block of the loop body. We replace
the normal control-flow block between the loop entry and exit with
a hole [36]. Using the equality relations from Epre and Epost, along
with the weakest preconditions computed with them, we can con-
struct pre/post conditions φ and ψ for the hole which are used to
construct replacement code to fill the hole.

Given our choice synchronization points as the loop normal
control-flow entries/exits, the required verification condition is of
the form Epre ⇒ wp(b1,wp(b2,Epost)) where b1, b2 are the loop
bodies from the left and right programs respectively and wp com-
putes weakest preconditions. If b2 is a hole then this verification
condition is a specification for the required code. We compute the
synthesis pre/post conditions (φ,ψ) for our synthesis hole by taking
the code for the block we want to replace and compute:

φ = ∃I〈1〉Epre where I〈1〉 = {x〈1〉|x ∈ I}
ψ = ∃I〈1〉(Epre ∧ wp(b1,Epost)) where I〈1〉 = {x〈1〉|x ∈ I}
This construction lifts the relational program verification method-

ology to a synthesis condition generation methodology. Further, it
reduces the problem of synthesizing loopy programs to the prob-
lem of synthesizing straight line code. However, it does so in a
way that preserves cross loop information as well as context from
before/after the loop body. This context ensures that the generated
conditions are as relaxed as possible, enabling the generation of op-
timized code in the synthesizer, while still ensuring the equivalence
of the original and optimized programs.

4.4 Running Example
Figure 5 shows the result of applying these transformations to the
input code from Figure 1. The resulting fragment has two loops,

the first one has a loop guard that ensures the loop iteration count
is a multiple of 4 while the second loop handles the remaining it-
erations. The first loop has been unrolled 4 times and the variables
have been uniquely renamed to expose 4 independent sets of values
for the vectorization. The if-conversion step has swept the condi-
tional guards and abnormal loop exit to the single flow block at the
end of the loop.

After the loop restructuring and introduction of vector variables,
vectv and vecsv for tv and sv respectively, we have the following
following equivalence post relation for the body:

Epost = match〈1〉 = match〈2〉 ∧ vals〈1〉 = vals〈2〉

∧ i〈1〉 = i〈2〉 ∧ tv〈1〉 = tv〈2〉 ∧ sv〈1〉 = sv〈2〉

∧ vectv = [tv〈1〉, tv〈1〉, tv〈1〉, tv〈1〉]

∧ vecsv = [sv〈1〉, sv〈1〉, sv〈1〉, sv〈1〉]

The code shown in Figure 6 has had the normal control flow
code in the loop, from the first statement to the if, replaced with a
[HOLE] as a place holder for the code we want to synthesize. The
pre/post conditions we want to generate (φ and ψ) for use in the
synthesis step are shown before/after the hole.

The only assignments to externally visible variables that can be
made by the synthesized code are specified by the set O. Thus,
we simplify the computed post condition, ψ, by assuming that all
variables not inO have the same values before/after the synthesized
code. As the only variable in O is match, the interesting parts of
the generated synthesis pre/post conditions are:

φ = (vectv = 〈tv, tv, tv, tv〉 ∧ vecsv = 〈sv, sv, sv, sv〉)
ψ = (match = ((vals[i].tag = tv ∧ vals[i].score > sv)

∨ (vals[i+ 1].tag = tv ∧ vals[i+ 1].score > sv)

∨ (vals[i+ 2].tag = tv ∧ vals[i+ 2].score > sv)

∨ (vals[i+ 3].tag = tv ∧ vals[i+ 3].score > sv)))

After synthesizing the SIMD code for these conditions and
substituting it in for the hole we get the final program shown
in Figure 2. Using the equivalence relations Epre and Epost we
can compute and discharge a set of verification conditions for the
original input loop and the final SIMD implementation which serve
as a correctness proof for the transformation. Finally, using the
construction in Section 6 we can produce a cost function for the
relative performance of the input and SIMD loops.

5 2013/1/5



i n t i ;
f o r ( i = 0 ; i < l en−3; i +=4) {

i n t t a go k0 = v a l s [ i ] . t a g == t v ;
i n t s c o r e o k 0 = v a l s [ i ] . s c o r e > sv ;
i n t andok0 = ta gok 0 & s c o r e o k 0 ;

. . .

i n t t a go k3 = v a l s [ i + 3 ] . t a g == t v ;
i n t s c o r e o k 3 = v a l s [ i + 3 ] . s c o r e > sv ;
i n t andok3 = ta gok 3 & s c o r e o k 3 ;

match = andok0 | andok1 | andok2 | andok3 ;
i f ( match ) re turn 1 ;

}

f o r ( ; i < l e n ; ++ i ) {
i n t t a g o k = v a l s [ i ] . t a g == t v ;
i n t s c o r e o k = v a l s [ i ] . s c o r e > sv ;
i n t andok = t a g o k & s c o r e o k ;
i f ( andok ) re turn 1 ;

}

Figure 5. Running example after structural transformation.

i n t i ;
f o r ( i = 0 ; i < l en−3; i +=4) {
φ
[HOLE]
ψ
i f ( match ) re turn 1 ;

}

f o r ( ; i < l e n ; ++ i ) {
i n t t a g o k = v a l s [ i ] . t a g == t v ;
i n t s c o r e o k = v a l s [ i ] . s c o r e > sv ;
i n t andok = t a g o k & s c o r e o k ;
i f ( andok ) re turn 1 ;

}

Figure 6. Running example after hole insertion and pre/post con-
dition locations shown.

5. Inductive SIMD Synthesis
The synthesis algorithm takes a pre/post condition pair (φ, ψ), a
set of instructions to select from Stmts, the set of input variables I
and outputs O, and a maximum cost for the program to be synthe-
sized (costm). The output is a program p which is a sequence of
statements such that for any state valuation s that satisfies the pre-
condition φ, the execution of p starting in s yields a state valuation
s′ that satisfies the postcondition ψ. Inspired by work on concolic
testing [9, 32] our concolic synthesis algorithm uses a combina-
tion of a top-level counter-example driven loop (based on symbolic
methods) to find interesting values for the inputs I and an efficient
search for candidate programs p (based on concrete execution over
these input values). The symbolic reasoning in the top-level loop
(Algorithm 1) ensures that each new input provides useful informa-
tion, which forces behavioral differences, while the use of concrete
values in the program search subroutine (Algorithm 2) provides an
efficient method for generating candidate programs.

5.1 Counter-Example Generation Loop
The top-level CEGIS (Counter-Example Guided Inductive Synthe-
sis [35]) loop in Algorithm 1 iteratively constructs a set of concrete
state valuations (a mapping of values to variables) and searches for
a candidate program p that satisfies the postcondition ψ when run
on these state valuations, line 6. On line 4 the algorithm attempts
to symbolically construct a new input state valuation s that is a
counter-example for the correctness of the program p – i.e. ψ does
not hold on the result of running p on s. If such an example can
be found it is added to the set on line 5 and the loop is repeated,

if we can prove that no such example exists then p is the desired
program and we return on line 8, and if we cannot decide if such
an example exists then the synthesis fails. The initialization of the
concrete state valuations set, the underlined call to GenInitialStates
on line 2 is an optimization, described in Section 5.3, to minimize
the number of iterations of the CEGIS loop.

Algorithm 1: Top-Level CEGIS Loop
input : pre φ, post ψ, statements Stmts,

inputs I , outputs O, max. cost costm,
disjunctive precondition χ

output: program p
1 p← skip;
2 S ← GenInitialStates(χ);

3 while GenModel(∃~V , φ ∧ ¬wp(p, ψ)) 6∈ {unsat, fail} do
4 s← GenModel(∃~V , φ ∧ ¬wp(p, ψ));
5 S ← S + s;
6 p← Search(〈〉, S, ψ, ∅, ∅, Stmts, I, O, costm);
7 if p = ⊥ then return fail;
8 return (GenModel(∃~V , φ ∧ ¬wp(p, ψ)) = unsat) ? p : fail;

5.2 Candidate Program Search
The Search method, Algorithm 2, performs the search for a pro-
gram pres that when run on the input list of state valuations S pro-
duces a list of state valuations that satisfy the post condition ψ. The
naive search, i.e., the algorithm excluding the underlined code, is a
depth first enumeration of possible sequences of instructions from
the set Stmts. If we reach a point where every state valuation in
S satisfies ψ then we have a candidate program and can return it,
line 9. Otherwise the current program is extended with another in-
struction from Stmts, yielding pi, and this statement is applied to
each of the state valuations in S, yielding Si. The new values, pi
and Si, are then used in the recursive search call on line 14. As this
naive search approach is computationally intractable for instruction
sequences of length greater than four [12, 16, 23] we introduce sev-
eral optimizations below.

5.3 Synthesis Optimizations
Initial State Valuations. The set of input state valuations S in the
top-level CEGIS loop (Algorithm 1) plays a critical role in the num-
ber of iterations required for the loop to terminate. Every new state
valuation that is added to S is, by construction, a counter-example
and when no further counter-examples can be generated the loop
terminates. Thus, we initialize S with a number of input valuations
that are likely to provide good initial constraints and as a result we
will need to generate very few additional counter-examples. As in
concolic testing we note that different paths through the program
are likely to exercise different behaviors. Thus, we alter the syn-
thesis algorithm to take a disjunctive pre-condition χ, which is a
disjunction of per path weakest preconditions from the input pro-
gram. The GenInitialStates method produces a state valuation for
each clause in the disjunctive pre-condition and we use these to
initialize S on line 2.

Search Merging. The naive search builds redundant instruction
sequences that repeatedly generate the same program state valu-
ations, e.g. repeatedly add and then subtract a constant. We also
observe that the search re-explores equivalent state valuations that
are reachable on different instruction paths, e.g. (a+ (b+ c))− d
and (a + b) + (c − d). We can eliminate this redundant explo-
ration by merging branches in the instruction sequence search tree
that are actually exploring the same set of state valuations. This is
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done by adding a set, Seen, of state valuations that have been seen
during previous search steps (checked on line 2). If we encounter
a state valuation that has been previously seen it means that either
(1) the current instruction sequence has redundant instructions, in
which case it is suboptimal, or (2) we have already explored the
state valuations reachable from the current valuation, and so con-
tinuing exploration on this sequence of instructions merely re-visits
previously seen state valuations. In these cases, pending a check
on cost information described below, we simply abort the current
branch of the search on line 3.

Cost Bounds. In our application we are only interested in mini-
mal cost code sequences. Using the cost model from Section 6 we
score the initial program fragment that is being replaced and com-
pute cost scores for each program generated during the search. With
this information we can immediately stop searching, line 1, if the
current program has a larger score, costm, than the input program
or current best solution. This bound is updated as needed to be the
best found so far in a standard branch-and-bound manner, line 17.

We further refine how the search handles state valuations that
have been seen previously by noting that computational cost is
monotone. Thus, repeating the exploration of a previously visited
state with a higher cost program will not discover a faster program.
However, if the current instruction sequence was able to produce
the current state valuation more efficiently than previous instruction
sequences then it may be possible to reach target state valuations
satisfying ψ without exceeding the cost bound costm. Thus, on
line 3 we check if we have found a less costly instruction sequence,
if not we return immediately but if the new instruction sequence is
less costly we update the min cost for this state valuation on line 4
and continue the search (re-exploring as needed).

Stack Machine. In order to limit the introduction and lifetime of
intermediate values, as well as to reduce the combinatorial prob-
lems of selecting which variables to use/modify in each instruction,
we extend the concrete execution state valuation with an evaluation
stack. The use of an evaluation stack is a common way to simplify
the operation of an abstract machine (e.g. the .Net and Java virtual
machines) by removing the need to explicitly refer registers or to
introduce explicit temporary variables. In the instruction selection
step, line 11, we assume instructions take their arguments from the
evaluation stack and place the result on the stack. We also extend
the instruction set with operations to load input variable values on
the stack and to pop values off of the stack into output variables.
The introduction of an explicit evaluation stack allows us to place a
bound on stack depth, line 8. This biases the search to avoid instruc-
tion sequences that produce large numbers of intermediate values
which would produce code with high register pressure.

Incremental Search Expansion. We can obtain additional per-
formance by using incremental expansion of the search parameters.
In general the operations used by the original program (==, &, . . .)
are the same type of operations that will be needed in the SIMD ver-
sion. Thus, we start with only the corresponding vector operations
and basic load/store operations in the set of instructions (Stmts). If
we fail to find a suitable program we extend this set with additional
operations such as the shuffle and other bitmasking operations.
Finally, if this larger set fails we let Stmts be the set of all instruc-
tions. Similarly, we start with a small eval stack, in our case depth
4 increasing to 6 if the first search fails. This allows us to improve
the performance of the synthesizer in many cases but still allows
the incremental exploration of the full program space as desired.

6. Cost Ranking Function
The computation of absolute costs for arbitrary blocks of code is a
challenging problem [39]. However, we do not need to compute the

Algorithm 2: Concrete Program State Search
input : program p, state valuations S, post ψ,

seen set Seen, seen cost Cost, instructions Stmts,
inputs I , outputs O, max. cost costm

output: program pcand

1 if cost(p) ≥ costm then return ⊥;
2 if S ∈ Seen then
3 if cost(p) ≥ Cost(S) then return ⊥;
4 Cost← Cost + [S → cost(p)];
5 else
6 Seen← Seen ∪ {S};
7 Cost← Cost + [S → cost(p)];
8 if Stackdepth(S) > Maxstack then return ⊥;
9 if ∀s ∈ S . ψ holds for s then return p;

10 pres ← ⊥;
11 foreach stmt ∈ Stmts∪{ldv(v)|v ∈ I} ∪ {stv(v)|v ∈ O} do
12 pi ← p+ inst;
13 Si ← ApplyInstToAll(inst, S);
14 po ← Search(pi, Si, ψ, Seen,Cost, Stmts, I, O, costm);
15 if po 6= ⊥ ∧ cost(po) < costm then
16 pres ← po;
17 costm ← cost(po);
18 return pres;

absolute costs of the programs. As we are only interested in identi-
fying the best performing program from a set of candidates we only
need to model cost in a way that allows relative comparison of two
programs. Further, our more restricted program fragment language
and vectorization application possess a number of simplifying fea-
tures. The impacts of branch mis-prediction are parameterized as
described below while the the uniform array accesses required for
vectorization imply that the caching/prefetching in the processor
will behave in a consistent and uniform manner.

We assume that we are given a model of the processor architec-
ture,M , which contains the standard information on execution unit
resources and latencies as well as branch mis-predict costs Mmiss.
We parametrize the remaining program fragment behaviors based
on the conditionals C (i.e. if statements) and the loops L that ap-
pear in the program fragment:

Bp : C 7→ [0, 1) The mis-predict probability of each branch.
Bt : C 7→ [0, 1) The probability that the true path is taken.
Lc : L 7→ N The number of times a loop is executed.

From these parameters we construct a cost ranking function
PerfM : (δ,Bp, Bt, Lc) 7→ R. The cost of a straight line block
of code is simply the sum of each statement as reported by the
underlying processor model M . The cost of a branch statement, β
with true branch βt and false branch βf is:

PerfM (β,Bp, Bt, Lc) =

Bp(β) ∗Mmiss +Bt(β) ∗ PerfM (βt, Bp, Bt, Lc)

+ (1−Bt(β)) ∗ PerfM (βf , Bp, Bt, Lc)

The cost of a loop statement, ` with the body `body is simply
Mmiss +Lc(`)∗PerfM (`body, Bp, Bt, Lc). We can compute the cost
ranking function for a fragment where δ = finit; `1 . . . `k; fexit in the
natural way as the sum of all the costs:

PerfM (δ,Bp, Bt, Lc) = PerfM (finit, Bp, Bt, Lc)

+ (Σ`1...`kPerfM (`i, Bp, Bt, Lc)) + PerfM (fexit, Bp, Bt, Lc)
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In this paper we report results when running the code on an
Intel i7 processor. We can construct a (very) simple model M for
this processor with: a normalized latency of 1 per operation, a 3
wide execution unit, a mis-predict cost Mmis = 12, a uniform mis-
predict probability of 5% for forward conditional branches, and a
1% mis-predict rate for loop back and exit branches. Using this
model the cost ranking function for the SIMD loop in Figure 2 is
PerfMδ (δopt, n1, n2) = 24+n1∗5.16+n2∗3.16 and for the original
loop in Figure 1 the function is PerfMδ (δorig, n

′
1) = 12 +n′1 ∗ 3.16.

The estimated asymptotic speedup can be computed by observ-
ing that as n′1 becomes large the costs of the loops are proportional
to n′1 ∗ 3.16 for the original loop and n′1 ∗ 1.29 for the SIMD loop
(since the SIMD loop processes 4 elements per iteration). Thus, the
cost ranking functions predict a speedup of 2.44×, closely match-
ing the empirically observed speedup of 2.5×. To find the predicted
break even point we solve for the values where the cost ranking
functions for the original loop and SIMD loop are equal, n′1 = 8
for our functions. As we see in Section 7 this matches well with the
experimentally seen break-even of between 4 and 8.

Even with our simple processor model, which can be built us-
ing readily available information, the resulting static cost predic-
tions are both precise and, as we would like in a static compiler,
conservative. This simple model can be further improved via ei-
ther more detailed architecture descriptions [39] or autotuning [41]
to identify key performance parameters in the processor models.
As the cost estimation functions are parametrized on branch mis-
predict, branch taken, and loop count information it is also possible
to evaluate them and select the best implementation based on run-
time data, as in a Tracing JIT [1, 7].

7. Experimental Evaluation
To evaluate the approach presented in this paper we selected 18
loops which represent fundamental classes of algorithms (find,
exists, accumulate, map, etc.) that are found in standard libraries
such as the STL for C++ or the base class libraries for C# (or
Java). These algorithms cover many common loop idioms that
appear in real world code. In this section we examine 6 benchmarks
in detail. Four benchmarks – CountIf, Find, Lexo, Equals – come
from the C++ STL (specialized for random access iterators). Two
benchmarks – FindIf and the running example Exists – are from
the .Net base class libraries (BCL) and are implementations of
methods in the List<T> class. Finally, the CyclicHash comes from
production C++ code and implements a hash code function for data
blocks. For the methods that take user defined lambda expressions
– CountIf, FindIf, and Exists – we used non-trivial instantiations for
the lambda code, e.g. the running example in Figure 1.

7.1 Transformation and Synthesis Performance
Table 1 shows the time required to vectorize each program fragment
(memory is always less than 100MB). In practice the synthesis step
accounts for 90% or more of this time. Thus, the table shows the
number of input states the synthesis started with, the number of
additional iterations the CEGIS loop needed, and the number of
instructions in the final synthesized block. As we can see in this
table the resource requirements vary greatly even for similarly sized
code blocks. This variability is not surprising as the synthesis is
fundamentally a search in a very large state space. However, in
all of the cases the synthesizer was able to produce an optimized
SIMD program. These programs consisted of up to 9 instructions
and covered a diverse set of comparison, bitwise, and swizziling
operations. The results also show the impact the disjunctive pre-
condition generation heuristic has on the total number of iterations
(taking only 1 iteration for all but one case).

Benchmark Time(s) Init./Iters. Insts.
CountIf 0.136s 16/1 8
Find 0.053s 6/1 4
Lexo 0.056s 6/1 5
Equals 0.667s 10/1 5
Exists 0.120s 6/2 9
CyclicHash 0.998s 16/1 5

Table 1. Time required by the synthesizer. Init number of examples
in S and Iters of the CEGIS loop. Insts in the final SIMD code.

7.2 Performance of SIMD Loops
To compare the performance of the synthesized SIMD loops and
the original scalar implementations we implemented a driver loop
which executes each loop, on inputs of various sizes, 5 million
times in a simple timing loop. The evaluation was done on an Intel
i7 running Windows 7 (32 bit) and Visual Studio C++ compiler
(Version 16 for x86) with the default optimization settings.

Figure 7 contains a chart for each of the benchmark loops. This
chart shows the experimentally measured performance improve-
ment seen with the synthesized SIMD implementation and the per-
formance improvements predicted by the analytical cost functions
in Section 6. The logarithmic x-axis is the number of iterations
that the original loop expected to execute. For fixed count loops
like CountIf and CyclicHash this is the size of the input array. For
loops with abnormal returns (the remaining four loops) this is the
expected number of iterations before the loop exits. As we use a
uniform distribution for where the element of interest is in the in-
put the expected number of iterations is half the length of the input
array. The y-axis is the speedup of the SSE implementation relative
to the original scalar implementation. Finally we mark the break-
even line where the performance of the SSE implementation and
original implementation are equal.

The results in Figure 7 show that in general the SIMD imple-
mentations start to outperform the baseline implementations almost
immediately (the Actual plot). For an iteration count of 8 only
the Lexo loop is slower than the baseline implementation while
CyclicHash is slightly better than break-even and the remaining
loops show a 10% to 40% reduction in runtime. As the input size
gets larger the performance differences get larger in favor of the
SIMD loops. Once the iteration counts approach 32 the Lexo has
passed the predicted break even point and is now faster than the
baseline implementation. At iteration counts of 512 all the loops
outperform the baseline by a factor of 2× or more. Finally by it-
eration counts of 2048 the loops performance ratios are near their
asymptotic speedup and now outperform the baseline implemen-
tations by between 2.0× and 3.7×, which is near the 4× maxi-
mum speedup we would expect from using 4 wide SSE instruc-
tions. These results demonstrate that the approach to vectorization
described in this paper is applicable to a wide range of loops and
produces SIMD implementations that consistently provide large
performance increases (even on relatively small inputs).

The Predicted plots in Figure 7 show that in general the
speedups predicted by the analytic cost model from Section 6 corre-
late well with the observed speedups – despite the relatively crude
model used for the processor. The major exception to this trend
is the Equals program where the predicted and actual performance
diverge significantly for large iteration counts. Further investiga-
tion indicates that in this case the processor is able to optimize the
loop execution in ways that are not captured by the simple pro-
cessor model, M , used when constructing the cost functions. Thus
there is room for improvement via either more detailed architecture
descriptions [39] or autotuning [41] to identify key performance
parameters in the processor models.
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Figure 7. Speedup (Original Time / SSE Time) on Y axis ranging over the expected number of iterations in original loop on X axis.

To avoid performance degradations it is critical that the cost
model is able to predict the break-even number of iterations (where
the SIMD loop begins to outperform the original loop). In all our
benchmarks we see that this number is well predicted by the cost
model and in all cases is a conservative estimate (i.e. overestimating
the number of iterations needed to break-even). Thus, these results
demonstrate that the cost model defined in this work is an effective
predictor for the relative performance of the loops and provides an
effective means to check that a SIMD implementation will reliably
improve the performance of the program in practice.

To validate that these results were not an artifact of the evalua-
tion environment [25] we ran the evaluation on a second platform.
This environment consisted of an Intel Core2 running Mac OS X
(Tiger) and GNU C++ compiler (Version 4.2.1 x86). The results
were, with one notable exception, consistent with the performance
improvements seen on the Intel i7 platform. The outlier benchmark,
Exists, had a break-even cost of 16 on the Core2 compared to a
break-even of 8 on the i7. This increase is mainly a result of the
shuffle operation being more expensive on the Core2 and the in-
creased break-even is correctly predicted by our cost function.

7.3 Synthesis with Specialized Operations
In order to evaluate how the synthesis technique handles SIMD
operations with unusual semantics we synthesized three common
string operations from the C# System.String class: StringEquals,
IndexOf and IndexOfAny. These can be implemented using the spe-
cialized Packed Compare Strings (PCMPESTRI) operation from
SSE 4.2. The synthesis algorithm produces SIMD implementations
for these loops using the specialized packed compare strings op-
eration in less than 1 second for each benchmark. The speedups
obtained ranged from 3.4× for StringEquals to 9.5× for IndexO-
fAny. These results demonstrate how the synthesis approach can
be easily extended to make use of new, or unusual, instructions to
produce optimized loop implementations.

7.4 Impact on 483.Xalan

The results in Section 7.1 show that the synthesized loop imple-
mentations consistently improve performance across a range of
loops and input data sizes. To validate that the performance gains
seen on the micro-benchmarks translate into similar performance
gains in practice, we selected the 483.Xalan benchmark from SPEC
CPU2006 [37] as a case study. This program makes heavy use of
std::vector<string*> as a cache for commonly used strings
and it uses the STL find algorithm (our Find benchmark) to find
string pointers in the cache.

The cache behavior is very sensitive to the data that is being
processed as shown in recent work on automatic data structure
selection [17]. Replacing the std::vector with a std::set (or
a hashset) resulted in performance improvements of up to 20%
on the SPEC provided train input but when run with the SPEC
provided test input the alternative data structure representation
actually degrades performance by up to 20%. This swing from
performance improvement to performance degradation is driven
by the sensitivity of the cache to particular features of the input
data set. Thus, this program tests both the performance impact of
the SIMD code our synthesis produces and the robustness of the
performance improvements on the various benchmark inputs.

Performance profiling of the 483.Xalan program shows that ap-
proximately 14% of the total runtime is spent executing the find
algorithm on the cache. As our loop micro-benchmarks indicate
that the SIMD find code is between 1.08× and 2.4× faster than
the baseline implementation we would expect to see between a 1%
(worst case) and 8% (best case) reduction in total runtime.

Table 2 shows the performance results obtained by replacing (by
hand) the calls to the find algorithm with calls to our synthesized
SIMD code. We show for each input provided in the SPEC test
suite the size of the input and the percentage reduction in the total
program execution time. The speedup indicates that the calls to
the synthesized SIMD code are, depending on the inputs, 1.15
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Input Data Input Size Improve(%)
test 28KB 5.5%
train 39MB 2%
ref 56MB 5%

Table 2. Runtime improvement(%) for 483.Xalan.

to 1.5 times faster than the standard implementations (matching
our expectations from the micro-benchmark results). In contrast
to the widely variable speedup (and slowdown) seen by changing
the underlying data structure, the use of the vectorized find loop
showed consistent improvements of 2%-5% across the inputs.

8. Related Work
Vectorization. Automatic program vectorization is a challeng-
ing problem which requires the application of a wide range of
techniques for effective vectorization including: loop transforma-
tion [18, 29], control flow dependency elimination [18], alignment
optimizations [28, 40], and finding sets of operations that can be
executed in parallel [19, 33]. However, previous work on compiler
auto-vectorization has focused on what are traditionally consid-
ered regular applications (e.g., scientific codes, multimedia appli-
cations, encode/decode algorithms) and on special purpose libraries
(codecs, encryption, etc.), where loops have well behaved termina-
tion conditions, data sets are of a fairly regular/large size, and data
layouts are suited to SIMD computation.

In contrast, the work in this paper seeks to apply SIMD in-
structions to irregular loops from standard library implementations
which often have poor data layouts, small iteration count loops,
and extensive data dependent control flow. These types of programs
present different and in many ways more difficult problems to the
automatic construction of vectorized code. These difficulties are
highlighted in a recent study by Maleki et. al. [21] which examines
a number of state of the art vectorizing compilers and their ability
to vectorize a range of loops. They conclude that modern compilers
fail to vectorize many loop patterns due to a lack of development
resources needed to build a compiler that can identify and treat all
the needed loop and computation patterns.

The work in this paper focuses on the issues of sub-optimal
data layouts and complex data driven control flow but does not
examine issues involving indirect memory accesses via pointers.
Recent work has begun to explore how to reorganize and traverse
pointer based structures into flat structures which are amenable
to SIMD computation [31]. In particular work on unique pointer
referencing [3, 20] and object lifetime, either as a global invariant
or in a localized section of code, based on static [20, 22] is a critical
first step dealing with the challenges posed by pointers.

Verification. Translation validation is a general method for check-
ing a posteriori that compiler runs are correct, i.e output target pro-
grams that are semantically equivalent to input programs [30, 43].
Product programs reduce relational verification to functional verifi-
cation of a single program: instances include self-composition [6],
cross-products [42], and their combination [4, 5]. These methods
are able to validate a wide range of loop optimizations, including
those needed by our method. In this work, we use product programs
to generate synthesis conditions for loop bodies.

Relational Hoare Logic is a generalization of Hoare logic in
which judgments involve two programs, and pre- and post- con-
ditions are denoting relations on states [8]. Relational Hoare Logic
is effective for proving the correctness of structure-preserving op-
timizations, and simple optimizations that alter the control flow of
programs. However, the core logic of [8] does not support the kind
of loop optimizations required for our examples.

Synthesis The area of program synthesis is gaining renewed in-
terest [10, 11, 35]. Srivastava et.al. introduced the notion of proof-
theoretic synthesis where the problem of synthesizing a loopy pro-
gram, given a pre/post condition, is reduced to the problem of
simultaneously synthesizing loop-free fragments and loop invari-
ants [38]. This approach is limited to synthesis of simple programs
whose total correctness proofs or loop invariants can be expressed
as simple templates. In contrast, we reduce the problem of vector-
izing a given loopy program, to the problem of synthesizing only
a loop-free fragment (without the need to synthesize any sophisti-
cated loop invariants). This reduction is enabled by our use of the
powerful relational verification methodology, which allows us to
separate the process of verification and synthesis by generating an
over approximation of the equalities required for equivalence proof.

The problem of synthesizing loop-free programs has been ad-
dressed in a variety of domains including bit-vector algorithms [12,
15, 36], ruler/compass based geometry constructions [13], text
transformations [24], and algebraic proof problems [34]. One class
of technique is based on constraint solving, which involves re-
ducing the synthesis problem to that of solving a SAT/SMT for-
mula (inside a CEGIS loop) and let an off-the-shelf SAT/SMT
solver efficiently explore the search space. The applicability of this
technique has been limited to semi-automatic settings, where the
user provides templates [36] or reasonable over-approximation of
the number of times each base component is used in the desired
program [12]. Another class of technique is based on brute-force
search, which involves systematically exploring the entire state
space of artifacts and checking the correctness of each candidate.
This approach often requires use of non-trivial optimizations and
performs best when the specification consists of examples as op-
posed to a formal relational specification. Past work has included
optimizations such as goal-directed search [13], clues based on
textual features of examples [24], and common subexpression
evaluation [34]. In this work, we combine the CEGIS loop from
constraint-solving approaches with brute force search approach
and novel optimizations.

Superoptimization is the task of finding an optimal code se-
quence for a straight-line target sequence of instructions, and it is
used in optimizing performance-critical inner loops. One approach
to superoptimization has been to constrain the search space to a
set of equality-preserving transformations [2, 16], and then select
the one with the lowest cost. This approach is limited by the kind
of transformations that it can generate. Another approach to super-
optimization has been to use brute-force search and enumerate se-
quences of increasing length or cost, testing each for equality with
the target specification [23]. We also use brute-force search, but
combined with a CEGIS loop and non-trivial optimizations.

9. Conclusion
This work presents a new approach to addressing the challenges
that are present when attempting to harness the performance and
power advantages available from data-parallel SIMD operations.
In particular we looked at the problem of auto-vectorizing loops
that have sub-optimal data layouts and complex data driven control
flow, as is frequently the case in general purpose library code from
the C++ STL or the C# Base Class Libraries. Our approach is
driven by three core objectives: to produce an auto-vectorizer that
is applicable to a wide range of irregular loops, that produces
code which reliably improves the performance of the loop, and that
guarantees the correctness of the resulting SIMD code.

These objectives led us to a novel auto-vectorization approach
based on deductive loop rewriting and inductive synthesis of loop-
free code. The use of inductive synthesis for constructing the loop
body makes it particularly robust when dealing with the multitude
of variations on the basic loop forms (find, map, reduce, etc.) that
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appear in practice. In addition this approach allows us to produce
correctness proofs for the resulting code. We believe that this un-
derlying approach of combining deductive code restructuring with
inductive code generation represents a general and promising way
forward in research on program compilation. Thus, this work is
an important step in both expanding the set of programs that can
be automatically SIMDized and in the larger problem of effective
compilation for specialized hardware.
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