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Abstract. We give an overview of an application of the B method to
the formalisation and verification of the GlobalPlatform Card Specifi-
cation. Although there exists a semi-formal specification and some ef-
fort has been put into providing formalisations of particular features of
smart card platforms, this is, as far as we know, the very first attempt
to provide a complete formalisation. We describe the process followed
to synthesise a mathematical model of the platform in the B language,
starting from requirements stated in natural language. The model con-
sistency has been thoroughly verified using formal techniques supported
by the B method. We also discuss how the smart card industry might
benefit from exploiting this formal specification and outline directions
for future work.

1 Introduction

1.1 Smart Cards

Smart cards [1] are small portable devices, usually the size of a credit card,
embedded with either only a memory chip or with both a microprocessor and
a memory chip. They are capable of communicating with an external network
terminal through a card reader and a contact or contact-less interface by ex-
changing Application Protocol Data Unit (APDU) messages. Smart cards are
broadly used in a significant number of applications, ranging from telecommu-
nications, transport and access control to electronic purses and e-government.
Most popular applications include debit cards, prepaid phone cards, and the Sub-
scriber Identity Module (SIM) cards used in mobile phones to hold subscriber’s
personal information and settings.

Early smart card applications were written for a specific combination of op-
erating system and hardware and designed to run as the sole application in a
card. This scheme forced card issuers to commit to a particular implementa-
tion without any possibility for post-issuance modification and at the same time
compelled users to carry a different card for each application they wished to use.
The need to overcome these difficulties lead to the concept of multi-application



smart cards, capable of hosting multiple applications and allowing applications
to be loaded, upgraded and unloaded after issuance. Multi-application smart
cards became a reality thanks to the increase in the computational power and
memory capacity of the cards and the development of general purpose card op-
erating systems in the last decade, including Java Card, MultOS, Windows for

Smart Cards and BasicCard. Each of these operating systems provides a com-
mon development framework and standard programming interfaces that improve
the portability of developed applications across different card implementations
and enable multiple applications to coexist on a single card sharing services and
data. This increased flexibility, unfortunately, does not come for free, since it
brings up new security concerns that need to be addressed.

In spite of all its benefits, the adoption of multi-application smart cards had
been slowed down due to the absence of standards for the security and appli-
cation management aspects of smart card platforms until the GlobalPlatform
consortium published their specifications, currently accepted as de facto indus-
try standards. However, because GlobalPlatform specifications are expressed in
natural language using a semi-formal notation, they are subject to misinterpre-
tations and their consistency cannot be formally verified. The following excerpt
from [2, Sect. 6.9.1.1] describing the state transitions of the Cardholder Verifi-
cation Method (CVM), might help in understanding the level of detail of the
natural language specification:

“At the end of a Card Session the CVM state shall transition back to Ac-
tive, except if the CVM state transitioned to the CVM state Blocked
during the Card Session”.

What should happen if the CVM state transitions to Blocked, but is later
unblocked and then transitions to another state like Validated (meaning suc-
cessful cardholder authentication) during the same card session? Common sense
dictates that the CVM state should nevertheless be reset to Active. A careless
reader may understand exactly the opposite.

1.2 GlobalPlatform

GlobalPlatform (GP) is a nonprofit organisation established in 1999 by lead-
ing companies from the industry, the government sector and vendor community
whose goal is to establish and drive the adoption of standards to enable an
open and interoperable infrastructure for smart cards, devices and systems that
simplifies and accelerates the development, deployment and management of ap-
plications across industries.

The main assets of GlobalPlatform are their specifications, available royalty-
free and downloadable from their website [3]. GlobalPlatform specifications cover
the card itself as well as their associated devices and systems and are applicable
to both single and multi-application scenarios. By providing these specifications



on a royalty-free basis GlobalPlatform succeeded in promoting their acceptance
as standards and in accelerating the adoption of smart card technology. An in-
creasing number of card vendors and application developers are adopting Glob-
alPlatform specifications as the standard upon which to base their smart card
infrastructures. Present estimates indicate that the number of GlobalPlatform
compliant smart cards in circulation exceeds 670 million (600 million of which
are SIM cards).

1.3 Paper Overview

This work gives an overview of a formal specification of the GlobalPlatform
security and application management architecture using the B method. This
formal model provides an abstract reference specification expressed using a for-
mal mathematical language that has the potential for eliminating any ambiguity
that may remain in the existing semi-formal documentation expressed in nat-
ural language. The model also provides a general framework from which other
participants may build up and share their contributions.

The remainder of the paper is structured as follows: Section 2 gives a gen-
eral overview of the B method, Sect. 3 introduces the semi-formal specification
provided by GlobalPlatform while Sect. 4 describes its formalisation. Section 5
shows using an example how the formalisation should be interpreted, Sect. 6 de-
scribes the formal proof process and finally, Sect. 7 concludes presenting related
research on the subject and future work.

2 The B Method

2.1 Overview

The B method is a model-oriented formal method for engineering software sys-
tems developed by Abrial [4]. It is not only a notation for specifying systems, it
is a comprehensive formal method that covers the entire software development
cycle: from requirements specification to code generation. The method is based
on the mathematical principles of set theory and predicate calculus while its
semantics is given using a variant of Dijkstra’s weakest precondition calculus [5].

A B specification is composed of a hierarchy of components that are described
using the Abstract Machine Notation (AMN). AMN greatly resembles the no-
tation used in high-level imperative programming languages and provides the
representation and manipulation of mathematical objects such as natural num-
bers, sets and functions. The notation supports typical logical and set-theoretical
operators as well as some other useful operators that simplify the manipulation
of complex mathematical objects such as functions and relations (see Table 1 for
a description of the most common operators).



Table 1. Commonly used B operators

Notation Semantics

P (X) Set of all subsets of X

X × Y Cartesian product of the sets X and Y

X ↔ Y Set of relations of X to Y , or equivalently P (X × Y )

X 7→ Y Set of partial functions from X to Y

X → Y Set of total functions from X to Y

X 7½ Y Set of partial injective functions from X to Y

Id (X) Identity relation on X

R−1 Inverse relation of R

dom (R) Domain of the relation R

ran (R) Range of the relation R

R [X] Relational image of X under the relation R

X C R Binary relation R restricted to pairs with first component in X

X −C R Binary relation R restricted to pairs with first component not in X

R B X Binary relation R restricted to pairs with second component in X

R C−S Relation R overridden by S. Equivalent to (dom (S) −C R) ∪ S

R ⊗ S Direct product. Defined as {x, (y, z) | x, y ∈ R ∧ x, z ∈ S}

Each component in a specification represents nothing but a state machine: a
set of variables defines its state and a set of operations – state transitions – forms
an interface used to query and modify that state. Variable types and additional
constraints on the variables are introduced as invariants of a machine. State tran-
sitions in AMN are specified by means of generalised substitutions. A generalised
substitution is a construct built up from basic substitutions, such as x := e, corre-
sponding to simple assignments to state variables. The simultaneous substitution
(S1||S2), the bounded non-deterministic choice (CHOICE S1 OR S2 END),
and the sequential composition (S1;S2) are examples of constructors used to
build up generalised substitutions from simpler ones. There exist three different
types of components:

Abstract Machines Top-level components in specifications that describe state
machines in an abstract way, perhaps using non-deterministic state transi-
tions. They do not need to be directly implementable. Figure 1 shows the
typical structure of an Abstract Machine.

Refinements Enriched versions of either an Abstract Machine or another Re-
finement. They must preserve the interface and behaviour but may otherwise
reformulate the data and operations of the original machine. The variables
in the original machine may be either preserved or refined in terms of new
variables. The relationship between the original and the refined variables is



stated as an invariant of the Refinement.

Implementations Ultimate step in the refinement of an Abstract Machine,
both data and operations need to be implementable in a high-level pro-
gramming language. As a consequence, non-deterministic substitutions or
abstract variables (e.g. relations, functions) are not allowed in Implemen-
tations. An Implementation may rely on the operations and data imported
from Abstract Machines.

MACHINE M
SEES

Constituents of Abstract Machines referred to here can be accessed in a read-only

fashion

SETS

Given sets. A given set is introduced by its name and an optional enumeration

of its values and may be used to type variables and constants

CONSTANTS

Constants that can be referred to in a read-only way

PROPERTIES

Properties of given sets and constants. Constants must be typed here

VARIABLES

State variables

INVARIANT

Variable typing and additional constraints on the machine variables

INITIALISATION

Assignment of initial values to the machine variables

OPERATIONS

Definition of machine operations

END

Fig. 1. General structure of an Abstract Machine. A short description follows each
clause

Operations are made up of a header and a body. The header of an operation is an
identifier, designating its name, optionally followed by a parenthesised comma-
separated list of input formal parameters. A list of output parameters may be
specified preceding the name of the operation. The body of an operation is a
generalised substitution. An operation that has input parameters is written us-
ing a precondition substitution (PRE P THEN S END) that types its input
parameters and may express other properties that shall hold at the time the
operation is executed.

A B model can be mechanically syntax and type checked. Thanks to the
mathematical semantics of the method, a B model may also be subject to formal
proof to verify its consistency (including the preservation of invariants) and the
correctness of all refinement steps.



2.2 Tool Support and Industrial Applications

There are currently two commercially available toolkits that support the com-
plete development of systems using the method, Atelier B from ClearSy, and
B-Toolkit from B-Core. During the development of this specification we opted
to use the Atelier B toolkit which allows to automatically type check and verify
the syntax of a specification as well as generate the proof obligations that once
discharged guarantee its consistency. To discharge these proof obligations Atelier
B provides a theorem prover which can be run either in automatic or interac-
tive mode. A survey of available tools based on the B method can be found in [6].

The B method is particularly suited to support the development of safety-
critical systems. It has been successfully applied in large industrial projects as
the Meteor automated subway in Paris [7] and the IBM Customer Information
Control System (CICS) [8]. It is also commonly accepted in the smart card
field as a suitable method for formalising and verifying applications [9, 10] or
particular aspects of smart card platforms [11–13]. For further details on the
method, the reader is encouraged to refer to textbooks such as [4] or [14].

3 GlobalPlatform Semi-formal Specification

The functional and security related requirements for GlobalPlatform cards are
specified in a semi-formal way in [2] and [15]. In some aspects both specifica-
tions overlap, and this is source of inconsistencies. The functional requirements
of GlobalPlatform compliant cards, including all card content management func-
tions (e.g. application installation and deletion) and their runtime behaviour, are
described in [2] by means of natural language and conceptual diagrams, while
[15] describes in detail, using a semi-formal notation, the security requirements
of the platform, including requirements for the underlying Runtime Environ-
ment (RTE), Operating System and Integrated Circuit. These requirements are
expressed in terms of a number of Security Features (SF) which are themselves
specified in terms of one or more tables.

The header of a SF table (its first row) states the precondition that triggers
its activation. Each following row except the last one describes the rules by which
a user is permitted to perform some operation on some object in the card. For
example, the unique row in the body of Table 2 describes the conditions that an
incoming command in the APDU buffer must meet in order to be accepted for
processing. The last row of the table states its postcondition – the actions to be
taken in response to the operations.

SF tables are linked together by their preconditions and postconditions as
shown in Fig. 2. A glance at the figure should suffice to justify the need to specify
in a precise manner the interrelationships between tables. The number of tables
and the greatly tangled dependencies among them makes a natural language



Table 2. A SF table adapted from [15] describing the validation of incoming APDU
commands

Precondition:

command

The Platform Code has control. AN APDU message is received.

OP_alive Table 5−34: The Supervisor Security Feature
(Invocation of security mechanisms)

Link(s) back:

Result (rule evaluates to false):

Result (rule evaluates to true):

Any APDU

Operation Object(s)

APDU Buffer
[Command]

Security Attribute(s)

Command[INS]
Command[Parameters]

(if the GP Registry[Selected App] is the ISD[AID] or any

((the Command[CLA] and Command[INS] shall be included
in the card configuration) and (the Command[Parameters]
shall not be illegal, missing, unexpected, out of range or have
out of range lengths))

Rule(s)

An appropriate GPCS error APDU response message is returned to the off−card entity.

to dispatch the command.
This Table links to Table 5−37: The Supervisor Security Feature (Command dispatch)
The command is accepted for processing.

GP Registry[Selected App]

other SD[AID]) or (if the Command is Select[Any App]) then
Command[CLA]

Short Form:

specification error-prone.

A particular SF, the Supervisor SF acts as the starting point for all card
operations. The execution of a card operation may be interpreted as follows:

1. The Supervisor SF table is invoked, its postcondition links to another table
depending on the operation type;

2. In the new table, the rule field in the row corresponding to the operation
is evaluated. According to the result, the table postcondition may link to
another table or may terminate the execution of the operation;

3. The previous step is repeated until the execution terminates. Any changes
in the card state are committed upon completion of the execution.

4 Formalisation of the GlobalPlatform Specification

A standard specification for such critical functions as the security and card man-
agement architecture of a card platform must be carefully designed, validated
and verified in order to obtain a maximal level of confidence in its implemen-
tations. Stating and structuring the specification in natural language, by means
of tables or diagrams is a good starting point. However, natural language spec-
ifications are error-prone, subject to misinterpretations and cannot be formally
verified. The obvious step to achieve a higher level of reliability is to derive a
formal specification and apply formal techniques to verify its consistency and
desirable properties. The application of formal methods is also a must for de-
velopers seeking the highest Common Criteria evaluations assurance levels (i.e.
those from EAL5 to EAL7).



DAP Verification
Table 5−29

Install − Extradite
Tables 5−5, 5−6

Delete
Table 5−8

Receipt Generation
Table 5−10

Lifecycle Management
Table 5−11

Personalize
Table 5−7

Secure Channel
(Security policy)

Table 5−22

Table 5−24

Secure Channel
(Integrity/Auth)

Table 5−25

Secure Channel
(Confidentiality)

Sensors & Alarms
Table 5−46

Table 5−20

Security Domain
Access (B)

Load
Table 5−4

ISD Access (C)
Table 5−3

Token Verification
Table 5−9

Firewall
Table 5−38

Memory Content
Table 5−47 Table 5−48

Internal Communication Random Number
Generation
Table 5−49

Decryption
Encryption/

Table 5−50

Subject/Object

Table 5−41
Identification

Card Audit (CM)
Table 5−42

Tamper Resistance
Table 5−51

Card Audit (CA)
Table 5−43

Table 5−30
Verification
Mandated DAP

Table 5−13
(Key Generation)
Key Management

Table 5−18

Key Management
(Key Destruction B)

Table 5−34

Supervisor
(Invocation of SFs)

Secure Channel
(Termination)

Table 5−27

Supervisor (Reset)
Table 5−35

(Command syntax)
Supervisor

Table 5−36

(Command dispatch)
Table 5−37

SupervisorObject Reuse
Table 5−39

Event Actions
Table 5−40

OP API Access
Table 5−32

Table 5−26

Secure Channel
(Key/secret data)

CVM Handling
Table 5−31

Table 5−14

Key Management
(Key Loading CM)Other functions

Table 5−12

Failure Management
Table 5−45

ISD Access (A)
Table 5−1

Table 5−16
(Key Access)

Key Management

ISD Access (B)
Table 5−2

Key Management

Table 5−17
(Key Destruction A)

Table 5−19

Security Domain
Access (A)

Self Test
Table 5−44

Secure Channel

Table 5−23
(Initiation)

RTE API Access
Table 5−33

Table 5−21

Security Domain
Access (C)

Non−Secure Channel
Table 5−28

Table 5−15

Key Management
(Key Loading)

Fig. 2. Pre- and postcondition links between SF tables as appearing in [15]. The post-
condition of each table at the tail of an arrow establishes the precondition of the table
at the head of the arrow. Tables without incoming arrows are called Function Tables

and are activated on demand



In the rest of this section we describe the formalisation of the GlobalPlat-
form specification. A royalty-free complete and commented version of the formal
model may be obtained from the GlobalPlatform website [3].

4.1 Specification Architecture

Figure 3 shows a view of the specification architecture where arrows represent
composition links and boxes represent components. The specification is organised
in four layers of increasing detail according to their model of the card state.
Each layer except the lowest one is represented by an Abstract Machine and its
Implementation and each Implementation relies in turn on the Abstract Machine
in the next lower layer in the hierarchy. This hierarchical model facilitates the
construction of the specification and its formal verification. A short description
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Fig. 3. Overall specification architecture. An arrow pointing from component M to
component N should be read as M SEES|IMPORTS N. Ovals represent Abstract
Machines, boxes Implementations

of each Abstract Machine is as follows:

Shared–Data Definitions of sets and constants shared among different com-
ponents of the specification. Some of these sets and constants are used as
types (e.g. AID, the set of valid application identifiers), some are used as
configuration parameters for the card (e.g. ISD, the Issuer Security Domain
AID) and others as abstract functions (e.g. select–aid, that extracts the AID
of the application to be selected from a Select APDU command).



Interface Outlines the execution of APDU commands and the behaviour upon
Card Reset with respect to the set of currently open logical channels.

Validation Models the validation, dispatching and processing of APDU com-
mands as well as the behaviour upon Card Reset or Power up. Each operation
deals with a different type of interaction, a Card Reset, a Power Up event
or a specific type of APDU command. The card state is extended to include
the currently selected application and all applications in the GP Registry.

Process Security Features that deal with the validation, dispatching and secu-
rity processing of APDU commands as well as GP API methods are first
introduced in this machine. The card state is extended to represent most of
the card features including registered load files, the CVM and cryptographic
keys. The actual processing of APDU commands is specified in detail.

Security–Features Security Features as defined in [15] are represented as op-
erations in this component. Operations in the Process machine make use of
this component to ensure conformance to the selected security policies.

The Security Features are described in [15, Chapter 5] in terms of attempted
operations performed on objects. The outcome, i.e. whether the attempt succeeds
or fails, is decided by a set of rules which are expressed in terms of security at-
tributes. Objects and security attributes identified in [15] are represented by the
variables and constants of the machine specifications. The execution of an APDU
command is sketched in the Interface machine. The state of the card in this ma-
chine is only represented by the set of currently open Logical Channels and so
there is no need to distinguish among the different types of APDU commands
at this stage. In the Validation machine the card state is extended to include
information about the registered applications and security domains, their life
cycle and the currently selected application. The Interface–1 Implementation
describes how the operations in the Interface machine are implemented using
the operations in the Validation Abstract Machine.

The level of detail in each stage depends on how abstract is the representation
of the card state: how many and which variables are used to represent it. As the
card state is extended in the lower layers, the specification becomes richer and
more detailed. Ultimately, all operations are implemented on operations in the
Security–Features Abstract Machine, meaning – once the specification is proved
correct – that the functional requirements of the platform are implementable in
terms of the Security Features and satisfy the security policies enforced on the
platform.

5 An Example: Installing a New Application

Smart cards employ APDU messages for carrying out the communication with
card terminals. An APDU contains either a command message (Table 3) sent



from the terminal to the card, or a response message sent from the card to the
terminal. The communication is half-duplex and follows a master-slave model.
The smart card waits for APDU commands from the terminal in its interface.
Once a command is received, the card executes it and sends back a response
APDU message.

Table 3. APDU command message structure

Field Description Length

CLA Class Byte 1 byte

INS Instruction Byte 1 byte

P1 Reference Control Parameter P1 1 byte

P2 Reference Control Parameter P2 1 byte

Lc Data Length 1 byte

Data Command Data Variable

Le Length of Expected Data 1 byte

Navigation through the execution of an APDU command can be accom-
plished by following in the specification the implementation path from the In-

terface machine to the Security–Features machine. If the process is stopped some-
where in between, the result would be an abstract specification of the command
behaviour. We illustrate how to obtain a specification of the execution of an
Install[For Install and Make Selectable] command issued by the Card
Administrator in a simplified scenario. The command requests the installation
of an application from an executable module and sets its life cycle state to Se-
lectable, enabling the application to be selected and receive commands from
off-card entities. The executable module from where the application is instanti-
ated must be present within and executable load file in the card. The structure
of a correctly formatted Install[For Install and Make Selectable] com-
mand is shown in Table 4.

The reception of an APDU command is represented by the execution of the
APDU operation in Interface (Fig. 4), the input parameters being the com-
mand fields. Supposing the channel information contained in the CLA byte of
the command corresponds to a currently open logical channel, the specification
mandates some status word to be returned and allows the set of open logical
channels to be modified. Considering that the card state in this machine is re-
stricted to the set of open logical channels, this is a complete specification of the
APDU outcome with respect to this representation.

The implementation of the APDU operation in Interface–1 (Fig. 5) discrimi-
nates between different commands, and delegates the processing of the command



Table 4. Install[For Install and Make Selectable] command content

Field Content

CLA CLA–PROPRIETARY/CLA–SPROPRIETARY

INS INS–INSTALL

P1 P1–INSTALL–SELECTABLE

P2 NULL

Lc Data Length

Data Executable Load File AID, Executable Module AID, Application AID, and
Application Privileges

Le NULL

sw ← APDU(CLA,INS,P1,P2,Data,Le) =
PRE

CLA ∈ BYTE ∧ INS ∈ BYTE ∧ P1 ∈ BYTE ∧
P2 ∈ BYTE ∧ Data ∈ DATA ∧ Le ∈ BYTE

THEN

IF channel(CLA) 6∈ open–channels THEN

sw := SW–ERROR
ELSE

sw :∈ STATUS–WORD ||
open–channels :(open–channels ⊆ LOGICAL–CHANNEL ∧ 0 ∈ open–channels)

END

END

Fig. 4. APDU operation in the Interface machine. The notation v : (P ) should be
read as ‘v becomes such that P holds’. v :∈ S assigns to v any value in the set S

to the Install–For–Install operation in the Validation machine (Fig. 6).

Assuming that the command syntax is correct, the card life cycle is not
Terminated (app–life–cycle(ISD) 6= TERMINATED), the command data is
valid and the off-card entity is authenticated (AUTHENTICATED ∈ sl ), the
Install–For–Install operation restricts the modification of the card state, but
does not determine exactly how the state is modified. Up to this point, we have
obtained an abstract description of the functional and security requirements for
the command.

The implementation of the Install–For–Install operation makes use of the
Install–For–Install–1 operation in Process (Fig. 7) to describe the actual pro-
cessing of the command. If the card is not locked, the executable module from
where the application is to be instantiated exists, and the AID and privileges
assigned to the application would not leave the card in an inconsistent state, an
entry is created in the registry for the application, its associated security do-



sw ← APDU (CLA,INS,P1,P2,Data,Le) =
VAR ch,bb IN

ch := channel(CLA);
bb ← IsOpen(ch);
IF bb = FALSE THEN

sw := SW–ERROR
ELSE

sd ← IsSDSelected(ch);
IF sd = TRUE THEN

CASE CLA OF

EITHER CLA–PROPRIETARY,CLA–SPROPRIETARY THEN

CASE INS OF

EITHER INS–INSTALL THEN

CASE P1 OF

EITHER P1–INSTALL–SELECTABLE THEN

sw ← Install–For–Install(ch,CLA,INS,P1,P2,Data,Le)
. . .

Fig. 5. Implementation of the APDU operation in Interface–1

sw ← Install–For–Install(ch,CLA,INS,P1,P2,Data,Le) =
PRE

ch ∈ open–channels ∧
CLA ∈ {CLA–PROPRIETARY, CLA–SPROPRIETARY} ∧
INS = INS–INSTALL ∧ P1 = P1–INSTALL–SELECTABLE ∧ P2 ∈ BYTE ∧
Data ∈ DATA ∧ Le ∈ BYTE ∧ selected(ch) ∈ security–domains

THEN

IF

P2 = NULL ∧ Le = NULL ∧ app–life–cycle(ISD) 6= TERMINATED ∧
data ∈ VALID–INSTALL–FOR–INSTALL–DATA ∧ AUTHENTICATED ∈ sl

THEN

sw :∈ STATUS–WORD ||
applications, security–domains, app–life–cycle, default–selected :(
applications ⊆ AID ∧ applications$0 ⊆ applications ∧
security–domains ⊆ applications ∧ security–domains$0 ⊆ security–domains ∧
app–life–cycle : applications → LIFE–CYCLE ∧
app–life–cycle$0 ⊆ app–life–cycle ∧
default–selected ∈ applications)

ELSE

sw := SW–ERROR
END

END

Fig. 6. Install–For–Install operation in Validation. Observe how modifications to
the card state are restricted using the becomes such that substitution. The value of a
variable prior to the substitution is referenced by appending $0 to its name



main, life cycle state and privileges. This last Install–For–Install–1 operation
is implemented using only the operations in Security–Features, which correspond
to the Security Features described in [2].

sw ← Install–For–Install–1(ch,CLA,INS, P1,P2,Data,Le) =
PRE

ch ∈ open–channels ∧
AUTHENTICATED ∈ security–level(ch) ∧
app–life–cycle(ISD) 6= TERMINATED ∧
. . .

THEN

IF

app–life–cycle(ISD) 6= CARD–LOCKED ∧
mod–aid(Data) ∈ executable–modules ∧
app–aid(Data) /∈ applications ∧ app–aid(Data) /∈ executable–load–files ∧
(pr–default–selected ∈ privileges(Data) ⇒
default–selected = ISD ∧ app–life–cycle(ISD) 6= OP–READY)

THEN

sw := SW–OK ||
applications := applications ∪ {app–aid(Data)} ||
app–sd(app–aid(Data)) := elf–sd(mod–elf(mod–aid(Data))) ||
app–elf(app–aid(Data)) := mod–elf(mod–aid(Data)) ||
app–privileges := app–privileges ∪ {(app–aid(Data), privileges(Data))} ||
app–life–cycle(app–aid(Data)) := SELECTABLE ||
IF pr–default–selected ∈ privileges(Data) THEN

default–selected := app–aid(Data)
END

END

Fig. 7. Install–For–Install–1 operation in Process

The example above may not give much insight into the dimension of the
specification. Every APDU command and GP API function is specified like the
the Install[For Install and Make Selectable] command just described.
The complete specification being around eight thousand lines long is not a trivial
case study.

6 Formal Proof

The B method semantics allows to mechanically generate the Proof Obligations

(PO) to be discharged in order to guarantee that the model is mathematically
consistent. The PO may come from the need to prove different kinds of proper-
ties:

Initialisation consistency Assuming the stated properties of constant and
sets, the initial state of an abstract machine must be established by the gen-



eralised substitution under its INITIALISATION clause;

Invariant preservation As state transitions in the B language are specified
via operations, and transitions shall not violate the invariant, each opera-
tion in an abstract machine must preserve the invariant;

Refinement correctness The INITIALISATION substitution and each op-
eration in a refinement shall fulfil the specification of their abstract versions.

With the help of the Atelier B automatic prover almost 90% of the generated
PO were proved automatically, the remaining obligations were proved interac-
tively. This gives a complete guarantee of the model consistency assuming the
correctness of the tool and the underlying theory. As we have nothing but a
natural-language specification to compare it with, the specification correctness
cannot be verified. However, simple invariants can be proved to gain more confi-
dence. Some interesting invariants may be specified in the Process machine. For
example, that the ISD should be the default selected application when the card
is in the OP–Ready state

card–life–cycle = OP–READY ⇒ default–selected = ISD ,

or that selected applications shall not be in the Installed state

selected B app–life–cycle–state−1 [{INSTALLED}] = {} .

In fact, trying to prove the following invariant

elf–sd ∈ executable–load–files → security–domains

that ensures that every load file is associated with a security domain, uncov-
ered an omission in the original specification of the Delete command runtime
behaviour that allows a security domain to be deleted even if it has executable
load files associated.

Table 5 gives a summary of the formal proof of the specification. Due to the
way the specification is constructed most of the PO arise in proving that an im-
plementation is correct with respect to its abstract counterpart than in proving
that an Abstract Machine operation does not violate an invariant. The former
involves proving that every possible behaviour allowed by the implementation
is allowed by the original operation and that the result in terms of the imple-
mentation variables is the same, as well as proving that the preconditions of the
operations on which the implementation relies are satisfied. The later amounts
to proving that the operation does not violate the machine invariant. In contrast,
in this specification proof obligations of invariant preservation tend to be more
complicated than proof obligations of implementation correctness. As a result,
the layered architecture of the specification helps to reduce the number of non-
trivial proof obligations but increases the total number of proof obligations.



Table 5. Proof summary

Component Proved Interactively Proved Automatically Total

Interface 0 2 2

Interface–1 11 211 222

Validation 3 161 164

Validation–1 144 316 460

Process 54 841 895

Process–1 118 987 1,105

Security–Features 55 781 836

Total 385 3,299 3,684

Much of the proof obligations generated in a component tend to be very
similar. In many cases, the same proof script may be used to discharge several
proof obligations. In this way, the number of actual interactive proofs is greatly
reduced. There were no hard proofs, and no need to develop theories for the
proof assistant with the exception of a few set theory lemmas.

7 Conclusion

While multi-application platforms have long been seen as the future of smart
cards, the lack of commonly trusted standards for application management and
their security concerns has slowed their deployment. We strongly believe that
this work will help improve the confidence in GlobalPlatform specifications and
accelerate their acceptance as trusted standards. The objective of providing a
formal model of the GlobalPlatform specifications was successfully achieved in
7 men months, a neglectable cost considering the payback. As the work was
in progress, omissions and inconsistencies were detected in the original specifi-
cations, including one that could lead to the execution of unauthorised APDU
commands when the card is in the Terminated life cycle. Some of these issues
were resolved in fluent contact with GlobalPlatform, while others still remain
to be settled by the GlobalPlatform Card Specification Workgroup. The result-
ing exchange of opinions is an invaluable documentation that gives the rationale
behind the decisions taken to resolve those issues. We expect most of these docu-
mentation to be included in the next release or amendment of the GlobalPlatform
specifications.

7.1 Future Work

Test Automation. Reduced time-to-market is critical in the smart card in-
dustry and testing is a bottleneck for the deployment of new card platforms.
The availability of the formal model opens the way to specification-driven test
automation. This means that test cases can be generated, executed and assessed



automatically using the formal specification, speeding time-to-market for new de-
velopments. Furthermore, the coverage of the generated tests may be measured
against the specification using rigorous techniques. There exist actual tools that
support test automation based on B specifications [16, 17] and there is at least
one tool developer investigating the possibility of using our formal model to
automate tests for GlobalPlatform compliance.

Formal Development. The B method supports fully formal software develop-
ment. An interesting line of work is to investigate if the model could be, at least
partially, refined down to executable code. Another possibility is to refine the
existing model to specialise it for particular card configurations: proving the re-
finement correctness amounts to justifying compatibility with the specifications.
The layered structure of the specification makes the model easy to extend.

Reference Implementation. Instead of refining the formal model to exe-
cutable code, an alternative approach is to reuse the model to derive a reference
implementation annotated in a specification language like JML, together with a
justification that the implementation satisfies the specification. Such annotated
implementation may be subject to model checking and static verification.

Specification Maintenance. The smart card field is highly dynamic, specifi-
cations must evolve to satisfy the market requirements and this formal model is
not an exception. Future versions of GlobalPlatform specifications are already
scheduled for 2006. Rather than becoming a load, both specifications may benefit
from evolving simultaneously, envisaging the possibility of a future convergence.

7.2 Related Work

Formal methods had been applied to the verification of real-world smart card
applications. Significant research effort has been put into the formalisation of
specific smart card platform implementations. However, most of the work has
been concerned with the Java Card platform (e.g. virtual machine, bytecode
verifier and API). We detail some of the main achievements below.

Application Verification Stepney et al. [18] give a specification and formal
proofs of some security properties of an industrial strength electronic purse ap-
plication using Z. Huisman and Cataño [19] use ESC/Java to annotate with
functional specifications and statically verify the code of an electronic purse
Java Card applet. The KeY tool [20] is an interactive theorem prover based on
Dynamic Logic for Java Card source code annotated in OCL. Krakatoa [21] and
Jack [22] are tools for the verification of JML-annotated Java Card programs,
using the Coq proof assistant. Jack may also generate proof obligations for other
theorem provers like PVS and Simplify.



Java Card Virtual Machine (JCVM) The VerifiCard [23] project succeeded
in giving complete formalisations of the Java Card platform implementation
at both bytecode and source code level. A partial formalisation of the JCVM
using the B formal method is given in [9]. The Bali project [24] formalises in
Isabelle/HOL a large body of the Java platform, including operational semantics
for the source and bytecode languages and an abstract ByteCode Verifier (BCV);
[25] provides executable Coq specifications for the JCVM as well as a BCV. [26]
is a volume dedicated to the formal syntax and semantics of Java. All these
works provide means to reason formally about applications written in the Java
Card programming language and enable the verification of applet correctness.

Java Card API Interface specifications for the Java Card API have been
written in the JML and ESC/Java specification languages and are presented
in [27–29]. [30] is a recent overview of JML tools and applications. The LOOP
(Logic of Object-Oriented Programming) tool was used to verify that the ac-
tual Java Card API classes deployed in smart cards satisfy the JML interface
specifications [31].

Protocols Sabatier and Lartigue present their result on the validation of the
transaction mechanism for smart cards using the B method in [11]. A semi-formal
and a formal B specification of the T=1 protocol used to transfer messages be-
tween a smart card and a reader is presented in [12]. This approach complements
our work, since we only deal with on-card features.
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21. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification of
Java/JavaCard programs annotated in JML. J. Log. Algebr. Program. 58 (2004)
89–106

22. Burdy, L., Requet, A., Lanet, J.L.: Java applet correctness: A developer-oriented
approach. In Araki, K., Gnesi, S., Mandrioli, D., eds.: FME 2003: Formal Meth-
ods: International Symposium of Formal Methods Europe. Volume 2805 of LNCS,
Springer-Verlag (2003) 422–439

23. VerifiCard project. http://www.cs.ru.nl/VerifiCard.

24. Bali project. http://isabelle.in.tum.de/bali.



25. Barthe, G., Dufay, G., Jakubiec, L., Serpette, B.P., de Sousa, S.M.: A formal
executable semantics of the JavaCard platform. In: ESOP ’01: Proceedings of the
10th European Symposium on Programming Languages and Systems, Springer-
Verlag (2001) 302–319

26. Alves-Foss, J., ed.: Formal syntax and semantics of Java. Volume 1523 of LNCS.
Springer-Verlag (1999)

27. Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML.
In Domingo-Ferrer, J., Chan, D., Watson, A., eds.: Fourth Smart Card Research
and Advanced Application Conference (CARDIS’2000), Kluwer Acad. Publ. (2000)
135–154

28. Poll, E., van den Berg, J., Jacobs, B.: Formal specification of the JavaCard API
in JML: the APDU class. Computer Networks 36 (2001) 407–421

29. Meijer, H., Poll, E.: Towards a full formal specification of the Java Card API.
Volume 2140 of LNCS, Springer-Verlag (2001) 165+

30. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. STTT 7 (2005)
212–232

31. Poll, E., van den Berg, J., Jacobs, B.: Formal specification and verification of
JavaCard’s application identifier class. In Attali, I., Jensen, T., eds.: Proceedings
of the Java Card 2000 Workshop. Volume 2041 of LNCS, Springer-Verlag (2001)
137–150


