
A Formal Specification of the MIDP 2.0
Security Model

Santiago Zanella Béguelin1,2, Gustavo Betarte3, and Carlos Luna3

1 INRIA–Microsoft Research Joint Laboratory, 91893 Orsay Cedex, France
INRIA Sophia Antipolis, 06902 Sophia Antipolis Cedex, France,

Santiago.Zanella@sophia.inria.fr
2 InCo, Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay,

{gustun,cluna}@fing.edu.uy

Abstract. This paper presents, to the best of our knowledge, the first
formal specification of the application security model defined by the Mo-
bile Information Device Profile 2.0 for Java 2 Micro Edition. The spec-
ification, which has been formalized in Coq, provides an abstract rep-
resentation of the state of a device and the security-related events that
allows to reason about the security properties of the platform where
the model is deployed. We state and sketch the proof of some desirable
properties of the security model. Although the abstract specification is
not executable, we describe a refinement methodology that leads to an
executable prototype.

1 Introduction

Mobile devices (e.g. cell phones, personal digital assistants) often have access
to sensitive personal data, are subscribed to paid services and are capable of
establishing connections with external entities. Users of such devices may, in
addition, download and install applications from untrusted sites at their will.
Since any security breach may expose sensitive data, prevent the use of the
device, or allow applications to perform actions that incur a charge for the user,
it is essential to provide an application security model that can be relied upon –
the slightest vulnerability may imply huge losses due to the scale the technology
has been deployed.

Java 2 Micro Edition (J2ME) is a version of the Java platform targeted at
resource-constrained devices which comprises two kinds of components: configu-
rations and profiles. A configuration is composed of a virtual machine and a set
of APIs that provide the basic functionality for a particular category of devices.
Profiles further determine the target technology by defining a set of higher level
APIs built on top of an underlying configuration. This two-level architecture
enhances portability and enables developers to deliver applications that run on
a wide range of devices with similar capabilities. This work only concerns the
topmost level of the architecture which corresponds to the profile that defines
the security model we formalize.

The Connected Limited Device Configuration (CLDC) is a J2ME configu-
ration designed for devices with slow processors, limited memory and intermit-
tent connectivity. CLDC together with the Mobile Information Device Profile
(MIDP) provides a complete J2ME runtime environment tailored for devices
like cell phones and personal data assistants. MIDP defines an application life
cycle, a security model and APIs that offer the functionality required by mobile
applications, including networking, user interface, push activation and persistent
local storage. Many mobile device manufacturers have adopted MIDP since the
specification was made available. Nowadays, literally millions of MIDP enabled
devices are deployed worldwide and the market acceptance of the specification
is expected to continue to grow steadily.

In the original MIDP 1.0 specification [1], any application not installed by
the device manufacturer or a service provider runs in a sandbox that prohibits
access to security sensitive APIs or functions of the device (e.g. push activation).
Although this sandbox security model effectively prevents any rogue application
from jeopardizing the security of the device, it is excessively restrictive and does
not allow many useful applications to be deployed after issuance.

MIDP 2.0 [2] introduces a new security model based on the concept of pro-
tection domains. Each sensitive API or function on the device may define per-
missions in order to prevent it from being used without authorization. Every
installed application is bound to a unique protection domain that defines a set
of permissions granted either unconditionally or with explicit user authoriza-
tion. Untrusted applications are bound to a protection domain with permissions
equivalent to those in a MIDP 1.0 sandbox. Trusted applications may be iden-
tified by means of cryptographic signatures and bound to more permissive pro-
tection domains. This security model enables applications developed by trusted
third parties to be downloaded and installed after issuance of the device without
compromising its security.

Some effort has been put into the evaluation of the security model for MIDP
2.0; Kolsi and Virtanen [3] and Debbabi et al. [4] analyse the application security
model, spot vulnerabilities in various implementations and suggest improvements
to the specification. Although these works report on the detection of security
holes, they do not intend to prove their absence. The formalization we overview
here, however, provides a formal basis for the verification of the model and the
understanding of its intricacies.

We developed our specification using the Coq proof assistant [5, 6]. A de-
tailed description of the specification is presented in Spanish in [7]; a shorter,
preliminary version of this paper appeared in InCo’s technical report series [8].
Both documents, along with the full formalization in Coq may be obtained from
http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP.

The rest of the paper is organized as follows, Section 2 describes some of
the notation used in this document, Section 3 overviews the formalization of
the MIDP 2.0 security model, Section 4 presents some of its verified properties
along with outlines of their proofs, Section 5 proposes a methodology to refine the

specification and obtain an executable prototype and finally, Section 6 concludes
with a summary of our contributions and directions for future work.

2 Notation

We use standard notation for equality and logical connectives (∧, ∨, ¬, →, ∀, ∃).
Implication and universal quantification may be encoded in Coq using dependent
product, while equality and the other connectives can be defined inductively.
Anonymous predicates are introduced using lambda notation, e.g. (λ n . n = 0)
is a predicate that when applied to n, is true iff n is zero.

We extensively use record types; a record type definition

R
def= {field1 : A1, . . . , fieldn : An} (1)

generates a non-recursive inductive type with just one constructor, namely mkR,
and projections functions fieldi : R → Ai. We write 〈a1, . . . , an〉 instead of
mkR a1 . . . an when the type R is obvious from the context. Application of
projections functions is abbreviated using dot notation (i.e. fieldi r = r.fieldi).
For each field fieldi in a record type we define a binary relation ≡fieldi

over
objects of the type as

r1 ≡fieldi
r2

def= ∀ j, j 6= i → r1.fieldj = r2.fieldj (2)

We define an inductive relation I by giving introduction rules of the form

P1 · · · Pm

I x1 . . . xn
rule (3)

where free occurrences of variables are implicitly universally quantified.
We assume as predefined inductive types the parametric type option T with

constructors None : option T and Some : T → option T , and the type seq T of
finite sequences over T . We denote the empty sequence by [] and the constructor
that appends an element a to a sequence s in infix form as in s a a. The symbol
⊕ stands for the concatenation operator on sequences.

3 Formalization of the MIDP 2.0 Security Model

In this section we present and discuss the formal specification of the security
model. We introduce first some types and constants used in the remainder of the
formalization, then we define the set of valid device states and security-related
events, give a transition semantics for events based on pre- and postconditions
and define the concept of a session.

3.1 Sets and Constants

In MIDP, applications (usually called MIDlets) are packaged and distributed
as suites. A suite may contain one or more MIDlets and is distributed as two
files, an application descriptor file and an archive file that contains the actual
Java classes and resources. A suite that uses protected APIs or functions should
declare the corresponding permissions in its descriptor either as required for its
correct functioning or as optional.

Let Permission be the total set of permissions defined by every protected
API or function on the device and Domain the set of all protection domains. Let
us introduce, as a way of referring to individual MIDlet suites, the set SuiteID of
valid suite identifiers. We will represent a descriptor as a record composed of two
predicates, required and optional, that identify respectively the set of permis-
sions declared as required and those declared as optional by the corresponding
suite,

Descriptor
def= {required, optional : Permission → Prop} (4)

A record type is used to represent an installed suite, with fields for its identifier,
associated protection domain and descriptor,

Suite
def= {id : SuiteID, domain : Domain, descriptor : Descriptor} (5)

Permissions may be granted by the user to an active MIDlet suite in either of
three modes, for a single use (oneshot), as long as the suite is running (session), or
as long as the suite remains installed (blanket). Let Mode be the enumerated set
of user interaction modes {oneshot, session, blanket} and ≤m an order relation
such that

oneshot ≤m session ≤m blanket (6)

We will assume for the rest of the formalization that the security policy of the
protection domains on the device is an anonymous constant of type

Policy
def= { allow : Domain → Permission → Prop,

user : Domain → Permission → Mode → Prop }
(7)

which for each domain specifies at most one mode for a given permission,

(∀ d p, allow d p → ∀ m,¬user d p m) ∧
(∀ d p m, user d p m → ¬allow d p ∧ ∀ m′, user d p m′ → m = m′) (8)

and such that allow d p holds when domain d unconditionally grants the per-
mission p and user d p m holds when domain d grants permission p with explicit
user authorization and maximum allowable mode m (w.r.t. ≤m). The permis-
sions effectively granted to a MIDlet suite are the intersection of the permissions
requested in its descriptor with the union of the permissions given uncondition-
ally by its domain and those given explicitly by the user.

3.2 Device State

To reason about the MIDP 2.0 security model most details of the device state
may be abstracted; it is sufficient to specify the set of installed suites, the per-
missions granted or revoked to them and the currently active suite in case there
is one. The active suite, and the permissions granted or revoked to it for the
session are grouped into a record structure

SessionInfo
def= { id : SuiteID,

granted, revoked : Permission → Prop }
(9)

The abstract device state is described as a record of type

State
def= { suite : Suite → Prop,

session : option SessionInfo,
granted, revoked : SuiteID → Permission → Prop }

(10)

where suite is the characteristic predicate of the set of installed suites.

Example 1. Consider a MIDlet that periodically connects to a webmail service
using HTTPS when possible or HTTP otherwise, and alerts the user when-
ever they have new mail. The suite containing this MIDlet should declare in
its descriptor as required permissions p push, for accessing the PushRegistry
(for timer-based activation), and p http, for using the HTTP protocol API. It
should also declare as optional the permission p https for accessing the HTTPS
protocol API. Suppose that upon installation, the suite (whose identifier is id)
is recognized as trusted and is thus bound to a protection domain dom that
allows access to the PushRegistry API unconditionally but by default requests
user authorization for opening every HTTP or HTTPS connection. Suppose also
that the domain allows the user to grant the MIDlet the permission for opening
further connections as long as the suite remains installed. Then, the security
policy satisfies:

allow dom p push ∧user dom p http blanket ∧user dom p https blanket (11)

If st is the state of the device, the suite is represented by some ms : Suite such
that st.suite ms and ms.id = id hold. Its descriptor ms.descriptor satisfies

ms.descriptor.required p push ∧ms.descriptor.required p http ∧
ms.descriptor.optional p https

(12)

The MIDlet will have unlimited access to the PushRegistry applet, but will have
to request user authorization every time it makes a new connection. The user may
chose at any time to authorize further connections by granting the corresponding
permission in blanket mode, thus avoiding being asked for authorization each
time the applet communicates with the webmail service.

The remainder of this subsection enumerates the conditions that must hold
for an element s : State in order to represent a valid state for a device.

1. A MIDlet suite can be installed and bound to a protection domain only if
the set of permissions declared as required in its descriptor are a subset of
the permissions the domain offers (with or without user authorization). This
compatibility relation between des : Descriptor and dom : Domain can be
stated formally as follows,

des o dom
def= ∀ p : Permission,

des.required p → allow dom p ∨ ∃ m : Mode, user dom p m
(13)

Every installed suite must be compatible with its associated protection do-
main,

SuiteCompatible
def=

∀ ms : Suite, s.suite ms → ms.descriptor oms.domain
(14)

2. Whenever there exists a running session, the suite identifier in s.session
must correspond to an installed suite,

CurrentInstalled
def= ∀ ses : SessionInfo, s.session = Some ses →

∃ ms : Suite, s.suite ms ∧ms.id = ses.id
(15)

3. The set of permissions granted for the session must be a subset of the permis-
sions requested in the application descriptor of the active suite. In addition,
the associated protection domain policy must allow those permissions to be
granted at least in session mode,

V alidSessionGranted
def= ∀ ses : SessionInfo, s.session = Some ses →

∀ p : Permission, ses.granted p →
∀ ms : Suite, s.suite ms → ms.id = ses.id →

(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
(∃ m : Mode, user ms.domain p m ∧ session ≤m m)

(16)
4. Every installed suite shall have a unique identifier,

UniqueSuiteID
def= ∀ ms1 ms2 : Suite,

s.suite ms1 → s.suite ms2 → ms1.id = ms2.id → ms1 = ms2

(17)

5. For every installed suite with identifier id, the predicate s.granted id should
be valid with respect to its descriptor and associated protection domain
(V alidGranted s). We omit the detailed formalization of this condition.

6. A granted permission shall not be revoked at the same time and viceversa
(V alidGrantedRevoked s). We omit the detailed formalization.

3.3 Events

We define a set Event for those events that are relevant to our abstraction of
the device state (Table 1). The user may be presented with the choice between

accepting or refusing an authorization request, specifying the period of time their
choice remains valid. The outcome of a user interaction is represented using the
type UserAnswer with constructors

ua allow, ua deny : Mode → UserAnswer (18)

Table 1. Events

Name Description Type

start Start of session SuiteID → Event

terminate End of session Event

request Permission request Permission → option UserAnswer → Event

install MIDlet suite installation SuiteID → Descriptor → Domain → Event

remove MIDlet suite removal SuiteID → Event

The behaviour of the events is specified by their pre- and postconditions
given by the predicates Pre and Pos respectively. Preconditions (Table 2) are
defined in terms of the device state while postconditions (Table 3) are defined
in terms of the before and after states and an optional response which is only
meaningful for the request event and indicates whether the requested operation
is authorized,

Pre : State → Event → Prop
Pos : State → State → option Response → Event → Prop

(19)

Table 2. Event preconditions. The precondition of the request event is omitted for
reasons of space

Pre s (start id)
def
=

s.session = None ∧ ∃ ms : Suite, s.suite ms ∧ms.id = id

Pre s terminate
def
= s.session 6= None

Pre s (install id des dom)
def
=

des o dom ∧ ∀ ms : Suite, s.suite ms → ms.id 6= id.

Pre s (remove id)
def
=

(∀ ses : SessionInfo, s.session = Some ses → ses.id 6= id) ∧
∃ ms : Suite, s.suite ms ∧ms.id = id

Example 2. Consider an event representing a permission request for which the
user denies the authorization. Such an event can only occur when the active

Table 3. Event postconditions. The postcondition for the request event is omitted for
reasons of space

Pos s s′ r (start id)
def
=

r = None ∧ s ≡session s′ ∧ ∃ ses′, s′.session = Some ses′ ∧ ses′.id = id ∧
∀ p : Permission,¬ses′.granted p ∧ ¬ses′.revoked p

Pos s s′ r terminate
def
= r = None ∧ s ≡session s′ ∧ s′.session = None

Pos s s′ r (install id des dom)
def
=

r = None ∧ (∀ ms : Suite, s.suite ms → s′.suite ms) ∧
(∀ ms : Suite, s′.suite ms → s.suite ms ∨ms = 〈id, dom, des〉) ∧
s′.suite 〈id, dom, des〉 ∧ s′.session = s.session ∧
(∀ p : Permission,¬s′.granted id p ∧ ¬s′.revoked id p) ∧
(∀ id1 : SuiteID, id1 6= id →

s′.granted id1 = s.granted id1 ∧ s′.revoked id1 = s.revoked id1)

Pos s s′ r (remove id)
def
= r = None ∧ s ≡suite s′ ∧

(∀ ms : Suite, s.suite ms → ms.id 6= id → s′.suite ms) ∧
(∀ ms : Suite, s′.suite ms → s.suite ms ∧ms.id 6= id)

suite has declared the requested permission in its descriptor and is bound to
a protection domain that specifies a user interaction mode for that permission
(otherwise, the request would be immediately accepted or rejected). Further-
more, the requested permission must not have been revoked or granted for the
rest of the session or the rest of the suite’s life,

Pre s (request p (Some (ua deny m))) def=
∃ ses : SessionInfo, s.session = Some ses ∧
∀ ms : Suite, s.suite ms → ms.id = ses.id →

(ms.descriptor.required p ∨ms.descriptor.optional p) ∧
(∃ m1 : Mode, user ms.domain p m1) ∧
¬ses.granted p ∧ ¬ses.revoked p ∧
¬s.granted ses.id p ∧ ¬s.revoked ses.id p

(20)

When m = session, the user revokes the permission for the whole session, there-
fore, the response denies the permission and the state is updated accordingly,

Pos s s′ r (request p (Some (ua deny session))) def=
r = Some denied ∧ s ≡session s′ ∧
∀ ses : SessionInfo, s.session = Some ses →
∃ ses′ : SessionInfo,

s′.session = Some ses′ ∧ ses′ ≡revoked ses ∧ ses′.revoked p ∧
(∀ q : Permission, q 6= p → ses′.revoked q = ses.revoked q)

(21)

3.4 One-step Execution

The behavioural specification of the execution of an event is given by the ↪→
relation with the following introduction rules:

¬Pre s e

s ↪
e/None−−−−−→ s

npre Pre s e Pos s s′ r e

s ↪
e/r−−→ s′

pre
(22)

Whenever an event occurs for which the precondition does not hold, the state
must remain unchanged. Otherwise, the state may change in such a way that
the event postcondition is established. The notation s ↪

e/r−−→ s′ may be read as
“the execution of the event e in state s results in a new state s′ and produces a
response r”.

3.5 Sessions

A session is the period of time spanning from a successful start event to a
terminate event, in which a single suite remains active. A session for a suite
with identifier id (Fig. 1) is determined by an initial state s0 and a sequence of
steps 〈ei, si, ri〉 (i = 1, . . . , n) such that the following conditions hold,

– e1 = start id ;
– Pre s0 e1 ;
– ∀ i ∈ {2, . . . , n− 1}, ei 6= terminate ;
– en = terminate ;
– ∀ i ∈ {1, . . . , n}, si−1 ↪

ei/ri−−−→ si .

s0 ↪
start id/r1−−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−−−→ sn

Fig. 1. A session for a suite with identifier id

To define the session concept we introduce before the concept of partial
session. A partial session is a session for which the terminate event has not yet
been elicited; it is defined inductively by the following rules,

Pre s0 (start id) s0 ↪
start id/r1−−−−−−−→ s1

PSession s0 ([] a 〈start id, s1, r1〉)
psession start

(23)

PSession s0 (ss a last) e 6= terminate last.s ↪
e/r−−→ s′

PSession s0 (ss a last a 〈e, s′, r〉)
psession app

(24)

Now, sessions can be easily defined as follows,

PSession s0 (ss a last) last.s ↪
terminate/r−−−−−−−−→ s′

Session s0 (ss a last a 〈terminate, s′, r〉)
session terminate

(25)

4 Verification of Security Properties

This section is devoted to establishing relevant security properties of the model.
Due to space constraints, proofs are merely outlined; however, all proofs have
been formalized in Coq and are available as part of the full specification.

4.1 An Invariant of One-step Execution

We call one-step invariant a property that remains true after the execution of
every event if it is true before. We show next that the validity of the device state,
as defined in Section 3.2, is a one-step invariant of our specification.

Theorem 1. Let V alid be a predicate over State defined as the conjunction of
the validity conditions in Sect. 3.2. For any s s′ : State, r : option Response

and e : Event, if V alid s and s ↪
e/r−−→ s′ hold, then V alid s′ also holds.

Proof. By case analysis on s↪
e/r−−→s′. When Pre s e does not hold, s = s′ and s′ is

valid because s is valid. Otherwise, Pos s s′ r e must hold and we proceed by case
analysis on e. We will only show the case request p (Some (ua deny session)),
obtained after further case analysis on a when e = request p (Some a).

The postcondition (21) entails that s ≡session s′, that the session remains
active, and that ses′ ≡revoked ses. Therefore, the set of installed suites re-
mains unchanged (s′.suite = s.suite), the set of permissions granted for the
session does not change (ses′.granted = ses.granted) and neither does the set
of permissions granted or revoked in blanket mode (s′.granted = s.granted,
s′.revoked = s.revoked). From these equalities, every validity condition of the
state s′ except V alidGrantedRevoked s′ follows immediately from the validity
of s. We next prove V alidGrantedRevoked s′.

We know from the postcondition of the even that

∀ q, q 6= p → ses′.revoked q = ses.revoked q (26)

Let q be any permission. If q 6= p, then from (26) follows ses′.revoked q =
ses.revoked q and because q was not granted and revoked simultaneously before
the event, neither it is afterwards. If q = p, then we know from the precondition
(20) that p were not granted before and thus it is not granted afterwards. This
proves V alidGrantedRevoked s′ and together with the previous results, V alid s′.

ut

4.2 Session Invariants

We call session invariant a property of a step that holds for the rest of a session
once it is established in any step. Let P be a predicate over T , we define all P
as an inductive predicate over seq T by the following rules:

all P [] all nil
all P ss P s

all P (ss a s)
all snoc

(27)

Theorem 2. Let s0 be a valid state and ss a partial session starting from s0,
then every state in ss is valid,

all (λ step . V alid step.s) ss (28)

Proof. By induction on the structure of PSession s0 ss.

– When constructed using psession start, ss has the form []a〈start id, s1, r1〉
and s0 ↪

start id/r1−−−−−−−→ s1 holds. We must prove

all (λ step . V alid step.s) ([] a 〈start id, s1, r1〉) (29)

By applying all app and then all nil the goal is simplified to V alid s1 and
is proved from s0 ↪

start id/r1−−−−−−−→ s1 and V alid s0 by applying Theorem 1.
– When it is constructed using psession app, ss has the form ss1

a last a

〈e, s′, r〉 and last.s ↪
e/r−−→ s′ holds. The induction hypothesis is

all (λ step . V alid step.s) (ss1
a last) (30)

and we must prove all (λ step . V alid step.s) (ss1
a last a 〈e, s′, r〉). By

applying all app and then (30) the goal is simplified to V alid s′. From (30)
we know that last.s is a valid state. The goal is proved from last.s ↪

e/r−−→ s′

and V alid last.s by applying Theorem 1. ut

The above theorem may be easily extended from partial sessions to sessions
using Theorem 1 one more time. State validity is just a particular property that
is true for a partial session once it is established, the result can be generalized
for other properties as shown in the following lemma.

Lemma 1. For any property P of a step satisfying

∀ (s s′ : State)(r r′ : option Response)(e e′ : Event),
e′ 6= terminate → s ↪

e′/r′−−−→ s′ → P 〈e, s, r〉 → P 〈e′, s′, r′〉 ,
(31)

if PSession s0 (ss a step⊕ ss1) and P step, then all P ss1 holds.

Perhaps a more interesting property is a guarantee of the proper enforcement of
revocation. We prove that once a permission is revoked by the user for the rest
of a session, any further request for the same permission in the same session is
refused.

Lemma 2. The following property satisfies (31),

(λ step . ∃ ses, step.s.session = Some ses ∧ ses.revoked p) (32)

Theorem 3. For any permission p, if PSession s0 (ss a step a step1 ⊕ ss1),
step1.e = request p (Some (ua deny session)) and Pre step.s step1.e, then

all (λ step . ∀ o, step.e = request p o → step.r 6= Some allowed) ss1 (33)

Proof. Since Pos step.s step1.s step1.r step1.e must hold, p is revoked for the
session in step1.s. From Lemmas 1 and 2, p remains revoked for the rest of the
session. Let e = request p o be an event in a step step2 in ss1. We know that
p is revoked for the session in the state before step2.s. If the precondition for e
does not hold in the state before3, then step2.r = None. Otherwise, e must be
request p None and its postcondition entails step2.r = Some denied. ut

5 Refinement

In the formalization described in the previous sections we have specified the
behaviour of events implicitly as a binary relation on states instead of explic-
itly as a state transformer. Moreover, the described formalization is higher-order
because, for instance, predicates are used to represent part of the device state
and the transition semantics of events is given as a relation on states. The most
evident consequence of this choice is that the resulting specification is not ex-
ecutable. What is more, the program extraction mechanism provided by Coq
to extract programs from specifications cannot be used in this case. However,
had we constructed a more concrete specification at first, we would have had to
take arbitrary design decisions from the beginning, unnecessarily restricting the
allowable implementations and complicating the verification of properties of the
security model.

We will show in the rest of this section that it is feasible to obtain an exe-
cutable specification from our abstract specification. The methodology we pro-
pose produces also a proof that the former is a refinement of the latter, thus
guaranteeing soundness of the entire process. The methodology is inspired by
the work of Spivey [9] on operation and data refinement, and the more com-
prehensive works of Back and von Wright [10] and Morgan [11] on refinement
calculus.

5.1 Executable Specification

In order to construct an executable specification it is first necessary to choose a
concrete representation for every object in the original specification not directly
implementable in a functional language. In particular, the transition relation that
defines the behaviour of events implicitly by means of their pre- and postcondi-
tions must be refined to a function that deterministically computes the outcome
of an event. At this point, it is unavoidable to take some arbitrary decisions
about the exact representation to use. For example, a decidable predicate P on
a finite set A might be represented as a function from A to a type isomorphic to
bool, as a exhaustive list of the elements of A that satisfies the predicate, or in
some other equally expressive way. For every type T in the abstract specification,
we will denote its concrete model as T . Let a : A and a : A, we will indicate that
a is a refinement of a as a v a.

3 Actually, it holds only when o = None.

In our case, every predicate to be refined is decidable and is satisfied only by
a finite subset of elements in its domain (they are all characteristic predicates
of finite sets). Let P be one of such predicates on a set A and let l be a list of
elements of A, we will say that l refines P whenever

(∀ a, P a → ∃ a, a ∈ l ∧ a v a) ∧
(∀ a, a ∈ l → ∃ a, P a ∧ a v a) (34)

where x ∈ l means that there exists at least one occurrence of x in l. When A
and A coincide, v is the equality relation on A, and the condition (34) simplifies
to ∀ a, P a ↔ a ∈ l. Let a : A and a : A be such that a v a, we define

(None : option A) v (None : option A)
Some a v Some a

(35)

The above concrete representations can be used to obtain a concrete model
for the device state and the security-related events:

State := { suite : list Suite,

session : option SessionInfo,
granted, revoked : SuiteID → list Permission }

(36)

start : SuiteID → Event
terminate : Event
request : Permission → option UserAnswer → Event

install : SuiteID → Descriptor → Domain → Event
remove : SuiteID → Event

(37)

The refinement relation v can be naturally extended to states, events and the
rest of the types used in the formalization.

5.2 Soundness

Having chosen a concrete representation for the objects in the specification,
everything is set for specifying the behaviour of events as a function

interp : State → Event → State× (option Response) (38)

The soundness of the interp function w.r.t. the transition relation ↪→ is given
by the following simulation condition, illustrated in Fig. 2.

∀ (s : State)
(
s : State

)
(e : Event)

(
e : Event

)
(r : option Response),

s v s → e v e →
let (s′, r) := interp s e in ∃ s′ : State, s′ v s′ ∧ s ↪

e/r−−→ s′
(39)

It can be shown that the refinement relation v on states satisfies

∀ s : State,∃ s : State, s v s (40)

s s′

s s′

interp

↪→

v v

State

State

Fig. 2. Simulation relation between interp and the relation ↪→. Given sates s, s and
events e, e such that s v s y e v e, for every state s′ and response r computed by
interp there must exists a corresponding abstract state s′ refined by s′ reachable from
s by the ↪→ relation with the same response

Thus, the existential quantifier in the above condition may be replaced by a
universal quantifier to obtain the stronger (but sometimes easier to prove) con-
dition:

∀ (s s′ : State)
(
s : State

)
(e : Event)

(
e : Event

)
(r : option Response),

s v s → e v e →
let (s′, r) := interp s e in s′ v s′ → s ↪

e/r−−→ s′
(41)

With a function interp satisfying either (39) or (41) and a concrete initial state s0

that refines an initial abstract state s0, the Coq program extraction mechanism
can be used to produce an executable prototype of the MIDP 2.0 security model
in a functional language such as OCaml, Haskell or Scheme.

6 Conclusions

The informal specification in [2] puts forward an application security model
that any MIDP 2.0 enabled device must satisfy. Although analyses of particular
implementations have been proved useful for discovering vulnerabilities, so far
the problem of the verification of the security model has not been addressed. We
believe our contribution constitutes an excellent starting point for a thorough
verification of the model, which would give a higher assurance level than the
techniques applied so far.

We have produced, to the best of our knowledge, an unprecedented verifi-
able formalization of the MIDP 2.0 security model and have also constructed
the proofs of several important properties that should be satisfied by any im-
plementation that fulfils its specification. It is unclear from the MIDP 2.0 spec-
ification exactly how other mechanisms interact with the security model. Our
formalization is precise and detailed enough to study, for instance, the interfer-
ence between the security rules that control access to the device resources and

mechanisms such as application installation. This issues have not been treated
anywhere else.

The specification has been completed in 4 man-months and comprises around
2200 lines, about 1000 of which are dedicated to proofs. In its construction, two
simplifying assumptions have been made:

1. the security policy is static;
2. up to one suite may be active at a time.

Actually, most implementations (if not all) enforce these assumptions. However,
the MIDP 2.0 specification does not and therefore, it would be interesting to
explore the consequences of relaxing them by extending the formalization. An
orthogonal direction is to divert from the MIDP 2.0 specification, enriching the
model to allow more expressive policies. We imagine two different possibilities:

1. abandon the unstructured model of permissions in favour of a hierarchical
one;

2. generalize user interaction modes.

The former would allow group of permissions to be revoked or granted accord-
ing to a tree structure, perhaps exploiting the already hierarchical naming of
permissions in MIDP. The latter would allow richer policies such as granting
a permission for a given number of uses or sessions. In a recent, as yet unpub-
lished work Besson, Dufay and Jensen [12] describe a generalized model of access
control for mobile devices that follows these directions to some extent.

We have also proposed a refinement methodology that might be used to
obtain a sound executable prototype of the security model. Although we do not
show it here, we have followed this methodology with a restricted set of events.
Judging by the success of this experience, we strongly believe it is feasible to
obtain a prototype for the whole set of events.

References

1. JSR 37 Expert Group: Mobile Information Device Profile for Java 2 Micro Edition.
Version 1.0. Sun Microsystems, Inc. (2000)

2. JSR 118 Expert Group: Mobile Information Device Profile for Java 2 Micro Edition.
Version 2.0. Sun Microsystems, Inc. and Motorola, Inc. (2002)

3. Kolsi, O., Virtanen, T.: MIDP 2.0 security enhancements. In: Proceedings of the
37th Annual Hawaii International Conference on System Sciences, Washington,
DC, USA, IEEE Computer Society (2004) 90287.3

4. Debbabi, M., Saleh, M., Talhi, C., Zhioua, S.: Security analysis of wireless Java. In:
Proceedings of the 3rd Annual Conference on Privacy, Security and Trust. (2005)

5. The Coq Development Team: The Coq Proof Assistant Reference Manual – Version
V8.0. (2004)

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag (2004)

7. Zanella Béguelin, S.: Especificación formal del modelo de seguridad de MIDP 2.0
en el Cálculo de Construcciones Inductivas. Master’s thesis, Universidad Nacional
de Rosario (2006)

8. Zanella Béguelin, S., Betarte, G., Luna, C.: A formal specification of the MIDP
2.0 security model. Technical Report 06-09, Instituto de Computación, Facultad
de Ingenieŕıa, Universidad de la República, Uruguay (2006)

9. Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Com-
puter Science. Prentice Hall, Hemel Hempstead, Hertfordshire, UK (1989)

10. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer-Verlag (1998) Graduate Texts in Computer Science.

11. Morgan, C.: Programming from specifications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1990)

12. Besson, F., Dufay, G., Jensen, T.: A formal model of access control for mobile
interactive devices. In: Proceedings of the 11th European Symposium on Research
in Computer Security (ESORICS). Lecture Notes in Computer Science, Springer-
Verlag (2006) To appear.

