
Motivation Specification Verification Refinement

A Formal Specification of the MIDP 2.0
Security Model

Santiago Zanella Béguelin1 Gustavo Betarte2 Carlos Luna2

1Everest Project, INRIA Sophia Antipolis
INRIA–Microsoft Research Joint Laboratory

2InCo, Universidad de la República, Uruguay

Workshop on Formal Aspects in Security and Trust, 2006

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Outline

1 Motivation

2 Specification

3 Verification

4 Refinement

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

What is a Mobile Device?

Defining characteristics

portable

scarce resources (compared with other platforms)

communicated

stores personal information

subscribed to pay-per-use services

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Some Examples

Cell Phones Personal Digital Assistants

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem

What a secure mobile device should enforce:

Data confidentiality and integrity

Cost control

Availability

...even in the presence of malicious applications

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem

What a secure mobile device should enforce:

Data confidentiality and integrity

Cost control

Availability

...even in the presence of malicious applications

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Problem
A possible scenario

If the device supports loading of executable code after
issuance...

A

B

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

First Solution
Removing the cause

Either

Don’t allow users to download code

but they love to do so
(and it’s a big market opportunity)

Don’t allow downloaded code to access sensitive APIs

but many useful applications must do so
(e.g. synchronization, news push)

Roughly, MIDP 1.0 used this last solution (a sandbox model)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Second solution
Establish a security policy

A security policy is a mapping from a set of properties that
characterize code to a set of access permissions granted to
that code

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Second solution
Establish a security policy

A security policy is a mapping from a set of properties that
characterize code to a set of access permissions granted to
that code

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Layered J2ME - MIDP architecture

Hardware

Native Operating System

CLDC
Java Virtual Machine

Native
Applications

MIDP

OEM-specific
APIs

OEM-specific
Applications

MIDP Applications

Users may only download MIDP applications

MIDP applications access resources through restricted
interface

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

MIDP Security Model

In MIDP 1.0, sandbox-like model

In MIDP 2.0, model based on protection domains

Protection Domain

It’s an abstraction of the context of execution of a piece of
code

Restricts access to sensitive functions

In MIDP 2.0, each application belongs to a suite and each
suite is bound to a unique Protection Domain

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

MIDP Security Model

In MIDP 1.0, sandbox-like model

In MIDP 2.0, model based on protection domains

Protection Domain

It’s an abstraction of the context of execution of a piece of
code

Restricts access to sensitive functions

In MIDP 2.0, each application belongs to a suite and each
suite is bound to a unique Protection Domain

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Protection Domains in Practice

SigKA

SigKB

Policy

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Protection Domains in Practice

Policy

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

MIDP 2.0 Security Model

Protected function −→ Permission

A Protection Domain determines:

A set of permissions granted unconditionally
A set of permissions that could be granted with explicit
user authorization, together with a mode that specifies its
validity

blanket until the removal of the suite
session for the current session
oneshot for a single use

oneshot ≤m session ≤m blanket .
The specified mode is an upper bound

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Permissions Acquired by a Suite

A suite declares at installation time the permissions it requires

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Permissions Acquired by a Suite

A suite declares at installation time the permissions it requires

Acquired = Requested ∩
(Unconditionally granted ∪
Granted by user authorization)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

New Problems

Issues

Does the security model enforce the security policy?

Do implementations conform to the model?

How do other operations interfere with the model?

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

New Problems

Issues

Does the security model enforce the security policy?

Do implementations conform to the model?

How do other operations interfere with the model?

What is exactly the security model?

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Outline

1 Motivation

2 Specification

3 Verification

4 Refinement

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Remarks

Formalized in the Calculus of Inductive Constructions

Developed with the Coq proof assistant

Abstract higher-order specification

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

The Calculus of Inductive Constructions

CIC

CIC is an extension of the simple-typed lambda calculus with:

Polymorphic types [(λ x . x) : A → A]

Higher-order types [A → A : ∗ : �]

Dependent types [(λ a : A . f a) : (∀ a : A . Ba)]

Implemented in Coq
Type checker + Proof assistant

Can encode higher-order predicate logic

Inductive definitions

Curry-Howard isomorphism
types ↔ propositions
terms ↔ proofs

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Formalizing the state of the device

State components relevant to the security model:

installed suites
current session (if it exists)

current suite
permissions granted or revoked in session mode

permissions granted or revoked for the session in blanket
mode

State := { suite : Suite → Prop,
session : option SessionInfo,
granted , revoked : SuiteID → Permission → Prop }

Higher-order specification (notice predicates in the state)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Formalizing the state of the device

State components relevant to the security model:

installed suites
current session (if it exists)

current suite
permissions granted or revoked in session mode

permissions granted or revoked for the session in blanket
mode

State := { suite : Suite → Prop,
session : option SessionInfo,
granted , revoked : SuiteID → Permission → Prop }

Higher-order specification (notice predicates in the state)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Events

Session start (start);
Session end (terminate);
Authorization request by the current suite (request);
Suite installation (install);
Suite removal (remove).

Their behavior is specified by means of pre- and postconditions.

Example (Session start)

Pre s (start id) =
s.session = None ∧ ∃ ms : Suite, s.suite ms ∧ms.id = id

Pos s s′ r (start id) = r = None ∧ s ≡session s′∧
∃ ses′, s′.session = ses′ ∧ ses′.id = id ∧
∀ p : Permission,¬ses′.granted p ∧ ¬ses′.revoked p

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

State transition relation ↪→:

¬Pre s e
s ↪

e/None−−−−→ s
npre Pre s e Pos s s′ r e

s ↪
e/r−−→ s′

pre

s ↪
e/r−−→ s′: “the execution of the event e in state s results in a new

state s′ and produces a response r ”

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

A session is determined by

a suite identifier id

an initial state s0

a sequence of steps 〈ei , si , ri〉 (i = 1, . . . , n) s.t.

1 e1 = start id
2 Pre s0 e1

3 ∀ i ∈ {2, . . . , n − 1}, ei 6= terminate
4 en = terminate
5 ∀ i ∈ {1, . . . , n}, si−1 ↪

ei/ri−−→ si

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

A session is determined by

a suite identifier id

an initial state s0

a sequence of steps 〈ei , si , ri〉 (i = 1, . . . , n) s.t.

1 e1 = start id
2 Pre s0 e1

3 ∀ i ∈ {2, . . . , n − 1}, ei 6= terminate
4 en = terminate
5 ∀ i ∈ {1, . . . , n}, si−1 ↪

ei/ri−−→ si

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

A session is determined by

a suite identifier id

an initial state s0

a sequence of steps 〈ei , si , ri〉 (i = 1, . . . , n) s.t.

1 e1 = start id
2 Pre s0 e1

3 ∀ i ∈ {2, . . . , n − 1}, ei 6= terminate
4 en = terminate
5 ∀ i ∈ {1, . . . , n}, si−1 ↪

ei/ri−−→ si

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions
Inductive definition

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

Pre s0 (start id) s0 ↪
start id/r1−−−−−−→ s1

PSession s0 ([] a 〈start id , s1, r1〉)
pses start

PSession s0 (ss a last) e 6= terminate last .s ↪
e/r−−→ s′

PSession s0 (ss a last a 〈e, s′, r〉)
pses app

PSession s0 (ss a last) last .s ↪
terminate/r−−−−−−−→ s′

Session s0 (ss a last a 〈terminate, s′, r〉)
ses term

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions
Inductive definition

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

Pre s0 (start id) s0 ↪
start id/r1−−−−−−→ s1

PSession s0 ([] a 〈start id , s1, r1〉)
pses start

PSession s0 (ss a last) e 6= terminate last .s ↪
e/r−−→ s′

PSession s0 (ss a last a 〈e, s′, r〉)
pses app

PSession s0 (ss a last) last .s ↪
terminate/r−−−−−−−→ s′

Session s0 (ss a last a 〈terminate, s′, r〉)
ses term

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Sessions
Inductive definition

s0 ↪
start id/r1−−−−−−→ s1 ↪

e2/r2−−−→ s2 ↪
e3/r3−−−→ · · · ↪

en−1/rn−1−−−−−−→ sn−1 ↪
terminate/rn−−−−−−−→ sn

Pre s0 (start id) s0 ↪
start id/r1−−−−−−→ s1

PSession s0 ([] a 〈start id , s1, r1〉)
pses start

PSession s0 (ss a last) e 6= terminate last .s ↪
e/r−−→ s′

PSession s0 (ss a last a 〈e, s′, r〉)
pses app

PSession s0 (ss a last) last .s ↪
terminate/r−−−−−−−→ s′

Session s0 (ss a last a 〈terminate, s′, r〉)
ses term

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Outline

1 Motivation

2 Specification

3 Verification

4 Refinement

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Methodology

The formal specification defines a theory

Properties of the security model are theorems

We state and prove some of these theorems with the help
of Coq

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Some Proved Theorems
Proofs are omitted, sorry

State validity is an invariant

∀ (s s′ : State) (e : Event) (r : Response)

Valid s → s ↪
e/r−−→ s′ → Valid s′

A state is valid if (among other things)

Suite identifiers are unique;

The current suite is an installed suite;

Granted permissions are consistent with corresponding
protection domains and application descriptors;

Permissions required as critical by a suite are not
forbidden by its protection domain

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Some Proved Theorems
More theorems

Revocation of permissions is correctly enforced

Whenever a permission is revoked in session mode,
subsequent authorization requests are refused

Generalization of invariants

Sufficient and necessary conditions for invariants

Theorem: one-step invariants remain true once established

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Outline

1 Motivation

2 Specification

3 Verification

4 Refinement

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Why Should We Care?

Remarks

We have a higher-order specification

Transition relation defined implicitly

Coq program extraction mechanism cannot be used

What is the pay off of refinement?

An executable prototype

An oracle for testing

Test case extraction (black box testing)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Data Refinement

For each type T , a concrete type T is defined

x v x is read “x is refined by x”

Example (Predicates as lists)

Let P : A → Prop and l : list A, then l v P iff

(∀ a, P a → ∃ a, a ∈ l ∧ a v a) ∧
(∀ a, a ∈ l → ∃ a, P a ∧ a v a)

Whenever A = A this simplifies to

∀ a, P a ↔ a ∈ l

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Concrete State

State := { suite : list Suite,

session : option SessionInfo,
granted , revoked : SuiteID → list Permission }

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Operation Refinement

s s′

s s′

interp

↪→

v v

State

State

For every state s′ and response r computed by interp there must
exist a corresponding abstract state s′ refined by s′ reachable from s
by ↪→ with the same response

∀ (s : State)
(

s : State
)

(e : Event)
(

e : Event
)

(r : Response),

s v s → e v e →
let

(
s′, r

)
:= interp s e in ∃ s′ : State, s′ v s′ ∧ s ↪

e/r−−→ s′

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Operation Refinement

s s′

s s′

interp

↪→

v v

State

State

For every state s′ and response r computed by interp there must
exist a corresponding abstract state s′ refined by s′ reachable from s
by ↪→ with the same response

∀ (s : State)
(

s : State
)

(e : Event)
(

e : Event
)

(r : Response),

s v s → e v e →
let

(
s′, r

)
:= interp s e in ∃ s′ : State, s′ v s′ ∧ s ↪

e/r−−→ s′

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Main Contributions

The first formalization of the MIDP 2.0 security model

Formal machine-checked verification of the model

Investigated some aspects unclear in the informal
specification

A refinement methodology

The complete development in Coq may be obtained from

http://www-sop.inria.fr/everest/personnel/
Santiago.Zanella/MIDP

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP
http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP

Motivation Specification Verification Refinement

Ongoing and Future Work

We have not completed a full refinement
Relax hypothesis assumed about the model

More than one active suite
Dynamic security policies in Protection Domains

Consider extensions to the existing model

Hierarchical permissions
Multiplicities (Besson et al. – ESORICS’06)

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

Motivation Specification Verification Refinement

Thank you!

Additional Information

http://www-sop.inria.fr/everest/personnel/
Santiago.Zanella/MIDP

Zanella Béguelin, Betarte, Luna A Formal Specification of the MIDP 2.0 Security Model

http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP
http://www-sop.inria.fr/everest/personnel/Santiago.Zanella/MIDP

	Motivation
	Specification
	Verification
	Refinement

