CertiCrypt
 Language-Based Cryptographic Proofs in Coq

Gilles Barthe ${ }^{1,2}$ Benjamin Grégoire ${ }^{1,3}$ Santiago Zanella ${ }^{1,3}$

${ }^{1}$ Microsoft Research - INRIA Joint Centre, France
CENTRE DE RECHERCHE
INRIA
MICROSOFT RESEARCH
${ }^{2}$ IMDEA Software, Madrid, Spain
Mdea
${ }^{3}$ INRIA Sophia Antipolis - Méditerranée, France
TI $\operatorname{NR} R I A$

POPL 2009

What's wrong with cryptographic proofs?

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor M. Bellare and P. Rogaway.
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect)
S. Halevi
- Security proofs in cryptography may be organized as sequences of games [...] this can be a useful tool in taming the complexity of security proofs that might otherwise become so messy, complicated, and subtle as to be nearly impossible to verify V. Shoup

What's wrong with cryptographic proofs?

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor M. Bellare and P. Rogaway.
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect)
S. Halevi
- Security proofs in cryptography may be organized as sequences of games [...] this can be a useful tool in taming the complexity of security proofs that might otherwise become so messy, complicated, and subtle as to be nearly impossible to verify
V. Shoup

Game-based cryptographic proofs

Attack Game

Security property

Game-based cryptographic proofs

Attack Game

Game-based proofs: essence and problems

Independent events

Essence: relate the probability of events in consecutive games But,

- How do we represent games?
- What adversaries are feasible?
- How do we make a proof hold for any feasible adversary?

Game-based proofs: essence and problems

Essence: relate the probability of events in consecutive games But,

- How do we represent games?
- What adversaries are feasible?
- How do we make a proof hold for any feasible adversary?

Language-based proofs

What if we represent games as programs?

Games
Probability space
Game transformations
Generic adversary
Feasibility
\Longrightarrow programs
\Longrightarrow program denotation
\Longrightarrow program transformations
\Longrightarrow unspecified procedure
\Longrightarrow Probabilistic Polynomial-Time

PWHILE: a probabilistic programming language

\mathcal{I}	$\mathcal{V} \leftarrow \mathcal{E}$	assignment
	$\mathcal{V} \leftrightarrows \mathcal{D}$	random sampling
	if \mathcal{E} then \mathcal{C} else \mathcal{C}	conditional
	while \mathcal{E} do \mathcal{C}	while loop
	$\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$	procedure call
$\mathcal{C} \quad::=$	nil	nop
\|	$\mathcal{I} ; \mathcal{C}$	sequence

Measure monad: $M(X) \stackrel{\text { def }}{=}(X \rightarrow[0,1]) \rightarrow[0,1]$

$$
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M})
$$

PWHILE: a probabilistic programming language

$$
\begin{array}{rlrl}
\mathcal{I}: & :=\mathcal{V} \leftarrow \mathcal{E} & & \text { assignment } \\
& \mathcal{V} \hookleftarrow \mathcal{D} & & \text { random sampling } \\
& \text { if } \mathcal{E} \text { then } \mathcal{C} \text { else } \mathcal{C} & & \text { conditional } \\
& \text { while } \mathcal{E} \text { do } \mathcal{C} & & \text { while loop } \\
& \mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) & & \text { procedure call } \\
\mathcal{C} & ::= & \text { nil } & \\
& & \mathcal{I} ; \mathcal{C} & \\
& \text { sep } \\
& & \text { sequence }
\end{array}
$$

Measure monad: $M(X) \stackrel{\text { def }}{=}(X \rightarrow[0,1]) \rightarrow[0,1]$

$$
\begin{gathered}
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M}) \\
\llbracket x \&\{0,1\} ; y \stackrel{s}{ }\{0,1\} \rrbracket m f= \\
\frac{1}{\frac{1}{4} f(m[0,0 / x, y])} \\
\frac{1}{4} f(m[1,0 / x, y]) \\
\end{gathered}+\frac{1}{4} f(m[0,1 / x, y])
$$

Probability: $\operatorname{Pr}_{\mathrm{G}, m}[A] \stackrel{\text { def }}{=} \llbracket \mathbb{G} \rrbracket m \mathbb{1}_{A}$

PWHILE: a probabilistic programming language

$$
\begin{array}{l:ll}
\mathcal{I} & :=\mathcal{V} \leftarrow \mathcal{E} & \\
& & \text { assignment } \\
& \mathcal{V} \in \mathcal{D} & \text { random sampling } \\
& \text { if } \mathcal{E} \text { then } \mathcal{C} \text { else } \mathcal{C} & \text { conditional } \\
& \text { while } \mathcal{E} \text { do } \mathcal{C} & \text { while loop } \\
& & \mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) \\
\mathcal{C} & := & \text { procedure call } \\
& \text { nil } & \text { nop } \\
& \mathcal{I} ; \mathcal{C} & \text { sequence }
\end{array}
$$

Measure monad: $M(X) \stackrel{\text { def }}{=}(X \rightarrow[0,1]) \rightarrow[0,1]$

$$
\begin{gathered}
\llbracket \cdot \|: \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M}) \\
\llbracket x \&\{0,1\} ; y \stackrel{s}{ }\{0,1\} \rrbracket m \mathbb{1}_{X \neq y}= \\
\frac{1}{4} \mathbb{1}_{x \neq y}(m[0,0 / x, y]) \\
\frac{1}{4} \mathbb{1}_{x \neq y}(m[1,0 / x, y])
\end{gathered}+\frac{1}{4} \mathbb{1}_{x \neq y}(m[0,1 / x, y])
$$

Probability: $\operatorname{Pr}_{\mathrm{G}, m}[A] \stackrel{\text { def }}{=} \llbracket \mathbb{G} \rrbracket m \mathbb{1}_{A}$

PWHILE: a probabilistic programming language

Measure monad: $M(X) \stackrel{\text { def }}{=}(X \rightarrow[0,1]) \rightarrow[0,1]$

$$
\begin{aligned}
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} & \rightarrow M(\mathcal{M}) \\
\llbracket x \longleftarrow\{0,1\} ; y \leq\{0,1\} \rrbracket m \mathbb{1}_{x \neq y}= & \\
0 & +\frac{1}{4} \\
\frac{1}{4} \quad & 0
\end{aligned}
$$

$$
+
$$

Probability: $\operatorname{Pr}_{\mathrm{G}, m}[A] \stackrel{\text { def }}{=} \llbracket \mathbb{G} \rrbracket m \mathbb{1}_{A}$

$$
\begin{aligned}
& \mathcal{I}::=\mathcal{V} \leftarrow \mathcal{E} \quad \text { assignment } \\
& \text { random sampling } \\
& \text { conditional } \\
& \text { while loop } \\
& \text { procedure call } \\
& \text { nop } \\
& \text { sequence }
\end{aligned}
$$

PWHILE: a probabilistic programming language

$$
\begin{array}{l:ll}
\mathcal{I}: & \mathcal{V} \leftarrow \mathcal{E} & \\
& \mathcal{V} \leftarrow \mathcal{D} & \\
& \text { assignment } \\
& \text { if } \mathcal{E} \text { then } \mathcal{C} \text { else } \mathcal{C} & \\
\text { random sampling } \\
& \text { while } \mathcal{E} \text { do } \mathcal{C} & \\
\text { whilitional loop } \\
& & \mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) \\
\mathcal{C} & :: & \text { nrocedure call } \\
& \text { nil } & \mathcal{I} ; \mathcal{C}
\end{array}
$$

Measure monad: $M(X) \stackrel{\text { def }}{=}(X \rightarrow[0,1]) \rightarrow[0,1]$

$$
\begin{array}{r}
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M}) \\
\llbracket x \leq\{0,1\} ; y \leq\{0,1\} \rrbracket m \mathbb{1}_{x \neq y}=\frac{1}{2}
\end{array}
$$

Probability: $\operatorname{Pr}_{\mathbb{G}, m}[A] \stackrel{\text { def }}{=} \llbracket \mathbb{G} \rrbracket m \mathbb{1}_{A}$

Untyped vs. typed language

- $1^{\text {st }}$ attempt: untyped language, lots of problems
- No guarantee that programs are well-typed
- Had to deal with ill-typed programs
- $2^{\text {nd }}$ attempt: typed language (dependently typed syntax!)
- Programs are well-typed by construction

Parametrized semantics: $\llbracket \cdot]: \forall \eta, \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M})$

Untyped vs. typed language

- $1^{\text {st }}$ attempt: untyped language, lots of problems
- No guarantee that programs are well-typed
- Had to deal with ill-typed programs
- $2^{\text {nd }}$ attempt: typed language (dependently typed syntax!)
- Programs are well-typed by construction

```
Inductive \(\mathcal{I}\) : Type :=
\(\mid\) Assign : \(\forall t, \mathcal{V}_{t} \rightarrow \mathcal{E}_{t} \rightarrow \mathcal{I}\)
Rand : \(\forall t, \mathcal{V}_{t} \rightarrow \mathcal{D}_{t} \rightarrow \mathcal{I}\)
    Cond \(: \mathcal{E}_{\text {Bool }} \rightarrow \mathcal{C} \rightarrow \mathcal{C} \rightarrow \mathcal{I}\)
While \(: \mathcal{E}_{\text {Bool }} \rightarrow \mathcal{C} \rightarrow \mathcal{I}\)
Call \(: \forall I t, \mathcal{P}_{(I, t)} \rightarrow \mathcal{V}_{t} \rightarrow \mathcal{E}_{l}^{\star} \rightarrow \mathcal{I}\)
where \(\mathcal{C}:=\mathcal{I}^{\star}\).
```

Parametrized semantics: $\llbracket \cdot \rrbracket: \forall \eta, \mathcal{C} \rightarrow \mathcal{M} \rightarrow M(\mathcal{M})$

Characterizing feasible adversaries

A cost model for reasoning about program complexity

$$
\llbracket \cdot \rrbracket^{\prime}: \forall \eta, \mathcal{C} \rightarrow(\mathcal{M} \times \mathbb{N}) \rightarrow M(\mathcal{M} \times \mathbb{N})
$$

Non-intrusive:

$$
\llbracket \mathrm{G} \rrbracket m=\operatorname{bind}\left(\llbracket \mathrm{G} \rrbracket^{\prime}(m, 0)\right)(\lambda m n \text {. unit }(\text { fst } m n))
$$

A program G runs in probabilistic polynomial time if:

- It terminates with probablity 1 (i.e. $\forall m, \operatorname{Pr}_{\mathrm{G}, \mathrm{m}}[$ true] $=1$)
- There exists a polynomial $p(\cdot)$ s.t. if $\left(m^{\prime}, n\right)$ is reachable with positive probability, then $n \leq p(\eta)$

Characterizing feasible adversaries

A cost model for reasoning about program complexity

$$
\llbracket \cdot \rrbracket^{\prime}: \forall \eta, \mathcal{C} \rightarrow(\mathcal{M} \times \mathbb{N}) \rightarrow M(\mathcal{M} \times \mathbb{N})
$$

Non-intrusive:

$$
\llbracket \mathbb{G} \rrbracket m=\operatorname{bind}\left(\llbracket \mathbf{G} \rrbracket^{\prime}(m, 0)\right)(\lambda m n . \text { unit }(\text { fst } m n))
$$

A program G runs in probabilistic polynomial time if:

- It terminates with probablity 1 (i.e. $\forall m, \operatorname{Pr}_{G, m}[t r u e]=1$)
- There exists a polynomial $p(\cdot)$ s.t. if $\left(m^{\prime}, n\right)$ is reachable with positive probability, then $n \leq p(\eta)$

Program equivalence

Definition (Observational equivalence)

$$
\begin{aligned}
f=x g \quad \stackrel{\text { def }}{=} & \forall m_{1} m_{2}, m_{1}(X)=m_{2}(X) \Longrightarrow f m_{1}=g m_{2} \\
\vDash \mathrm{G}_{1} \simeq_{o}^{\prime} \mathrm{G}_{2} \stackrel{\text { def }}{=} & \forall m_{1} m_{2} f g, m_{1}(I)=m_{2}(I) \wedge f=o g \Longrightarrow \\
& \llbracket \mathrm{G}_{1} \rrbracket m_{1} f=\llbracket \mathrm{G}_{2} \rrbracket m_{2} g
\end{aligned}
$$

Generalizes information flow security.
But is not general enough...

Program equivalence

Definition (Observational equivalence)

$$
\begin{aligned}
f=x g \quad \stackrel{\text { def }}{=} & \forall m_{1} m_{2}, m_{1}(X)=m_{2}(X) \Longrightarrow f m_{1}=g m_{2} \\
\vDash \mathrm{G}_{1} \simeq_{o}^{\prime} \mathrm{G}_{2} \stackrel{\text { def }}{=} & \forall m_{1} m_{2} f g, m_{1}(I)=m_{2}(I) \wedge f=o g \Longrightarrow \\
& \llbracket \mathrm{G}_{1} \rrbracket m_{1} f=\llbracket \mathrm{G}_{2} \rrbracket m_{2} g
\end{aligned}
$$

Generalizes information flow security. But is not general enough...
???
\vDash if $x=0$ then $y \leftarrow x$ else $y \leftarrow 1 \simeq_{\{x, y\}}^{\{x\}}$ if $x=0$ then $y \leftarrow 0$ else $y \leftarrow 1$

Program equivalence

Definition (Observational equivalence, generalization)

$$
\begin{aligned}
& \vDash \mathrm{G}_{1} \sim \mathrm{G}_{2}: \Psi \Rightarrow \Phi \stackrel{\text { def }}{=} \\
& \quad \forall m_{1} m_{2} \cdot m_{1} \psi m_{2} \Rightarrow \llbracket \mathrm{G}_{1} \rrbracket m_{1} \sim_{\Phi} \llbracket \mathrm{G}_{2} \rrbracket m_{2}
\end{aligned}
$$

Where \sim_{ϕ} is the lifting of relation Φ from memories to distributions.

$$
\begin{aligned}
& (x=0) \sim_{\{x\}}(x=0) \\
& \vDash y \leftarrow x \sim y \leftarrow 0:==_{\{x\}} \wedge(x=0)\langle 1\rangle \Rightarrow==_{\{x, y\}} \\
& \vDash y \leftarrow 1 \sim y \leftarrow 1:==_{\{x\}} \wedge(x \neq 0)\langle 1\rangle \Rightarrow==_{\{x, y\}} \\
& \text { if } x=0 \text { then } y \leftarrow x \text { else } y \leftarrow 1 \sim \\
& \text { if } x=0 \text { then } y \leftarrow 0 \text { else } y \leftarrow 1:=_{\{x\}} \Rightarrow=_{\{x, y\}}
\end{aligned}
$$

From program equivalence to probability

Let A be an event that depends only on variables in O
To prove $\operatorname{Pr}_{G_{1}, m_{1}}[A]=\operatorname{Pr}_{G_{2}, m_{2}}[A]$ it suffices to show

- $\vDash \mathrm{G}_{1} \simeq_{0}{ }_{0} \mathrm{G}_{2}$
- $m_{1}=$, m_{2}

Proving program equivalence

Goal

$$
\vDash \mathrm{G}_{1} \simeq_{O}^{\prime} \mathrm{G}_{2}
$$

A Relational Hoare Logic

$$
\frac{\vDash c_{1} \sim c_{2}: \Phi \Rightarrow \Phi^{\prime} \quad \vDash c_{1}^{\prime} \sim c_{2}^{\prime}: \Phi^{\prime} \Rightarrow \Phi^{\prime \prime}}{\vDash c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}: \Phi \Rightarrow \Phi^{\prime \prime}}[\mathrm{R}-\mathrm{Seq}]
$$

Proving program equivalence

$$
\begin{gathered}
\text { Goal } \\
\vDash \mathrm{G}_{1} \simeq_{O}^{\prime} \mathrm{G}_{2}
\end{gathered}
$$

Mechanized program transformations

- Transformation: $T\left(\mathrm{G}_{1}, \mathrm{G}_{2}, I, O\right)=\left(\mathrm{G}_{1}^{\prime}, \mathrm{G}_{2}^{\prime}, I^{\prime}, O^{\prime}\right)$
- Soundness theorem

$$
\frac{T\left(\mathrm{G}_{1}, \mathrm{G}_{2}, I, O\right)=\left(\mathrm{G}_{1}^{\prime}, \mathrm{G}_{2}^{\prime}, l^{\prime}, O^{\prime}\right)}{\vDash \mathrm{G}_{1} \simeq_{O}^{\prime} \mathrm{G}_{2}}
$$

- Reflection-based Coq tactic

Proving program equivalence

$$
\begin{gathered}
\text { Goal } \\
\vDash \mathrm{G}_{1} \simeq_{o}^{\prime} \mathrm{G}_{2}
\end{gathered}
$$

Mechanized program transformations

- Dead code elimination
- Constant folding and propagation
- Procedure call inlining
- Instruction reordering
- Common suffix/prefix elimination

Proving program equivalence

$$
\begin{gathered}
\text { Goal } \\
\vDash \mathrm{G}_{1} \simeq_{O}^{\prime} \mathrm{G}_{2} \\
\text { A semi-decision procedure for self-equivalence }
\end{gathered}
$$

- Does $\vDash \mathrm{G} \simeq_{o}^{\prime} \mathrm{G}$ hold?
- Analyze dependencies to compute I^{\prime} s.t. $\vDash \mathrm{G} \simeq_{o}^{\prime \prime} \mathrm{G}$
- Check that $I^{\prime} \subseteq I$

Example

$$
\begin{aligned}
& \text { Game ElGamal }{ }_{0} \text { : } \\
& \simeq{ }_{\{d\}}^{\emptyset} \\
& \text { Game } \mathrm{DDH}_{0} \text { : } \\
& x \leftrightarrow \mathbb{Z}_{q} ; \\
& y \leftrightarrow \mathbb{Z}_{q} \text {; } \\
& d \leftarrow \mathcal{B}\left(g^{x}, g^{y}, g^{x y}\right) \\
& \text { Procedure } \mathcal{B}(\alpha, \beta, \gamma) \text { : } \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& b \stackrel{\&}{\leftrightarrows} 0,1\} ; \\
& b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(\alpha, \beta, \gamma \times m_{b}\right) ; \\
& \text { return } b=b^{\prime}
\end{aligned}
$$

The Fundamental Lemma of Game-Playing

Fundamental lemma

If two games G_{1} and G_{2} behave identically in an initial memory m unless a failure event A fires, then

$$
\left|\operatorname{Pr}_{\mathrm{G}_{1}, m}[A]-\operatorname{Pr}_{\mathrm{G}_{2}, m}[A]\right| \leq \operatorname{Pr}_{\mathrm{G}_{1,2}}[F]
$$

The Fundamental Lemma of Game-Playing

- $\operatorname{Pr}_{\mathrm{G}_{1}, m}[A \wedge \neg \mathrm{bad}]=\operatorname{Pr}_{\mathrm{G}_{2}, m}[A \wedge \neg \mathrm{bad}]$
- $\operatorname{Pr}_{\mathrm{G}_{1}, m}[\mathrm{bad}]=\operatorname{Pr}_{\mathrm{G}_{2}, m}[\mathrm{bad}]$

Corollary

$$
\left|\operatorname{Pr}_{\mathrm{G}_{1}, m}[A]-\operatorname{Pr}_{\mathrm{G}_{2}, m}[A]\right| \leq \operatorname{Pr}_{\mathrm{G}_{1,2}}[\mathrm{bad}]
$$

Wrapping up

Contributions

- Formal semantics of a probabilistic programming language
- Characterization of probabilistic polynomial-time programs
- A Probabilistic Relational Hoare logic
- Mechanization of common program transformations
- Formalized emblematic proofs: EIGamal, FDH, OAEP

Perspectives

- Overwhelming number of applications: IB, ZK proofs, ...
- Computational soundness of symbolic methods and information flow type systems
- Verification of randomized algorithms

Some statistics

- 6 persons involved
- CertiCrypt: 30,000 lines of Coq, 48 man-months
- Full Domain Hash: 2,500 lines of Coq, 4 man-months (for a person without experience in CertiCrypt)

Questions

ElGamal encryption

inline_l KG. inline_l Enc.
ep.
deadcode.
swap.
eqobs_in.

Game EIGamal :

$(x, \alpha) \leftarrow \mathrm{KG}()$;
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ;$
b \& $\{0,1\}$;
$(\beta, \zeta) \leftarrow \operatorname{Enc}\left(\alpha, m_{b}\right) ;$
$b^{\prime} \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta) ;$
$d \leftarrow b=b^{\prime}$
$\triangleright \sim_{d}$
Game EIGamalo :
$x \nsubseteq \mathbb{Z}_{q} ; y \mathbb{Z}_{q} ;$
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right) ;$
$b \underset{S}{s}\{0,1\} ;$
$\zeta \leftarrow g^{x y} \times m_{b} ;$
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, \zeta\right)$;
$d \leftarrow b=b^{\prime}$
ep.
deadcode eqobs_in.

Game ElGamal ${ }_{2}$:

$$
\begin{aligned}
& x \stackrel{\&}{\mathbb{Z}} \mathbb{Z}_{q} y \leftarrow \mathbb{Z}_{q} ; \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right) ; \\
& z \leftarrow \mathbb{Z}_{q} ; \zeta \leftarrow g^{z} ; \\
& b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, \zeta\right) ; \\
& b \leftrightarrow\{0,1\} ; \\
& d \leftarrow b=b^{\prime}
\end{aligned}
$$

$\simeq d<$

Game ElGamal ${ }_{1}$:
$x \stackrel{\mathbb{Z}}{\mathbb{Z}_{q}} ; y \underset{\mathbb{S}}{ } \mathbb{Z}_{q} ;$
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right) ;$
$b \stackrel{s}{ }\{0,1\}$;
$z \stackrel{\mathbb{S}}{\mathbb{Z}_{q}} ; \zeta \leftarrow g^{z} \times m_{b} ;$
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, \zeta\right) ;$
$d \leftarrow b=b^{\prime}$

Game DDH $_{1}$:

inline_r B.
ep.
deadcode.
swap.
eqobs_in.

swap.

eqobs_hd 4.
eqobs_tl 2.
apply mult_pad.
$x \stackrel{\mathbb{Z}}{ } \mathbb{Z}_{q} ;$
$y \stackrel{\mathbb{Z}}{\mathbb{Z}_{q}}$;
$z \stackrel{\mathbb{L}}{ } \mathbb{Z}_{q}$;
$d \leftarrow \mathcal{B}\left(g^{x}, g^{y}, g^{z}\right)$

$$
\left|\operatorname{Pr}_{\text {EIGamal }}\left[b=b^{\prime}\right]-\frac{1}{2}\right|=\left|\operatorname{Pr}_{\mathrm{DDH}_{0}}[d]-\operatorname{Pr}_{\mathrm{DDH}_{1}}[d]\right|
$$

Lemma B_wf : WFAdv B. Proof. ... Qed.

```
Lemma B_PPT : PPT B
Proof. PPT_tac. Qed.
```

$$
\begin{aligned}
& \text { Adversary } \mathcal{B}(\alpha, \beta, \gamma): \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& b \&\{0,1\} ; \\
& b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(\alpha, \beta, \gamma \times m_{b}\right) ; \\
& \text { return } b=b^{\prime}
\end{aligned}
$$

Observational equivalence

$$
\vDash \mathrm{G}_{1} \sim \mathrm{G}_{2}: \Psi \Rightarrow \Phi \stackrel{\text { def }}{=} m_{1} \psi m_{2} \Rightarrow \llbracket \mathrm{G}_{1} \rrbracket m_{1} \sim_{\Phi} \llbracket \mathrm{G}_{2} \rrbracket m_{2}
$$

Lifting

$$
\begin{aligned}
& \text { range } P \mu \stackrel{\text { def }}{=} \forall f,(\forall a, P a \Rightarrow f a=0) \Rightarrow \mu f=0 \\
& \mu_{1} \sim_{\Phi} \mu_{2} \stackrel{\text { def }}{=} \exists \mu, \pi_{1}(\mu)=\mu_{1} \wedge \pi_{2}(\mu)=\mu_{2} \wedge \text { range } \Phi \mu
\end{aligned}
$$

Small-step semantics

$$
\begin{aligned}
(\text { nil }, m,[]) & \rightsquigarrow \text { unit (nil, } m,[]) \\
\text { (nil, } m,(x, e, c, I):: F) & \rightsquigarrow \text { unit }(c,(I, m \cdot \text { glob })\{\llbracket e \rrbracket m / x\}, F) \\
(x \leftarrow p(\vec{e}) ; c, m, F) & \rightsquigarrow \text { unit }(E(p) \cdot \text { body, }(\emptyset\{\llbracket \| \vec{e} \rrbracket m / E(p) \text {.params }\},
\end{aligned}
$$

(if e then c_{1} else $\left.c_{2} ; c, m, F\right) \rightsquigarrow$ unit $\left(c_{1} ; c, m, F\right)$

$$
\text { if } \llbracket e \rrbracket m=\text { true }
$$

(if e then c_{1} else $\left.c_{2} ; c, m, F\right) \rightsquigarrow$ unit $\left(c_{2} ; c, m, F\right)$

$$
\text { if } \llbracket e \rrbracket m=\text { false }
$$

(while e do $\left.c ; c^{\prime}, m, F\right) \rightsquigarrow$ unit (c; while edo $c ; c^{\prime}, m, F$)

$$
\text { if } \llbracket e \rrbracket m=\text { true }
$$

(while e do $\left.c ; c^{\prime}, m, F\right) \rightsquigarrow$ unit $\left(c^{\prime}, m, F\right)$

$$
\text { if } \llbracket e \rrbracket m=\text { false }
$$

$$
\begin{aligned}
& (x \leftarrow e ; c, m, F) \rightsquigarrow \text { unit }(c, m\{\llbracket e \rrbracket m / x\}, F) \\
& (x \hookleftarrow d ; c, m, F) \rightsquigarrow \text { bind }(\llbracket d \rrbracket m)(\lambda v \text {.unit }(c, m\{v / x\}, F))
\end{aligned}
$$

Denotation

$$
\begin{gathered}
\llbracket S \rrbracket_{0} \stackrel{\text { def }}{=} \text { unit } S \quad \llbracket S \rrbracket_{n+1} \stackrel{\text { def }}{=} \text { bind } \llbracket S \rrbracket_{n} \llbracket \cdot \rrbracket^{1} \\
\llbracket c \rrbracket m: M(\mathcal{M}) \stackrel{\text { def }}{=} \lambda f . \sup \left\{\left.\llbracket(c, m,[]) \rrbracket_{n} f\right|_{\text {final }} \mid n \in \mathbb{N}\right\}
\end{gathered}
$$

