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Abstract. In multithreaded programs data are often separated inkedoatected
resources. Properties of those resources are typicalfjeetly modular, Owicki-
Gries-like methods. The modularity of the Owicki-Gries hut has its price:
proving some properties may require manual introductioawdliary variables.
What properties can be proven without the burden of introduauxiliary vari-
ables? We answer this question in the abstract interppat&timework. On one
hand, we reveal a lattice structure of the method and suppintax-based ab-
stract transformer that describes the metexaktly On the other hand, we bound
the loss of precision fronaboveand below by transition-relation-independent
weakly relational closures. On infinitely many programs th@sures coincide
and describe the precision loss exactly; in general, thad®are strict. We prove
the absence of a general exact closure-based fixpoint ¢heration of the accu-
racy of the Owicki-Gries method, both in the collecting seties and in certain
trace semantics.

1 Introduction

The paper will characterize the accuracy of a popular vetifim method for proving
safety properties of concurrent programs that operatesourees.

A program operating on resources is a multithreaded progravhich threads com-
municate via sequentially consistent shared memory anchinhnall shared variables
are partitioned into disjoint resources. Each resource Ineavailableor busy To ac-
cess a variable belonging to a resource, a thread waitsthatiesource gets available
and then starts a critical section for that resource, thusmgahe resource busy. While
staying in the critical section, the thread can read andevinié resource data, and no
other thread can enter a critical section for the same respsp no other thread can
access the resource data. After the thread finishes acgédhsimesource, it exits the
corresponding critical section, making the resource atl

Simple safety properties of such programs can be proven adgduA modular
proof of a program consists of an annotation per control flaeation and an annotation
per resource. Roughly, an annotation of a control flow lacatiescribes the valuations
of the variables that the thread may access at that locatioannotation of a resource
describes, roughly, the state of the resource when it idablai The annotations of
locations have to be sequentially consistent similarhhtostandard Hoare-style asser-
tional logic, but with two changes: when a thread acquiressaurce, the proof may
assume that the invariant of the acquired resource holdgmreleasing a resource the
resource invariant should be reestablished.



Such modularity incurs a loss of precision: for many progatmo strong but valid
properties cannot be proven by the method. To prove suctepiep, the program can
be manually augmented with so-called auxiliary variabkeset of variables is called
auxiliary if, intuitively, projecting the traces of the gymam to the other variables gives
the same result as removing all the statements involvingathdliary variables and
projecting afterwards. A modular proof is created for thgraented program, then the
proven property is projected onto the original variabldee &bility to use auxiliary vari-
ables makes the proof system complete. So far, auxiliaighias have been introduced
purely manually, while the construction of the remaininggfrcan be automated.

We will estimate the loss of precision inherent to ttmre of the Owicki-Gries
method, which consists of all the proof rules of the Owicki&s logic except the ability
to use auxiliary variables, in abstract interpretation.

We will show a rich lattice structure of the Owicki-Griesre@roofs and a syntax-
based abstract transformer describing the Owicki-Gries exactly

We will observe that there is no transition-relation-indegent approximation op-
erator that exactly characterizes the loss of precisiomefQwicki-Gries core in the
collecting semantics. We will also note the absence of edgmt trace-based character-
izations of certain kinds.

We will find an approximation operator that induces a usefidar bound on this
set, i.e., that will describe how much precision the OwiGkies core always loses. This
approximation operator depends only on the syntactic stre®f the program, but not
on its exact transition relation. If a property is provabjethe Owicki-Gries core, it is
provable by abstract interpretation with this approximati

We will present an approximation operator inducing a lowaurd on the set, i.e.,
describing how much precision the Owicki-Gries core alwatains. This approxima-
tion operator also depends only on the syntactic structlitbeoprogram, but not on
its exact transition relation. If a property is provable Ipgtact interpretation with this
approximation, it is provable by the Owicki-Gries core.

In passing, we will demonstrate an infinite class of simptegpams for which both
bounds are equal and a program on which both bounds are strict

In short, the main results and their position are depictdednl.
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Fig. 1: Precision of analyses. The upper boungd,ishe lower bound ip. In addition
to p, we will consider a simpler lower bouns}, which is coarser thap, but easier to
understand.



The rigorous formalization, computations, proofs, recandations for practition-
ers, and comparison to abstract interpretations for gépesgrams are found in the
appendix.

2 Resource-manipulating language and its semantics

2.1 Language RPL

Now we briefly recall the parallel language RPLericted Rrallel Language, rigor-
ously defined in [25]) in which shared data are separated-@sources and access to a
resource is granted exclusively.

Let threads be indexed by the elements of th&gkand, without loss of generality,
start their executions together. Threads operate on datbles from the seDatavar.

A resourceis a set of data variables; the resources are disjointRiesbe the set of all
resources.

A statements either

— an atomic statement, i.e., an assignment orastime ¢ (which skips if the ar-
gument expression evaluatedtioe and blocks otherwise),

— a sequential composition of two statementsjffthen-else, Oor awhile loop,

— acritical sectionwith r when @ do C endwith wherer is a resourcep a formula
over data variables ar@@some statement. We writeith r do C endwith wheng

is true.

A thread executes a statement.

A data variable is calletbcal to threact if all the assignments to the variable are
syntactically int. If a variable appears in threagdit should belong to a resource or be
local tot. If a variable belongs to a resouncdt can appear only inside a critical section
forr,i.e., inside attith r...” statement.

Each resource is associated with a set pfoof variables ProofVe(r), which are
all data variables that are not assigned except maybe inatriections forr. All our
examples will satisfyProofVar(r) =r (in generalProofVar(r) D).

An RPL program is described by a set of threads, a set of ress@nd an initial
condition on the variables.

2.2 Semantics of RPL

To connect to abstract interpretation, we describe progranRPL as transition sys-
tems.
For each threatiwe introduce a fresh non-data program counter varipglevhich
— is local to thread, but not to any other thread, and
— doesn’t belong to any resource, and
— takes values from the set of control flow locatidts(Program Location).
Let PCVarbe the set of all program counter variables &ad= DatavarJPCVar.
We associate each control flow pointe PL with a setrsc(p) of resources such
thatpisinside awithr... statement.
We allow the same control flow location, sgy,to occur in different threads.



A state of a program is a map froWar to the set of value¥al that includesPL
and the ranges of all data variables. We are going to speak abosistent statesnly:
those are states that

— map program counters to elementdhfand

— satisfy mutual exclusion: the sets of resources held bedifft threads are disjoint.
A threadt holdsa resource in a consistent stateif r € rsc(v(pg)). A resource is
busyin a consistent stateif some thread holds it ifr, otherwiser is availablein v.

Each statement of threadnduces a set of transitions—; V' wherev,V' are con-
sistent states. The transitions induced by the wbtk statements are straightforward.
The statementiith r when @ do C blocks wherr is busy or whernp does not hold,
otherwise it changes the control flow location to the iniGahtrol flow location ofC;
going out of the critical section is an unconditional chanfjthe control flow location.

Letinit be the set of initial states corresponding to the initialdibon and let the
successor map

pos(S) = {V |IveSteTd: v—V}

return the set of all one-step successors of a set of consgttaes.

The syntactic structureof an RPL program is given by: thread identifiers, control
flow locations, values, resources, locals and program eowatriables of the threads,
proof variables, mapsc. A syntactic structure is just a tuple of basic mathematical
objects (sets, variables, maps). It also exists indepelydsiran RPL program.

3 Owicki-Gries-core proofs

3.1 Lattice of Owicki-Gries-core proofs

Now we formalize the core of the Owicki-Gries proof systere #bstract away from
the details of logic, handling sets of variable valuatiorstéad of formulas.

Fix an arbitrary syntactic structure.

A program annotatiorl, M) consists of

— a resource invariant for each resource, which is a set of valuations of proof
variables of,

— a control flow annotatioMp; for each control flow locatiorp and each thread
t, containing valuations of data variables which are locdl é@ which are proof
variables of a resource held at

We say that a consistent statsatisfied, (respMpy), if the projection of/ to ProofVar(r)
(resp. to local data variables band all proof variables of all resourcesrst(p)) is in
Ir (resp. inMpy).
A program annotatiofll, M) denoteghe set of all consistent statesuch that
— for each resourcewhich is available irv, the stater satisfied,, and
— for each thread, the statev satisfiesMy g ) t-
We defineyos(l,M) as the set of all consistent states denoted by1).
Now fix an arbitrary RPL program obeying the given syntadiioure.
An Owicki-Gries-core proofof the program is a program annotation that satisfies
the following conditions.



— It is sequentially consistentvhich means the following: consider any transition
v—t V from a control flow locationp to a control flow locationp’ such thatv
satisfiesMp;. There are three cases.

e The transition does not cross the border of a critical secfidhvenv’ should
satisfyM ;.

e The transition starts a critical section of a resourckdditionally, assume that
v satisfied,. Thenv' should satisfiMy ;.

e The transition finishes a critical section of a resourcéhenv’ should satisfy
bothMy  andl,.

— It admits the initial states, i.e., denotes a superséatitnf

These Hoare-style rules treat critical sections specigilgt, on entering a critical sec-
tion, we additionally assume the resource invariant. Seécon leaving a critical sec-
tion, we should prove the resource invariant.

Every Owicki-Gries-core proof denotes an inductive inaati A set of consistent
statesS is Owicki-Gries-core provablé there is an Owicki-Gries-core proof that de-
notes a subset @

Interestingly, the set of program annotations of a fixed pogforms a complete
lattice with respect to componentwise inclusion order.tResg this order to the
set of Owicki-Gries-core proofs gives a complete lattic®gficki-Gries-core proofs,
even a Moore family. So each program has a unique smallestk®®ries-core proof.
This proof denotes the strongest Owicki-Gries-core-potev@roperty. To investigate
the power of the method, we will look at the smallest OwickigS-core proofs and
strongest Owicki-Gries-core-provable properties.

3.2 Examples

Now we will look at examples of programs with their smallesi€ki-Gries-core

proofs. On Readers-Writers, as well as for a whole classhaifasily simple programs,
all proof methods will have the same precision, on Upper imbpmethods will have
different precision and on the class SepThreads no precisgs will be observed at
all.

We’ll use Owicki-style notation. In particularrésource control(ww, ar, aw)” means
that the resource namedntrol contains exactlyvw, ar andaw.

Example 1 (Readers-Writers).A number of threads share a file simultaneousty: 1
need reading access ant> 1 writing access. Any nhumber of readers may access
the file simultaneously, but a writer must have exclusiveeascin Fig. 2, all the data
variables range over nonnegative integers by defaultractirig a positive value from

0 blocks.



initially ww=ar=aw=0
resource control(ww,ar,aw)

reader; || ... || readerp writer; || || writerm
// reader;: // writerj:
while true do while true do
startreadA: {true} askwriteA: {true}
with control with control do
when ww=0 do askwriteB: {aw< 1}
startreadB: {ww=0naw< 1} ww:=ww+ 1
ar:=ar+1 askwriteC: {aw< 1 <ww}
startreadC: {ww=0Aaw< 1<ar} endwith;
endwith; startwriteA: {true}
read: {true} with control
; when ar=aw=0 do
finishreadA: {true} startwriteB: {ar=aw=0}
with control do aw:=aw+1
finishreadB: {aw< 1} startwriteC: {ar=0naw=1}
ar=ar—1 endwith;
finishreadC: {aw< 1} write: {true}
endwith ;
endwhile finishwriteA: {true}
with control do
finishwriteB: {aw< 1}
aw) _ faw—1
o) = ()
finishwriteC: {aw=0}
endwith
endwhile

lcontrol = {aw < 1}

Fig. 2: Program Readers-Writers and its smallest Owickésscore proof.

The strongest Owicki-Gries-core-provable property is

{v € ConsStaté v(ww),v(ar) € Ng A v(aw) € {0,1}
AVie{l,...,n}:
(V(PCreader;) € {Xready,read | X € {start,finish}
Aye€{A,B,C}})
A(V(PCpeager;) = StartreadB = v(ww) = 0)
A(V(PCpeager;) = startreadC = v(ww) =0 < v(ar))
AVje{l,...,m}:
(V(pcwriterj) € {xwritey,write | x € {ask,start,finish}
Aye€{A,B,C}})

A(V(PCyriter;) = askwriteC = v(ww) > 0)
/\(v(pcwriterj ) = startwriteB = v(ar) = v(aw) = 0)
/\(v(pcwriterj ) = startwriteC=- v(ar) = 0 < v(aw))
AV(PC,riter;) = finishuriteC= v(aw) =0)}.
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There are states in this set in which more than one writervg ate. Thus no Owicki-
Gries-core proof can show that a writer has exclusive acddss smallest Owicki-
Gries-core proof can prove a slightly weaker property, ngrtreat the value ofaw,
which tracks the number of writers, never exceeds 1.

Example 2 (progUpper).The program Upper in Fig. 3 will be used for showing dif-
ferences between the Owicki-Gries-core proofs and the rupmend later. The range
of the data variables i§0,1}. The computation is trivial: no thread can make a step.
The majority of the program text serves to create a particdistribution of vari-
ables into locals and resources. There are exactly two adelstates, namely the

initially u#z=x=y=I
resource r(U,2), r'(xy)

// Thread 1 // Thread 2
A: {I=x} 0: {y=2z}
with r when | =u do assume false;

B: {l=x=u#7z} P: with r’ do
with r’ do Q: y:=0

C: {y2l=x=u#z} R: endwith;

x:=0 S: with r do

D: {y>l=u#zAx=0} || T: u:=0;
endwith; U: z:=0

E: {l=u#zAx=0} V: endwith;
assume false W:

F: endwith;

G: with r’ do

H: x:=0

I: endwith;

J: with r do

K: u:=0

L: endwith;

M: I:=0

N:

h={u#z}, Ip={x<y}

Fig. 3: Program Upper and its smallest Owicki-Gries-comofirControl flow locations
following “assume fals€’ are annotated byfalse} by default.

initial ones. The smallest Owicki-Gries-core proof deisoteany more states, e.g.,
[U—0,z— 1,x+—0,y+— 11+ 0,pc; — A,pc, — 0].

Example 3 (Simple).A program belongs to the clasmpleif it has at most one re-
source, and if the resource exists, then it contains no Mem@bles and all its proof
variables belong to the resource. Readers-Writers is dyfariyporograms from Simple.

Example 4 (SepThreads).The classSepThread¢Separate_Treads) consists of all
programs that have no resources and whose initial statesxao#ly those that satisfy



the initial conditions of all the threads (a proper subseiLwh states is disallowed). For
such programs the smallest Owicki-Gries-core proof desihie set of reachable states.

4 Owicki-Gries core as abstract interpretation

4.1 Owicki-Gries-core proofs are the post-fixpoints of a saad abstract successor
map

Ouir first step to try to give a measure of the precision of theédmGries core will
be to cast it in the abstract interpretation framework. Ani€bwGries-core proof is
clearly an abstraction of the set of reachable states of grano. So we will give a
characterization of Owicki-Gries core as a post-fixpoinacgfound abstraction of the
successor mapostof an RPL program. The map mimics the application of the Owick
Gries-core proof conditions.

For a program annotatiofi, M), we define thesound Owicki-Gries-core abstract
successor map pdst(1,M) = (I',M’), which applies the sequential consistency once:

— I/ is the smallest superset pfthat contains all valuations of proof variables of

such that there is a transition-¢V (for some thread) that exits a critical section
for r, v satisfiesM, ) andw equals the projection of on the proof variables of
r
- Mr’)(,t is the smallest superset My, that contains all valuations of local data

variables of threatl and proof variables of resources held at locajpbisuch that
there is a transition—V such thaw satisfiesi\/l\,(pq)’t, v satisfied, if the transition
starts a critical section far, V(pg)=p', andw equals the projection of to local
data variables df and to the proof variables of resources helg'at

This operator is, as the name says, sound with respect tatisessor map.

Let (1"t M) pe the annotation describing the initial states only:

— 1Nt js the set of all valuations of proof variablesraih the initial states;

- Mir;j{‘ is the set of valuations of local data variables of thremdthe initial states.
The Owicki-Gries-core abstract transformegg(1, M) is constructed as the pointwise
union of (1", M"t) andpost,5(1,M). The set of post-fixpoints &5 coincides with
the set of Owicki-Gries-core proofs; thus the followingdhem holds.

Theorem 5 (Equivalence)The least fixpoint of &; is the smallest Owicki-Gries-core
proof.

4.2 Characteristic closures for Owicki-Gries core?

An elegant way of describing the precision of an approxioratif a semantics given in
fixpoint form is through the use @losures A closurep is a monotone operator that is
idempotentf(p(x)) = p(x)) and extensived(X) > X). Given a concrete domai, <)
and a monotone functidh: D— D, the closurep onD defines an approximation of the
concrete semantid®(F) in the sense thédfip(F) <Ifp(poF). Such a description shows
the actual loss of information, as the fixpoints of the clesare exactly the abstract
elements that describe the approximation, and applyingckb&ure to one concrete
element exactly shows what information is lost for that edain



In our case, we have a concrete domain of sets of consisartsirdered by in-
clusion, and the semantics is given as the least fixpointeétitcessor mapostover
the initial states. Then we exhibited an approximapoa%G of that successor map. In
order to describe its precision, it would be nice to find awte® such thapost,g is
exactly the best transformer fpro post Finding one closure for each program is not
difficult (just take the closure with two fixpoints, one beithg strongest Owicki-Gries-
core-provable property and the other the set of all condistates), but this would not
be very informative. Instead, because the concrete dommaintirely fixed by the syn-
tactic structure of the program, we would like to fing ¢hat would be fixed for a given
syntactic structure. Alas, the next section shows thatribipossible in general.

5 Absence of equivalent characterizations by closures

The main result of this section is unfortunately negativasuaing we start from a
reachable state semantics, there is no way to describertimgest Owicki-Gries-core
proof for a given syntactic structure using closures.

Theorem 6 (No Equivalence).There is a syntactic structure such that for consistent
states defined through the syntactic structure and the ed@ctomain being the pow-
erset of consistent states, there is no cloguon the powerset of consistent states such
that for any multithreaded program having the given syntastructure and for any
property S of consistent states we have

S is Owicki-Gries-core provable < Ifp(Ax. p(initUpos(x))) C S.

One such syntactic structure is given by program Upper fraantple 2.

In fact, we can prove an even stronger property, as the peapfires only thap
is monotone. Even more, the same proof holds even if we cesiré validity of the
equivalence to a given transition relation:

Theorem 7. Under the same syntactic structure as in Thm. 6, there is nulyaof
monotone maps indexed by transition relations, such thatpreserves least fixpoints
(V transition relationsty, 72: Ifp(11) = Ifp(12) = Ifp(=7,) = Ifp(=y,)), and for any
property S of consistent states we have

S is Owicki-Gries-core provable < Ifp(=)yinitupostx)) € S.

Theorem 6 shows that if we start by approximating traces égstand wish to de-
scribe the Owicki-Gries-core proof system using closusescan only hope for bounds
framing the proof system. We will provide such bounds in tegtrwo sections. If we
are willing to work with closures on sets of traces insteaded$ of states, it might be
possible to find some equivalence. But such an equivalenoetée obtained directly
by collecting the states of traces obtained from abstrdetpnetation with a closure.
Let a be the abstraction which associates to a set of traces thd senhsistent states
appearing in the traces.



Theorem 8. Under the same syntactic structure as in Thm. 6, there is nootone
operatorp on the powerset of traces of consistent states such thanfomailtithreaded
program having the given syntactic structure, set of ihitraces init and the trace
extension operatgpost and for any property S of consistent states we have

S is Owicki-Gries-core provable < @ (Ifp(Ax. p(init Upostx)))) C S

6 Upper bound on precision

Now we will show a closure operator such that the best alisimgarpretation of the
program with this approximation allows proving a larger seproperties than those
provable by the Owicki-Gries core. The approximation wédpeénd only on the syntac-
tic structure, but not on the exact transition relation of@gpam.

Definition 9 (Owicki-Gries-core annotation closure).For a given syntactic structure,
let p(Q) be the approximation defined as the set of consistent statashvthat:

— if aresource r is available in v, then there is some otherestatQ

o that coincides with v on the proof variables of r and
e in which r is available;

— and for any thread t there is a state in Q that coincides witmvaxal variables
(including the program counter) of t and on the proof varedblof the resources
held by t in v.

Thenp is a closure on the powerset of consistent states. We ddléiDwicki-Gries-
core annotation closure

The reason why we call this closure an Owicki-Gries-coreosaion closure is
because it is the closure corresponding to the Galois ctionetefined byyos (which
gives the set of consistent states denoted by a programatiomt

Now fix an arbitrary program and Igtbe defined by its syntactic structure.

Theorem 10 (Upper bound).Abstract interpretation witlp is at least as strong as the
Owicki-Gries core. Formally:

Ifp(Ax. p(init Upostx))) C the strongest Owicki-Gries-core-provable property

From the high-level view, the best transformer using thissate is capable of taking
into accounglobal computation instead décal successor computation in the Owicki-
Gries core. ltis as if before checking sequential conststere take into account anno-
tations not only of one thread, but of all the threads, ga@pirecision.

Furthermore, the Owicki-Gries-core annotation closuaghwhere the informa-
tion is always lost. For instance, if a syntactic structuagssthat locals are disjoint
among themselves and from all the proof variables of theuress, and if two states
outside of critical sections are given, then any combimatibthe locals and resource
variables of those states is in the approximation of thogsestates.
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Example 11 (Readers-Writers).For the program Readers-Writers from Example 1
the least fixpoint offp(Ax. p(initupos{x))) coincides with the strongest Owicki-Gries-
core-provable property. This property is coarser than ¢hefsreachable states. For ex-
ample, in one executiofriter; can reactwrite, in another executionriter; can
reachwrite, and the initial state satisfiegw = ar = aw = 0, sop produces a com-
bined state where both writers arevatite, other threads are at their initial locations
and all data variables have value 0. Thus, no Owicki-Gra®e-@roof can restore the
dependency between the threads and prove mutual exclusiaedn the writers.

Example 12 (Upper). For the program Upper from Example 2 abstract interpreta-
tion with p produces the set of reachable states, which is properlyded into every
Owicki-Gries-core-provable property. The reason for thigrepancy is that locals of
one thread and resources held by a different thread ove&lagh an overlap constrains
the output ofp, but not an Owicki-Gries-core proof. Considering such s actually
improves precision!

Example 13 (Simple).For the programs of the class Simple abstract interpretatio
with p produces the same result as the smallest Owicki-Griespro. The reason,
as we will see, is that abstract interpretation with the lobaund will produce the same
result as abstract interpretation with the upper bound.

Example 14 (SepThreads)For the programs of the class SepThreads of Example 4
abstract interpretation with produces the same result as the smallest Owicki-Gries-
core proof. The reason is that the smallest Owicki-Grigg-pooof already denotes the
set of reachable states.

7 Lower bound on precision

Now we will show a nontrivial Cartesian-like closure suchtthbstract interpretation
with this closure can prove only properties weaker than aeétp the strongest Owicki-
Gries-core-provable property. In fact, we will even show such closures. One closure
(namelyp) will describe a better lower bound, while the other one (abm.) is easier
to comprehend.

The definitions of both bounds require some preparation.

For a family of setsZ” = {Xy,...,Xn}, let Part(.2"), calledpartition of 2", be the
set of all nonempty; N...NY, where each; is eitherX; or its complement . 2")\ Xi
(1 <i<n). Elements of a partition are callédbcks

Let us fix an arbitrary syntactic structure. Our lower bound$ depend on the
syntactic structure but be the same for all the program®they this syntactic structure.
Let RL be the family of sets containing all resoureesnd all sets of localkocat for
all threadg as elements. L&RL be the partition oRL

For example, for the syntactic structure of Upper theRietas exactly four ele-
ments: the locals of the first thregt x, pc, }, the locals of the second threég z pc, },
the resource = {u,z}, and the resource = {x,y}. The corresponding partition has

exactly six blocks{u}, {x}, {v}, {z}, {l.pc.}, {pc}.
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7.1 Simple cartesian closure

The simpler approximation is defined as follows.

Definition 15 (Cartesian closure).Given a set of consistent states Q, thartesian
approximationp. returns all the consistent states from the product of priges of Q
onto the blocks ifRL.

In other words p.(Q) contains exactly those consistent states v such that fdr lslack
there is a stat& in Q that agrees with v on the variables of the block.

We call this approximatioartesian since it is similar to the closure that can be de-
rived from the Cartesian pair of adjoint maps from [10], p21&s the name sayg; is
a closure.

This approximation breaks all the dependencies betweebltitks and retains all
dependencies inside a block.

For example, for the syntactic structure of the program Wpipe variables and
pc; belong to the same block. Thus, if in a set of states everg atatome fixed control
flow location satisfieb= 0, each state from the Cartesian approximation of this det wi
also satisfyt = 0 for that control flow location.

Abstract interpretation witpp. generates a property which is always weaker than or
equal to the strongest Owicki-Gries-core-provable priyper

7.2 More precise lower bound closure

The following definition strengtheng; in two ways. Firstly, we impose restrictions on
V from the definition ofp;. Such restrictions will depend on the block. Secondly, we
look at the prophecy variables: those are variables whiemaver written and which
don’t belong to aresource. Prophecy variables form a sephlack; now we restore all
the dependencies between this block and those locals oheasd that are not resource
variables.

Definition 16 (Lower Bound closure).Given a set of consistent states Q, its approx-
imation p(Q) contains exactly those consistent states v such that batredbllowing
conditions are satisfied.
— For every block irRL that is contained in a resource,
o if the resource is available in v, then there is soireQ
x in which the resource is also available
+ and which coincides with v on the block;
o if some thread holds the resource in v, then there is sben® which coincides
with v on all the variables
x that are local to this thread but do not belong to any resouare
x that belong to the block.
— For every thread there is a state in Q that coincides with v achevariable
o thatis a local variable of the thread but
e does not belong to any resource.

12



As the name say9q is a closure. It is at least as precise@s Both closures do
not depend on the exact transition relation of a program. dbsurep induces the
tightest lower bound we could prove. It shows the dependsribat are always retained,
creating a basis for the construction of future refinemegaréthms (possibly following
[20]).

Now fix an arbitrary RPL program that has the assumed syntsitticture.

The proof of the lower bound relies on several claims aboaistlongest property
provable by abstract interpretation with The following claim is the most important
one.

Lemma 17. Let Q be the strongest property provable by abstract inketqtion withp.
Consider a transition of a thread t from a consistent state & tonsistent state Met

the transition start a critical section. Léte Q such that v agrees with on the locals
of t and on the variables of the resources held by t beforertiresition. Letv € Q such
that v agrees with¥ on the variables of the resource being acquired. Then tisaaestate

in Q that agrees withvon the locals of thread t and on the variables of the resources
held by the thread after the transition.

The lower bound theorem follows from the lemma.

Theorem 18 (Lower bound).The core of Owicki-Gries can prove at least as many
properties as abstract interpretation withor p.. Formally:

the strongest Owicki-Gries-core—provable propefiylfp(Ax. p(init U postx)))

C Ifp(AX. pe(init Upos(x))) .

Example 19 (Readers-Writers).For the program Readers-Writers from Example 1
abstract interpretation with; produces the set of all consistent states where readers are
at...read..., writers are at..write..., andww, ar, aware nonnegative. The Owicki-
Gries core and abstract interpretation witltan prove stronger properties, e.g., that at
locationaskwriteC the value ofww is positive. Intuitively, when a resource is busy,
Cartesian abstraction always breaks the dependency betheessource variables and
the control flow, whilgo and the Owicki-Gries core sometimes retain the dependency.

Example 20 (Upper).For the program Upper from Example 2 abstract interpratatio
using eithep or p produces the same result: the set of all states such thatdtihfead

is at any location betweenandE, the second thread is @tand all data variables take
arbitrary values fror{0,1}. The Owicki-Gries core can prove stronger properties; for
instance, it can show that at locatiBthe value of is zero. Intuitively, the dependency
between resource variables and control flow is always brak&artesian abstraction
but is sometimes retained in the Owicki-Gries core.

Example 21 (Simple).For the programs from the class Simple from Example 3 the
approximationso and p are so close to each other that abstract interpretatios wit
both produce the same property. Since they define the loweupper bounds on the
precision of the Owicki-Gries core, the Owicki-Gries coem@rove exactly the same
properties as those provable by abstract interpretatitmaviy of the two approxima-
tions. If a program from Simple does not have the empty resgtinerp andp coincide
exactly, approximating a set of stat@by the set of all consistent statesuch that both

of the following conditions hold.
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— If there is a resource and it is availablevrthere is some state @ that coincides
with v on the resource and in which the resource is available.

— For each thread there is a stateQmwhich coincides withs on the variables of the
thread and, if the resource is present and is held, on thables of the resource.

Example 22 (SepThreads)For the programs from the class SepThreads from Ex-
ample 4 the approximations and p coincide. Since they define the lower and upper
bounds on the precision of the Owicki-Gries core, the OwiBkies core can prove ex-
actly the same properties as those provable by abstracpiatation with any of the
two approximations. Due to the absence of any thread irtierecand independence
of initial states of the threads, the mentioned methods cavethe strongest inductive
property, namely the set of states reachable from thelioities. Informally spoken, all
dependencies between the locals of each thread are retained

8 Related work

Historically, conditional critical regions were introdettin [16]. The thesis [25] of Ow-
icki and her paper with Gries [26] describe the original gmethod for RPL. Modular
reasoning about RPL has not been characterized in termstrhabinterpretation via
closures [8] so far.

For general multithreaded programs (i.e. without sepamadf data into resources),
Owicki-Gries-style reasoning without auxiliary variabls equivalent to multithreaded
Cartesian abstraction. The result was first mentioned witpooof in [11], and the
proof appears in [20].

Clarke [6] has considered a subset of integer RPL prograrhsomiy one resource,
where, roughly, only additions of constants inside theéaaitsections are allowed, and
the property to be checked is either mutual exclusion of &vaphores or deadlock
freedom. With a predefined choice of integer auxiliary valdsa, the least fixpoint of
a particular functional is a resource invariant that pregisells whether the property
holds or not. Two overapproximations are given: a fixed-falanresource invariant
and an invariant computed by a polyhedral analysis with wiitg Our work, on the
contrary, does not impose any restrictions on the program.f®ur results hold for
even more programs than the RPL ones, e.g., where the td&ctons are not well-
nested.

The work of Owicki on RPL is the basis of a variety of modulaogramming
languages equipped with proof methods of different degoéesmpleteness and au-
tomation.

Concurrent separation logic (CSL) [24] equips RPL with sapian logic as a for-
mula language. CSL is also incomplete without the rule ofilaury variables, so the
question of precision arises. Removing secondly impoftattires of CSL for the sake
of clarity (as in [5]) and considering variables in the heagkes our lower bound also
apply to such CSL versions.

Chalice [19] is a language for verification of object-oreshtoncurrent programs
with heap, equipped with an RPL-like proof system. Due togbeerful permission
system, the proof system is in general stronger than thata¢kd, so our lower bound
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on precision carries over to Chalice for programs that caditeetly represented both
in RPL and in Chalice.

VCC [23] is a verifier for multithreaded C. When accessingi&tires in a lock-
based manner, VCC requires the user to provide invariants structs. On ob-
taining ownership of atructure, the resource invariant is assumed; on relinquish-
ing ownership, the resource invariant has to be reestadligBhost contracts of lock-
manipulating functions control the ownership transfen Pwer bound applies to VCC
as well.

9 Discussion

9.1 Challenges

Discussing the precision loss reveals several open prablem

Example 20 shows a gap between the accuracy of the Owickis@are and the
lower bound. Can the lower bound closure be strengthened?

The main inequivalence result assumes that the concretaidasnthe powerset of
consistent states. For the powerset of traces, we only kneguiivalence for a subclass
of abstract interpretations. Is there an exact charaetiwiz of the Owicki-Gries core
by abstract interpretation on the powerset of traces?

We have shown what variable dependencies does the Owidks Gore break. Can
these dependencies be restored on demand? Is there an ttitoousmterexample-
guided abstraction refinement of the Owicki-Gries corehpps based on auxiliary
variables [7], unions of Cartesian products [20], or alestifareads [18]?

Can one characterize the precision loss of the Owicki-Grags by completeness
notions of [15]?

Can one formalize CSL in abstract interpretation in a way thauld reveal the
involved approximation?

9.2 Conclusion

We have examined a modular method (Owicki-Gries core) fovipg safety properties
of a widely-used class of multithreaded programs.

The considered class contains structured programs in wdiiahed data are par-
titioned into resources and are accessed only in criticgtiaes that ensure mutually
exclusive access to resources. The method provides a césis for other more so-
phisticated proof methods like Concurrent Separation ¢,0Ghalice, or VCC. The
Owicki-Gries core is polynomial in the number of threadg,without manually adding
auxiliary variables it cannot prove many properties of eonent programs.

The Owicki-Gries core is, intuitively, expected to succéatproperties whose de-
pendence on thread coupling is low, and is expected to fadrfiplicated thread inter-
actions have to be analyzed. We have made this notion prectséding a characteriza-
tion of the set of Owicki-Gries-core-provable propertid& have demonstrated an ab-
stract transformer corresponding to the Owicki-Gries ctire least fixpoint of the ab-
stract transformer denotes exactly the strongest Owiclég=core-provable property.
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To quantify the loss of precision inherent to modularity, asve provided a superset
and a subset of Owicki-Gries-core-provable properties;dieed by abstract interpreta-
tions with closure operators that depend on the syntactictstre of the program only.
These bounds coincide for a class of simple programs. We daweshown a principal
inability to provide an exact characterization of the sgiraiperties in terms of closures
that depend only on the syntactic structure.
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A RPL

We formalize RPL (restricted programming language) of @&h transition system as
follows.
A syntactic structurés a tuple

(Tid, PL, Val,Res(Local, pgG )teTid, ProofVar, rsc)

where all the following conditions hold.
— Tid, PL, Val are any sets witPL C Val.
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— Resis a set of disjoint sets.

— For eacht € Tid we havepg < Local \ [JRes

— For all differentt,t in Tid we havepg ¢ Locat.

— ProofVar: Res— B (Datavar) is extensive, whergs is the powerset symbdPCVar=

{pg |t € Tid} andDataVar= [ JResJ J;cTig Locat \ PCVar.

— rsc: PL — P(Reg. Notice thatsc is independeritof Tid.
The elements dProofVar(r) are callegoroof variable$ of a resource (r € Re$. Given
a syntactic structure as above, \&lr = | JResU ;g LOcat. A consistent states an
element of

ConsState= {ve Var— Val |Vt € Tid : v(pg) € PLand
vie Tid\{t}: rsc(v(pg)) Nrsc(v(pe)) = 0}.

Aresource isheldbyt € Tid in v € ConsStatéf r € rsc(v(pg)). A resource idusyin
v € ConsStatéf r € JicTigrsc(v(pg)), otherwiser is availablein v.

Therestrictionof a mapw to a seV isw|y = {(a,b) e w|a€ V}. Two mapsv, w
coincideon a seV, writtenv ~y w, iff vy = wy.

An RPL transition system obeying a syntactic strucasebove is a tuple

(init, (=t )teTid)

such thatnit C ConsStatgfor allt € Tid we have—; C ConsStateA Vv einit : rsc(v(pg)) =
0, and all the conditions below hold:
— for all x € Datavarandt € Tid we have

(vieTid\{t}, (v,V) €—=¢ v(X) = V(X)) = x € Local;

— for all r € Reswe have

ProofVarr) = {xeData\/ar‘Vt €Tid, (v,V)e—x: (Y(E)(Z;(\\lizgg))morrs C(\/(pq)))} ;

1In her thesis, Owicki did not explicitly forbid resourcesattdo not protect any variables,
though she mentions no examples with such empty resoureesxlicitly allow them. How-
ever, we introduce a restriction: in our formulation, thepgyrresource, if it exists, should be
unique. We don't consider this restriction important: weéaever come across meaningful
academic or real-life programs with empty resources.

2 Following Owicki, we treat the general case, allowing nopgmintersection between any
element ofResand anyLocak (t € Tid). If we would enforce mutual disjointness between all
r € Resand allLocalk (t € Tid), we would get a tighter lower bound, but just because thefpro
system would get weaker.

3 This way of modeling turned out to be simpler than, say, mgkiantrol flow locations of
different threads disjoint, or makimgc dependent on the thread.

4 Owicki describedProof —var as a proof-related notion. Since proof variables of a resour
capture a syntactic property of the transition relation pf@gram, we view proof variables
as a syntactic notion, despite their name. A lightweighsengation [26] omits the notion of
proof variables, obtaining a simpler but significantly weagroof system.
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— forallt e Tid, (v,V) e, R=rsc(v(pg)), R =rsc(V(pg)), R= Res (RUR) all
the following conditions hold:
1) v ~UreTia\ ty Locak v
(2) v Nuﬁ\/
@) R#R = V ~var\{pg } v,
(4) forallw e ConsStatgif v~ i gcap Urjuyr Wandvr € R\R:r & Jrsc(w(PCVar))),
then there is some such thatv —t W andv’ ~(ocap\ yRIUUR W'
(5) I(R\R)U(R\R)| < 1.

Remark 23. Notice thatin (4)w' additionally satisfies/ € ConsStat@nd(v ~ gy R
w=V ~LocatUUR/ w).

Proof. Follows from —C ConsStat® andV [by (2)] ~LocatnUR V [Dy assumption]
~LocatnUrR W [by (2)] NLocamURTW,' u

Fix an RPL transition system as above. A set of states is nubfgpe set of their suc-
cessors by the function

post: B(ConsStatp— P(ConsState, S— {V |IveSteTd:v—V}.
The goal of verification is, given a set of stategeC ConsStatgto prove that

lfp(AS.init Upost(S)) C safe

B Owicki-Gries for RPL

Fix a syntactic structur€Tid, PL, Val, Res (Local, pG )teTid, ProofVar, rsc) for the whole
section B.

B.1 Definition of Owicki-Gries core

For eaclt € Tid let LocalDataVar = Locat \ {pG } be the set ofocal data variables
A program annotatiorns an element of

PA= ([]%(ProofVarr) — Val)) x []B((LocalDataVayU| JProofVarrsc(p))) — Val).

reRes pePL,
teTid

A program annotatioP denotes set of states given by

Yoa(P) = {ve ConsStat¢V r € Res\ | Jrsc(v(PCVar) : Vlprootvarr) € Ir
andv't € Tid: V|LocalDataVaquProof\bl(rsc(v(pq))) € Mv(pq),t}-

For an RPL transition syste= (init, (—t)ieTig) that obeys the given syntactic struc-
ture, arOwicki-Gries-core proobf T is a program annotatidPt= ((Ir)rcres (Mpyt) pePLteTid)
such that the following holds:
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— sequential consistency: for dlle Tid, (v,V') €=, p=V(pg), P =V (pg), R=
rsc(p), R = rsc(p'), if

V|LocalData\bquProof\b|(R) € Mp,t AVTE R,\R: V|Proof\/a|(r) €lr,

then

\/|LocaIData\bruUProof\b|(R’) € Mp’,t AVTE R\ R: \/|Proof\b|(r) €lr;

— initial condition:init C yog(P).
An Owicki-Gries-core prooP provesa propertysafeC ConsStatéf yog(P) C safe

B.2 Lattice of Owicki-Gries-core proofs

The set of program annotations is ordered by pointwise giciu

((lr)reRes (Mp,t)pePL,teTid) C ((lr)reRes (Mp,t)pePL,teTid)

iff VreRes I Clyand¥ pe PLt € Tid: Mpy C Mpy.

Then the least upper bound is the pointwise uniprthe greatest lower bound is a
pointwise intersectiofi], and the lattice is complete.

Consider the lattice

D =‘B(ConsStatg,

ordered by inclusion. This lattice is certainly complete.
Proposition 24. yoc : PA— D is a complete meet-morphism.

Proof. Let A be a set of program annotations &dl)rcres (Npt) perLteTid) = [ JA. We

have to show thagos([ ]A) and yog(A) coincide.

“C" Let ve yog([ ]A). ThenV r € Res\ Ursc(V(PCVar)) : Vlproonvarr) € Jr andv't €
Tid : V|LocaDatavarUUProofvarrscv(pg ) € Nupg)t- The definition off | implies that
for all B = ((Ir)reres (Mpyt)pepLteTid) € Awe havev r € Res\ Jrsc(v(PCVar)) :

V|Pr00f\b|(r) € lr andVt € Tid: V|LocalData\bruUProof\bl(rsc(v(pq))) € Mv(pq),ti i.e,ve
Yoc(B). SinceB € Awas arbitrary, we havee N yoc(A).

“D™ Let v € yog(B) for all B € A. Letr € Res\Ursc(v(PCVar)). Then for eactB
= (I,M) € A the definition ofyoc givesVipronarr) € Ir- ThUSVIproonarr) € F- SO
Vr € Res\Ursc(v(PCVar)): Vlproonarr) € J- Now lett € Tid. ForeactB= (I,M) €
A the definition ofyog implies thatv] ocaipatavarupProonariscvips)) € Mypg)ts SO

N/(pq),t > V|LocalData\/a{UUProofVar(rsc(v(pq)))- ThusvteTid: V|LocalData\/a[UUProofVar(rsc(v(pq)))
€ Nypg)t- We have shown € yog([ |A). [ |

For the remainder of the subsection B.2, fix an RPL transgimtemT = (init, (—t
)teTid) that obeys the given syntactic structure. Kebe the set of Owicki-Gries-core
proofs of T. FromPA it inherits the componentwise inclusion as the partial gnatich
we also denote biz.
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Theorem 25. (O,C) is a complete lattice with infimum being componentwise seter

tion[].

Proof. Let A be a set of Owicki-Gries-core proofs. First we show {hgk in PAis the
infimum of Aiin O.
— CaseA=0. LetB=
((ProofVar(r) —Val)rcres ((LocalDataVay U | JProofVarrsc(p))) —Val)pepL, ). Cer-

tainly B is sequentially consistent. Singgs(B) = ConsStateB satlsflesTghe initial
condition. ThusB € O. Notice thatB is a lower bound of 0 and is greater than or
equal to any other element &f. ThusB = infs 0.

— CaseA# 0. LetB = ((Ir)reres (Mpt)pep,) = [ ]A. First we will show thaB is an

Lo . teTid
Owicki-Gries-core proof.

Sequential consistency Let Tid, (v,V') €=, p=V(pg), P =V (pg), R=rsc(p),
R =rsc(p') , V| LocalDatavarUUProofvarR) € Mpt andv'r € R\R: Vlproofvarr) € Ir-
Then for all(J,N) € Awe havev| gcapatavaruproofvarr) € Npt andvr € R\R
we havev|pionarr) € Jr- SinceA contains Owicki-Gries-core proofs only, we
getv'|| ocaipatavaruyproofvarR) € Np ¢ andvr € R\R : V' |proonarr) € I (I,N) €

A). ThUS\/|LocalDataVaquProofVar(R') €Mpyrandvr e R\R': \/|Proof\/ar(r) €lr.
Initial condition. For eactP = ((Jr)rcres (Npt)pepL) € Awe haveinit C yog(P),

so for anyv € init we havev r € Res\ Ursc(v T(PCVar)) Vlproofvarr) € Jr and
V't € Tid ! V|| ocaipatavaruyProohvarrscvipg ) € Nvpg)t- Taking componentwise
intersection over alP, for anyv € init we haveV r € Res\ rsc(v(PCVar)) :
V|Proof\/a|(r) €lrandvteTid: V|LocalDataVa(uUProof\bl(rsc(v(pq))) € Mv(pq),t- Thus
for all v € init we havev € yog(B), soinit C yog(B).
We have shown thd € O. By definitionB is less than or equal to any element of
A. Assume some other lower bou@d:= O for A. ThenC C P for eachP € A, soC
is less than or equal to the pointwise intersection @vyere.,C C B. ThusB is the
greatest lower bound &in O.
We have shown that the greatest lower bound of any set of elisroéthe posetO, C)
exist. By Thm. 2 in Chap. 4 of [2] (alternatively Thm. 4.2 if)4O is a complete lattice.
[ |

Notice that the infimum oD is the tuple of empty sets iffiit is empty; thusD is
a complete sublattice ¢tA only if init is empty. Usually verified programs have initial
states, thus usuallp is not a complete sublattice BA

In any case the least Owicki-Gries-core proof exists.

Corollary 26. The strongest Owicki-Gries-core provable property exasis is denoted
by the smallest Owicki-Gries-core proof.

Proof. The set of Owicki-Gries-core-provable propertiesg;(©). The infimum of

this set isS ' NYoc(D) = Yoc([]9). Since® is a complete lattice with pointwise
intersection as infimunf,]O € O. SoSis itself Owicki-Gries-core provable. Notice
thatSis stronger than or equal to any other Owicki-Gries-com@+pble property. ®
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Proposition 27. Any Owicki-Gries-core proof denotes an inductive invatian
VPeO: inituposi(yoc(P)) C yoc(P).

Proof. Let (1,M) € O. We have to prove the following two claims.

“posto yos(l,M) C yoc(I,M)": Let V € posto yog(l,M). Then there is € yo(l,M)
andteTid such thatv—V. Notice that by (1) we have(pg) = V' (pg) for f €
Tid\ {t}. Let R=rsc(v(pg)) andR = rsc(V(pg)). Fromv € yog(I,M) we get
VlLocalpatavarUProonarR) € My(pg)t- Now letr € R\ R FromV’ € ConsStateand
r € 1so(V (pg)) We getr & Ugeray 1) 1SSV (p)) = [sincev(pg) = V(pg) for f €
Tid \ {t}] Useria\ gt} rsC(V(PG)). Sincer ¢ R=rsc(v(pg)), we conclude that ¢
Ursc(v(PCVar)). Sincev € Yos(l,M), we obtainv|penarr) € Ir- ThusVr € R\ R:
V|Pr00f\b|(r) €lr. By SeQ'Jemial ConSiStencyv|LocalDataVa(uUProofVal(R’) € M\/(pq),t
andvr € R\ R : V|ponarr) € Ir-

Now we will show that/ is in yog(l,M).

e Letr € RegUrsc(V (PCVar)). FromteTid, v—;V and the definition oProofVar
we obtain that for allk € ProofVar(r) we havev(x) = V/(X). SO V|protvarr)
= Vlproofvarr)- From (1) we know forf € Tid\{t} thatv(pg) = V'(pg), thus
rsc(v(pg)) = rsc(V (pg)) Z r. Consider two cases.

Caser € rsc(V(pg)). Thenr € R\ R. By the abovey|poonarr) € Ir-

Caser Z rsc(v(pg)). Thenr & [Jrsc(v(PCVar)). Thusv|poonarr) € Ir- There-
fore\/|p,00f\,ar(r) € ly.

SoVr € Res\ Ursc(V (PCVar) : V|proofvarr) € Ir-

e Lett € Tid. Consider two cases.

Casel =t. By the above\/|LocalData\bruUProof\bl(R’) € M\/(pq),t-

Case #t. Fromv(pg)=V(pg) we getLocalDataVagU| JProofVarrscv(pg)))
= LocalDataVafU| JProofVar(rsc(V (pg))). Letx be an element dfocalDataVay
UUProofVar(rsc(v(pg))). If x € LocalDataVag, then (1) impliesv(x) =
V' (x). Otherwisex € ProofVar(r) for somer € rsc(V'(pg)). FromV €
ConsStateve getr ¢ rsc(V'(pg)). Fromx € ProofVan(r) we obtainv(x) =
\/(X)- Combining togethed|LocalData\bﬁJUProofVan(rsd\/ (pq))):V| LocalDatavayuJProof\arirsc(\(pg)))
EN [sincev € yog(l,M)] Mv(pq)f = MV’(DQ),f'

Sovte Tid: \/|LocaIData\/aquProofVar(rsc(v’(pq))) € Mv’(pq),f-

We have showr' € yog(l,M).
“init C yog(l,M)”: By definition of an Owicki-Gries-core proof.

B.3 Examples of Owicki-Gries-core proofs
Fork e N* let Ny = NN [1,K].

Extension of Example 1.The syntactic structure of Readers-Writaranf > 1) is given
by
— Tid = {readerj,writer; | 1<i<n,1<j<m};
— PL = {startreadA startreadB,startreadC,read,finishreadA,
finishreadB,finishreadC,askwritel,askwriteB, askwriteC,
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startwritel,startwriteB,startwriteC,write,finishwritel,

finishwriteB,finishwriteC};
— \al = PLUNp, whereNg is the set of nonnegative integers;
Res= {control} = {{ww,ar,aw}};
L()Call‘@-aderi = {pcreaderi} (1 < [ < n)’ LocaLlriterj = {pQJriterj} (1 < J < m)!
ProofVar(control) = control;
rsc(...A) = rsc(read) = rsc(write) = 0,rsc(...B) = rsc(...C) = {control}.
Since we have assumed at least two readers and two writers, dne no local data
variables. Let
lcontrol = {V: control — Np | v(aw) < 1},
M € NpepLteTia B((LocalDatavay U ProofVar(rsc(p))) — Val) given by
M...readA,readeri = Mread,readeri = {0}1
Mstartreads reader; = {V € ({Ww,ar,aw} — Np) | v(ww) = 0 A v(aw) < 1},
MstartreadC,readeri - {VE ({W\N; ar, aW} _>NO) | V(WW) - O/\V(a.W) S 1 S V(ar)},
MfinishreadB,readeri = MfinishreadC,readeri = {V S ({WV\/,ar,aW} — NO) | V(a\/\b S 1} for
1<i<n,
M...writeA,writerj = erite,writerj = {0}1
MaskwriteB,writerj = MfinishwriteB,writerj = {V S ({W\N; ar, aW} 4>N0> | V(a\N) < 1}1
Maskwritec,writerj - {V € ({WW; ar, aW} — NO) | V(aW) S 1 S V(WW)}v
MstartwriteB,writerJ‘ - {V € ({WW; ar, aW} — NO) | V(ar) =0= V(aW)},
Mstarturitecuriter; = {V € ({Ww,ar,aw} — No) | v(ar) = 0Av(aw) = 1},
Mfinishwritec,writerj = {V € ({WW7 ar,aW} — NO) | 0= V(aW)} for1< J <n,
the remainingVl . are empty sets.
Notice thatP = ([control — lcontrol], M) is an annotation of Readers-Writers. It is se-
quentially consistent and the single initial state, s&, satisfies/"(ww) = vi"(ar)
= Vinit(aw) =0, thusvinit|Proof\b|(contr0|) € lcontrol, SOV € yoa(P). ThusP is an Owicki-
Gries-core proof.
Now we will show that this proof is the smallest one. So([ebntrol— iconol, M]) be
an arbitrary Owicki-Gries-core proof for Readers-Writers
First notice that by starting with the initial state and seasively applying sequential
consistency we obtain nonemptiness of certain annotatas:p
Fact 1. Foreverye Ny and every € {startreadA,read,finishreadA} we have 0
|\7I|,maderi ; foreveryj e Npand every € {askwriteA, startwritel write,finishwriteA}
we have 05 M s cer,
Now we will show in three steps that for artg,b,c) € N3 x {0,1} the mapjww
a,ar — b,aw— | is in l¢ontrol-

Step 1. Ifc=0, we gefww— 0,ar — 0,aw— c| € Icontrol from the initial condition. If
c=1, apply sequential consistency to stateg with V(PCyriter,) = Startwritel
andv—ryriter, V and tojww— 0,ar — 0,aw— 0] € control tO getjww— 0,ar —
0,aw— 0] € Mgtarturitenuriter; - APPlying sequential consistency to the next step
of the same thread to ggtwi— 0,ar — 0,aw— 1] € Mgiarturitecuriter; - APPlYING
sequential consistency to the termination of the critiesition, we obtaifww—
0,ar— 0,aw— ¢] € leontrol-

Step 2. Now we will prove by induction ob that for allb > 0, c € {0,1} the map
[ww — 0,ar — b,aw— c] is in lcontrol. Notice that forb = 0 we already have
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[ww — O,ar — O,aw— ¢] € lcontrol- If b > 0, the induction assumption gives
[wwi— 0,ar — b—1aw— c| € icontrol. Applying sequential consistency to some
states/, V With V(PC,¢pger, ) = StartreadA andv—reager;V, We gefwwi— 0,ar —
b—1,aw— €] € Mgtartreads reader; - APPlYiNg sequential consistency once again to
the same thread, we obtdiawi— 0, ar— b, aw— €] € Mgartreadc reader; - APPIYINg
sequential consistency to the transition terminating titecal section, we obtain
[Ww — 0,ar — b,aw— ¢] € Icontrol.

Step 3. Now we will prove by induction oathat for alla,b > 0, c € {0,1} the map
[wwi— a,ar+—b,aw— ¢] is in leontrol. Notice that fora=0 we have just proven
[wwi— 0, ar+—b,aw— c] € {control- FOra>0, the induction assumption states that
[wwi—a—1 ar—b,aw—c| € Icontrol- S€quential consistency, applied to any pair of
statesy, V With V(PG s yer,) = askwriteA andv—y;cer,V, giveswwi—a—1,ar—
b,aw— €] € Magkuritesriter;- APPlYing sequential consistency once again gives
[Ww— a,ar— b,aw— €] € Magkuritecuriter;, @and applying it again givegvw—
a,ar—b,aw—c| € lcontrol

We have shown thdtontol € Icontrol

From fact 1 we geMsartreada reader; © Mstartreads reader;» Mtinishreads reader; C MfinishreadA,readeri )
Mread reader; < Mread,readeri (1<i<n)and MaskwriteA,writerj - MaskwriteA,writerJ‘y
MstartwriteA,writerJ‘ c MstartwriteA,writerj ) erite,writerj C erite,writerj ) MfinishwriteA,writerJ

g I\zfinishwriteA,writerj (1 S J S m)

Fix somei € Ny and state¥—cager;V SUCh thatM(pGq,4er,) = Startreada, v(ww) =

0, V(ar) >0 andv(aw) <1 Thenv'LocalData\bl}eaderiUUPrOOf\bI’(rSC(startreadA)) =0¢

Mstartreads reader; andV|Proof\/ar(control) € lcontrol- By Sequential consistenay| LocalDataVageager; UUProOfVarrsc(startreads)
=V |control € ,\,/:I\startreadB,readeri . Thusforanyp>0andce {0,1} we hAave[wvw—> 0,ar—

b7 aw— C] S MstartreadB,readeri- In particuIar;MstartreadB,readeri g MstartreadB,readeri-

Applying sequential consistencywbandv’ with V' — eager; V' SUCH thaV/ (PC,epger,) =

startreads, V' (ww) =0 andV/ (ar) > 0 andv'(aw) € {0, 1}, we obtairMs;artreadc,reader;

g Mstartreadc,readeri . R

A:nalogously we gerinishreadB,readeri - Mfinishreadg,readeri , MfinishreadC,readeri -

Mfinishreadc,readeri (1 S i S n) andMaskwriteB,writerj g MaskwriteB,writerj ’ Maskwritec,writerj

g MaskwriteC,writerJ‘a MstartwriteB,writerJ g MstartwriteB,writerJ‘v MstartwriteC,writerJ‘ g

Mstartwritec,writerja MfinishwriteB,writerJ‘ g MfinishwriteB,writerJ‘y Mfinishwritec,writerj
C Mtinishuritecuriter; (1< j <m). SoPis really the smallest Owicki-Gries-core proof.
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Now we will show thatyog(P) equals

{v € ConsStateé v(ww),v(ar) € Ng A v(aw) € {0,1}
AVie{l,...,n}:
(V(PCrenger;) € {Xready,read | X € {start,finish}
A Y€ {A,B,C}})
A (V(PCreager;) = StartreadB = v(ww) = 0)
A (V(PCpeager;) = StartreadC = v(ww) = 0 < v(ar))
AVje{l,....m}:
(V(pcwriterj) € {xwritey,write | X € {ask,start,finish}

A y€e{A,B,C}})

A (V(pcwnterj) askwriteC = v(ww) > 0)

A (v(pcmterJ ) = startwriteB = v(ar) = v(aw) = 0)
A (v(pcwrlterJ ) = startwriteC=-v(ar) = 0 < v(aw))
A (V(PGriter;) = finishuriteC= v(aw) =0)}.

“C": Since there are no local data variables, the defining canmdof yoc(P) restricts
the variables oftontrol at least once: either by the resource invariant, or by the
annotation of a control flow location in a critical regionn&¢ both the resource
invariant as well as the annotations of all control flow lémas$ inside the critical
regions allow only values 0 and 1 afv, we havermw(yoc(P)) C {0,1}. Some
M. are empty, restricting the program counters of the readstsaaiters. If the
variablesvw, ar are restricted beyond being nonnegative, then the raéstricomes
from the nonempty annotations of the control flow points.

“D". Take a statev from the right hand side. It satisfies the resource invaiiaainy
case. Ifcontrolis available inv, then no control flow annotation imposes additional
restrictions orv, sov is in the left hand side. If a state’s location is in a critical
section, then the location is unique. The annotation of lttedtion is satisfied ei-
ther because the annotation is exactly the resource imiafia the annotation is
satisfied by a condition of the right hand side.

O

Extension of Example 2.The syntactic structure of Upper is given by

- Tid={1,2};
— PL={A,B,C,...,V,W};
— \Val= PLU{0,1};

— Res={r,r'} wherer = {u,z},r' = {x,y};

— Locah = {I,x,pc, }, Locab = {y,z pc,};

— ProofVar(r) = {u,z} =r, ProofVarr’) = {x,y} = r’;

— rsc: PL — B(Reg given by

p A,G,J,M,N,0,P,S,W|B,E,F,K,L,T,U,V|H,I,Q,R[C,D

rsc(p) |0 {r} iy H{rr'}
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We have
init={ [u—1,z— 0,x— 0,y— 0,l — 0,pc; — A,pc, — 0],
[U—0,z— 1 x—1y— 11— 1pc+— APpc—0] }.
LetP = ([r — Ir,r" = I],(Mpy) pepLteTid), Where
Iy = {[u—~0,z—1],ju—~12z—0]},
Iy = {[x—0,y—0],[x— 0,y 1],[x— Ly— 1]},
Myt = {[x— 0,1 = 0],[x— 1,1 = 1]},
Mp1 = {[u—0,z— 1,x— 0,1 = O],[u— 1,z— 0,x+— 1,1 — 1] },
Mg1={[u—0,z—1x— 0y~ 0,1 —0],[u—~0,z— 1,x— 0,y— 1,1+ 0],
[u—1,z2—0x—1y—11—1]},
Mp1={[u—0,z—1Xx— 0y~ 0,1 —0],[u—0,z—1,x— 0y~ 11+ 0],
[u—1,z2—0,x—0y—11—1]},
Mg1 = {[u—~ 0,2— 1,x— 0,1 — O], [u— 1,2+ 0,x+— 0,1 — 1] },
Moo = {[y—0,z—0], [y~ 1,z— 1]},
Myt = 0 for (x,t) € (PLx Tid)\ {(4,1),(8,1),(C,1),(D,1),(E,1),(0,2)}.
Notice that the two initial states satisfy annotations efltionsA and0 as well as the
resource invariants. Thus the program annotaBcadmits the initial states. Further-
more,P is sequentially consistent. Thids an Owicki-Gries-core proof.
Now we’ll show thatP is smaller than or equal to any Owicki-Gries-core prfof—
It 1], (Mpt) pepLteTia). From the initial condition we gefu — 0,2+ 1], [u
1,z— 0] € Iy, sol, C I,. The initial condition also implies— 0,1 +— 0], [x— 1,1 +— 1]
€ MA 1, SOMy1 C MA 1. Agaln from the initial condition we ge[yH 0,z— 0], [y—
l,z— 1] € MD 2, SO Moz - 'Vloz At last the initial condition glve$x — 0,y — 0],
X 1,y 1] € I;r. Now let
VA=[u~ 1,z 0,x— 1y~ 11— 1 pc; — A,pc, — 0] and
V=[u—12z~0x— 1y~ 11+ 1pc + B,pc,— 0].
Notice thatrsc(A) = 0, rsc(B) = {r}, so A
VA|LocalData\/aunProofVar(rsc(A)) = LX =1l 1]e My1and
VA|Proof\b|(r) = [u’_> 12— O] el
Sincevt(u) = 1= VA( ), we havev' — 12, By sequential consistency,
VB|LocalDataVa[UUProofVal(rso(B)) € IVlB L i.e. [u —1,2—0,x—= 1,1 — 1] € MBl Let
V=[u—1,z—0x—1y—1 I — 1,pc; — C,pc, — 0].
SinceV? |proonvarr) = X Ly~ 1] € i, andvB—1\V¢, we obtain from the sequential
Eonsistency condition tha{F|Loca|DataVa&UUpmofVar(,sc(c)) € Mc’l.
et
VW =[u—12z~0x— 0y~ 11+ 1 pc + D,pc, — 0]. A
Sincev*— 1\, sequential consistency gived ocaipatavaguproonvarrsan)) €Mpa-
Let
VE=[ur 1,2+ 0,x+— 0,y — 1,1 — 1,pc; — E,pc, > 0].
From\’—1V¥, sequential consistency ande rsc(D) \ rsc(E) we get
VE|LocalData\/aﬁuUProofVar(rsc(E)) € Mg 1 andly > VE|ProofVar(r’) = [x—0,y—1].
Thusly C iy
Now let
V=[u—0,z—~ 1 x— 0,y 1,1 — 0,pc, — A,pc, — 0] and
V=[u— 0,2z~ 1 x— 0,y— 1,1 — 0,pc, — B,pc, — 0].
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Sincev¥(u) = 0= V*(l), we have/* —1 \E. Since additionally

\7A|LocalData\/aﬁuUProofVar(rsc(A)) :A[X = 0,1 — O] € MA,L rSC(VB)\rSC(\?) = {r} and
Vlproofvarr) = [U— 0,z 1] € I, we have
Mz1 > \_/B|LocalDataVaﬁUUProofVar(rsc(B)) =[u— 0,z 1,x— 0,1 — 0].

Since[u— 1,z 0,x— 1,1 = 1], [u 0,z 1,x— 0,1 — 0] € I\7IB’1, we have

Mg 1 C Mg 1. .

From[u— 0,z— 1,x— 0,1 — 0], [u— 1,2z~ 0,x— 1,1 — 1] € Mg 1, [x—0,y— 0],
[x—=0,y—1], x—=1ly—1] € i we getju—0,z— 1, x—0,y— 0,1 — 0], [u—0,z—
1,x0,y+> 1,1 0], [ur 1,2 0,x—~ 1,yr+ 1,1+ 1] € Mc 1. Thus,M¢ 1 C Mg 1.
Applying sequential consistency with respeckte 0 we getu— 0,z+— 1,x+— 0,y —
0,1+ 0], U0,z 1, X+ 0,y+ 1,1 = 0], [u+ 1,2+ 0,x+— 0,y 1,1 > 1] € Mp 1,
i.e.,MD,1 - MD,l-

Applying sequential consistency fio— 0,z— 1,x+— 0,y+— 0,1 — 0], [u— 1,z 0,X—
0,y 1,1+ 1] € Mp 1 we getju— 0,z 1,x+ 0,1 0], [u— 1,2 0,x+— 0,1 1] €
l\’/\lEyl, i.e.,MEyl - l\’/\lEyl.

We have shown tha is the smallest Owicki-Gries-core proof. It denotes théofeing
states (column = state):

00100001
11011110
01000000
11011110
01000001
Ci[AAABCDEE

600000000

T T —< X NC

Extension of Example 3.A syntactic structure= (Tid, PL,\al,Res(Local, pg )teTids
ProofVar,rsc) belongs to the clasStrSimpleff |[Re$ < 1, (vt € Tid: Locat N|JRes=
0) and (V r € Res ProofVar(r) =r # 0). An RPL transition systenfinit, (—t)icTid)
belongs to the clasSimpleiff it obeys a syntactic structure from StrSimple.

All programs from the family Readers-Writers are in Simple. a

Extension of Example 4 A syntactic structur€Tid, PL, Val, Res(Local, pg )icTid, ProofVar,
rsc) belongs to the clasStrSepThread$f Res= 0 andTid is finite. An RPL transition
system(init, (—¢)ieTid) belongs to the clasSepThreadsf it obeys a syntactic structure
from StrSepThreads antive ConsState (VteTid 3Veinit: v~y qca, V) = VeEinit.
Notice that StrSepThreadsStrSimple and SepThreadsSimple.

We will show later, using the lower bound, that the smallesidRi-Gries-core proof

of an RPL transition system from SepThreads denotes theges invariarit a

5 For infinite Tid only those states are reachable that have finitely manymitaticomponents,
but the Owicki-Gries-core proof denotes states that mag habitrary many non-initial com-
ponents. Thus we study here the finite-threaded case only.
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C Owicki-Gries core as abstract interpretation

Within the section C, fix a syntactic structure and an RPLditaon system obeying it
as in section A. Let
next, : PA— PA,
(I,M) — (({\/|Proof\/a|(r) [IteTid,v: V=tV A
V|LocalDataVaquProof\bl(rsc(v(pq))) € Mv(pq),t A
r € rse(v(pg)) \ rse(V'(PG)) Hreres
({\/|LocalDataVanUProofVar(rsc(p)) |3viv=V AV(pg) =p
A V|LocalData\bruUProofVal(rsc(v(pq))) € M V(pg ).t A
Vr e rsc(p)\rsc(v(pg)) V|Proof\/ar(r) € Ir})pEPL)

ini teTid
I = ({Vlprootvar(r) | V € init})rcres,
MM = ({V|Locaipatavae | V € iNit A V(pG) = P})peptteTid -

Let thesound Owicki-Gries-core abstract successor rhap

postys : PA— PA,
(1,M) = (I,M)Unextg(1,M),

and theOwicki-Gries-core abstract transformée

Féc:PA—PA,
(I,M) = (1IN MmNty | post (1, M) .

Lemma 28. The map nefs is monotone.

Proof. Let(I,M) C (I,M) be program annotationsexf,(1,M) = (I",M’), nex,s (1, M)

= (I",M").

“V(r € Rés I Ci™ Letr e Res Letw € I/. Then there is a threadc Tid and some
transitionv—>t\/ such thawLocalData\/a[UUfroofVal(rsc(v(pq))) € My(pg) £ T € rsc(v(pG))\
I‘SC(\/(pSt)) and\/|Pr00f\b|(r) =W. ThenMv(pq),t 2 V|LocalDataVaquProof\bl(rsc(v(pq)))-
Sowe l].

“VteTid, pePL: Mp; M’ " LetteTid, pe PL. Letw € M. Then there is some

tranS|t|onV%tV, SUCh thamLocalDataVa(UUProofVar(rsc(v(pq))) € M V(pg )t \/(pQ) =D

Vre r§c( )\I’SC(V(pCt V|Proof\/ar(r) € lr andw = |LocalDataVaquProofVar(rsc( p)-
Then Mv(pq),tA > V|LocalDflta\bruUProoﬂb(rsc(v(pq))) andVvr e I’SC( p)\rsc(v(pq)) :
Vlproovarr) € Ir- SOw € My, [ |

Corollary 29. The Owicki-Gries-core abstract transformef£is monotone.

Corollary 29 implies that the Owicki-Gries-core abstraeinsformer has a least
fixpoint, which follows from a well-known fixpoint theoréim

A postfix poinbf a mapf : X — X on a posetX, <) is anyx € X such thaff (x) < x
Let postf f) be the set of postfix points df.

6 Known today as Tarski’s fixpoint theorem (Thm. 1 in [28]). $kiistence of the least fixpoint,
however, was also mentioned independently, e.g., Exebdisé4 of Chapter IV of [2] in year
1948. See also [3], Ch. ¥3, p. 115.
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Theorem 30. Every Owicki-Gries-core proof is a postfix point of the OwiGkies-
core abstract transformer and vice versa. Formally:

O = postfiFsg) .

Proof. “C”: Let (I,M) € 9. We will show that(lI’,M’) :=F&5(I,M) is less than or
equal to(l,M). Let (I,M) = next,g(I,M).

“YreRes |l Cl™ Let r € Res Letwe I/. Thenw e Mt U1 UT;.

Casewe 1INt Then there is some ¢ init such thalv|proof\,a,(r) = w. By the
initial condition,v € yoa(l,M). Since every resource is available in an
initial state,r € Res\ Jrsc(v(PCVar)). Thusv|pronarr) € Ir-

Casew € |,. Then we don’t have to prove anything more.

Casewc ;. ThenthereiscTid, (v,V') e— such thav, ocaipatavaguUProofvarrsavipg)))
€ My(pg)1: T € rsc(v(pg))\rsc(V (pG)) andw = V' [proonarr) - BY (5) we have
rsc(v(pg)) 2 rsc(V'(pg)). Sequential consistency implig$ponarr) € Ir-

In all casew € I,. Sol/ C I;.

“VteTid,pePL:Mp; CMp™ Let t € Tid, p € PL. Letw € Mp;. Thenw €
Mmlt @] Mpt U Mpt
Casewe M'”'t Then there is some < init such thatv(pg) = p andw =

V|LocaIData\b[ By the initial condition,v € yog(l,M). From definition of
yoc andrsc(v(pg)) = [V € init] 0 we getv| ocaipataar € Mpy-

Casew € Mp. Then nothing more has to be proven.

Casew € Mpt Thenthere igv, V') €— such thav|| ocaipatavarUUProofarrsc(v(pg )
€M, v(pg )t \/(pct) =pVre rsc(p)\rsc( (pct)): V|Proof\/ar(r) € lr andw
= |LocaIData\/anUProofVal(rsc( p): Then\/|LocaIData\/a(uUProofVar(rsc(p)) € Mp,t
by sequential consistency.

In any casev € Mp;. SOM;J,t C Mpy.

“2" Let (I,M) € postfFgg), i.e., for(I',M’) = F45(1,M) we have(l’,M) C (I,M).

We’ll show that(l,M) is an Owicki-Gries-core proof.

Sequential consistency: Leéte Tid, (v,V) €=, p=v(pg), P = V(pg), R=
rsc(p), R = rsc(p'), V|LocalDataVa(uUProofVar(rsc( p) € Mpt andVvr € R\R:
v|proof\,ar(,> € Ir. By definition ofnex,; we obtainv/ |LocalDatavarUUProofvarrse(p'))

p,t C My;. If anyr € R\ R is given, the definition ohex%G implies
\/|Proof\/ar(r) elfClr.
Initial condition: Letve init.
Letr € Res\ Ursc(v(PCVar)). Thenv|pronarr) € M C 1} C 1.
Now lett € Tid. Thenv| ocaipatavar € M\i,r(‘gq)yt. Since initial states don't have

any busy resourceglLocalData\bruUProofVal(rsc(v(pq))) € M\i,r(]gq)‘t < M\l,(pq)‘t <
My(pa) t- | |
We have showw € yog(l,M). Thusinit C yog(l,M). [ |

Restatement of Theorem 5The smallest Owicki-Gries-core proof is the least fixpoint
of the Owicki-Gries-core abstract transformer, formally

inf() = Ifp(F&g) .
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Proof. inf(9) = [Thm. 30] inf(postfdF&)) = [Tarski's fixpoint theoremlfp(Fs).m

Proposition 31. The map pogj, is sound with respect to the concrete successor map
post. Formally:

VP € PA: posto yog(P) C yoc o posbg(P).

Proof. Let(I,M) € PA LetV € posi(yoc(l,M)). Let(I,M’) = nexty5(I,M) and(I’, M)
= posyg(1,M). Then(I,M) = (I,M) U (I’,M"). By definition ofpostthere is somec
Tid and some € yog(l, M) such thav—V'. By definition ofyoc We havev|  ocapatavaruproonvarrscvipe )
€ My(pg)t- To show that/ is in yoe(f, I\7I) we have to prove the following two claims.
“Vr € ResUrsoV(PCVaD) : V|proofvarr) € ii": Letr € Res Jrsc(V(PCVan).
Caser € rsc(v(pg)) for somet € Tid. Thenr € rsc(v(pg)) \rsc(V (pg)), sov(pg)
# V' (pg). Then (1) implies thaf =t. Sor € rsc(v(pg)) \ rsc(V(pg)). Then
V|proofvarr) € I by definition ofnextyg.
Caser ¢ Ursc(v(PCVar)). The definition ofyog implies thatv|pronarr) € Ir- No-
tice thatr ¢ rsc(v(pg)) Nrsc(V (pg)). Thus for allx € ProofVar(r) we have
V(X) = \/(X)- Sov ~ProofVarr) V. SO\/|Proof\b|(r) €lr.
In both cases’ |proofvarr) € I
“vi e Tid: V| ocabatavaruuproonarrsev (pa)) € My (e Let T € Tid.
Caset=t. Consider an arbitrary € rsc(V(pg))\rsc{v(pg)) (there may be none).
FromV € ConsStateve getr Uscrig\ 1SSV (PG)), SO (1) gives & Useria, (13 'SC(V(PG))-
Thusr is available inv. Fromve yog(l,M) we getv|pronarr) € Ir- ThusVr €
rsc(V (pG)) \rsc(v(p&)): Vlproofvarr) € Ir- From the definition ohext,g we
get M\l/(pq),t > \/|LocaIData\/a[UUProofVal(rsc(\/(pq)))-
Case #t. By (1) we haver~iocatV, SOV(PG) =V (pg). Take any e rsc(V (pg))
(there may be none). Frome ConsStateve getr ¢ rsc(V/(pg)). In particular,
r Zrsc(v(pg)) Nrsc(V (pg)). By definition ofProofVar, for all x € ProofVar(r)
we hava/(x) = \/(X)- ThUSVNProofVaI(r) V. SOVNLocalDataVarUUProofVar(rsc(v’(pq)))
V. Notice thamLocalDataVaquProofVar(rsc(v(pq))) S Mv(pq),f- Thenwe havM\,/(pq)f
=] \/|LocaIData\/aruUProofVar(rsc(\/(pq)))- .
In both Caseg’|LocalDataVapuUProofVal(rsc(\/(pq))) € M\/(pq),f-
ThusV € yog(f,l\7|). SinceV € posto yog(l,M) was arbitrary, we have shown that
posto ygg(|,M) C Yogo pOS%G“,M). ||

Remark 32. Areader might wonder why we have not taken the iAp-+ PA, (I1,M) —
(1Mt Mty | next (1,M) as the abstract transformer. It is also monotone and the set
of its postfix points is equal to the set of Owicki-Gries-cpreofs. Howevemex%G is
in general not a sound approximationgafstunder(aog, Yoc)- a

D Upper bound on precision

Within the current section D, fix a syntactic struct(fel, PL, Val, Res (Locat, pG )i<Tid,
ProofVar,rsc), let ConsStatebe the set of consistent staté®,= 93(ConsStatg and
(PA C) the lattice of program annotations.
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Let

aog: D — PA,
S— (({V|Proof\b|(r) | VESAT € UI’SC(V(PCV&I’))})reReS,

({V|LocalDataVaquProof\bl(rsc(p)) | VESA p= V(DQ)}){JE%,) :
€Ti

A pair of adjoint map$ between two poset, <), (Y, <) is a pair of mapsa, y) such
thata : X —»Y,y:Y — Xand

vxeX,yeY: a(x) 2yex<yY).
Proposition 33. (aog, Yog) is a pair of adjoint maps betwedd, C) and (PA C).

Proof. LetSe D, aog(S) = (I,M), T = (J,N) € PA We will show thatorog(S) C T if

and only ifSC yoe(T).

“only if”: Let ve S By definition ofD we getv € ConsStateletr € Res, |Jrsc(v(PCVar)).
By definition ofagg we gelv|p,oof\,a,(r) € lr. By assumption, C Jy, sov|p,00fvar(r) c
Jr.
Now lett € Tid andp = v(pg ). By definition ofaoc We gew| ocaipatavaruproofvarrsc(p))

€ Mp;. By assumptiom\lp,t 2 Mp;. ThUSNv(pq),t > V|LocalData\bruUProofVal(rsc(v(pq)))-
Combining, we obtain € yog(T).

“if”: Let r € ResLetue€l,. By definition ofapg there isv € Ssuch that ¢ | Jrsc(v(PCVar))

and u = V|pronarr)- By assumptiony € yoc(T). By definition of yoc we have
ueJ. Thusl, CJ.

Lett € Tid andp € PL. Letu € Mp;. By definition ofaog there is some € Ssuch
that p= V(pq) andV|LocalDataVa(uUProof\bl(rsc(p)) =u. By assumptionv € VOG(T)-
By definition of yog we getu € Npt. ThusMp; C Np;.

Combining, we obtaimog(S) C T. ]

LetB = Yo ° 0oG-
Then forQ € D we havep(Q) =

VreRegUrsc(v(PCVar)3veQ: <;\%Ljrsc(v(PC:7/ar))>
v € ConsStat '\ Proof\ar(r)
VteTid3veQ: v ~LocakUProof\ar(rsc(v(pg))) v

A closure(sometimes called ampper closure operatdron a posetX, <) is a map
p : X — X which is monotone, extensive and idempotent. (For an intrtdn to clo-
sures see [31].)

Proposition 34. p : D — D is a closure operator.
7 As of year 2011, it is also called(@onotone) Galois connectiofthe definition of a Galois

connection is changing over time, see, e§gp, in Chapter IV of [2], alsd; 8 in Chapter V
of [3], for a more antique definition where the mapsindy are antitone.
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Proof. By a standard result (exercise for the reader, see also [@pl@ry 5.3.0.5),
applying the right adjoint after the left adjoint gives asloe operator. ]

Restatement of Theorem 10Abstract interpretation witp proves the strongest Owicki-
Gries-provable property. B

Formally, letT = (init,...) be an RPL transition system that obeys the given syntactic
structure and has successor operptistand letO be the lattice of Owicki-Gries-core
proofs of T; then

Ifp(Ax. p(initupostx))) € yog(infO).
Proof. Let P =inf9. By Prop. 27 we have
init Upostyoc(P)) < yoa(P).
Since(aog, Yoc) is a pair of adjoint maps, we have

aoc(init Upostyoc(P))) E P.

Right adjoints are monotone, so

yoa(aog(initUpostyoc(P)))) € yoe(P),

otherwise stated
p(init Upostyoc(P))) € yos(P).

Let F = Ax.p(init U pos{x)), thenyog(P) € postfgF ). Since the least fixpoint of a
monotone map is the infimum of its postfix poinifp(F) C yoc(P). Apply Corollary
26. [ |

In particular, abstract interpretation wighallows proving at least as many proper-
ties as the core of the Owicki-Gries method.

Extension of Example 11. We will see later in Example 19 thdfip(Ax. p(init U
postx))) = yoa(l,M). So, for Readers-Writers, the Owicki-Gries-core proof moeit
and abstract interpretation withare equally strong. O

Extension of Example 12. Notice thatp(init U post(init)) = p(initU®) = p(init) C
init. Sinceinit is the set of reachable statéfp(A x. p(initUpostx))) = init. Thus for the
RPL transition system Upper abstract interpretation updean prove strictly stronger
properties than the core of the Owicki-Gries method. O

Extension of Example 13.For the programs of the class Simple we will show later in
Example 22 thalfp(Ax. p(init Upos(x))) = Yoa(infO).

Extension of Example 14.For the RPL transition systems in the class SepThreads we
will show later that the abstract interpretation using t&dr bound produces exactly
the set of reachable states. Thus abstract interpretasiong the upper boung will

also produce the set of reachable states. O
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E Lower bound on precision

For a seX of sets, let

Part(X) = {Y | ITCX:Y=(T)n( () (UX)\2))#0}

Zex\T

be thepartition of X, whereN0 = UX by convention. The elements of a partition are
calledblocks

Lemma 35. Let X be a set of sets. Then:
1. UPart(X) = UX;
2. for all different g, s, € Part(X) we have sNs, = 0;
3. if se Part(X) and Se X, then either §S=00rsC S;
4. if X is finite, so is PafiX).

Proof. 1. “C": Intersection of subsets ¢fX produces a subset pfX.
“D" Letxe UX. LetT ={Se X |xe S}. Then for allZ € X\ T we havex ¢ Z.
Soxe (NT)N(Nzex\T((UX)\2)).

2. LetT;, T, C X be such that fog, = (ﬂTl)ﬂ(nZex\Tl((UX)\Z)) £ 0 ands, =
(NT2) N (Nzex\1,((UX)\ 2)) # © we haves; # s,. Assume for the purpose of
contradiction that there is sonyan s; N's,. Sinces; # s, there is some in (s;\
$)U(s2\ s1). Without loss of generality lete s; \ sp, the other case is symmetrical.
Thenx € (UX) \ s, so there are two cases.

— CasedSe T, : x¢ S Take sucts. ThenS¢ Ty, thusSe X\ Ty, soy € (UX)\ S
SinceSe T,, we havey € S. Contradiction!

— CasedZ e X\ T2: x¢ (UX)\ Z. ThenZ ¢ X\ T1 (otherwisex were not ins;).
SoZ e Ty. Soy € Z. Buty € s, soy € (UX) \ Z. Contradiction!

3. Lets e Part(X) and S € X. Assume for the purpose of contradiction tisat S
contains some element, sayputs\ Salso contains some element, sayThere is
someT C X such thas = (NT)N(Nzex\ 1 (UX)\ Z)). Soy e NT. If SET, we
gety ¢ NT, a contradiction. IS¢ T, thenSe X\ T, sox € sC (UX) \ Simplies
X ¢ S, also a contradiction.

4. If X is finite, |Part(X)| < 2/X. |

For the rest of section E, fix a syntactic struct(Fel, PL, Val, Res (Locat, pG )teTid,
ProofVar,rsc), let ConsStatée the set of consistent states @he- 3(ConsStatg Let

RL=ResJ{Loca} |t € Tid} and RL=Part(RL).

Let

p:D—D, Q~ -
VseRLreRes sCr=
((r ZUrsc(v(PCVan) = e Q: vrgV AT & Ursc(\”/(PCVatj)))
N
veConsStat , . .
(VteTid:rersc(v(pg)) = VeQ: V~(Locab\URegUsV)
A

VteTid 3V€ Q! V~ocapresY)
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and
pc:D—D, Q~ {veConsStatéVse RLIVE Q:V~sV}.

Note that neithep nor p; depend on the maproofVar. Thus for syntactic structures
that differ only in the maProofVarwe have the same and the samec.

Proposition 36. p is a closure operator oD, C).

Proof. Monotonicity. LetQ C Q' C ConsStateletv € p(Q).
e LetseRLr € RessCr.
x Assume for a moment thatis available inv. Then there iv € Q such that
vV ~gVandr is available inv” Notice thatv’e Q'.
* Lett € Tidandr € rsc(v(pg)). Thenthere is € Q such that ~ (i ocap Jresus
V. Notice thatve Q'.
e Lett € Tid. Then there iz’ € Q such thaw ~ ocay JresV- Notice thatve Q.
We have shown thate p(Q'). Thusp(Q) C p(Q).
Extensivity. LetQ € D. Letve Q.
e LetsecRLre RessCr.
* Assume for the moment thatZ Jrsc(v(PCVar)). Takev:=v.
x Lett € Tid andr € rsc(v(pg)). Takev:=v.
e Lett € Tid. Takevi=v.
Thusv € p(Q). We have shown th&@ C p(Q).
Idempotence. LeQ € D. Letv e p(p(Q)). We'll show thatvis in p(Q).
e LetseRL r cRessCr.
* Assume for a moment thatis available inv. Then there is' € p(Q) such
thatv ~s Vandr is available inv_ Then there i is/ € Q such that/~ ¥ and
r is available inv. Notice thatv ~s V.
x Lett € Tid such that € rsc(v(pg)). Then some € p(Q) exists such that
V~(Locat\URegus V- Thenv(pg) = \7(pq) sor € rsc(V(pg)). Then there is
vV € Q such thaw* "~ (Locat\URegUs V. Notice thatv ~ (Locat\JRe3Us V.
e Lett € Tid. Then there iw& p(Q) such thavaocai\UResv Then there i§cQ
such thalvaocai\UResv Notice thatvaocawResv

Thusv € p(Q). We have shown thagi(p(Q)) C p(Q). The opposite inclusion fol-
lows from extensivity. ]

Proposition 37. p. is a closure operator oKD, C)

Proof. We will show the three properties of a closure operator.

—Monotonicity. LetQ C Q' be sets of consistent states and pc(Q). Thenv e
ConsStateand for each blocls € RL there is a state € Q such thatv ~g V. No-
tice that suclv are also inQ. We have showpc(Q) C pc(Q).

—Extensivity. LetQ € D. Letve Q. Letse RL Certainlyv ~g v. Thusv € pc(Q).
We have show® C p.(Q).

—ldempotence. LeQ € D. Letv € pc(pc(Q)). Letse RL Then there is some €
pc(Q) such thav ~sv. Then there is somec quchthatlwsv Thenv ~gV. Thus

vV € pc(Q). We have showrpe(pe(Q)) C pc(Q). The opposite inclusion follows
from extensivity. ]

34



Proposition 38. For all Q € D we havep(Q) C p¢(Q).

Proof. LetQ e D. Letve p(Q). Letse RL By part 3 of Lemma 35 we have two cases.
Case there is € Ressuch thas C r. There are two subcases.
Case is available inv. Then there is somec'Q such that/~gV. Letv:=V.
Caser € rsc(v(pg)) for somet € Tid. Then there is € Q such thav ~ i ocap UResus
V. Letv:=V.
Casesn|JRes= 0. Sinces#0, there is someecTid such thasC Local\ | JRes There
isV € Q such thaw ~| ocap resV: LELVI=V.
In any case there g€ Q such thav ~gv. [ |

For the purpose of the proof 18t = (init, (—t)icTid) be an RPL transition system
that obeys the given syntactic structure and has succepsoatorpost LetF = Axe
D. p(init U pos{x)), let u € Ord have cardinality greater than the cardinalityDo&nd
let (Y()ic,, be thep-termed upper iteration sequence Fostarting with 0c D:

YO =p, YOU=F (Y“’)) foro+1lep, Y@ = |J Y forwoep.

ocwo
Let Q = Ifp(F). The sequencef )i, is monotonously increasing, and its limit@s

Lemma 39. Lett#{in Tid. Then
1. VteTd (wW)e=r: v ~LocatnLocak VAV ~Mterig Locak Vv
2. Locaj NLocak = (g Locak.

Proof. 1. Lett€Tid, v—;V. Thent #t or T #f. From (1) we gew ~ocq V' OF
V~Locat V. INn any caseleocamLoAcak\/ - In particulary~n. . Loca V-

2. “C": Let x € Local nLocak andt € Tid. To show thak is in Locat, let T € Tid\
{t} and (v,V') €. As shown abovey ~LocatnLocat V', SOV(X) = V/(x). By
definition of RPL,x € Locatk.

“2" Follows fromLocal 2 (1igLocak andLocak D (Tig LOCakt. [ |

Lemma 40. Let se RL, t#£fin Tid such that < Local N LocatN|JRes.
ThenvVo € u, ve Y@ Jweinit: vrsw.

Proof. By transfinite induction. Let € u and¥a € o Yve Y9 Jweinit: v~sw. Let
veY(9), Theno > 0. There are two cases.
Caseo = g + 1 for someg < . There is some € Ressuch thas C r. There are two
cases.
Caser e rsc(v(pg)) for somet € Tid. By definition ofp there isve init Upos(Y(9))
such that ~ (i gcap\Jregus V- In particular,v ~s V andv(pg) = V(pg). Thus
r € rsc(V(pg)). Since in initial states all resources are availablg, ifiit. So
there is some € Y(9) such thatve pos({z}). Part 1 of Lemma 39 implies
V ~gZ, SOV ~g Z
Caser ¢ [Jrsc(v(PCVar)). Then there i/ & init UpostY(?)) such thatv ~s V. If
¥ € init, takew:=V. Otherwise there is € Y(9) such thawc pos{({z}). Part 1
of Lemma 39 impliev ~5 7, sov ~sz
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If we have not found a suitabie so far, there iz € Y(9) such thaw ~s z Applying
the induction hypothesis td < o andz € Y(9) we get somav € init such that
Z~sW, which impliesv ~gw.

Caseo is a limit ordinal. Then there is € o such thaw € Y(9). Apply the induction
hypothesis. ]

Lemma 41. Lett#{in Tid. Thenv o € p, ve Y@ 3w einit: v~ ocatrLocat)|UresW-

Proof. LetC = (Local NLocat) \ [JRes We'll use transfinite induction. Let € 1 and

VoecoaVveY@ Iweinit: vecw. Letve Y. Theno > 0. -

Caseo = 0 + 1 for someg € p. By definition ofY(?+1) there isve init Upost(Y(9))
such thatv ~| geap\resV- Thenv ~c V. If ¥ € init, let w:=V. Otherwise there is

ze Y(9) such thawe post{z}). Part 1 of Lemma 39 implies thatc z, SOV ~c z
Applying the induction hypothesis to andz we obtain somev € init such that
Z~c W, SOV ~c W.

Caseo is a limit ordinal. Then there i§ € o such thaw € Y(@), Apply the induction
hypothesis. ]

Lemma 42. LetscRL, te Tid, re Res, & rnLocat, andv f  Tid\{t} : snLocak = 0.
ThenV o cp,veY(@: rersc(v(pg)) = IweY(9: vaswAr is available in w.

Proof. We'll use transfinite induction. Let € pandv gc o VveY(9): rersc(v(pg)) =

FweY9): vagwAr is available inw. Letv € Y(9) such that grsc(v(pg)). Theno > 0.

Caseo = 0 + 1 for someo € p. If r is available inv, takew:=v. Otherwise there is
somet € Tid \ {t} such thatr € rsc(v(pg)). By definition of p there isy € initU
postY(9)) such that/~( ocap UregusY- Thenv(pg) = y(pg) andv~sy. In particular,

r € rso(y(pg)). Theny ¢ init. So there iz € Y(9), T € Tid such thaz — y. Remark

thatr & rsc(y(pg)).

Caser =t. Fromrt+#t and (1) we obtaimsc(z(pg)) = rsc(y(pg)), thusr € rsc(z(pg)).
Fromze ConsStateve getr Zrsc(z(pg)). Thusr € Re§(rsc(y(pg)) Ursc(z(pg))).
From (2) we getz ~; y, S0z~gY, s0z~gV. Apply the induction hypothesis to
o andz

Caser #t. From (1) we obtairg ~ocay ¥, SOZ~sY, S0z ~s V. AlsO z(pg) =
y(pg ), thusr ¢ rsc(z(pg)). Apply the induction hypothesis @ andz

Caseo is a limit ordinal. Then there ig € o such thatv € Y?. Apply the induction
hypothesis tar andv. [ |

Lemma 43. Lette Tid, ve Q, r € Redrsc(v(pg)), s€ RL, sC rNLocal.
ThendweQ: v~sWAT is available in w.

Proof. There is some e u such thav € Y(9).
Case there iEe Tid\ {t} such thas C Locat. By Lemma 40 there is sonvee init C
Q such thaw ~sw. Notice that all resources are availablenn
CasevfeTid\{t}: snLocak = 0. Lemma 42 provides a suitablec Y(?) C Q.
|

Lemma 44. Lette Tid, ve Q, r € Res\ rsc(v(pg)). Then there is ve Q such thatr is
available in w and We | ocayursciw(pg)) V-
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Proof. If r is available inw, takew:=v. Otherwise there is € Tid\ {t} such thatr €
rsc(v(pg)). Lemma 41 implies the existence of someinit such thati ~ (ocayrLocat)\URes
v. Let

u(x), if xe (Locab\UReg U ((Ursc(v(pg)))\Locat),

w:Var—\al, Xx— )
v(x), otherwise

We'll show:
“rsc(v(pg))NUrsc(w(PCVan) =0": rsc(v(pg)) NUrsc(w(PCVar)) = rsc(v(pg)) N (rsc(w(pg))
BJUfeTid\{t_} rsc(w(pg))) = rse(v(pG)) N (OUUeria\ (i rsc(V(P))) = [sinceve ConsStatk

“r is available inv”: Follows fromr € rsc(v(pg)).
"W ~LocapuUrsew(pg)) V' Let x € Locat UUrsc(w(pg )). There are two cases.
Casex € (Locab\UReg U ((Ursc(v(pg)))\Locat). Thenw(x) = u(x).
CasexeLocak\(JRes Thenx € (Local UJrsc(w(pg))) N (Locab\ URes =
(Locakl NLocal) \ URes Thenu(x) = v(x), SOW(X) = V(X).
Casexe (Ursc(v(pg)))\Locat. Then there is & rsc(v(pg)) such that € T.
By the already prover, & [Jrsc(w(PCVar)), sox ¢ [Jrsc(w(pg)). Also
x ¢ Locak. Thusx ¢ Local UJrsc(w(pg)), a contradiction.
Casex ¢ (Locab\|UReg U ((Ursc(v(pg)))\Locat). Thenw(x) = v(X).
“we Q" We'll show first thatw is in p(Q) as follows.
Initially, we’'ll show thatw is a consistent state.
For allf € Tid we havew(pg) € {u(pg),v(pg)} € PL andrsc(u(pg)) = 0 C
rsc(v(pg)). Thus fort1#t2in Tid we havesc(w(pg)) Nrsc(wW(pGs)) C rsc(v(pGq)) N
rsc(v(pg,)) = 0. Thusw € ConsState
Next, lets € RLandr"c Ressuch thas C . We will show that
“ (FEUrsc(w(PCVar) = IWe Q: w~sWA F ¢ Jrsc(W(PCVan))
A (vEeTid: Fersc(w(pg)) = 3We Q: W ocap JresusW) -
Notice thatsn (Local \ | JReg = 0.
e Assume for a moment thatZ | Jrsc(w(PCVar)). We distinguish two cases.
Casere rsc(v(pg)). By part 3 of Lemma 35 one of the following cases holds.
CasesC Locat. Thensn ((Ursc(v(pg))) \ Local) = 0, sow ~g V. From
v € ConsStatave getr™¢ rsc(v(pg)). By Lemma 43 there isv € Q
such thawv ~s W andr”is available irw. Thenw ~g W.
CasesnlLocal = 0. Thenw ~su. Takew:=u.
CaserZrsc(v(pg)). Thenw~sv. Fromrig Useria i 'SCW(PG)) = Uteriay (5 rSCV(PG))
we get that is available inv. Takew:=v.

e Letf € Tid such thar & rsc(w(pg)). Fromr™¢ 0 = rsc(w(pg)) we getf # t,
so I e rsc(v(pg)). From consistency of we getr™¢ rsc(v(pg)). Thussn
Ursc(v(pe)) = 0. Sosn ((Locak\UResg U ((Ursc(v(pg)))\Locat)) =0, thus
w ~s V. Now letx € Locak\|JRes Thenx & (Ursc(v(pg)))\Local.

Casex € Local\|JRes Thenx € (LocaknLocak)\|JRes= [part 2 of Lemma
39] (NgeTig Locak)\URes= [part 2 of Lemma 39{Local NLocat)\URes
Sow(x) = [definition ofw] u(x) = [defining property ofi] v(x).

Casex ¢ Local\|JRes Thenw(x) = v(x) by definition ofw.

In total,w ~ | ocap\ JRegus V- Takew:=v.

37



At last, we'll prove that ¥ fe Tid 3W € Q: W ~| gcap\ JresW

Letf € Tid. We distinguish two cases.

Casef =t. Thenw ~Locap\ JresU. Takew:=u.

Case #t. Notice thatocak\|JRes= ((LocatnLocal)\|URegU(Locak)\ (LocafU
UReg). We havew ~~(LocatnLocap)\UResU “:(LocgmLocat)\UResV- Part 2 of Lem_ma
39 implies thatLocak N Locak = [sincet # t] MieTigLOcak = [sincet # {]
LocatNLocak. Thereforew ~ i ocapriocap)\UresV- AISOW ~| ocap\ (LocakURes
v. Takew:=v.

We have showm € p(Q). Fromp(Q) = Q we obtainw € Q. [ ]

Restatement of Lemma 17Lett € Tid, (v,V') €—t, R=rsc(v(pg)), R =rsc(V(pg)),
r e R\R Ve Q,r is available inv; v~ gcau r Y, V~r V. Then there isv € Q such
thatw ~LocatUUR' V.

Proof. Notice thatr & rsc(v(pg)) = rsc(V(pg)). Applying Lemma 44 tos We obtain
somev'e Q such that is available invandv'~ ocayurscev(pg)) V- L€t

w:Var—\Val, x— {Y(X)’ !f XEr,
v(x), ifxégr.
We claim:
“r is available inw”: Follows fromrsc(w(PCVar)) = rsc(V(PCVar)).
"W~ ocapuygr V': By (5) we haveLocat UUR = (Locak\r)Ur UUR. Thenw ~ i ocap rugr
v "~(Locat\r)uUrR v ~(Locat\r)uUr v a_ndW ~r VeV
“we Q" First we’'ll show thatw is in p(Q).
Initially, we'll show thatw is consistent. For afle Tid we havew(pc) = V(pg) €
PL. So forty #t; in Tid we havesc(w(pg, )) Nrsc(w(pg, )) = rsc(V(pg, )) Nrsc(V(pg,))
= [sincev'e ConsStatk0.
Next, letse RL, f € RessC . We have to show two statements.
“TZUrsc(w(PCVan) = Iwe Q: w~sWA ¢ Jrsc(W(PCVar)”: Assume for a mo-
ment that is available inw. We distinguish two cases.
Case™=r. Notice thatw~V, Ve Q andris available inv. Takew:=V.
Caser%r. Thenrnr =0, so we havev ~¢ V. Sincersc(w(PCVar)) = rsc(V(PCVar)),
we obtain that s available inv. Takew:=V.
“VEeTid: Fersc(w(pg)) = 3We Q: Wr(ocap\UregusW: Let T € Tid such that
F € rsc(w(pc)). Sincer is available inw, we haver # ', SOW ~ (L gcap JRegus V-
Takew:=V.
At last, we’ll show
“VieTid 3We Q: Wrpgcap JresW: Let T € Tid be given. Themv ~| ocap ResV-
Takew:=V.
We have showm € p(Q). Fromp(Q) = Q we obtainw € Q.
By (4) and Remark 23 there i such thatv—¢W andw ~qcqur V. Notice that
W € pos(Q) C Q. =

Let O be the lattice of Owicki-Gries-core proofs df
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Restatement of Theorem 18.The strongest property provable by abstract interpreta-
tion with p is provable by the Owicki-Gries core. Formally:

yoa(infO) C Ifp(Ax. p(init Upostx))).
Proof. For eachr € Reslet
Iy ={ue (ProofVar(r) — Val) | 3Ve Q: u~ V A ris available inv},

and for allt € Tid, p € PL let

Mpt ={ue ((LocaIDataVa{UUProofVar(rsc(p))) —Val)| 3VeqQ:

U ~LocalDatavaruUrsc(p) V /\ V(pg) = p}-

Let P = ((Ir)reres (Mpt) perLteTid). We'll show thatP is an Owicki-Gries-core proof

that denotes a subset @fby proving the following three properties.

Sequential consistency. Let Tid, (v,V') €=, p=Vv(pg), P =V (pg), R=rsc(p),
R= rsc(p(), V|LocaIData\anUProof\b|(R) € Mp,t andv'r € R\R : V|Proof\/a|(r) € lr. Then
there isve Q such thaw ~|ocapatasruyr V andvipg ) = p. Thenvipg) = v(pg).
ThusV'~| gcayuyr V- By (5) there are two cases.

CaseR C R ThenV~ ocaur V- By (4) and Remark 23 there is somie=ConsState
such tha(V,¥) €=t andV’ ~gcaur V- ThenV € postQ) € Q. Also V' (pg,)
= \|\//|(pQ) =p andv’ "~LocalDatavafUrsc(p') V. ThUS\/|LocalDataVaquProof\bl(rsc(p’))
€ Mpyt.

Nowptake any € RR (by (5) there is one or none). Notice thiat rsc(V(pg)).
Sinceve ConsStateve getr ¢ Uscria\ gty rSA¥(pg)) = [bY (1)] Ureria\ 1) sV (PG)).-
Moreovery € rsc(V(pg)). Thusr is available in/- We have/ ~ [by (3)] v~ [since
rerl \7f.'vr [by (3)]\7 ThUS\/|pr00f\br(r) elr.

CaseR = RuU{r} for somer € Res From assumptiow|ponag) € Ir We obtain
somev'e Q such that/ ~; Vandr is available inv"By Lemma 17 there i&/ € Q
such that’ ~| gcayyr V- Fromw’ € Q, W (pg) = p’ andw ~~LocalDatavaruUrsc(p')

vV we Obtain\/|LocalDataVaquProofVar(rsc(p')) € Mp’,t-

Initial condition. Letv € init. Thenv € ConsStateall resources are available vrand
v e Q. Thus for anyr € Reswe havev|pionarr) € Ir- Now lett € Tid. By definition
of My(pg)t We 0obtainv| caipatavaruProohvarrsavpa))) € My(pg)t- SOV € Yoa(P).
We've showninit C yog(P).

Safe condition. Lev € yoc(P). Thenv € ConsState
Letse RL r € RessC r. We'll show two statements.

“r ZUrsc(v(PCVar) = FeQ: v~V AT €Jrsc(V(PCVan)”: Assume foramoment
thatr ¢ Ursc(v(PCVan). The definition ofyoc implies thatv|poonarr) € Ir- SO
there isv'e Q such thaw ~; V andr is available irv. Thenv ~g V.

“VteTid :rersc(v(pg)) = VEQ: V(L ocapJregusV”: Lett € Tidandr € rsc(v(pg)).
Thenv| ocaipatavaruProofvarsciv(pg ))) € [definition of yog] My(yq,) - Then there
is Ve Q such thav~| gcaipatavarurscivipa) v andvipg) = v(pg). ThUSV~| gcap\Jres
vandv~gV. Takev:=V.

Now we’ll show that

“VteTidIVeQ: Vrpgcap\resV: Let t € Tid. The definition ofyog(P) im-

p"eSV|LocalData\/a(UUProofVar(rsc(v(pq))) € Mv(pq),t- So there iw&Q such that/('pq) =
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V(pq) andV~"’LocaIData\/zﬂLJUrsc(v(pq)) V. ThenV~NLocah\UResV- .

We've shown thatv € p(Q) C [sinceQ is in the image ofp by definition, it is a
fixpoint of p] Q.

Thusyos(P) C Q. n

Thus any property provable by abstract interpretation withas an Owicki-Gries-
core proof.

Corollary 45. Let Ifp(Ax. pc(init U pos(x))) C safec D. Then safe has an Owicki-
Gries-core proof.

Proof. Let S= Ifp(Ax. pc(init Upostx))), SC safec D. From Prop. 38 we gea(init U
pos(S)) C pc(initupos(S)) = S, soSis a postfix point ofA x. p(init Upostx)) which is
by Tarski's fixpoint theorem greater than or equal to itstéapoint. Thudfp(Ax. p(initU
pos{x))) C SC safe Apply Thm. 18. [ |

Proposition 46. Fix a syntactic structuréTid, PL, Val, Res(Local, pG )ieTid, ProofVar,
rsc) from StrSimple and let ConsState be the set of consisteiessté this syntactic
structure and D its powerset. Lptand p be defined for StrSimple as in Sections D and
E, respectively. Then the following statements hold.
1. p=p.
2. For all RPL transitions systen{#it, (—t)teTig) from Simple that have successor
map post and the set of Owicki-Gries-core praOfsve have

yoa(inf(O)) = Ifp(Ax. p(init Upos(x))) = Ifp(Ax. p(init Upos(x))).

Proof. 1. LetQ e D. Since|Res < 1, we distinguish two cases.
CaseRes=0. Then

P(Q) = {ve ConsStatg Vt € TIdIVE€ Q: V~ioca V} = p(Q).
CaseRes= {r}. Thenr # 0. Thenp(Q) =

<r ZUrsc(v(PCVar)) = 39€Q: (r @ZUVSC(V(PCVar))))

AV~ V
v € ConsStat N '

VteTidaveQ: VNLocaI[uUrsc(v(pq)) v

[sincer # 0 and is disjoint from alLocal (t € Tid), we haver € ?QVL]
=p(Q).

2. Let(init, (—t)teTid) be an RPL transition system from Simple that obeys the fixed
syntactic structure and has a set of Owicki-Gries-core fgrab and successor
map post Thenlfp(Ax. p(init Upos(x))) € [Thm. 10] yog(infO) C [Thm. 18]
Ifp(Ax. p(init Upos(x))) C [part 1 of this Lemmalfp(Ax. p(init Upos(x))).

Extension of Example 19. Consider the RPL transition system Readers-Writers from
Example 1.
Notice thatRe$= 1. Moreovery't € Tid: Locatncontrol= {pg } N{ww,ar,aw} =0
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andProofVar(control) = control. Thus Readers-Writers belongs to Simple and its syn-
tactic structure belongs to StrSimple. By Prop. 46, parh@,strongest Owicki-Gries-
core-provable property is equallfp(Ax. p(init Upos(x))) = Ifp(Ax. p(init Upos(x))).

O

Extension of Example 20.For the RPL transition system Upper from Example 2 we

haveRL= {r,r’,Locah,Locab} = {{u,z},{x,y},{x|,pc },{y,z pc, } }, RL= {{u},{z}, {x},{y},
{l.pci}, {pcy}}. Let

C = {ve ConsStatd v(u),v(z),v(x),v(y),v(l) € {0,1} A v(pc,) =0}.

The upper iteration sequen ()i, for Ax. p(init Upos{(x)) starting from @< D is
below.

XW = p(init) = {veC|v(pc)) = A},
postX¥) = {ve C|v(pe) =B A V(1) = (u)} ,

K = piikupos<®) = {vee|, (EHZY L vy |
postX®) = {veC|v(pcy) € {B,C} Av(u)=v(I)},
ini v(pcy) = A
X® = p(initupos{X?)) = {VEC v (W(pS) € {B,C} A V(W) = (1)) } ,
(V(pcy) € {B,C} Av(u) =v(l))
pos(X ) = {VEC‘ v &EE):DM( )V:uva Xv(x):O)}’
_ v(pcy) = A
X@ = p(initupos(X®)) = {veC V (v(pcy) € {B,C} A v(u)=v(l)) }
V (v(pey) =D A v(u) =v(l) A v(x) =0)
(V(pcy) € {B,C} Av(u) =v(l))
pos(x'¥) = {VE C‘ V (V(pgy) € {D,E} A v(u) = Vv(l) A v(X) =0) } ’
_ v(pcy) = A
X5 = p(initupost{X¥)) = {veC V (v(pgy) € {B,C,E} A v(u) = V(1)) }
V (v(pey) =D A v(u) = Vv(I) Av(x) =0)
(V(pcy) € {B,C} Av(u) =v(l))
pos(x(5)) = {VEC‘ v (M(py) € {D.E} Av(u) = (1) A v(X) :0)} c X® so
- 5 _

Thus

Ifp(Ax. p(initUpos(x))) = {v eC

v(pg) = A
V (V(pey) € {B,C,E} Av(u) =Vv(l)) }
V (V(pcy) =D A v(u) = v(I) A v(x) = 0)

is strictly weaker than the strongest Owicki-Gries-corevable property, e.g., contain-
ing the statéu— 0,z— 0,x— 0,y— 0,1 — 0,pc; — A, pC— 0] & Yo(infO). O
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Extension of Example 22. Fix an RPL transition system from SepThreads. For all
SC ConsStateve have

p(S) = {veConsStat¢Vt c Tid3VE S: Vioca V) = p(S).

LetF = Ax.init Uposix) andQ = Ifp(F). Notice thatpostis a join-morphism, so iE.

By Kleene’s fixpoint theoren® = Uiy, Fi(D).

Letve p(Q). Thenthere is amap: Tid — No such that/'t € Tid 3V € F™V(0): v~ oca

¥. SinceTid is finite and the sequend€&'(0))icy, is monotonically increasing t €

Tid 37 € FmaXMTD) (@) v ~| geqy V. Thusv € p(FMXMTA) (),

We have shown thad(Q) € Uicn, P(F'(0)). Now we are going to show by induction

that for each € Ny the setp(F'(D)) is a subset 0.

Case =0.

CaseTid = 0. ThenConsState= {ve Var—\al|VteTid:...} = (Var—Val) =
{0} = p(0). By definition of SepThreads,ve ConsState ((VteTid: ...)
veinit). Thusinit = {0}. Thenp(F°(0)) = init C Q.

CaseTid # 0. Thenp(F(0)) =0 C Q.

Case = 1. We havep(F1(0)) = p(init) C [def. of SepThreadshit C Q.

Casel > 1. Letv e p(F'(D)), i.e.,v € p(init Upos(F'~1(D))). There is a subset of
Tid (e.g., the empty subset) such that for taffom this subset there ig € init
such that ~ocq V. Let] be a maximal (with respect to inclusion) subset of such
form. Then for allt € Tid\ | there isvie pos{F'~1(0)) such thaw ~oca V. There
is a subset offid\ | (e.g., the empty subset) such that fortafrom this subset
there isv'e FH((D) such thatv ~|oca V. Let J be a maximal (with respect to
inclusion) such subset. L& = Tid\ (1 UJ). For eacht € K there is somey &€
Fifl((l)) such that there is somee€ pos({V}) such thatv ~|oca; V; maximality
of J impliesV % gcay Vi SOV %Locat V, SO (1) impliesv™—¢ V. Thus there are maps
f,f': K—ConsStatsuch that/ t e K: f(t) cF~1(0) A f(t) —¢ f/(t) A /(1) ~Local
V. Let C = Uy, nemid(Locat, NLocal,). There is a ma: ((Var\C) — Tid) such

t1#t
thatV x € Var\C: x € Locak,. Such a map is unique. There is some enumeration
of K, fix it: K = {1 | 1 < k< n} for n= |K|. For eactk € NoN [0,n] let

k
v(X), if xe CU ( ULocal) U | ULocak,
w : Var—\al, x - telld =1

f(hx)(9, ifxe U Locak \C.
j=k+1

To show that eactv® is well-defined (0< k < n), notice that
k n
e VarC CU < U Localt> ul U Localrj> U ( U Localrj \C);
telud j=1 j=k+1
e (lUJ)NK = 0 and the definition of imply that forac lUJU{T; |1 < j <k}
andb € {t1j | k< j <n} we haveLocak N (Local\C) = 0.

Now we'll show by induction that for ak € No N [0,n] we havew® € Q.
Casek = 0. First we’ll show thatv© is in p(F'~1(0)). Lett < Tid.
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Caset € |I. Thenw©) ~| ocq V. By definition ofl, there is some & init such
thatV ~| ocay V. Thenw(® ~ocqy V. Fromi —1 > 1 we getF'~%(0) D init
> V.
Caset € J. Thenw(% ~|,cq v. By definition ofJ, there is some & F'~1(0)
such thaw ~ oca; 7. Thenw® ~ ocqy V.
Caset € K. Letx e Local. There is somg € Nt N[1,n] such that = Tj; then
X € Local;.
Casex € C. Thenw(%(x) = v(x) = f'(t})(x) = [part 1 of Lemma 39) and
x € C] f(17)(x).
Casex¢ C. Thenw(%(x) = f(h(x))(x) = [from x € Locak; and unique-
ness oh] f(7;)(x).
We have shown that for all € Locak, we havew(% (x) = f(1j)(x). Thus
WO ~ | ocq f(t). Notice thatf () € F'=1(0). _
Thusw© € p(F'~1(0)). By induction hypothesig(F'~1(0)) C Q. Thusw(® ¢
Q.
Casek > 1. We are going to show two auxiliary statements.
“f(T) ~Locak, w1 Let x € Local, .
Casexe C. Thenf(1k)(x) = [part 1 of Lemma 39]f'(1x)(x) = v(X) =
wk=D(x).
Casex ¢ C. Notice thath(x) = 1. Thenf (i) (x) = wk~ 1 (x).
“wk=1 —. wi: From (4) andf (1¢) —+, f'(1) we obtain some/ such that
w1l o w andw ~Local, f'(Tk). We'll show now that’ is equal to

wk. So letx € Var.
Casex € CU¢uyLocat. If xe C, part 1 of Lemma 39 implies/ (x) =
wk=D(x). If x € Local for somet € | UJ, thent # 14, so (1) implies
W (x) = wk-D(x). In both casem/( ) = wk=D = y(x) = wi (x).
Casex € Locak,. Thenw (x) = f/(1i)(x) = v(x) = wK)(x).
Casex € Locak; for somej # k. Thenw/(x) = [by (1)] wk-D(x). If j <
k, thenw*~1 (x) = [since | < k— 1] v(x) = [sincej < k] w(x). If
j > k, thenw*Y(x) = [sincej > K] f(h(x))(x) = [sincej > k+ 1]
wk (x). In both casem/( ) =wK(x).
We have shown that’ = w®). Thuswk—1 —>Tk wik)
By induction hypothesisyk—1 € Q. Thenw ¢ pos({w*~1}) C pos(Q)
cQ
In particulary = w™ € Q.
We have proven by induction thei € No: p(F'(0)) C Q. Thusp(Q)
=p(Q) =Q, i.e.,Qis afixpoint ofp o F. SinceQ = Ifp(F) C Ifp(po

Ifp(Ax. p(init Upos(x))) = Ifp(Ax.init Upostx))

cQ.So ( Q)
oF)CQ

By theorems 10 and 18 we also get

Ifp(Ax. p(initupostx))) = yog(infO) =
Ifp(Ax. p(init Upost(x))) = ifp(Ax.init Upostx)).
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F Absence of equivalent semantic characterization in abséct
interpretation

Given a complete lattic®, a semantic transformationver D is a mapF# ¢ (D —
D) — D — D such that

— for all join morphismsr € D — D, the magF} : D — D is monotone and

— for all join morphismsry, 12 € D — D we have

Ifp(11) = Ifp(12) = Ifp(Ff) = Ifp(Ff).

Lemma 47. Let (D, C) be a complete lattice and :f(D x D) — D be any map that is
monotone in the second component. Then

supD, otherwise

R (e

is a semantic transformation.

Proof. For all join morphisms € D — D and all elementg C y of D we haveF(x)
= f(Ifp(1),%) C f(Ifp(1).y) = FE(Y).

Now take two join morphisms;, 7> € D — D such thatifp(ry) = Ifp(12). Then
Ifp(F) = fp(Ax. f(Ifp(11),X)) = Ifp(Ax. f(ifp(12),x)) = Ifp(Ff). |

Example 48. Given a complete latticB, the following maps are semantic transforma-
tions (where infimum over the empty set is the tofyf

— AteD—D.AxeD.sugD);

—AteD—D.AxeD.inf{yeD|1(y) =V};

— AteD—D.AxeD.sup{inf{ye D| 1(y) =y},x}. O

Given a syntactic structur@id, PL, Val, Res(Local, pg )ieTia, ProofVar, rsc), let

Trace= ConsState, D = (Trace and a:D—D, T+ [ m(J),
oeT

where a trace is viewed as a finite word, i.e., a map fiynfior some naturah € N* to
consistent states, and wherg o) = {y | I x: (x,y) € &} is the set of states occurring
in the traced.

Given a prograntinit, (—+)teTig) that obeys the above syntactic structure, has the
set ofinitial tracesinit = {{(1,v)} | v € init} and thetrace extension operator

post D—»D, T {dw |dveT ATteTd: (v,V)e—}.

Restatement of Theorem 6There is a syntactic structure
(Tid, PL, Val,Res(Local, pg )teTid, ProofVar, rsc)
such that foIConsStateD, D, a defined as above, all the following statements hold:
1. There is no semantic transformatiBfi over D such that for any RPL transition
system(init,...) that obeys the syntactic structure, has successomposgand the
least Owicki-Gries-core prod?, we have

VOG(P) = pr(fo.initupos(x)) ;
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2. There is no monotone operajor D — D such that for any RPL transition system
(init,...) that obeys the syntactic structure, has successorposfand the least
Owicki-Gries-core prooP, we have

Yoc(P) = Ifp(Ax. p(init Upos(x))).

3. There is no monotone operafdr D — D such that for any RPL transition system

that obeys the syntactic structure, has a set of initiasmit, has a trace extension
operatompostand has the least Owicki-Gries-core prépfive have

Yoo(P) = G (Ifp(Ax. B(init Upos(x)))).

Proof. Consider the syntactic structusagjiven by

- Tid={1,2};
— PL={A,B,C,...,V,W};
- \al= PLU{0,1};

— Res={r,r'} wherer = {u,z},r' = {x,y};

— Locah = {I,x,p¢; }, Locab = {y,z pc,};

— ProofVar(r) =r andProofVarr’) =r’.

— rsc: PL — B(Reg given by

p A,G,J,M,N,0,P,S,W|B,E,F,K,L,T,U,V|H,I,Q,R|C,D
rsc(p)|0 {r} {ry |rr}

The distribution of variables into different sets is givarFigure 4.

Locah ----( | (X) pg
Locab - y| p9)
()

rLuJ r!

Fig. 4: Distribution of variables of program UpperA.

Let D be the powerset of the set of consistent states definesldsystated in the
theorem.

The RPL transition system UpperA defined by Fig. 5 ob@ysdiffers from Upper
only at locationa.

We are going to show an Owicki-Gries-core proof of propérty/for UpperA. Let
Iy ={[u—0,z—1],lu—~1z—0}, lp={[x—0,y—0],[x—1y—1]},
Mp1={[x—0,1+—0],[x— 1,1 — 1]},
Moo={[y—0,z—0],[y—1,z— 1]} and
Myt = 0 for (x,t) € (PLx Tid) \ {(4,1),(0,2)}.

Let Ryppera = ([ — Ir, 1" = 1p/], (Mt )xepLteTid). Now we will show thaRppera is
an Owicki-Gries-core proof denotingit.

By definition, Puppera €
(B(ProofVar(r) — Val) x B(ProofVar(r’) — \al)) x
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// Thread 1 // Thread 2
A: with r when false do || 0: assume false;
B with r’ do P: with r’ do
[¢ x:=0 Q: y:=0

D endwith; R: endwith;
E assume false S: with r do
F: endwith; T: u:=0;
G: with r’ do U: z:=0

H x:=0 V: endwith
I: endwith; W:

J: with r do

K u:=0

L: endwith;

M: |:=0

N

init ={ [u—1,z— 0,x— 0,y+— 0,1 — 0,pc; — A,pc, — 0],
[U—0,z— 1L, x—1y— 11— 1pc,+— A,pc,— 0] }.

Fig. 5: Program UpperA.

(B (LocalDatavai — Val) x B3 (LocalDataVap — Val) x
B ((LocalDatavag U ProofVar(r)) — \al) x
e )
where the components are indexedrby in the first line and 4, 1), (0,2), (B,1) and
so on in the remainder. Thifsppera € PA. We'll show:
- sequential consistency. Le€ Tid, (v,V') e—, R=rsc(v(pg)), R =rsc(V(pg)), as
well asv| gcaiatavaruProotvarR) € My(pg)t andY F € R\ R: Vlpgonarr) € I
e Casev(pg) € {A,0}. Then thread can’t proceed fronv, a contradiction.
e Casev(pg) & {A,0}. Thenv| gcaipataaruProohvarr) € 0, @ contradiction.

- initial condition. We have
VOG(HJpperA) = { [u = 172'_> 07X'_> an’_> Oal — 07p0_|_ = A)p(‘Q = D]a

[U—0,z— 1,x— 1y— 11— 1 pc — A pc,— 0]}.
Notice thatinit C yog(Puppera)-
Sinceyoc(Puppera) € init, Puppera is an Owicki-Gries-core proof of properityit for the
program UpperA.

The RPL transition system Upper from Example 2 also ol&ged has the same
initial states as UpperA, but, as stated in the example, b&@wicki-Gries-core proof
of init.

Now we’ll show the claims of the theorem.

Let postUbe the successor map of Upper grustUAthe successor map of UpperA.
Notice thatpostU(init) = postUAinit), since the values of program variableandu
are different in each state ofit. Moreover,nit is exactly the set of reachable states of
both Upper and UpperA. In particulanit is the strongest Owicki-Gries-core-provable
property of UpperA.

1. Assume for the purpose of contradiction that a semaraitstormatiorF* overD
exists such that for any RPL transition syst&m- (init,...) that obeysSand has
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successor mapostwe have
Yoa(the smallest Owicki-Gries-core proof ®f = Ifp(Fy i postx))

Notice thatA x.init U postU(x) andA x. init U postUAX) are join-morphisms on the

same lattice and their least fixpoints coincide. By the agdiom, for UpperA

with successor mapostUA the strongest Owicki-Gries-core-provable property is
lfp(fo.initupostUKx))‘ Thusinit = lfp(fo.initupostUKx)) = [property OfF#] pr(fo.initUpostU(x))'
By the assumption agairnit is also the strongest Owicki-Gries-core-provable
property of Upper. Contradiction!

. Assume for the purpose of contradiction that a monotomgatprp: D — D ex-

ists such that for any RPL transition systdm= (init,...) that obeysS and has
successor mapostwe have

Yoc(the smallest Owicki-Gries-core proof ®f) = Ifp(AX. p(init U pos(x))).

Then for UpperA with initial statemit and successor mgmstUAwe havdfp(Ax. p(initu
postUAX))) = init. Thusp(initupostUAinit)) = init. SincepostUA(init) = postWU(init),
we getp(init UpostU(init)) = init. Thenlfp(Ax. p(init UpostU(x))) C init. Apply-

ing the assumption to Upper, we get an Owicki-Gries-cor@pkoof Upper such

that yog(P) C init. But Upper has no Owicki-Gries-core proofioft. Contradic-
tion!

. Assume for the purpose of contradiction that a monotoreaiprp : D — D exists
such that for any RPL transition systéim= (init,...) that obeysSand hasnit as

a set of initial traces and the trace extension opefaistwe have

yo(the smallest Owicki-Gries-core proof & = @ (Ifp(Ax.p(init U postx)))).

Then for UpperA with the set of initial tracésit and the trace extension operator
p€§EUAwe haveinit = & (Ifp(Ax. p(init quS\tUA(x)))). From definition ofor we get
Ifp(Ax. ﬁ(iﬁTt U p;sEUA(x))) C init*. Consider the upper fixpoint iteration sequence
(X1)iey for Ax. (init U postUAX)) that starts withX® = © and whereu > |D| is
some ordinal. This sequence is monotonously increasingtadighit is a subset

of init*. SincepostU(init*) = 0 = postUAD), we havep(init U postU(init*)) =
B(init UpostUAX®)) = X1 C init*. Soinit* € postfgAx. B(init UpostU(x))). Thus
Ifp(Ax. p(init U postU(x))) C init*, so &@(lfp(Ax. p(init U postU(x)))) C init. By
assumption, the smallest Owicki-Gries-core proof of Upgenotes a subset of
init. But Upper has no Owicki-Gries-core proofiaft. Contradiction! ]

Remark 49. The proofrelied on the statementssume falseto denote blocking. Strictly
speaking, Owicki's RPL does not have assume statement. A purist may emulate it
bywhile true do begin endorbywith r” when false do endwithforanempty
fresh resource’.

It is also possible to rewrite Upper and UpperA into nonblogkerminating pro-

grams using f-then-else statements.
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Moreover, the programs of the proof depend on realizahilftyhe overlap of re-
sources and locals, but require a relatively small numbeg)(6f data variables.

As a consequence, Thm. 6 holds even for the restricted cfgg®grams that are
written strictly in the original Owicki’s syntax, in whichvery execution terminates
with threads at their final locations, and that use at mostfata variables. O

G Improving precision

Now we will show a method, called Relaxed Frontier Search, fpat allows improving
precision of many abstract interpretations, in partiguéthe Owicki-Gries core. First
we will show the general case and then specialize it to thecKiv@ries core.

G.1 Relaxed Frontier Search - in general

Now we will show relaxed frontier search for a large classtasfteact transfer functions.
Within Section G.1, le{D,C) be a complete lattice of setéD? C) a complete
lattice, (a, y) a pair of adjoint mapsnit € D, post: D — D a complete join morphism
andpost : D — D¥ a monotonic operator such tha¥Y € D# : apostY C post’.
Intuitively, D is the powerset of program statésif is the set of initial stategost
maps a set of states to the set of their direct succeddbis,an abstract lattice used for
analysis angbost’ is an abstract transformer.
Therelaxed frontier search sequenisthe sequenc(eT“))ieNo of elements oD*
defined recursively by
TO = qinit,
postT() if postT() iz |_|fj:0T<J),
TOUpostT®, if postT® C |Ji_oTW.
Letk=min{i | T+ £ TM} € NoU{co} (whereeo = min0).
Theheightof a partial order is the supremum over cardinalities oflitains.
The above (in general non-monotone) sequence is the basis afgorithm, which
needs only elements of the sequence up to poskidfirst we prove thak is well-
defined, and is asymptotically at most quadratic in the hegh.

T(+1) —

Proposition 50. If the height h of D, C) is finite, then k< h(h—1).

Proof. Let h be finite. The elements of the monotone sequéhte, T build a
chain, so this sequence stabilizes for sdthe 0, i.e., T C | T for all j > K.
Take the smallest sudty For all j > k' we haveT i1 T post'T (1) and thugpost'T() C
LI, T®. By definition of the algorithm, the sequen®());,, is monotonously in-
creasing. The domain has finite height, so therekigak with T(k+1) = T Take the
smallest suck.

Now we derive the number of iteration steps. There are twescas
CasepostT(® C T, ThenpostT© C |_|?:OT(J), soT® =T Thenk=0<h(h—

1.
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Casepost T Z TO. ThenpostT@ Z | ) ,TW), soT® = postT© iz T There-
fore JLo T # | Lo T® (otherwiseT (V) were less than or equal T?).
Since{|}l_, T | j € No} is a chain, there are at mdst- 1 indicesj > 0 such that
3T £ 1), T, the smallest such index is 1. Consider any two such “neigh-
bor” indicesa < b with

a—1 a b-1 b
LJTO £ |TVand | [TV | |TV and0< a
i—0 i—0 i—0 i—0
so that for allc with a < ¢ < b we have
c—-1 c
|_| T0 — |_|T(i) )
i—0 i=0

The sequencéT (©),-c.p, is increasing by the definition of the relaxed frontier
sequence. The increase is strict, iESY £ T© for a < ¢ < b (since otherwise
the sequenceT ());-. were constant for some< b, contradicting the choice d).
The maximal chain length givds— a < h and finallyk — k' < h. The number of
such neighbor pair&, b) as above is at most— 2, the last suclb is K, the first
suchais 1. Thusk' —1 < h(h—2). Thusk' < h? - 2h4+1andk < K +h—1<
h?—h. ]

Proposition 51. The setJ;y, yT ") is an inductive invariant. Formally:

initUpost( U yT(”) c |Jyt®.

ieNg ieNg

Proof. By extensivity ofya we obtaininit C yainit = yT(9. Moreover

post( U yT“)) = |J posyT® C [by definition of a pair of adjoint maps
ieNg ieNg

c | ypostT® c |JyTHD C [ yT®,

ieNg ieNg ieNg

k .
Proposition 52. If k < oo, thenJ yT " is an inductive invariant. Formally:
i=0

k

k
k<o = initUpost(U yT<‘)> cJyr®.
i—0 i—0

Proof. By definition ofk we haveT kt1) C T®)_|ffor somej > k we haveT () C Tk
then TU+Y = TU) 1 postTU) C [by assumption and monotonicity @ost] T® L
post T C T L TK+D  [by definition ofk] T®. By inductionT) = T® for all
j >k ThusyTW C yT® for all j > k, implying U yT® = Uien, yT. ]

As a corollary, if(D¥,C) has a finite height X, yT () is an inductive invariant.
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G.2 Relaxed Frontier Search - specialized for the Owicki-Gies core

Now we are going to specialize relaxed frontier search frectisn G.1 to the Owicki-
Gries coré.

Let (Tid, PL, Val, Res (Local, pg )ieTig, ProofVar,rsc) be an arbitrary but fixed syn-
tactic structureD the powerset of consistent statB¥, the set of program annotations
equipped with componentwise ordéinit, (—+t)ietia) @n RPL program that obeys the
syntactic structurepostits successor map) the lattice of Owicki-Gries-core proofs,
and

phg: PA—PA, (I,M)
IteTid, (v,V)e—: r €rsc(V(pg)) A

uec V|LocalData\/a[uUProofVar(rsc(v(pq))) € My(pg)t A
ProofVar(r) — Val ((r Zrsc(v(pg)) AUE )V ’
(r e rsc(v(pg)) A U= Vlproofvarr)) rcRes

It e Tid\{t}, (v,V) e=¢: u€ MpiA
V| LocalDatavagJProof\alrsqv(pg))) € Mv(pq) I A

ue (rsc(v(pg)) Ursc(V'(pg))) Nrsc(p) = 0
LocalDatavayU vV
<UProofVat(rsc(p))> 3 (v,V) €= V(PG) = pA

—\al u= \/|L0calDataVaquProof\b|(rsc( p))/\
V|LocaIDataVaquProof\bl(rsdv(pq))) € Mv(pq) t A

VT € rsc(p)\rsc(V(P&)) : Vlprootvarr) € Ir pePL
el

We call pf 5 theimproved Owicki-Gries-core abstract successor mfpbefore in Sec-
tion C, let

Iin.it. — ({V|Proof\/ar(r) | Ve |n|t })reRes,
MM = ({ V| ocaipatavar | V€ init A V(pG) = p})pepLteTid -
and theimproved Owicki-Gries-core abstract transforniss

Ghg:PA—PA,
(1, M) = (1Nt Minity | (1,M).

Proposition 53. pf is monotone.

Proof. Let (I,M) C (I,M) be program annotationggs(I,M) = (I, M'), pés(I,M) =

(I",M"). .

“YreRes |/ CI/™ Letr € ResLetwe I/. Then there is a threade Tid and some
transition\i —t V' such thaw| gcapatavaruyproonvarrscvipa ) € My(pg)t» Which is a
subset oMy 1, I € rsc(V'(pG)), and either ¢ rsc(v(pg)) A w € Ir, which is a

subset Oﬂ, orre rsc(v(pq)) AW = V|Proof\/a|(r)- ThenV|LocalData\b(uUProof\/al(rsc(v(pq))) €

8 Using pos@G would not give us more precision: the generated inductivariant would be
equal toyoe(lfp(FgG)). We cannot useexﬁe, as it does not overapproximateg o posto
Yo in general. We are going to suggest an operator in betweenmillibverapproximate
Opgoposto ypg and underapproximarms%e, allowing more precision in the relaxed frontier
search.
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Mv(pq),t; also either ¢ rsc(v(pg)) A w e Iy, orr e rsc(v(pg)) Aw = Vlproofvarr)-
Thusw e 7.
“VteTid,pePL:Mp; C I\7I;,,t": Let t € Tid, p € PL. Let w € M. There are two
cases.
e Eithertherei$ c Tid\{t} and(v,V') €= such thav|, ocapataaruProofvarrscvpa))
€ My(pg) £+ W € M and 0= rsc(p) N (rsc(v(pg)) Ursc(V (pg))). Notice that

Mpt € Mpt andMypg) i € My(pg) & ThUSV|LocaipatavaruUProofvariseiv(pg))) €
My(pg) £ @andw € Mp. Sow € Mg’t.

e Or there is a transitiom — V' of the same threadsuch that/(pg) = p, w=
\/|LocalData\bruUProof\bl(rsc(p))- V|LocalData\bruUProofVal(rsc(v(pq))) € Mv(pq),t and
Vr e rse(p)\rsc(v(pg)): v|Fi,00fVar(r) < Ir. Notice thatMy(pg)t € My(pg)t and
for all r € Reswe havel, C I;. ThenM\,(pq)A,t E) v|Loca|DataA\,a[UUproof\,a,(rsc(\,(pq)))
andvr ersc(p)\rsc(V(pg)) : Vlprootvarr) € Ir- Thenw € M.

[ |

Thus the improved Owicki-Gries-core abstract transforisi@aiso monotone.

Proposition 54. The set of Owicki-Gries-core proofs coincides with the $giastfix
points of the improved Owicki-Gries-core abstract tramsfer. Formally:

O = postfdGg) .

Proof. “C”: Let (I,M) € O and(,M) = pf5(1,M). We will show that(l’,M’) := GE 5(1,M)

is less than or equal td,M).

“YreRes |/ CI": Letr e ResLetwel].
If we I, there is some € init such thatv|pronar) = W. By the initial
condition,v € yog(l,M). Since every resource is available in an initial state,
r € Res\ Ursc(v(PCVar)). Thusv|pgonarr) € Ir-
Otherwisew € [;. So there is somee Tid and some transitiom — V' such
thatV|LocalData\k:ufuUProof\/au(rsc(v(pq))) € Mv(pq),ti ré rsc(\/(pq)) and either ¢
rsc(v(pg)) A we lr orr € rsc(v(pG)) AW = V|proonvarr)- Assume for the pur-
pose of contradiction that ¢ I;. Thenr € rsc(v(pg))\rsc(V(pg)) Aw =
Vlproofvarr)- BY (5) we havesc(v(pg)) 2 rsc(V(pg)). Sequential consistency
impliesV |proofvarr) € Ir- Contradiction!
We have shown that in both case< I,. Sol/ C ;.

“VYteTid,pePL: My CMp™ Lett € Tid, pe PL. Letw € My,.
If we MI, there is some € init such that/(pg) = p andw = V| ocaDatavar-
By the initial conditiony € yog(l,M). From definition ofyog andrsc(v(pg))
=[veinit] 0 we getv|iocapatavay € Mpy.
Otherwisew € Mp;. Assume for the purpose of contradiction thaf Mp;. By
definition of pf 5 there is a transitiom— V' such thatv =V |LocalDatavagUUProofar(rse(p))
V|LocalDataVanUProofVar(rsc(v(pq))) € Mv(pq),t- \/(pct) = pandvr EFSC( p)\rsc(v(pq)):

V|Proof\/ar(r) € Ir. From sequential consistency we géllocalData\/a(uUProofVar(rsc(p)) €
Mpt. Contradiction!

In both casesv € Mp;. SoM;)’t C Mpt.
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“D" Let (1,M) € postffGhg), i-e., for(I', M) = Gh5(1,M) we have(l’,M’) C (1,M).

We’ll show that(l,M) is an Owicki-Gries-core proof.

Sequential consistency: Leéte Tid, (v,V') €=, p=v(pg), p = V(pg), R=
rsc(p), R = rsc(p'), V|LocalDataVaquProof\bl(rsc( p) € Mpt andvVr e R\R:
V|Proof\/a|(r) €ly. By definition Ofpoe we Obtam‘/|LocalData\bruUProofVal(rsc(p')) €
M/p’,t C Mp,. Ifanyr € R\R'is given, the definition opf,5 impliesV |prootvarr)
= [by (3)] V|Proof\/a|(r) € ” Clr.

Initial condition: Letv € init.

Letr € Res\ Ursc(v(PCVar)). Thenv|pronarr) € ™ C 1} C ;.
Now lett € Tid. Thenv| ocaiatavar € M\i/?gq),t- Since initial states don’t have

any busy resourceglLocalData\/afuUProof\/ar(rsc(v(pct))) € M\i,?gq),t < M\/,(pq)’t -

Muy(pg) t-

We have showw € yog(l,M). Thusinit C yog(l,M). [ |
Corollary 55. The smallest Owicki-Gries-core proof is the least fixpoihtte im-
proved Owicki-Gries-core abstract transformer, formally

lfp(Ghg) = infO.
Proof. infO = [Prop. 54] in{postfdG)) = [Tarski's fixpoint theoremlfp(Ghg). m

Proposition 56. The map éG overapproximates the best abstract successor map with
respect to the pair of adjoint magsog, Yoc). Formally:

VPePA: dogopost yos(P) C phs(P).

Proof. Let P = (I,M) € PA (It,Mb) = agg o posto yos(P), (IR, MR) = ph5(P). We

have to show two facts.

“YreRes IECIR: Letr € ResLetwe IF. Then there it € Tid, (v,V) €— such
thatv € yog(P), r is available iV’ andV'[proonarry = W. By definition of yoc we
havev|| ocaipatavarupProohvarrscv(pg))) € Mypg)t- There are two cases.

Caser € rsc(v(pg)). Thenrsc(v(pg)) # rsc(V' (pg )). From (3) we conclude poomvarr)
= V|proofvarr)- ThENW = V|proonarr)- By definition of pf; we getw € If.

Caser € rsc(v(pg)). Thenr &rsc(v(pg))Ursc(V (pg)). In particulary ¢ rsc(v(pg))N
rsc(V'(pg)). If x e ProofVar(r), we haver(x) = V/(x) by definition ofProofVar.
Thusw = V|proonarr)- Sincer is available inv/, it is also available irv, since
resources of threads other thasbon’t change in the transition. By definition of
YoG We getv|proopvarr) € Ir, thusw € I;. By definition of pj; we havew € IR.

We have showm® C IR.

“YpePLteTid: Mg, C MR " Let pePL andt € Tid. Letw € Mg;. Then there is
somef € Tid, (v, \/) GHt SUCh thatw = \/|LocalData\bruUProof\b|(rsc( ) V € Yoc(P)
andv'(pg) = p. There are two cases.

Caset #f. By (1) we haver ~|ocqy V. Take anyr € rsc(p); thenr & rsc(V (pg));
thus V ~poonarr) V- SO VlLocaipatavaruProohvarrse(p)) = W- From definition of
Yo We gelV|LocalData\bquProofVal(rsc(v(pq))) € Mv(pq),f andV|LocalData\bquProof\bl(rsc(v(pq)))
€ My(pq) - Notice thatv(pg) = p. Thusw € My and from definition of con-
sistent states we gesc(p) Nrsc(v(pg)) = 0. Thusrsc(p) N (rsc(v(pg)) U
rsc(V(pg))) = 0. By definition ofpg we getw € MF;.
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Case ={. By definition ofyog we getv|Loca|Datavawup,oofva,(,sc(v(pq))) € My(pg).t-
Consider an arbitrary € rsc(p)\rsc(v(pg)) (there may be none). From €

ConsStateand (1) we get ¢ Ugeria\ty rsc(V(pG)). Thusr is available inv.
By definition of yog we getV|ponarr) € Ir- By definition of pi s we get
\/|LocalData\bruUProof\b|(rsc(p)) € Mg,t- Thusw € Mrrit-

We have showiMp, € MR,

The last proposition allows usin@G in the relaxed frontier search.

G.3 Examples

Example 57. Consider the program Upper from Example 2. [&t))icy, be the re-
laxed frontier search sequence for Upper. Then:

r — {[u—0,z—1],[u—~1,z—0]},

r' — {[x—0,y— 0], [x— 1,y 1]} ]
TO = aog(init) = | [(4,1) = {x—=0,1—~0],[x~1,1—1]},7 |,
(0,2) — {[y—0,2—0],[y— 1,z— 1]},
(everything elsg— 0

r—0,r"— {[x—0,y—0],[x—1,y—1]}],
# 10y _ (B,1) = {[u—0,z— 1,x— 0,1 —0],[u—1,z— 0,x— 1,1 — 1]},
Poa(T™) =1 | (0,2) s {[yr> 0,20}, [yrs L,z 1)},
(everything elsg— 0

0
Z _|_|T“>, soTW = pbg(T),

[r—0,r'—0],
Ui—>0,Z>—>1,X>—>O,y>—>O,|>—>O],
poc(T uwleOxelyellel] }
(0,2) — {ly—0,2—0],[y—1,z— 1]},
everythlng elsg— 0

=

Z | |TD, s0T@ = pg(TW),
J:
[r—0,r'—0],
ur—>0,Z»—>1,X»—>0,y»—>0,|»—>0],
ps(T uwleOXHOyellel] }
(0,2) — {ly—0,z2—0],[y—1,z— 1]},
everythlng elsg— 0

2
Z |_| SOT = p%G(T(Z)%
j=0
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(E,1) = {[u—0,2— 1 x—0,1—0],[u—1,2—0,x— 0,1 — 1]},
(0,2) — {[y—0, Zr—>0] y—1,z—1]},
everythlng elsg— 0

[r—0,r' — {[x—0,y—0],[x—0,y—1]}],
Poe(T (
3
|_| SOT —poc;( (3))

4
pb(T) = (I 0.r' = 0], (0)pepricmio) C || T, s0
TE = T@Uph(TW) = T,
FromT® C T4 we getk = 4. By Prop. 52, the generated inductive invariant is

) [u—0,2—1,x—1y— 11— 1 pc— A, pc—0],
U Ty — [u—1,2—0,x—0,y—0,l—0,pc; — A, pc,— 0],
Yoc [u—0,z—1,x—0,y— 11— 0,pc,—E,pc,— 0],
[u—1,z—0,x—0,y—0,l—1,pc;—E, pc,— 0]

Notice thatUJ oYoa(TW) is strictly stronger thaog(infO), e.g.,[u— 0,z— 1, x—
0,y—1,1—0,pc;— A, pcyi—= 0] € Yo (infO) \ (U, oYoo(T >>)- O

H Comparison to modular methods for general programs

Modular methods for general programs are variants of thggrai Owicki method [25],
rely-guarantee reasoning [17], thread-modular modetking [14], local proofs [7]
and multithreaded Cartesian abstraction [20, 22]. We airgggo compare the Owicki-
Gries core with multithreaded Cartesian abstraction. Wesivow that the methods for
programs with and without resources, when treated withauiliary variables, have
similar but incomparable precision.

Fix a syntactic structure and an RPL transition system atugtfiis syntactic struc-
ture.

Let us consider, for instance, the variant of multithrea@adesian approximation
on the powerset of states that describes the core of OwidkisGor general multi-
threaded programs exactly:

S—={V | VteTid3veS: ¥V~ upataarV}-

This approximation is not directly usable for RPL, sincevitddues are not necessarily
subsets ofConsStateBut a similar mapping on the powerset of consistent sttes
P (ConsStatg namely

Pogmc: D — D, S— {ve ConsStatg Vt € Tid 3V € S:V~psiupataar ¥}

is usable for RPL.
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Proposition 58. pogmc: D — D is a closure operator on D.

Proof. We will prove the defining properties of a closure.

Monotonicity. LetQ C Q be sets of consistent states and pogmc(Q). Lett € Tid.
Then there is some € Q such thatv ~ .1 pataar V. Notice thatve Q. Thus
V€ poemc(Q). We have showposmc(Q) € posme(Q)-

Extensivity. LetQ € D. Letv € Q. CertainlyVt € Tid : V ~pq upataar V- Thusv €
Pocmc(Q). We have show® C pogmc(Q').

Idempotence. LeQ € D. Letv € pogmc(Poemc(Q)). Lett € Tid. Thgn there is some
V € poemc(Q) such thatv ~pe 1 patawr V. Then there is some € Q such that
V ~pgubataar V- Thenv ~ 1 pataar V- ThUsV € pogme(Q). We have shown

Pocme(Pocme(Q)) € Pocme(Q)- u

Theoretically, other equivalent proof methods (rely-gudee reasoning, thread-
modular model-checking or local proofs) could be adapteBRh. However, to the
best of our knowledge, such adaptations have not been glEamulated so far. In their
original formulation, they are also not exactly equivaleng., the “locals” of threads in
thread-modular reasoning have to be disjoint, the “locafshreads in RPL may over-
lap, the “locals” of threads in Owicki-Gries for general ttithireaded programs consist
only of the program counters.

The question, whether the straightforward adaptationretti-modular model check-
ing is equivalent to abstract interpretation Withic mc, is not so easy for RPL. However,
at least one direction holds: following the proof of Thm..2.ih [20], we relatively eas-
ily obtain that abstract interpretation wiibg mc always proves properties at least as
strong as those provable by thread-modular model checking.

We are going to proceed with comparison of the Owicki-Grieseavith abstract
interpretation under the closupg®g mc.

Example 59 (Readers-Writers)For the program Readers-Writers, et A X. pog me(initU
pos{x)) andQ = Ifp(F). We will show thatQ equals the strongest Owicki-Gries-core-
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provable property

{v € ConsStateé v(ww),v(ar) € Ng A v(aw) € {0,1}
AVieNq:
(V(PCreader;) € {Xready,read | X € {start,finish}
Aye {AB,CH)
A (V(PCreager;) = StartreadB = v(ww) = 0)
A (V(PCreager;) = StartreadC = v(ww) = 0 < v(ar))
A VY ]€ENn:
(V(prriterj) € {xwritey,write | X € {ask,start,finish}

ANye{AB,C}H})

A (V(prriterj) = askwriteC = v(ww) > 0)

A (V(PGriter;) = startwriteB = v(ar) = v(aw) = 0)
A (v(pcwriterj ) = startwriteC=-v(ar) = 0 < v(aw))
A (V(prriterj ) =finishwriteC=v(aw) =0)}.

“C" Firstwe show the right hand side (RHS) is closed unmgt mc. Letv € pogmc(RHS).
By definition of pog mc there is somev € RHS such thav ™ {PCreaer, Wwar.aw} W-
Thenv(ww), v(ar) € Ng andv(aw) € {0,1}.

Leti € N,. Thenthere isve RHS such that’“{pcreaderi wwar,awy W- TAUSV(PC,cader; )

S {s‘car‘creadA7 startreadB,startreadC,read,finishreadA,finishreadB, finishreadC}.
If v(pcreaderi) = startreadB, thenw(pcreaderi) = startreadB, sow(ww) =0 by
definition of RHS, sw(ww) = 0. If V(PC,a4er, ) = StartreadC, thenw(pe,eager) =
startreadC, sow(ww) = 0 < w(ar) by definition of RHS, sav(ww) = 0 < v(ar).

Let j € Ny Thenthereisve RHS such thaslw{pcwmerj wwar.aw} W. Thusv(pcwriterj )

S {askwriteA7 askwriteB,askwriteC,startwritel,startwriteB,startwriteC,
write,finishwriteA finishwriteB,finishwriteC}. If V(pCwriterj ) = askwriteC,
thenw(pG,,s..r;) = askwriteC, SOW(WW) > 0, SOV(WW) > 0. If V(PG rster;) =
startwriteB, thenw(pc, .., ) =startwriteB, sow(ar) =w(aw) = 0, sov(ar)
=v(aw) = 0. If V(pcwriterj) = startwriteC, thenW(prriterj) = startwriteC,
sow(ar) = 0 < w(aw), sov(ar) = 0 < v(aw). If V(pcwriterj) = finishwriteC,
thenw(pe,,;er;) = finishuriteC, sow(aw) = 0, sov(aw) = 0.

Thusv € RHS. Sincev was arbitrary,oocmc(RHS) € RHS. Notice thatnit U
pos{RHS) C RHS, thuspog mc(init Upos(RHS)) € RHS, so RHS is a postfix
point of F, soQ C RHS.

n:_)n: Let
CritR = {xready | x€ {start,finish},y € {B,C}},
CritWW = {xwritey | x € {ask,start,finish},y € {B,C}},

NonCritR = {read,xreadA | X& {start,finish}},
NonCritW = {write,XxwriteA | X € {ask,start,finish}}.
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(1) First we will show that for alla,b € Ng, ¢ € {0,1}, the statev with (Vi
Nn : V(PCreager;) = startreadh) A (V j € Ny :V(pcwriterj) = askwrited) A
v(ww) =aAv(ar)=bAv(aw) =cisinQ.

We will do that in 3 steps.

Step 1. We'll show this claim foa= b = 0. If c= 0, notice that such a state
is in init C Q. Otherwisec = 1. Take the initial state, make 3 steps of
writers, resulting in a statel € Qwith V1(pc,,;4er, ) = StartwriteA,
all other writers are atskwriteA, all readers are attartreadA, vl(ww) =
1, vl(ar) =0, vl(aw) = 0. Making 3 steps ofiriter; from the initial
state results in a stat® € Q with V2(pC,,;er,) = starturite, all
other writers are atskwriteA, all readers are attartread, v2(ww) =
1,v2(ar) =0,v2(aw) = 0. Consider the stated such that3(p¢,,;er,) =
VS(pQJriterz) = startwriteA A (v J € Nm \ {17 2} : \B(pqgriterj) =
askuriteA) A (Vi€ Np:V3(PCopger,) = Startreadh) A v3(ww) = 1
A v3(ar) = v3(aw) = 0. By definition ofpog mc, V3 € Q. Making seven
steps ofwriter; from v3 results in a stated € Q such thatVi € Ny :
VA(PC,eager;) = startreadh) A VA(PC,,szer,) = startwriteAA (V] €
Nm\{2}: VA(PG,rster;) = askwriteh) A vA(ww) = va(ar) = vd(aw) =
0. Making three steps afriter; from v4 results in a states € Q such
that (Vi € Np : V5(PCpenger;) = StartreadA) A VO(PGyiger,) = Write
A (V] € Nm\ {2} : v5(PC,pster;) = askurited) A V5(ww) = v5(ar)
= 0 A v5(aw) = 1. Analogously, starting from3, making seven steps
of writer, and three steps afriter; results in a stat@6 € Q such
that (Vi € Nn : VB(PCyeager;) = Startreadh) A VB(PGyiger,) = Write
A (V] € Nm\ {1} : V6(PCyrster;) = askurited) A v6(ww) = v6(ar) =
0 A v6(aw) = 1. By definition ofpog mc there is some7 € Q such that
(Vi € Nn 1 V7(PGeager;) = startreadA) A (V] € NmV7(PCyriper;) =
askwriteA) A V7(ww) = v7(ar) = 0 A v7(aw) = 1. Thenv7 satisfies
the stated conditions fo.

Step 2. Now we will show that for alb € Ng, ¢ € {0,1}, the statev with
(V i€ Nn : V(pcreaderi) = StartreadA) A (V J € Nm : V(pQJriterj> =
askwriteA) A v(ww) =0 A v(ar) =b A v(aw) =cisin Q.

For b = 0 the claim has been shown in step 1. Now assumektha0d
and the claim has been proven for 1. Letc € {0,1}. By induction
assumption there is a stat& € Q in which each thread sits at its ini-
tial location andvl(ww) = 0 A vi(ar) = b—1 A vl(aw) = ¢. Mak-
ing three steps ofeader; from vl results in a state2 € Q such that
\,Z(pcreaderl) =read A (v I € Nn\ {1} : Vz(pcreaderi) - StartreadA)
A (V] € Nm:V2(PCyriter;) = askurited) A v2(ww) =0 A v2(ar) =b
A v2(aw) = c. Making three steps afeader, from vl, we get a state
V3 € Q such that/?’(pcreaderz) =read A\ (VI € Nn\ {2} : VS(pCreaderi) =
startreadh) A (V ] € Nm:V3(PGyrser;) = askurited) A v3(ww) =0
A v3(ar) = b A v3(aw) = c. SinceQ is a fixpoint of pog mc, the statev
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in which all threads are at their initial locationgww) = 0 A v(ar) =b
Av(aw) =cisin Q.

Step 3. Now we will show that for all € Ng, b € Ny, ¢ € {0,1}, the stater
With (Vi € Nn 1 V(PCeager;) = startreadA) A (V j € Nm:V(PGyrirer;) =
askwriteA) A v(ww) =aAv(ar) =bAv(aw) =cisin Q.

Fora= 0 the claim has been shown in step 2. Now assumeatixad and
the claim has been proven far- 1. Letb € Ng, c € {0,1}. By induction
assumption there is a staté € Q in which each threads sits at its initial
location,v(ww) = a—1 A v(ar) = b A v(aw) = ¢. Making three steps
of writer; from vl results in a state2 € Q such thav2(pg,,; e, ) =
startwritel, all other threads are at their initial location&(ww) = a
A V2(ar) = b A v2(aw) = c. Making three steps ofriter; from vl
results in a state3 € Q such thatv3(pc,,;zer,) = startwriteA, all
other threads are at their initial location§(ww) = a A v3(ar) =b A
v3(aw) = ¢. Fromv2 € Q, v3 € Q and the definition 0pog mc We obtain
that the statev such that all threads im are at their initial locations,
v(ww) =aAv(ar) =bAv(aw) =cisinQ.

(1) We'll show now that for alla,b € No, ¢ € {0,1}, i € N, the statev such
thatV(PC,eager;) = read A (VK€ N\ {i} : V(PCreager,) = startreadh) A
(V] € Nm:V(PC,pirer; ) = askwrited) A v(ww) =aAv(ar)=bAv(aw)=c
isin Q. We'll use induction ora.

Casea=0. Letbe N, ce {0,1}, i € N,,. From (I) we already know that
there is some/l € Q in which all threads are at their initial locations,
vli(ww) = 0 A vi(ar) = b A vl(ar) = c. Making three steps by thread
reader; results in a stat®2 € Q such thatv2(pc,..q4.,) = read, all
other threads are at their initial locatiorg(ww) = 0 A v2(ar) =b+1
A v2(aw) = ¢. Sincen > 2, there is som& € Ny, \ {i}. Making three
steps fromvl by threadreadery results in a stat&3 € Q such that
V3(PCeager, ) = read, all other threads are at their initial locatiom3(ww) =
0 A v3(ar) = b+ 1 A v3(aw) = ¢. Combiningv2 € Q, v3 € Q and us-
ing the definition ofpogmc We obtainv4d € Q such thatv4(pc,cager,)
= VA(PCpeager,) = read, all threads excepteaderj andreadery are
at their corresponding initial locatiord(ww) = 0, v4(ar) = b+ 1 and
v4(aw) = c. Making four steps from4 by threadreadery results in the
statev € Q such thav(pc,epger,) =read A (V1 € Nn\ {i} 1 V(PCeager,) =
startreadA) A v(iww) =0 A v(ar) =b A v(aw) =c.

Casea> 0. Letbe N, ce {0,1},i € N,. By assumption hypothesis there is
vl € Q such thaw1(pC,eaqer;) = read, all other threads are at their ini-
tial locationsyl(ww) = a—1 A vl(ar) = b A vl(aw) = c. Taking three
steps ofiriter; fromvl results in a state2 € Q such thav2(pc, ¢ ger; )
= read A V2(PC,,i¢er,) = StartwriteA, all other threads are at their
initial locations,v2(ww) = a A v2(ar) = b A v2(aw) = c. In particular,
V2(PC,riter,) = askwriteA. Taking three steps efriter, fromvl re-
sults in a state3 € Q such tha¥3(pC, cager;) = read A V3(PCriter,) =
startwrited, all other threads are at their initial location3(ww) = a
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A v3(ar) =b A v3(aw) = c. In particularv3(pG,y; ey, ) = askwriteA.

Combiningv2 € Q andv3 € Q we get that the state with V(PG cager,)

= read, all other threads are at their initial locationgww) = a A

v(ar) =b A v(aw) =cisin Q.

(1) We claim that for everyi € Ny, a,b € Ny, ¢ € {0,1}, the statev such that
V(PCpeager;) = finishreadA A (VK€ Np\ {i} 1 V(PC eager,) = StartreadA)
A(VjENp: V(PCreader, ) = askwriteA) Av(ww)=aAv(ar)=bA v(aw) =
cisinQ.

To see that, make one step from a state described in (11).

(IV) We claim that for alla,b € Ny, c € {0,1}, j € Ny, the statev such that
(Vi € Nn 2 V(PCoager;) = startreadh) A V(PG irer;) = StartwriteA A
(VK€ Nm\ {j} : V(PCyriter,) = askwrited) A V(ww) =a A v(ar) =Db A
v(aw) = cis in Q. Leta € Ng. We case split oa.

Casea=0. We'llinduct onb.

Caseb=0. Letj € Ny, ce {0,1}. Making from the initial state (which
is in Q) three steps ofriter; results invl € Qsuch thavl(pc,; ter; )
= startwriteA, all other threads are at their initial locationg(ww) =
1 A vl(ar) = vl(aw) = 0. Sincem > 2, there is som& € Ny, \
{j}. Taking three steps afritery from the initial state results in
V2 € Q such thatv2(pc,, ey, ) = startwrite, all other threads
are at their initial locationsy2(ww) = 1 A v2(ar) = v2(aw) = 0.
Combiningvl € Q andv2 € Q, we obtain a state3 € Q such that
V3(PCiriter;) = V3(PGiriter,) = Starturite), all other threads are
at their initial locationsy3(ww) = 1 A v3(ar) = v3(aw) = 0. Mak-
ing seven steps afritery from v3 results in a statgd € Q such
thatvA(pe,,;+.,;) = startwriteA, all other threads are at their ini-
tial locationsv4(ww) = v4(ar) = v4(aw) = 0.

Casec = 0. Notice that4 satisfies all the requirements far

Casec = 1. Making seven steps afriter;j from v3 results in a
statev5 € Q such thatv5(pG,,;.,,) = startwriteA, all other
threads are at their initial locationg(ww) = v5(ar) = v5(aw)
= 0. Combiningv4 € Q, v5 € Q and the definition 0foog mc,
results in a state6 € Q such thav6(pc,,;zer;) = V6(PCiriter,)
= startwriteA, all other threads are at their initial locations,
v6(ww) = v6(ar) = v6(aw) = 0. Making three steps afritery
fromv6 results in a staté7 € Q such that/7(pcwriterj ) =startwriteA
AVI(PCyriser,) = Write, all other threads are at their initial lo-
cations,v7(ww) = v7(ar) = 0 A v7(aw) = 1. By (I) there is
some state/8 € Q in which all threads are at their initial loca-
tions andv8(ww) = v8(ar) = 0 A v8(aw) = 1. Combiningv7 € Q
andv8 € Q, we obtain the state € Q such thatv(pcwriterj) =
startwritel, all other threads are at their initial locations, and
v(ww) = v(ar) = 0 A v(aw) = 1.

Caseb > 1. Let j € Ny, ¢ € {0,1}. By induction assumption there is
somevl € Q such thatvl(pG,s..;;) = startwrites, all other
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threads are at their initial locationgl(ww) =0 A vl(ar) =b—1

A vl(aw) = c. Making three steps afeader; from vl results in

a statev2 € Q such thatv2(pC,eager,) = read A V2(PCyriter;) =

startwrited, all other threads are at their initial location&(ww) =

0 A v2(ar) = b A v2(aw) = ¢. Making three steps afeader, from

vl results in a state8 € Q such that3(pC,.ager,) = read AV3(PGyrsser, )

= startwriteA, all other threads are at their initial location83(ww) =

0 A v3(ar) =b A v3(aw) = c. Notice that2(pC,cager,) = V3(PCreader; )

= startreadA. Fromv2 € Q, v3 € Q we get the state € Q such

thatv(pcwriterj) = startwriteA, all other threads are at their ini-

tial locations,v(ww) = 0 A v(ar) = b A v(aw) = c.

Casea> 1. Letj € Ny, b e Ny, c € {0,1}. From (I) we obtain a statel €
Q in which all threads are at their initial locationsg,(ww) =a—1 A
vl(ar) = b A vl(aw) = c. Making three steps byriter; results in a
statev € Q such thalv(pcwriterj) = startwrite), all other threads are
at their initial locationsy(ww) = a A v(ar) = b A v(aw) = c.

(V) We claim that for alla,b € Np, c € {0,1}, j € Ny, the statev such tha{Vi €
Nn 1 V(PCeager;) = startreadA) A V(PGyrer;) = write A (VKENm\{j}:
V(PCyriter,) = askwrited) A V(ww) =a A v(ar) =b A v(aw) = cisin Q.
We'll use induction ora.

Casea=0. We'll use induction orb.

Caseb=0. Letce {0,1}, j € Np.

Casec = 0. Making six steps ofriterj from the initial state re-
sults in a statevl € Q such thatvl(pG,...,;) = write, other
threads are at their initial locationgl(ww) = vli(aw) = 1 and
vl(ar) = 0. Letk € N\ {j}. Making six steps ofiritery from
the initial state results in a stat? € Q such thatv2(pcwriterj)
= write, other threads are at their initial location®(ww) =
v2(aw) = 1 andv2(ar) = 0. Combiningv2 € Q,v3€ Qandk # |,
we obtain a state3 € Q such thaNS(pqmterj) = V3(PCriter,)
= write, other threads are at their initial locationg(ww) =
v3(aw) = 1 andv3(ar) = 0. Making four steps ofiritery from
v3 results in the state € Q such thatv(pcwriterj) = write, all
other threads are at their initial locationgyww) = v(aw) = v(ar)
=0.

Casec=1. By (IV)the states1 such tha\‘/l(pcwriterj) = startwriteA,
all other threads are at their initial locationd(ww) = vl(ar) =
vl(aw) = 0 is inQ. Make three steps by threattiter;.

Caseb>1. Letce {0,1}, j € N

By induction assumption, there is a stete= Q such that/l(pcwriterj )

= write, other threads are at their initial locationd,(ww) = 0

A Vvl(ar) =b—1 A vl(aw) = c. Making three steps ofeader;

from v1 results in a state2 € Q such that\/Z(pcwriterj) = write,

V2(PCreager,) = read, all other threads (includingeadery) are at
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their initial locationsy2(ww) = 0 A v2(ar) = b A v2(aw) = c. Mak-
ing three steps ofeader; from vl results in a state3 € Q such
thatv3(pGyster;) = Write, V3(PCeaqer,) = read, all other threads
(including reader;) are at their initial locationsy3(ww) = 0 A
v3(ar) = b A v3(aw) = c. Combiningv2 € Q andv3 € Q we get
the statev € Q such thalv(pcwriterj) = write, all other threads are
at their initial locations ang(ww) = 0 A v(ar) = b A v(aw) = c.
Casea> 1. Letbe Ny, c€ {0,1}, j € Ny. By induction hypothesis, there
is somevl € Q such thatvl(pcwriterj) = write, all other threads are
at their initial locationsyl(ww) = a—1,v1(ar) = b, vl(aw) = c. Since
m > 2, there isk € Ny, such thak # j. Making three steps ofritery
fromvl resultsin a state2 € Q such that/Z(pCwritelrj ) =write, V2(PCyriter, )
= startwriteA, v2(ww) = a, v2(ar) = b, v2(aw) = c. By (I), thereis a
statev3 € Q in which all threads are at their initial locationg(ww) = a,
v3(ar) = b, v3(aw) = c. In particularv3(p¢,, ; e, ) = askwriteA. From
v2 € Q andv3 € Q we obtain that the state such thatv(pcwriterj)
= write, all other threads are at their initial locationgyww) = a A
v(ar) =b A v(aw) =cisin Q.

(V1) We claim that for alla,b € Ng, ¢ € {0,1}, j € Ny, the statev € Q such that
(Vi€ Nn:V(PCeager,) = startreadh) A V(PG seer;) = finishuriteA A
(Vke Nm\{j}: V(pcwriterk) = askwriteA) A v(ww) =a Av(ar)=b A
v(aw) =cisin Q.

To see that, let,b € Np, c € {0,1}, j € N, and make one step etiter;
from the corresponding state from (V).

(VII) We claim that for alla,b € Ny, c € {0,1}, any statev such that(Vi € Ny :
V(PCeager;) € NONCIItR) A (V ] € Nim I V(PG er; ) € NONCHiItW) A v(ww) =
aAnv(ar)=bAv(aw) =cisinQ.

This follows from (1), (11), (111), (IV), (V), (VI) and the ddinition of pog mc.

(VIIl) We claim that for allb € No, c € {0,1},i € Ny, any statey such tha(pc, . qer; )
= startreadB A (VK€ Np\ {i} : V(PC eager,) € NONCritR) A (V] € Ny :
V(pcwriterj) € NonCritW) A v(ww) =0 A v(ar) =b A v(aw) =cisin Q.

To see that, leb € Ny, c € {0,1}, i € N, andv as above. By (VII), the state
V1 = V[PC,enger, — StartreadA] is in Q. Make one step afeader;.

(IX) We claimthatforallb € N*,ce {0,1},i € Ny, any states such tha¥(pc, . 4, )
= startreadC A (VK€ Np\ {i} : V(PCepger,) € NONCIitR) A (V] € Ny :
V(pcwriterj) € NonCritW) A v(ww) =0 A v(ar) =b A v(aw) =cisin Q.

To see that, leh € N, c € {0,1},i € N, andv as stated. By (VIII) the state
V1 = V[PC, cager, * StartreadB, ar— b— 1] is in Q. Make one step of thread
reader;.

(X) We claim that for alla,b € Ng, ¢ € {0,1}, i € Ny, any statev such that
V(PCreager;) = finishreadB A (VK€ N\ {i}: V(PCreager,) € NONCIitR) A
(Vj€Nny: v(pcwriterj ) € NonCritW) A v(ww) =a A v(ar) =b A v(aw) =c
isinQ.
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To see that, led, b € Ng, c € {0,1},i € Ny, vas required. By (VII), the state
V1 = V[PC, cager;m+ finishreadA] is in Q. Take one step byeader; fromvl.
(XI) We claim that for alla,b € Ng, ¢ € {0,1}, i € Ny, any statev such that
V(PCreager;) = finishreadC A (VK€ Np\ {i}: V(PCreager,) € NONCIitR) A
(V]j€Nny: V(pcwriterj) € NonCritW) A v(ww) =a A v(ar) =b A v(aw) =c¢
isinQ.
To see that, let,b € Ny, c € {0,1}, i € N, andv as above. By (X), the state
V1 = V[PC cuqer;m+ finishreadB, ar— b+ 1] is in Q. Take one step by thread
reader;.

(XIl) We claim that for alla,b € Ng, ¢ € {0,1}, j € Ny any statev such that
(Vi € Nn : V(PCeager;) € NONCIitR) A V(DG ps1er;) = askuriteB A (VK€
Nm\ {j} : V(PCiriter,) € NONCritW) A v(ww) =a A v(ar) =b A v(aw) =c
isinQ.

To see that, leh,b € Ng, c € {0,1}, j € N, v as stated. By (VII), the state
vl= v[pcwriterj — askwrite] is in Q. Apply one step ofiriter;.

(XNI) We claim that for alla € N, b € Ny, c € {0,1}, j € Ny, any statev such
that (Vi € Nn : V(PCreager;) € NONCIitR) A V(PGyrsper;) = askuriteC A
(Vk e Nm\ {j} : V(PCiriter,) € NONCritW) A v(ww) = a A v(ar) =b A
v(aw) =cisin Q.

To see that, leh € NT, b € Ng, c€ {0,1}, j € Ny andv as stated. By (XII)
the statevl = v[pcwriterj — askwriteB,ww—a—1]is in Q. Apply one step
of writerj tovl.

(XIV) We claim that for alla € Ng, j € Ny any statev such that(V i € Ny :
V(PCeager;) € NONCIItR) A V(PG5 ) = startwriteBA (VKE Nm\ {j}
v(pcmterk) € NonCritW) A v(ww) =a A v(ar) = v(aw) = 0isinQ.

To seethat, led € N, j € Ny, vas stated. By (VII) the statd = v[pcwriterj —
startwritel] is in Q. Apply one step ofiriter; tovl.

(XV) We claim that for alla € Ng, j € Ny, any statev such that(Vi € Nj :
V(PCeager;) € NONCIItR) A V(PG5 ) = startwriteCA (VKE Nm\ {j}
V(pcwriterk) € NonCritW) A v(ww) =a A v(ar) =0A v(aw) = 1isinQ.

To see that, led € Ny, j € N andv as stated. By (XIV) the statel =
V[pCWriterj — startwriteB,aw— 0] is in Q. Make one step fronvl by
threadwriter;.

(XVI) We claim that for alla,b € Ny, c € {0,1}, j € Ny, any statev such tha{Vi €
Nn 1 V(PCreager;) € NONCHitR) A V(PGpsrer;) = finishuriteB A (VK€
Nm\{j}: V(D%iterk) € NonCritW) A v(iww) =a A v(ar)=b A v(aw) =c¢
isin Q.

To see that, led, b € Np, c € {0,1}, j € Ny, v as stated. By (VII) the state
= v[pcwriterj — finishwrited]isin Q. Apply one step ofiriterj fromw.

(XVII) We claim that for alla,b € Ny, j € Ny, any statev such that(Vi € Ny, :
V(PCeager;) € NONCHtR) A V(PCypsper;) = finishuriteC A (VK€ Nm\
{i} 1 V(PCiriter,) € NONCritW) A v(ww) =a A v(ar) =b A v(aw) =0 is in
Q.
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To see that, let,b € Ny, j € Ny, v as stated. By (XVI) the statey =
v[pcwriterj — finishwriteB,aw— 1] is in Q. Apply one step ofiriter;
fromw.
Letve RHS. Ifcontrolis available inv, apply (VII). Otherwise there is some thread
at a critical location..B or ... C. If the critical location is in a reader, apply one of
(VII), (IX), (X), (XI), if the critical location is in a writer, apply one of (XII),
(X1, (XIV), (XV), (XVI), (XVII).
Thus the precision of the Owicki-Gries core and abstra@rpretation withpog me
coincide on Readers-Writers. O

Example 60 (Upper). Consider the RPL transition system Upper. We'll show that
Pocmc(init) is a subset oihit.

Letv € pogm(init). For the left thread we have sowiee init such thav ~pe, 1 z2xyi}
v1l. Thusv(pc,) = A andv(u) # v(z) = v(x) = v(y) = v(l). For the right thread we have
somev2 € init such tha¥ ~ e, uzxyi1} V2. Thusv(pc,) = 0. Thenv € init.

Then pog mc(init U postinit)) C pogme(init) C init. ThusIfp(AX. pog mc(init U
pos(x))) = init.

Thus the result of abstract interpretation withg mc is strictly stronger than the
strongest Owicki-Gries-core-provable property. a

Example 61 (SepThreads)Consider an RPL transition system from SepThreads. For
the syntactic structure StrSepThreads @D we havepoemce(Q) = {veConsStaté
VteTid IVEQ: V~pgiupataarV} C {veConsState VteTid 3VEQ: V~iocay V} =
P(Q). Thuslfp(Ax.init Uposix)) < Ifp(AX. pogme(init Upostx))) C Ifp(Ax. p(init U
pos(x))) C [Example 22]Ifp(Ax.init Upos(x)) = yog(infO). Then yoe(infO) =
IfP(AX. pogme(init Upostx))). The precision of Owicki-Gries-core and abstract inter-
pretation withoog mc is the same on RPL transition systems from SepThreads. O

Example 62. In Fig. 6 we see two threads executing the same code, togeitieits
smallest Owicki-Gries-core proof.

resource [(X)
initially x=0;

A: {true} A: {true}
with r do with r do
B: {x=0} B: {x=0}
X:=1; X:=1;
c: {x=1} c: {x=1}
assume false assume false
D: {false D: {false
endwith endwith
E: {false} E: {false}
I = {x=0}

Fig. 6: RPL transition system progAssignlwith its small@sticki-Gries-core proof.
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The proof denotes the property

[X—0,pCy > A, pCy— A],
yoa(infO) = ¢ [x—0,pc;— A,pC— B], [x—0,pC;— B,pc— Al
[x—1,pCy—C, PGy A], [x—1,pC;— A, pCy—C]

Consider the upper fixpoint iteration sequeé) )ic, for Ax. pogmc(init Upostx)):

X (0) 0,

X = {[x~0,pcy A, pc—>Al}

%@ _ | X—=0,pcy— A, pey> Al
[X—0,pCy > A, PGy BJ, [X+— 0,pC; — B, pCy— A

[x=0,pCy+— A, Py Al
x— 0,pc;— A,pc,— B
X—1,pc— A, pG—C

init Upos(X®) = X>—>O,p01>—>B,p(‘Q>—>A,} ,

[ ]
[x— 1,pc; > C, pCy+— A]
X— 0, pc— A, pCy— A, [X— 1, pc; — A, pCy— A]
Xi— 0,pCy A, PGy B, | ]
[ ]

X—1,pc— A, pc—C

]
I,
],
s
], [x—0,pc;— B, pCy— A,
], [X—1,pc;— C,pCy— A
X 0,pC > A, PGy A,
X— 0,pc;— A, pC,— B
X—1,pc;— A, pC,— B
]
]
]
]
]
]
]
]
]

[

[

[

[

[

[

[ X—0,pC; > B, pCy— Al
{XH 1,pc,—A,pc,—C
[

[

[

[

[

[

[

[

X—1,pc;—B,pC—Al,
x—1,pC —C,pC,— A

init Upos(X(®) = ’
X—0,pC;— A, pC,— A
x— 0,pc;— A,pc,— B

X—1,pc— A, pc,—B
X—1,pc;—A,pc,—C

X—0,pC; — B, pCy+— Al
X—1,pc—B,pC—Al,
x—1,pC—C,pC— A

[ ]
[ ]
[ ]
,[X—=1,pc— A, pCy— Al
[ ]
[ ]
| ]
X— 0,pC — A, pCy— A,

X— 0,pc;— A, pcy— BJ, [x— 0, pc; — B, pcy— A,
x— 1, pc;— A, pc,— BJ, [x— 1, pc; — B, pcy— Al

x— 1, pc;— A, pc,— CJ, [x— 1, pc;— C, pCy— A]

Notice thatyog(infO) C Ifp(AX. pogmc(init Upos(x))).
So abstract interpretation witbogme produces a strictly weaker property than the
strongest Owicki-Gries-core proof on this example. a0

From Examples 60 and 62 we obtain that Owicki-Gries coredsnmparable with
multithreaded Cartesian abstraction, adapted to RPL imib&t straightforward way.

Example 63. The RPL program given by Fig. 7 hdsd = {1,2}, PL= {A,B}, Val=
PLU{0,1}, Res= 0, Locah = {pcy,l1}, Locab = {pc,,l2}, ProofVar= 0, rsc(A) =
rsc(B) = 0.
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integer |1 =1, € {0,1}

A: {true} A: {true}
assume false; assume false;
B: {false} B: {false}
|1 =0 |2 =0
C: {false C: {false}

Fig. 7: RPL transition system progAssign2 with its smalt@sticki-Gries-core proof.

Then
Yoa(infO) = { [l1—0,l2—~0,pc;— A, pc,— A,
[l1—0,l2—1,pc;— A, pC, — A],
[l1—1,12—0,pc; — A, pc,— 4],
[l1—1,1o—1 pc—A,pc,— Al },
and

Pocme(init) = init, thus Ifp(AX. pogmc(init Uposi(x))) = init.

So the strongest Owicki-Gries-core-provable propertiristy weaker than the strongest
property provable by abstract interpretation Witk mc. a

Both progAssign1 and progAssign2 belongto Simple. For pssign2 the strongest
Owicki-Gries-core-provable property is strictly weaklgau the strongest property prov-
able by abstract interpretation witogme, for progAssignl the strongest Owicki-
Gries-core provable property is strictly stronger. Thuas, $imple, the Owicki-Gries
core is in general incomparable with abstract interpretatiith oo mc.

Owicki-Gries for RPL and general programs target diffexamification tasks. Owicki-
Gries for RPL allows verifying properties assuming mutueatlesion (external veri-
fication). Owicki-Gries for general programs (= multithdea Cartesian abstraction)
allows checking synchronization details without assumingual exclusion (internal
verification). This section presents an initial step in canipg the two proof systems.
The incomparability result shows that if both systems canriéed, it is not going to
be trivial.

Although it is impossible to present a verification methady that has exactly
the same precision as both proof systems, there is a veioficatethod that produces
properties which are stronger than both proof systems, dridhwcan be viewed as
a generalization of both proof systems, namely the denyaguee framework [12],
SL+ [27], SAGL [13], or RGSep [29, 30]. These logics, howeder not generalize the
“pure” Owicki-Gries system, but separation-logic-baspdraaches.

We also conjecture that it is possible to prove all OwickigSfcore-provable prop-
erties by abstract interpretation withg mc with the following fixed choice of auxiliary
variables. Namely, for each resource, we add a resourcabkarthat indicates which
thread is in the critical section for that resource.

| Practical implications

Now we look at the importance of results for practical veaifion.

65



Many real-life specified properties of programs are simffley involve only few
variables, which are, for example, local, or all belong te #ame resource. In this
case the property is likely to be a fixpoint of one of the coeséd closures, which
retain dependencies between certain variables. Chechkiadarct is easy: it does not
depend on the program’s transition relation. If in additioa property is expected to be
inductive, we obtain a clear choice of an analysis to confirmexpectation: it would
be abstract interpretation with any closure for which theperty is a fixpoint.

Abstract interpretation with a chosen closure might alsivdea property which is
coarser than expected. In this case, in the chain

pc — p — Owicki-Gries core —p — identity

it is useless to try out analyses with a lower precision. @thntrary, an analysis with
a higher precision, which tracks more variable dependeneigght help.

An analysis from this chain might also run out of time or spda#ing to produce
any property. Without further assumptions, predictingetior space consumption of
other analyses is hard. However, for certain finite-statmados predictions are still
possible. For example, abstract interpretation itland the Owicki-Gries core can be
easily executed as fixpoint iterations on the domains ofeéS&h products and program
annotations, respectively. The worst-case space fomgtdhie iterates is larger for the
Owicki-Gries core than fop, also the height of the domain of program annotations is
larger than the height of the domain of products of blockthéfworst case is expected
(e.g., by an insight of an expert), machines which are slohaoe low memory might
be too restricted to execute the Owicki-Gries core, so abtnterpretation withp
should be recommended to attempt first.
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