
On the Strength of Owicki-Gries for Resources

Alexander Malkis and Laurent Mauborgne

IMDEA Software Institute

14 October 2011

Abstract. In multithreaded programs data are often separated into lock-protected
resources. Properties of those resources are typically verified by modular, Owicki-
Gries-like methods. The modularity of the Owicki-Gries method has its price:
proving some properties may require manual introduction ofauxiliary variables.
What properties can be proven without the burden of introducing auxiliary vari-
ables? We answer this question in the abstract interpretation framework. On one
hand, we reveal a lattice structure of the method and supply asyntax-based ab-
stract transformer that describes the methodexactly. On the other hand, we bound
the loss of precision fromaboveand below by transition-relation-independent
weakly relational closures. On infinitely many programs theclosures coincide
and describe the precision loss exactly; in general, the bounds are strict. We prove
the absence of a general exact closure-based fixpoint characterization of the accu-
racy of the Owicki-Gries method, both in the collecting semantics and in certain
trace semantics.

1 Introduction

The paper will characterize the accuracy of a popular verification method for proving
safety properties of concurrent programs that operate on resources.

A program operating on resources is a multithreaded programin which threads com-
municate via sequentially consistent shared memory and in which all shared variables
are partitioned into disjoint resources. Each resource maybeavailableor busy. To ac-
cess a variable belonging to a resource, a thread waits untilthe resource gets available
and then starts a critical section for that resource, thus making the resource busy. While
staying in the critical section, the thread can read and write the resource data, and no
other thread can enter a critical section for the same resource, so no other thread can
access the resource data. After the thread finishes accessing the resource, it exits the
corresponding critical section, making the resource available.

Simple safety properties of such programs can be proven modularly. A modular
proof of a program consists of an annotation per control flow location and an annotation
per resource. Roughly, an annotation of a control flow location describes the valuations
of the variables that the thread may access at that location.An annotation of a resource
describes, roughly, the state of the resource when it is available. The annotations of
locations have to be sequentially consistent similarly to the standard Hoare-style asser-
tional logic, but with two changes: when a thread acquires a resource, the proof may
assume that the invariant of the acquired resource holds, and on releasing a resource the
resource invariant should be reestablished.

Such modularity incurs a loss of precision: for many programs, too strong but valid
properties cannot be proven by the method. To prove such properties, the program can
be manually augmented with so-called auxiliary variables.A set of variables is called
auxiliary if, intuitively, projecting the traces of the program to the other variables gives
the same result as removing all the statements involving theauxiliary variables and
projecting afterwards. A modular proof is created for the augmented program, then the
proven property is projected onto the original variables. The ability to use auxiliary vari-
ables makes the proof system complete. So far, auxiliary variables have been introduced
purely manually, while the construction of the remaining proof can be automated.

We will estimate the loss of precision inherent to thecore of the Owicki-Gries
method, which consists of all the proof rules of the Owicki-Gries logic except the ability
to use auxiliary variables, in abstract interpretation.

We will show a rich lattice structure of the Owicki-Gries-core proofs and a syntax-
based abstract transformer describing the Owicki-Gries coreexactly.

We will observe that there is no transition-relation-independent approximation op-
erator that exactly characterizes the loss of precision of the Owicki-Gries core in the
collecting semantics. We will also note the absence of equivalent trace-based character-
izations of certain kinds.

We will find an approximation operator that induces a useful upper bound on this
set, i.e., that will describe how much precision the Owicki-Gries core always loses. This
approximation operator depends only on the syntactic structure of the program, but not
on its exact transition relation. If a property is provable by the Owicki-Gries core, it is
provable by abstract interpretation with this approximation.

We will present an approximation operator inducing a lower bound on the set, i.e.,
describing how much precision the Owicki-Gries core alwaysretains. This approxima-
tion operator also depends only on the syntactic structure of the program, but not on
its exact transition relation. If a property is provable by abstract interpretation with this
approximation, it is provable by the Owicki-Gries core.

In passing, we will demonstrate an infinite class of simple programs for which both
bounds are equal and a program on which both bounds are strict.

In short, the main results and their position are depicted inFig. 1.

Less properties

Coarser

Potentially
cheap

More properties

Finer

Potentially
expensive

Section 7 Section 4 Section 6

Abst. int.
with ρc

Abst. int.
with ρ̄

Owicki-Gries
core

Abst. int.
with ρ

Fig. 1: Precision of analyses. The upper bound isρ , the lower bound is̄ρ. In addition
to ρ̄ , we will consider a simpler lower boundρc, which is coarser than̄ρ, but easier to
understand.

2

The rigorous formalization, computations, proofs, recommendations for practition-
ers, and comparison to abstract interpretations for general programs are found in the
appendix.

2 Resource-manipulating language and its semantics

2.1 Language RPL

Now we briefly recall the parallel language RPL (Restricted Parallel Language, rigor-
ously defined in [25]) in which shared data are separated intoresources and access to a
resource is granted exclusively.

Let threads be indexed by the elements of the setTid and, without loss of generality,
start their executions together. Threads operate on data variables from the setDataVar.
A resourceis a set of data variables; the resources are disjoint. LetResbe the set of all
resources.

A statementis either
– an atomic statement, i.e., an assignment or an “assume φ ” (which skips if the ar-

gument expression evaluates totrue and blocks otherwise),
– a sequential composition of two statements, anif-then-else, or awhile loop,
– a critical sectionwith r when φ do C endwith wherer is a resource,φ a formula

over data variables andC some statement. We writewith r do C endwithwhenφ
is true.

A thread executes a statement.
A data variable is calledlocal to threadt if all the assignments to the variable are

syntactically int. If a variable appears in threadt, it should belong to a resource or be
local tot. If a variable belongs to a resourcer, it can appear only inside a critical section
for r, i.e., inside a “with r...” statement.

Each resourcer is associated with a set ofproof variables ProofVar(r), which are
all data variables that are not assigned except maybe in critical sections forr. All our
examples will satisfyProofVar(r) = r (in general,ProofVar(r)⊇ r).

An RPL program is described by a set of threads, a set of resources and an initial
condition on the variables.

2.2 Semantics of RPL

To connect to abstract interpretation, we describe programs in RPL as transition sys-
tems.

For each threadt we introduce a fresh non-data program counter variablepct , which
– is local to threadt, but not to any other thread, and
– doesn’t belong to any resource, and
– takes values from the set of control flow locationsPL (Program Location).

Let PCVarbe the set of all program counter variables andVar= DataVar∪̇PCVar.
We associate each control flow pointp∈ PL with a setrsc(p) of resourcesr such

that p is inside awith r... statement.
We allow the same control flow location, say,p, to occur in different threads.

3

A state of a program is a map fromVar to the set of valuesVal that includesPL
and the ranges of all data variables. We are going to speak about consistent statesonly:
those are states that

– map program counters to elements ofPL and
– satisfy mutual exclusion: the sets of resources held by different threads are disjoint.

A threadt holdsa resourcer in a consistent statev if r ∈ rsc(v(pct)). A resourcer is
busyin a consistent statev if some thread holds it inv, otherwiser is availablein v.

Each statement of threadt induces a set of transitionsv→t v′ wherev,v′ are con-
sistent states. The transitions induced by the non-with statements are straightforward.
The statementwith r when φ do C blocks whenr is busy or whenφ does not hold,
otherwise it changes the control flow location to the initialcontrol flow location ofC;
going out of the critical section is an unconditional changeof the control flow location.

Let init be the set of initial states corresponding to the initial condition and let the
successor map

post(S) = {v′ | ∃ v∈ S, t ∈ Tid: v→t v′}

return the set of all one-step successors of a set of consistent states.
Thesyntactic structureof an RPL program is given by: thread identifiers, control

flow locations, values, resources, locals and program counter variables of the threads,
proof variables, maprsc. A syntactic structure is just a tuple of basic mathematical
objects (sets, variables, maps). It also exists independently of an RPL program.

3 Owicki-Gries-core proofs

3.1 Lattice of Owicki-Gries-core proofs

Now we formalize the core of the Owicki-Gries proof system. We abstract away from
the details of logic, handling sets of variable valuations instead of formulas.

Fix an arbitrary syntactic structure.
A program annotation(I ,M) consists of

– a resource invariantIr for each resourcer, which is a set of valuations of proof
variables ofr,

– a control flow annotationMp,t for each control flow locationp and each thread
t, containing valuations of data variables which are local tot or which are proof
variables of a resource held atp.

We say that a consistent statevsatisfiesIr (resp.Mp,t), if the projection ofv to ProofVar(r)
(resp. to local data variables oft and all proof variables of all resources inrsc(p)) is in
Ir (resp. inMp,t).

A program annotation(I ,M) denotesthe set of all consistent statesv such that
– for each resourcer which is available inv, the statev satisfiesIr , and
– for each threadt, the statev satisfiesMv(pct),t .

We defineγOG(I ,M) as the set of all consistent states denoted by(I ,M).
Now fix an arbitrary RPL program obeying the given syntactic structure.
An Owicki-Gries-core proofof the program is a program annotation that satisfies

the following conditions.

4

– It is sequentially consistent, which means the following: consider any transition
v→t v′ from a control flow locationp to a control flow locationp′ such thatv
satisfiesMp,t . There are three cases.
• The transition does not cross the border of a critical section. Thenv′ should

satisfyMp′,t .
• The transition starts a critical section of a resourcer. Additionally, assume that

v satisfiesIr . Thenv′ should satisfyMp′,t .
• The transition finishes a critical section of a resourcer. Thenv′ should satisfy

bothMp′,t andIr .
– It admits the initial states, i.e., denotes a superset ofinit.

These Hoare-style rules treat critical sections specially. First, on entering a critical sec-
tion, we additionally assume the resource invariant. Second, on leaving a critical sec-
tion, we should prove the resource invariant.

Every Owicki-Gries-core proof denotes an inductive invariant. A set of consistent
statesS is Owicki-Gries-core provableif there is an Owicki-Gries-core proof that de-
notes a subset ofS.

Interestingly, the set of program annotations of a fixed program forms a complete
lattice with respect to componentwise inclusion order. Restricting this order to the
set of Owicki-Gries-core proofs gives a complete lattice ofOwicki-Gries-core proofs,
even a Moore family. So each program has a unique smallest Owicki-Gries-core proof.
This proof denotes the strongest Owicki-Gries-core-provable property. To investigate
the power of the method, we will look at the smallest Owicki-Gries-core proofs and
strongest Owicki-Gries-core-provable properties.

3.2 Examples

Now we will look at examples of programs with their smallest Owicki-Gries-core
proofs. On Readers-Writers, as well as for a whole class of similarly simple programs,
all proof methods will have the same precision, on Upper all proof methods will have
different precision and on the class SepThreads no precision loss will be observed at
all.

We’ll use Owicki-style notation. In particular, “resourcecontrol(ww,ar,aw)” means
that the resource namedcontrolcontains exactlyww, ar andaw.

Example 1 (Readers-Writers).A number of threads share a file simultaneously:n> 1
need reading access andm> 1 writing access. Any number of readers may access
the file simultaneously, but a writer must have exclusive access. In Fig. 2, all the data
variables range over nonnegative integers by default, subtracting a positive value from
0 blocks.

5

initially ww= ar = aw= 0
resource control(ww,ar,aw)

reader1 ‖ ... ‖ readern ‖ writer1 ‖ ... ‖ writerm

// readeri: // writer j:

while true do while true do

startreadA: {true} askwriteA: {true}
with control with control do
when ww= 0 do askwriteB: {aw≤ 1}

startreadB: {ww= 0∧aw≤ 1} ww:= ww+1
ar := ar+1 askwriteC: {aw≤ 1≤ ww}

startreadC: {ww= 0∧aw≤ 1≤ ar} endwith;

endwith; startwriteA: {true}
read: {true} with control

; when ar = aw= 0 do

finishreadA: {true} startwriteB: {ar = aw= 0}
with control do aw:= aw+1

finishreadB: {aw≤ 1} startwriteC: {ar = 0∧aw= 1}
ar := ar−1 endwith;

finishreadC: {aw≤ 1} write: {true}
endwith ;

endwhile finishwriteA: {true}
with control do

finishwriteB: {aw≤ 1}(
aw
ww

)
:=

(
aw−1
ww−1

)

finishwriteC: {aw= 0}
endwith

endwhile

Icontrol = {aw≤ 1}

Fig. 2: Program Readers-Writers and its smallest Owicki-Gries-core proof.

The strongest Owicki-Gries-core-provable property is

{v∈ ConsState| v(ww),v(ar) ∈N0 ∧ v(aw) ∈ {0,1}
∧ ∀ i ∈ {1, . . . ,n} :

(v(pc
readeri

) ∈ {xready,read | x∈ {start,finish}
∧ y∈ {A,B,C}})

∧(v(pc
readeri

) = startreadB⇒ v(ww) = 0)
∧(v(pc

readeri
) = startreadC⇒ v(ww) = 0< v(ar))

∧ ∀ j ∈ {1, . . . ,m} :
(v(pc

writer j
) ∈ {xwritey,write | x∈ {ask,start,finish}

∧ y∈ {A,B,C}})
∧(v(pc

writer j
) = askwriteC⇒ v(ww)> 0)

∧(v(pc
writer j

) = startwriteB⇒ v(ar) = v(aw) = 0)
∧(v(pc

writer j
) = startwriteC⇒ v(ar) = 0< v(aw))

∧(v(pc
writer j

) = finishwriteC⇒ v(aw) = 0)} .

6

There are states in this set in which more than one writer is atwrite. Thus no Owicki-
Gries-core proof can show that a writer has exclusive access. The smallest Owicki-
Gries-core proof can prove a slightly weaker property, namely that the value ofaw,
which tracks the number of writers, never exceeds 1.

Example 2 (progUpper).The program Upper in Fig. 3 will be used for showing dif-
ferences between the Owicki-Gries-core proofs and the upper bound later. The range
of the data variables is{0,1}. The computation is trivial: no thread can make a step.
The majority of the program text serves to create a particular distribution of vari-
ables into locals and resources. There are exactly two reachable states, namely the

initially u 6= z= x= y= l
resource r(u,z), r ′(x,y)

// Thread 1 // Thread 2

A: {l = x} O: {y= z}
with r when l = u do assume false;

B: {l = x= u 6= z} P: with r ′ do

with r ′ do Q: y := 0
C: {y≥ l = x= u 6= z} R: endwith;

x := 0 S: with r do

D: {y≥ l = u 6= z∧x= 0} T: u := 0;
endwith; U: z:= 0

E: {l = u 6= z∧x= 0} V: endwith;

assume false W:

F: endwith;

G: with r ′ do

H: x := 0
I: endwith;

J: with r do

K: u := 0
L: endwith;

M: l := 0
N:

Ir = {u 6= z}, Ir ′ = {x≤ y}

Fig. 3: Program Upper and its smallest Owicki-Gries-core proof. Control flow locations
following “assume false” are annotated by{false} by default.

initial ones. The smallest Owicki-Gries-core proof denotes many more states, e.g.,
[u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0,pc1 7→ A,pc2 7→ O].

Example 3 (Simple).A program belongs to the classSimpleif it has at most one re-
source, and if the resource exists, then it contains no localvariables and all its proof
variables belong to the resource. Readers-Writers is a family of programs from Simple.

Example 4 (SepThreads).The classSepThreads(Separate Threads) consists of all
programs that have no resources and whose initial states areexactly those that satisfy

7

the initial conditions of all the threads (a proper subset ofsuch states is disallowed). For
such programs the smallest Owicki-Gries-core proof denotes the set of reachable states.

4 Owicki-Gries core as abstract interpretation

4.1 Owicki-Gries-core proofs are the post-fixpoints of a sound abstract successor
map

Our first step to try to give a measure of the precision of the Owicki-Gries core will
be to cast it in the abstract interpretation framework. An Owicki-Gries-core proof is
clearly an abstraction of the set of reachable states of a program. So we will give a
characterization of Owicki-Gries core as a post-fixpoint ofa sound abstraction of the
successor mappostof an RPL program. The map mimics the application of the Owicki-
Gries-core proof conditions.

For a program annotation(I ,M), we define thesound Owicki-Gries-core abstract
successor map post#

OG(I ,M) = (I ′,M′), which applies the sequential consistency once:
– I ′r is the smallest superset ofIr that contains all valuationsw of proof variables ofr

such that there is a transitionv→t v′ (for some threadt) that exits a critical section
for r, v satisfiesMv(pct),t andw equals the projection ofv′ on the proof variables of
r;

– M′
p′,t is the smallest superset ofMp′,t that contains all valuationsw of local data

variables of threadt and proof variables of resources held at locationp′ such that
there is a transitionv→tv′ such thatv satisfiesMv(pct),t , v satisfiesIr if the transition
starts a critical section forr, v′(pct)=p′, andw equals the projection ofv′ to local
data variables oft and to the proof variables of resources held atp′.

This operator is, as the name says, sound with respect to the successor map.
Let (I init ,Minit) be the annotation describing the initial states only:

– I init
r is the set of all valuations of proof variables ofr in the initial states;

– Minit
p,t is the set of valuations of local data variables of threadt in the initial states.

TheOwicki-Gries-core abstract transformer F#
OG(I ,M) is constructed as the pointwise

union of(I init ,Minit) andpost#OG(I ,M). The set of post-fixpoints ofF#
OG coincides with

the set of Owicki-Gries-core proofs; thus the following theorem holds.

Theorem 5 (Equivalence).The least fixpoint of F#OG is the smallest Owicki-Gries-core
proof.

4.2 Characteristic closures for Owicki-Gries core?

An elegant way of describing the precision of an approximation of a semantics given in
fixpoint form is through the use ofclosures. A closureρ is a monotone operator that is
idempotent (ρ(ρ(x)) = ρ(x)) and extensive (ρ(x)≥ x). Given a concrete domain(D,≤)
and a monotone functionF : D→D, the closureρ onD defines an approximation of the
concrete semanticslfp(F) in the sense thatlfp(F)≤ lfp(ρ ◦F). Such a description shows
the actual loss of information, as the fixpoints of the closure are exactly the abstract
elements that describe the approximation, and applying theclosure to one concrete
element exactly shows what information is lost for that element.

8

In our case, we have a concrete domain of sets of consistent states ordered by in-
clusion, and the semantics is given as the least fixpoint of the successor mappostover
the initial states. Then we exhibited an approximationpost#OG of that successor map. In
order to describe its precision, it would be nice to find a closureρ such thatpost#OG is
exactly the best transformer forρ ◦post. Finding one closure for each program is not
difficult (just take the closure with two fixpoints, one beingthe strongest Owicki-Gries-
core-provable property and the other the set of all consistent states), but this would not
be very informative. Instead, because the concrete domain is entirely fixed by the syn-
tactic structure of the program, we would like to find aρ that would be fixed for a given
syntactic structure. Alas, the next section shows that it isnot possible in general.

5 Absence of equivalent characterizations by closures

The main result of this section is unfortunately negative: assuming we start from a
reachable state semantics, there is no way to describe the strongest Owicki-Gries-core
proof for a given syntactic structure using closures.

Theorem 6 (No Equivalence).There is a syntactic structure such that for consistent
states defined through the syntactic structure and the concrete domain being the pow-
erset of consistent states, there is no closureρ on the powerset of consistent states such
that for any multithreaded program having the given syntactic structure and for any
property S of consistent states we have

S is Owicki-Gries-core provable ⇔ lfp(λx.ρ(init ∪post(x)))⊆ S.

One such syntactic structure is given by program Upper from Example 2.
In fact, we can prove an even stronger property, as the proof requires only thatρ

is monotone. Even more, the same proof holds even if we restrict the validity of the
equivalence to a given transition relation:

Theorem 7. Under the same syntactic structure as in Thm. 6, there is no family of
monotone mapsΞ indexed by transition relations, such thatΞ preserves least fixpoints
(∀ transition relationsτ1,τ2 : lfp(τ1) = lfp(τ2) ⇒ lfp(Ξτ1) = lfp(Ξτ2)), and for any
property S of consistent states we have

S is Owicki-Gries-core provable ⇔ lfp(Ξλ x.init∪post(x))⊆ S.

Theorem 6 shows that if we start by approximating traces by states and wish to de-
scribe the Owicki-Gries-core proof system using closures,we can only hope for bounds
framing the proof system. We will provide such bounds in the next two sections. If we
are willing to work with closures on sets of traces instead ofsets of states, it might be
possible to find some equivalence. But such an equivalence cannot be obtained directly
by collecting the states of traces obtained from abstract interpretation with a closure.
Let α̃ be the abstraction which associates to a set of traces the setof consistent states
appearing in the traces.

9

Theorem 8. Under the same syntactic structure as in Thm. 6, there is no monotone
operatorρ̃ on the powerset of traces of consistent states such that for any multithreaded
program having the given syntactic structure, set of initial traces ĩnit and the trace
extension operator̃post and for any property S of consistent states we have

S is Owicki-Gries-core provable ⇔ α̃(lfp(λx. ρ̃(ĩnit ∪ p̃ost(x)))) ⊆ S.

6 Upper bound on precision

Now we will show a closure operator such that the best abstract interpretation of the
program with this approximation allows proving a larger setof properties than those
provable by the Owicki-Gries core. The approximation will depend only on the syntac-
tic structure, but not on the exact transition relation of a program.

Definition 9 (Owicki-Gries-core annotation closure).For a given syntactic structure,
let ρ(Q) be the approximation defined as the set of consistent states vsuch that:

– if a resource r is available in v, then there is some other state in Q
• that coincides with v on the proof variables of r and
• in which r is available;

– and for any thread t there is a state in Q that coincides with v on local variables
(including the program counter) of t and on the proof variables of the resources
held by t in v.

Thenρ is a closure on the powerset of consistent states. We call itthe Owicki-Gries-
core annotation closure.

The reason why we call this closure an Owicki-Gries-core annotation closure is
because it is the closure corresponding to the Galois connection defined byγOG (which
gives the set of consistent states denoted by a program annotation).

Now fix an arbitrary program and letρ be defined by its syntactic structure.

Theorem 10 (Upper bound).Abstract interpretation withρ is at least as strong as the
Owicki-Gries core. Formally:

lfp(λx.ρ(init ∪post(x))) ⊆ the strongest Owicki-Gries-core-provable property.

From the high-level view, the best transformer using this closure is capable of taking
into accountglobalcomputation instead oflocal successor computation in the Owicki-
Gries core. It is as if before checking sequential consistency we take into account anno-
tations not only of one thread, but of all the threads, gaining precision.

Furthermore, the Owicki-Gries-core annotation closure shows where the informa-
tion is always lost. For instance, if a syntactic structure says that locals are disjoint
among themselves and from all the proof variables of the resources, and if two states
outside of critical sections are given, then any combination of the locals and resource
variables of those states is in the approximation of those two states.

10

Example 11 (Readers-Writers).For the program Readers-Writers from Example 1
the least fixpoint oflfp(λx.ρ(init∪post(x))) coincides with the strongest Owicki-Gries-
core-provable property. This property is coarser than the set of reachable states. For ex-
ample, in one executionwriter1 can reachwrite, in another executionwriter2 can
reachwrite, and the initial state satisfiesww = ar = aw= 0, soρ produces a com-
bined state where both writers are atwrite, other threads are at their initial locations
and all data variables have value 0. Thus, no Owicki-Gries-core proof can restore the
dependency between the threads and prove mutual exclusion between the writers.

Example 12 (Upper). For the program Upper from Example 2 abstract interpreta-
tion with ρ produces the set of reachable states, which is properly included into every
Owicki-Gries-core-provable property. The reason for thisdiscrepancy is that locals of
one thread and resources held by a different thread overlap.Such an overlap constrains
the output ofρ , but not an Owicki-Gries-core proof. Considering such overlaps actually
improves precision!

Example 13 (Simple).For the programs of the class Simple abstract interpretation
with ρ produces the same result as the smallest Owicki-Gries-coreproof. The reason,
as we will see, is that abstract interpretation with the lower bound will produce the same
result as abstract interpretation with the upper bound.

Example 14 (SepThreads).For the programs of the class SepThreads of Example 4
abstract interpretation withρ produces the same result as the smallest Owicki-Gries-
core proof. The reason is that the smallest Owicki-Gries-core proof already denotes the
set of reachable states.

7 Lower bound on precision

Now we will show a nontrivial Cartesian-like closure such that abstract interpretation
with this closure can prove only properties weaker than or equal to the strongest Owicki-
Gries-core-provable property. In fact, we will even show two such closures. One closure
(namelyρ̄) will describe a better lower bound, while the other one (namely ρc) is easier
to comprehend.

The definitions of both bounds require some preparation.
For a family of setsX = {X1, . . . ,Xn}, let Part(X), calledpartition of X , be the

set of all nonemptyY1∩ . . .∩Yn where eachYi is eitherXi or its complement(
⋃

X)\Xi

(1≤ i ≤ n). Elements of a partition are calledblocks.
Let us fix an arbitrary syntactic structure. Our lower boundswill depend on the

syntactic structure but be the same for all the programs thatobey this syntactic structure.
Let RL be the family of sets containing all resourcesr and all sets of localsLocalt for
all threadst as elements. Let̃RL be the partition ofRL.

For example, for the syntactic structure of Upper the setRL has exactly four ele-
ments: the locals of the first thread{l ,x,pc1}, the locals of the second thread{y,z,pc2},
the resourcer = {u,z}, and the resourcer ′ = {x,y}. The corresponding partition has
exactly six blocks:{u}, {x}, {y}, {z}, {l ,pc1}, {pc2}.

11

7.1 Simple cartesian closure

The simpler approximation is defined as follows.

Definition 15 (Cartesian closure).Given a set of consistent states Q, theCartesian
approximationρc returns all the consistent states from the product of projections of Q
onto the blocks iñRL.
In other words,ρc(Q) contains exactly those consistent states v such that for each block
there is a statẽv in Q that agrees with v on the variables of the block.

We call this approximationCartesian, since it is similar to the closure that can be de-
rived from the Cartesian pair of adjoint maps from [10], p. 172. As the name says,ρc is
a closure.

This approximation breaks all the dependencies between theblocks and retains all
dependencies inside a block.

For example, for the syntactic structure of the program Upper the variablesl and
pc1 belong to the same block. Thus, if in a set of states every state at some fixed control
flow location satisfiesl = 0, each state from the Cartesian approximation of this set will
also satisfyl = 0 for that control flow location.

Abstract interpretation withρc generates a property which is always weaker than or
equal to the strongest Owicki-Gries-core-provable property.

7.2 More precise lower bound closure

The following definition strengthensρc in two ways. Firstly, we impose restrictions on
ṽ from the definition ofρc. Such restrictions will depend on the block. Secondly, we
look at the prophecy variables: those are variables which are never written and which
don’t belong to a resource. Prophecy variables form a separate block; now we restore all
the dependencies between this block and those locals of any thread that are not resource
variables.

Definition 16 (Lower Bound closure).Given a set of consistent states Q, its approx-
imation ρ̄(Q) contains exactly those consistent states v such that both ofthe following
conditions are satisfied.

– For every block iñRL that is contained in a resource,
• if the resource is available in v, then there is someṽ∈ Q

∗ in which the resource is also available
∗ and which coincides with v on the block;

• if some thread holds the resource in v, then there is someṽ∈ Q which coincides
with v on all the variables
∗ that are local to this thread but do not belong to any resource, or
∗ that belong to the block.

– For every thread there is a state in Q that coincides with v on each variable
• that is a local variable of the thread but
• does not belong to any resource.

12

As the name says,̄ρ is a closure. It is at least as precise asρc. Both closures do
not depend on the exact transition relation of a program. Theclosureρ̄ induces the
tightest lower bound we could prove. It shows the dependencies that are always retained,
creating a basis for the construction of future refinement algorithms (possibly following
[20]).

Now fix an arbitrary RPL program that has the assumed syntactic structure.
The proof of the lower bound relies on several claims about the strongest property

provable by abstract interpretation with̄ρ . The following claim is the most important
one.

Lemma 17. Let Q be the strongest property provable by abstract interpretation withρ̄.
Consider a transition of a thread t from a consistent state v to a consistent state v′, let
the transition start a critical section. Let̃v∈ Q such that v agrees with̃v on the locals
of t and on the variables of the resources held by t before the transition. Letv̂∈ Q such
that v agrees witĥv on the variables of the resource being acquired. Then thereis a state
in Q that agrees with v′ on the locals of thread t and on the variables of the resources
held by the thread after the transition.

The lower bound theorem follows from the lemma.

Theorem 18 (Lower bound).The core of Owicki-Gries can prove at least as many
properties as abstract interpretation with̄ρ or ρc. Formally:
the strongest Owicki-Gries-core–provable property⊆ lfp(λx. ρ̄(init ∪post(x)))
⊆ lfp(λx.ρc(init ∪post(x))) .

Example 19 (Readers-Writers).For the program Readers-Writers from Example 1
abstract interpretation withρc produces the set of all consistent states where readers are
at . . .read . . ., writers are at. . .write . . ., andww, ar, aware nonnegative. The Owicki-
Gries core and abstract interpretation withρ̄ can prove stronger properties, e.g., that at
locationaskwriteC the value ofww is positive. Intuitively, when a resource is busy,
Cartesian abstraction always breaks the dependency between the resource variables and
the control flow, whileρ̄ and the Owicki-Gries core sometimes retain the dependency.

Example 20 (Upper).For the program Upper from Example 2 abstract interpretation
using eitherρc or ρ̄ produces the same result: the set of all states such that the first thread
is at any location betweenA andE, the second thread is atO and all data variables take
arbitrary values from{0,1}. The Owicki-Gries core can prove stronger properties; for
instance, it can show that at locationE the value ofx is zero. Intuitively, the dependency
between resource variables and control flow is always brokenin Cartesian abstraction
but is sometimes retained in the Owicki-Gries core.

Example 21 (Simple).For the programs from the class Simple from Example 3 the
approximationsρ̄ and ρ are so close to each other that abstract interpretations with
both produce the same property. Since they define the lower and upper bounds on the
precision of the Owicki-Gries core, the Owicki-Gries core can prove exactly the same
properties as those provable by abstract interpretation with any of the two approxima-
tions. If a program from Simple does not have the empty resource, thenρ̄ andρ coincide
exactly, approximating a set of statesQ by the set of all consistent statesv such that both
of the following conditions hold.

13

– If there is a resource and it is available inv, there is some state inQ that coincides
with v on the resource and in which the resource is available.

– For each thread there is a state inQ which coincides withv on the variables of the
thread and, if the resource is present and is held, on the variables of the resource.

Example 22 (SepThreads).For the programs from the class SepThreads from Ex-
ample 4 the approximations̄ρ andρ coincide. Since they define the lower and upper
bounds on the precision of the Owicki-Gries core, the Owicki-Gries core can prove ex-
actly the same properties as those provable by abstract interpretation with any of the
two approximations. Due to the absence of any thread interactions and independence
of initial states of the threads, the mentioned methods can prove the strongest inductive
property, namely the set of states reachable from the initial ones. Informally spoken, all
dependencies between the locals of each thread are retained.

8 Related work

Historically, conditional critical regions were introduced in [16]. The thesis [25] of Ow-
icki and her paper with Gries [26] describe the original proof method for RPL. Modular
reasoning about RPL has not been characterized in terms of abstract interpretation via
closures [8] so far.

For general multithreaded programs (i.e. without separation of data into resources),
Owicki-Gries-style reasoning without auxiliary variables is equivalent to multithreaded
Cartesian abstraction. The result was first mentioned without proof in [11], and the
proof appears in [20].

Clarke [6] has considered a subset of integer RPL programs with only one resource,
where, roughly, only additions of constants inside the critical sections are allowed, and
the property to be checked is either mutual exclusion of PV-semaphores or deadlock
freedom. With a predefined choice of integer auxiliary variables, the least fixpoint of
a particular functional is a resource invariant that precisely tells whether the property
holds or not. Two overapproximations are given: a fixed-formula resource invariant
and an invariant computed by a polyhedral analysis with widening. Our work, on the
contrary, does not impose any restrictions on the program form. Our results hold for
even more programs than the RPL ones, e.g., where the critical sections are not well-
nested.

The work of Owicki on RPL is the basis of a variety of modular programming
languages equipped with proof methods of different degreesof completeness and au-
tomation.

Concurrent separation logic (CSL) [24] equips RPL with separation logic as a for-
mula language. CSL is also incomplete without the rule of auxiliary variables, so the
question of precision arises. Removing secondly importantfeatures of CSL for the sake
of clarity (as in [5]) and considering variables in the heap makes our lower bound also
apply to such CSL versions.

Chalice [19] is a language for verification of object-oriented concurrent programs
with heap, equipped with an RPL-like proof system. Due to thepowerful permission
system, the proof system is in general stronger than that of Owicki, so our lower bound

14

on precision carries over to Chalice for programs that can bedirectly represented both
in RPL and in Chalice.

VCC [23] is a verifier for multithreaded C. When accessing structures in a lock-
based manner, VCC requires the user to provide invariants ofC structs. On ob-
taining ownership of astructure, the resource invariant is assumed; on relinquish-
ing ownership, the resource invariant has to be reestablished. Ghost contracts of lock-
manipulating functions control the ownership transfer. Our lower bound applies to VCC
as well.

9 Discussion

9.1 Challenges

Discussing the precision loss reveals several open problems.
Example 20 shows a gap between the accuracy of the Owicki-Gries core and the

lower bound. Can the lower bound closure be strengthened?
The main inequivalence result assumes that the concrete domain is the powerset of

consistent states. For the powerset of traces, we only know inequivalence for a subclass
of abstract interpretations. Is there an exact characterization of the Owicki-Gries core
by abstract interpretation on the powerset of traces?

We have shown what variable dependencies does the Owicki-Gries core break. Can
these dependencies be restored on demand? Is there an automatic counterexample-
guided abstraction refinement of the Owicki-Gries core, perhaps based on auxiliary
variables [7], unions of Cartesian products [20], or abstract threads [18]?

Can one characterize the precision loss of the Owicki-Griescore by completeness
notions of [15]?

Can one formalize CSL in abstract interpretation in a way that would reveal the
involved approximation?

9.2 Conclusion

We have examined a modular method (Owicki-Gries core) for proving safety properties
of a widely-used class of multithreaded programs.

The considered class contains structured programs in whichshared data are par-
titioned into resources and are accessed only in critical sections that ensure mutually
exclusive access to resources. The method provides a clean basis for other more so-
phisticated proof methods like Concurrent Separation Logic, Chalice, or VCC. The
Owicki-Gries core is polynomial in the number of threads, but without manually adding
auxiliary variables it cannot prove many properties of concurrent programs.

The Owicki-Gries core is, intuitively, expected to succeedfor properties whose de-
pendence on thread coupling is low, and is expected to fail ifcomplicated thread inter-
actions have to be analyzed. We have made this notion precise, providing a characteriza-
tion of the set of Owicki-Gries-core-provable properties.We have demonstrated an ab-
stract transformer corresponding to the Owicki-Gries core: the least fixpoint of the ab-
stract transformer denotes exactly the strongest Owicki-Gries-core-provable property.

15

To quantify the loss of precision inherent to modularity, wehave provided a superset
and a subset of Owicki-Gries-core-provableproperties, described by abstract interpreta-
tions with closure operators that depend on the syntactic structure of the program only.
These bounds coincide for a class of simple programs. We havealso shown a principal
inability to provide an exact characterization of the set ofproperties in terms of closures
that depend only on the syntactic structure.

10 Acknowledgements

We thank Byron Cook and Microsoft Research Cambridge for support in the initial
stages of the work. The work was also partially supported by the Verisoft project of
the German science foundation DFG. We thank Josh Berdine andViktor Vafeiadis for
helpful comments and discussions.

References

1. G. Barthe and M. V. Hermenegildo, editors.Verification, Model Checking, and Abstract
Interpretation, 11th International Conference, VMCAI 2010, Madrid, Spain, January 17-19,
2010. Proceedings, volume 5944 ofLNCS. Springer, 2010.

2. G. Birkhoff. Lattice Theory. American Mathematical Society, second edition, 1948.
3. G. Birkhoff. Lattice Theory, volume 25. American Mathematical Society, third edition,

1995. Eighth printing, ISBN 0-8218-1025-1.
4. S. N. Burris and H. P. Sankappanavar.A Course in Universal Algebra. Springer-Verlag, Mil-

lenium edition, 1981. http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/
univ-algebra.pdf.

5. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
LICS, pages 366–378. IEEE Computer Society, 2007.

6. E. M. Clarke. Synthesis of resource invariants for concurrent programs.ACM Trans. Pro-
gram. Lang. Syst., 2(3):338–358, 1980.

7. A. Cohen and K. S. Namjoshi. Local proofs for global safetyproperties. In W. Damm and
H. Hermanns, editors,CAV, volume 4590 ofLNCS 4590, pages 55–67. Springer, 2007.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InPOPL,
pages 269–282, 1979.

10. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program anal-
ysis by abstract interpretation. InFPCA, pages 170–181, 1995.

11. R. Cousot.Fondements des méthodes de preuve d’invariance et de fatalité de programmes
parallèles. PhD thesis, Institut national polytechnique de Lorraine,1985.

12. M. Dodds, X. Feng, M. J. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In
G. Castagna, editor,ESOP, volume 5502 ofLecture Notes in Computer Science, pages 363–
377. Springer, 2009.

13. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. In R. D. Nicola, editor,ESOP, volume 4421 ofLNCS,
pages 173–188. Springer, 2007.

14. C. Flanagan and S. Qadeer. Thread-modular model checking. In T. Ball and S. K. Rajamani,
editors,SPIN, volume 2648 ofLecture Notes in Computer Science, pages 213–224. Springer,
2003.

16

http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra.pdf
http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra.pdf

15. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete.Jour-
nal of the ACM, 47(2):361–416, 2000.

16. C. A. R. Hoare. Towards a theory of parallel programming.In C. A. R. Hoare and R. H.
Perrott, editors,Operating System Techniques, pages 61–71. Academic Press, 1972.

17. C. B. Jones. Tentative steps toward a development methodfor interfering programs.ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

18. S. K. Lahiri, A. Malkis, and S. Qadeer. Abstract threads.In Barthe and Hermenegildo [1],
pages 231–246.

19. K. R. M. Leino. Verifying concurrent programs with Chalice. In Barthe and Hermenegildo
[1], page 2.

20. A. Malkis. Cartesian Abstraction and Verification of Multithreaded Programs. PhD thesis,
Albert-Ludwigs-Universität Freiburg, Feb. 2010.

21. A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification and Cartesian
abstraction. TV’06, Aug. 2006.

22. A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is Cartesian ab-
stract interpretation. In K. Barkaoui, A. Cavalcanti, and A. Cerone, editors,ICTAC, volume
4281 ofLecture Notes in Computer Science, pages 183–197. Springer, 2006.

23. M. Moskal, W. Schulte, E. Cohen, M. A. Hillebrand, and S. Tobies. Verifying C programs:
A VCC tutorial, 2011. MSR Redmond, EMIC Aachen.

24. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007.

25. S. S. Owicki. Axiomatic Proof Techniques For Parallel Programs. PhD thesis, Cornell
University, Department of Computer Science, TR 75-251, July 1975.

26. S. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

27. M. J. Parkinson and A. J. Summers. The relationship between separation logic and implicit
dynamic frames. In G. Barthe, editor,ESOP, volume 6602 ofLecture Notes in Computer
Science, pages 439–458. Springer, 2011.

28. A. Tarski. A lattice theoretical fixpoint theorem and itsapplications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

29. V. Vafeiadis. Modular fine-grained concurrency verification. Technical Report UCAM-CL-
TR-726, University of Cambridge, Computer Laboratory, July 2008.

30. V. Vafeiadis. RGSep action inference. In Barthe and Hermenegildo [1], pages 345–361.
31. M. Ward. The closure operators of a lattice.The Annals of Mathematics, 43(2):191–196,

Apr. 1942.

A RPL

We formalize RPL (restricted programming language) of [25]as a transition system as
follows.

A syntactic structureis a tuple

(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar, rsc)

where all the following conditions hold.
– Tid, PL, Val are any sets withPL⊆ Val.

17

– Resis a set1 of disjoint2 sets.
– For eacht ∈ Tid we havepct ∈ Localt \

⋃
Res.

– For all differentt, t̃ in Tid we havepct 6∈ Local̃t .
– ProofVar: Res→P(DataVar) is extensive, whereP is the powerset symbol,PCVar=
{pct | t ∈ Tid} andDataVar=

⋃
Res∪

⋃
t∈Tid Localt \PCVar.

– rsc : PL→P(Res). Notice thatrsc is independent3 of Tid.
The elements ofProofVar(r) are calledproof variables4 of a resourcer (r ∈Res). Given
a syntactic structure as above, letVar=

⋃
Res∪

⋃
t∈Tid Localt . A consistent stateis an

element of

ConsState= {v∈ Var→ Val | ∀ t ∈ Tid : v(pct) ∈ PL and

∀ t̃ ∈ Tid\{t} : rsc(v(pct))∩ rsc(v(pct̃)) = /0} .

A resourcer is heldby t ∈ Tid in v∈ ConsStateif r ∈ rsc(v(pct)). A resource isbusyin
v∈ ConsStateif r ∈

⋃
t∈Tid rsc(v(pct)), otherwiser is availablein v.

Therestrictionof a mapw to a setV is w|V = {(a,b) ∈ w | a∈V}. Two mapsv, w
coincideon a setV, writtenv∼V w, iff v|V = w|V .

An RPL transition system obeying a syntactic structureas above is a tuple

(init,(→t)t∈Tid)

such thatinit ⊆ConsState, for all t ∈Tid we have→t⊆ConsState2 ∧ ∀v∈ init : rsc(v(pct))=
/0, and all the conditions below hold:

– for all x∈ DataVarandt ∈ Tid we have

(∀ t̃ ∈ Tid\{t}, (v,v′) ∈→t̃ : v(x) = v′(x))⇒ x∈ Localt ;

– for all r ∈ Reswe have

ProofVar(r) =

{
x∈DataVar

∣∣∣∣∀t∈Tid,(v,v′)∈→t :

(
v(x) = v′(x) or
r ∈ rsc(v(pct))∩rsc(v′(pct))

)}
;

1 In her thesis, Owicki did not explicitly forbid resources that do not protect any variables,
though she mentions no examples with such empty resources. We explicitly allow them. How-
ever, we introduce a restriction: in our formulation, the empty resource, if it exists, should be
unique. We don’t consider this restriction important: we have never come across meaningful
academic or real-life programs with empty resources.

2 Following Owicki, we treat the general case, allowing nonempty intersection between any
element ofResand anyLocalt (t ∈ Tid). If we would enforce mutual disjointness between all
r ∈ Resand allLocalt (t ∈ Tid), we would get a tighter lower bound, but just because the proof
system would get weaker.

3 This way of modeling turned out to be simpler than, say, making control flow locations of
different threads disjoint, or makingrsc dependent on the thread.

4 Owicki describedProof−var as a proof-related notion. Since proof variables of a resource
capture a syntactic property of the transition relation of aprogram, we view proof variables
as a syntactic notion, despite their name. A lightweight presentation [26] omits the notion of
proof variables, obtaining a simpler but significantly weaker proof system.

18

– for all t ∈ Tid, (v,v′)∈→t , R= rsc(v(pct)), R′ = rsc(v′(pct)), R̄= Res\(R∪R′) all
the following conditions hold:
(1) v∼⋃

t̃∈Tid\{t}Local̃t v′;
(2) v∼⋃R̄ v′

(3) R 6= R′ ⇒ v∼Var\{pct} v′;
(4) for allw∈ConsState, if v∼(Localt\

⋃
R̄)∪

⋃
R′ wand∀ r ∈R′\R: r 6∈

⋃
rsc(w(PCVar))),

then there is somew′ such thatw→t w′ andv′ ∼(Localt\
⋃

R̄)∪
⋃

R′ w′;
(5) |(R\R′)∪ (R′ \R)| ≤ 1.

Remark 23. Notice that in (4),w′ additionally satisfiesw′ ∈ConsStateand(v∼Localt∩
⋃

R̄
w⇒ v′ ∼Localt∪

⋃
R′ w′).

Proof. Follows from→t⊆ ConsState2 and v′ [by (2)] ∼Localt∩
⋃

R̄ v [by assumption]
∼Localt∩

⋃
R̄ w [by (2)] ∼Localt∩

⋃
R̄ w′.

Fix an RPL transition system as above. A set of states is mapped to a set of their suc-
cessors by the function

post: P(ConsState)→P(ConsState) , S 7→ {v′ | ∃ v∈ S, t ∈ Tid : v→t v′} .

The goal of verification is, given a set of statessafe⊆ ConsState, to prove that

lfp(λS. init ∪post(S))⊆ safe.

B Owicki-Gries for RPL

Fix a syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar, rsc) for the whole
section B.

B.1 Definition of Owicki-Gries core

For eacht ∈ Tid let LocalDataVart = Localt \ {pct} be the set oflocal data variables.
A program annotationis an element of

PA= (∏
r∈Res

P(ProofVar(r)→ Val)) ×∏
p∈PL,
t∈Tid

P((LocalDataVart ∪
⋃

ProofVar(rsc(p)))→ Val).

A program annotationP denotesa set of states given by

γOG(P) = {v∈ ConsState| ∀ r ∈ Res\
⋃

rsc(v(PCVar)) : v|ProofVar(r) ∈ Ir

and∀ t ∈ Tid : v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Mv(pct),t}.

For an RPL transition systemT = (init,(→t)t∈Tid) that obeys the given syntactic struc-
ture, anOwicki-Gries-core proofof T is a program annotationP:= ((Ir)r∈Res,(Mp,t)p∈PL,t∈Tid)
such that the following holds:

19

– sequential consistency: for allt ∈ Tid, (v,v′) ∈→t , p = v(pct), p′ = v′(pct), R=
rsc(p), R′ = rsc(p′), if

v|LocalDataVart∪
⋃

ProofVar(R) ∈ Mp,t ∧ ∀ r ∈ R′ \R : v|ProofVar(r) ∈ Ir ,

then

v′|LocalDataVart∪
⋃

ProofVar(R′) ∈ Mp′,t ∧ ∀ r ∈ R\R′ : v′|ProofVar(r) ∈ Ir ;

– initial condition:init ⊆ γOG(P).
An Owicki-Gries-core proofP provesa propertysafe⊆ ConsStateif γOG(P)⊆ safe.

B.2 Lattice of Owicki-Gries-core proofs

The set of program annotations is ordered by pointwise inclusion:

((Ir)r∈Res,(Mp,t)p∈PL,t∈Tid)⊑ ((Îr)r∈Res,(M̂p,t)p∈PL,t∈Tid)

iff ∀ r ∈ Res: Ir ⊆ Îr and∀ p∈ PL, t ∈ Tid : Mp,t ⊆ M̂p,t .
Then the least upper bound is the pointwise union

⊔
, the greatest lower bound is a

pointwise intersection
d

, and the lattice is complete.
Consider the lattice

D =P(ConsState) ,

ordered by inclusion. This lattice is certainly complete.

Proposition 24. γOG : PA→ D is a complete meet-morphism.

Proof. Let A be a set of program annotations and((Jr)r∈Res,(Np,t)p∈PL,t∈Tid) =
d

A. We
have to show thatγOG(

d
A) and

⋂
γOG(A) coincide.

“⊆”: Let v∈ γOG(
d

A). Then∀ r ∈ Res\
⋃

rsc(v(PCVar)) : v|ProofVar(r) ∈ Jr and∀ t ∈
Tid : v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Nv(pct),t . The definition of
d

implies that
for all B = ((Ir)r∈Res,(Mp,t)p∈PL,t∈Tid) ∈ A we have∀ r ∈ Res\

⋃
rsc(v(PCVar)) :

v|ProofVar(r) ∈ Ir and∀ t ∈ Tid : v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Mv(pct),t , i.e.,v ∈

γOG(B). SinceB∈ A was arbitrary, we havev∈
⋂

γOG(A).
“⊇”: Let v ∈ γOG(B) for all B ∈ A. Let r ∈ Res\

⋃
rsc(v(PCVar)). Then for eachB

= (I ,M) ∈ A the definition ofγOG givesv|ProofVar(r) ∈ Ir . Thusv|ProofVar(r) ∈ Jr . So
∀ r ∈Res\

⋃
rsc(v(PCVar)) : v|ProofVar(r) ∈ Jr . Now lett ∈Tid. For eachB=(I ,M)∈

A the definition ofγOG implies thatv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct))) ∈ Mv(pct),t ; so
Nv(pct),t ∋ v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct))). Thus∀ t∈Tid : v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Nv(pct),t . We have shownv∈ γOG(
d

A).

For the remainder of the subsection B.2, fix an RPL transitionsystemT = (init,(→t

)t∈Tid) that obeys the given syntactic structure. LetO be the set of Owicki-Gries-core
proofs ofT. FromPA it inherits the componentwise inclusion as the partial order, which
we also denote by⊑.

20

Theorem 25. (O,⊑) is a complete lattice with infimum being componentwise intersec-
tion

d
.

Proof. Let A be a set of Owicki-Gries-core proofs. First we show that
d

A in PA is the
infimum ofA in O.

– CaseA= /0. LetB=
((ProofVar(r)→Val)r∈Res,((LocalDataVart ∪

⋃
ProofVar(rsc(p)))→Val)p∈PL,

t∈Tid
). Cer-

tainly B is sequentially consistent. SinceγOG(B) = ConsState, B satisfies the initial
condition. ThusB∈ O. Notice thatB is a lower bound of /0 and is greater than or
equal to any other element ofO. ThusB= infO /0.

– CaseA 6= /0. LetB = ((Ir)r∈Res,(Mp,t)p∈PL,
t∈Tid

) =
d

A. First we will show thatB is an

Owicki-Gries-core proof.
Sequential consistency. Lett ∈Tid, (v,v′)∈→t , p= v(pct), p′ = v′(pct), R= rsc(p),

R′ = rsc(p′), v|LocalDataVart∪
⋃

ProofVar(R) ∈ Mp,t and∀ r ∈ R′ \R : v|ProofVar(r) ∈ Ir .
Then for all(J,N) ∈ A we havev|LocalDataVart∪

⋃
ProofVar(R) ∈ Np,t and∀ r ∈ R′ \R

we havev|ProofVar(r) ∈ Jr . SinceA contains Owicki-Gries-core proofs only, we
getv′|LocalDataVart∪

⋃
ProofVar(R′) ∈Np′,t and∀ r ∈R\R′ : v′|ProofVar(r) ∈ Jr ((J,N)∈

A). Thusv′|LocalDataVart∪
⋃

ProofVar(R′) ∈ Mp′,t and∀ r ∈ R\R′ : v′|ProofVar(r) ∈ Ir .
Initial condition. For eachP = ((Jr)r∈Res,(Np,t)p∈PL,

t∈Tid
) ∈ A we haveinit ⊆ γOG(P),

so for anyv∈ init we have∀ r ∈ Res\
⋃

rsc(v(PCVar)) : v|ProofVar(r) ∈ Jr and
∀ t ∈ Tid : v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Nv(pct),t . Taking componentwise
intersection over allP, for anyv ∈ init we have∀ r ∈ Res\

⋃
rsc(v(PCVar)) :

v|ProofVar(r) ∈ Ir and∀ t ∈ Tid : v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈Mv(pct),t . Thus

for all v∈ init we havev∈ γOG(B), soinit ⊆ γOG(B).
We have shown thatB∈O. By definitionB is less than or equal to any element of
A. Assume some other lower boundC∈O for A. ThenC⊑ P for eachP∈ A, soC
is less than or equal to the pointwise intersection overA, i.e.,C⊑ B. ThusB is the
greatest lower bound ofA in O.

We have shown that the greatest lower bound of any set of elements of the poset(O,⊑)
exist. By Thm. 2 in Chap. 4 of [2] (alternatively Thm. 4.2 in [4]), O is a complete lattice.

Notice that the infimum ofO is the tuple of empty sets iffinit is empty; thusO is
a complete sublattice ofPAonly if init is empty. Usually verified programs have initial
states, thus usuallyO is not a complete sublattice ofPA.

In any case the least Owicki-Gries-core proof exists.

Corollary 26. The strongest Owicki-Gries-core provable property existsand is denoted
by the smallest Owicki-Gries-core proof.

Proof. The set of Owicki-Gries-core-provable properties isγOG(O). The infimum of

this set isS
de f
=
⋂

γOG(O) = γOG(
d
O). SinceO is a complete lattice with pointwise

intersection as infimum,
d
O ∈ O. So S is itself Owicki-Gries-core provable. Notice

thatS is stronger than or equal to any other Owicki-Gries-core-provable property.

21

Proposition 27. Any Owicki-Gries-core proof denotes an inductive invariant:

∀ P∈O : init ∪post(γOG(P))⊆ γOG(P) .

Proof. Let (I ,M) ∈O. We have to prove the following two claims.
“post◦ γOG(I ,M) ⊆ γOG(I ,M)”: Let v′ ∈ post◦ γOG(I ,M). Then there isv∈ γOG(I ,M)

and t∈Tid such thatv→t v′. Notice that by (1) we havev(pĉt) = v′(pĉt) for t̂ ∈
Tid \ {t}. Let R= rsc(v(pct)) and R′ = rsc(v′(pct)). From v∈ γOG(I,M) we get
v|LocalDataVart∪

⋃
ProofVar(R) ∈ Mv(pct),t . Now let r ∈ R′ \R. From v′ ∈ ConsStateand

r ∈ rsc(v′(pct)) we getr 6∈
⋃

t̂∈Tid\{t} rsc(v′(pct̂)) = [sincev(pct̂) = v′(pĉt) for t̂ ∈
Tid \ {t}]

⋃
t̂∈Tid\{t} rsc(v(pct̂)). Sincer 6∈ R= rsc(v(pct)), we conclude thatr 6∈⋃

rsc(v(PCVar)). Sincev∈ γOG(I ,M), we obtainv|ProofVar(r) ∈ Ir . Thus∀ r ∈R′ \R:
v|ProofVar(r) ∈ Ir . By sequential consistency,v′|LocalDataVart∪

⋃
ProofVar(R′) ∈ Mv′(pct),t

and∀ r ∈ R\R′ : v′|ProofVar(r) ∈ Ir .
Now we will show thatv′ is in γOG(I ,M).
• Let r ∈Res\

⋃
rsc(v′(PCVar)). Fromt∈Tid, v→t v′ and the definition ofProofVar

we obtain that for allx ∈ ProofVar(r) we havev(x) = v′(x). So v|ProofVar(r)
= v′|ProofVar(r). From (1) we know for̃t ∈ Tid\{t} that v(pc̃t) = v′(pct̃), thus
rsc(v(pc̃t)) = rsc(v′(pc̃t)) 6∋ r. Consider two cases.
Caser ∈ rsc(v(pct)). Thenr ∈ R\R′. By the above,v′|ProofVar(r) ∈ Ir .
Caser 6∈ rsc(v(pct)). Thenr 6∈

⋃
rsc(v(PCVar)). Thusv|ProofVar(r) ∈ Ir . There-

forev′|ProofVar(r) ∈ Ir .
So∀ r ∈ Res\

⋃
rsc(v′(PCVar)) : v′|ProofVar(r) ∈ Ir .

• Let t̃ ∈ Tid. Consider two cases.
Casẽt = t. By the above,v′|LocalDataVart∪

⋃
ProofVar(R′) ∈ Mv′(pct),t .

Casẽt 6= t. Fromv(pc̃t)=v′(pc̃t)we getLocalDataVar̃t ∪
⋃

ProofVar(rsc(v(pc̃t)))
= LocalDataVar̃t ∪

⋃
ProofVar(rsc(v′(pc̃t))). Letxbe an element ofLocalDataVar̃t

∪
⋃

ProofVar(rsc(v(pc̃t))). If x ∈ LocalDataVar̃t , then (1) impliesv(x) =
v′(x). Otherwisex ∈ ProofVar(r) for somer ∈ rsc(v′(pc̃t)). From v′ ∈
ConsStatewe getr 6∈ rsc(v′(pct)). Fromx∈ ProofVar(r) we obtainv(x) =
v′(x). Combining together,v′|LocalDataVar̃t∪

⋃
ProofVar(rsc(v′(pc̃t)))

=v|LocalDataVar̃t∪
⋃

ProofVar(rsc(v(pc̃t)))
∈ [sincev∈ γOG(I ,M)] Mv(pc̃t),t̃ = Mv′(pc̃t),t̃ .

So∀ t̃ ∈ Tid : v′|LocalDataVar̃t∪
⋃

ProofVar(rsc(v′(pc̃t)))
∈ Mv′(pc̃t),t̃

.
We have shownv′ ∈ γOG(I ,M).

“ init ⊆ γOG(I ,M)”: By definition of an Owicki-Gries-core proof.

B.3 Examples of Owicki-Gries-core proofs

Fork∈N+ let Nk = N∩ [1,k].

Extension of Example 1.The syntactic structure of Readers-Writers (n,m> 1) is given
by

– Tid = {readeri ,writer j | 1≤ i ≤ n,1≤ j ≤ m};
– PL = {startreadA,startreadB,startreadC,read,finishreadA,
finishreadB,finishreadC,askwriteA,askwriteB,askwriteC,

22

startwriteA,startwriteB,startwriteC,write,finishwriteA,

finishwriteB,finishwriteC};
– Val= PL∪̇N0, whereN0 is the set of nonnegative integers;
– Res= {control} = {{ww,ar,aw}};
– Localreaderi = {pc

readeri
} (1≤ i ≤ n), Localwriter j = {pc

writer j
} (1≤ j ≤ m);

– ProofVar(control) = control;
– rsc(. . .A) = rsc(read) = rsc(write) = /0, rsc(. . .B) = rsc(. . .C) = {control}.

Since we have assumed at least two readers and two writers, there are no local data
variables. Let
Icontrol = {v : control→N0 | v(aw)≤ 1},
M ∈ ∏p∈PL,t∈TidP((LocalDataVart ∪ProofVar(rsc(p)))→ Val) given by
M...readA,readeri = Mread,readeri = { /0},
MstartreadB,readeri = {v∈ ({ww,ar,aw}→ N0) | v(ww) = 0∧v(aw)≤ 1},
MstartreadC,readeri = {v∈ ({ww,ar,aw}→N0) | v(ww) =0∧v(aw)≤ 1≤ v(ar)},
MfinishreadB,readeri = MfinishreadC,readeri = {v∈ ({ww,ar,aw}→N0) | v(aw)≤ 1} for
1≤ i ≤ n,
M...writeA,writer j = Mwrite,writer j = { /0},
MaskwriteB,writer j = MfinishwriteB,writer j = {v∈ ({ww,ar,aw}→N0) | v(aw)≤ 1},
MaskwriteC,writer j = {v∈ ({ww,ar,aw}→ N0) | v(aw)≤ 1≤ v(ww)},
MstartwriteB,writer j = {v∈ ({ww,ar,aw}→N0) | v(ar) = 0= v(aw)},
MstartwriteC,writer j = {v∈ ({ww,ar,aw}→N0) | v(ar) = 0∧v(aw) = 1},
MfinishwriteC,writer j = {v∈ ({ww,ar,aw}→N0) | 0= v(aw)} for 1≤ j ≤ n,
the remainingM... are empty sets.
Notice thatP = ([control 7→ Icontrol],M) is an annotation of Readers-Writers. It is se-
quentially consistent and the single initial state, say,vinit , satisfiesvinit(ww) = vinit(ar)
= vinit(aw) = 0, thusvinit |ProofVar(control) ∈ Icontrol, sovinit ∈ γOG(P). ThusP is an Owicki-
Gries-core proof.
Now we will show that this proof is the smallest one. So let([control 7→ Îcontrol,M̂]) be
an arbitrary Owicki-Gries-core proof for Readers-Writers.
First notice that by starting with the initial state and successively applying sequential
consistency we obtain nonemptiness of certain annotation parts:
Fact 1. For everyi ∈Nn and everyl ∈ {startreadA,read,finishreadA} we have /0∈
M̂l ,readeri ; for every j ∈Nm and everyl ∈{askwriteA,startwriteA,write,finishwriteA}
we have /0∈ M̂l ,writer j .
Now we will show in three steps that for any(a,b,c) ∈ N2

0 ×{0,1} the map[ww 7→
a,ar 7→ b,aw 7→ c] is in Îcontrol.

Step 1. Ifc= 0, we get[ww 7→ 0,ar 7→ 0,aw 7→ c] ∈ Îcontrol from the initial condition. If
c= 1, apply sequential consistency to statesv, v′ with v(pc

writer1
) = startwriteA

andv→writer1 v′ and to[ww 7→ 0,ar 7→ 0,aw 7→ 0] ∈ Îcontrol to get[ww 7→ 0,ar 7→
0,aw 7→ 0] ∈ MstartwriteB,writer1. Applying sequential consistency to the next step
of the same thread to get[ww 7→ 0,ar 7→ 0,aw 7→ 1]∈MstartwriteC,writer1. Applying
sequential consistency to the termination of the critical section, we obtain[ww 7→
0,ar 7→0,aw7→c] ∈ Îcontrol.

Step 2. Now we will prove by induction onb that for all b ≥ 0, c ∈ {0,1} the map
[ww 7→ 0,ar 7→ b,aw 7→ c] is in Îcontrol. Notice that forb = 0 we already have

23

[ww 7→ 0,ar 7→ 0,aw 7→ c] ∈ Îcontrol. If b > 0, the induction assumption gives
[ww 7→ 0,ar 7→ b−1,aw 7→ c] ∈ Îcontrol. Applying sequential consistency to some
statesv, v′ with v(pc

reader1
) = startreadAandv→reader1v

′, we get[ww 7→ 0,ar 7→
b−1,aw 7→ c] ∈ MstartreadB,reader1. Applying sequential consistency once again to
the same thread, we obtain[ww7→0,ar 7→b,aw7→c] ∈ MstartreadC,reader1. Applying
sequential consistency to the transition terminating the critical section, we obtain
[ww 7→ 0,ar 7→ b,aw 7→ c] ∈ Îcontrol.

Step 3. Now we will prove by induction ona that for alla,b≥ 0, c ∈ {0,1} the map
[ww 7→a,ar 7→b,aw 7→c] is in Îcontrol. Notice that fora=0 we have just proven
[ww 7→0,ar 7→b,aw7→c] ∈ Îcontrol. For a>0, the induction assumption states that
[ww 7→a−1,ar 7→b,aw7→c] ∈ Îcontrol. Sequential consistency, applied to any pair of
statesv, v′ with v(pc

writer1
) = askwriteA andv→writer1v

′, gives[ww7→a−1,ar 7→
b,aw7→c] ∈ MaskwriteB,writer1. Applying sequential consistency once again gives
[ww 7→a,ar 7→b,aw 7→c] ∈ MaskwriteC,writer1, and applying it again gives[ww 7→
a,ar 7→b,aw7→c] ∈ Îcontrol.

We have shown thatIcontrol ⊆ Îcontrol.
From fact 1 we getMstartreadA,readeri ⊆ M̂startreadA,readeri , MfinishreadA,readeri ⊆ M̂finishreadA,readeri ,
Mread,readeri ⊆ M̂read,readeri (1 ≤ i ≤ n) and MaskwriteA,writer j ⊆ M̂askwriteA,writer j ,
MstartwriteA,writer j ⊆ M̂startwriteA,writer j , Mwrite,writer j ⊆ M̂write,writer j , MfinishwriteA,writer j

⊆ M̂finishwriteA,writer j (1≤ j ≤ m).
Fix somei ∈ Nn and statesv→readeriv

′ such thatv(pc
readeri

)=startreadA, v(ww) =
0, v(ar) ≥ 0 andv(aw) ≤ 1. Thenv|LocalDataVarreaderi∪

⋃
ProofVar(rsc(startreadA)) = /0 ∈

M̂startreadA,readeri andv|ProofVar(control) ∈ Îcontrol. By sequential consistency,v′|LocalDataVarreaderi∪
⋃

ProofVar(rsc(startreadB))

= v′|control∈ M̂startreadB,readeri . Thus for anyb≥0 andc∈ {0,1}we have[ww7→0,ar 7→
b,aw7→ c] ∈ M̂startreadB,readeri . In particular,MstartreadB,readeri ⊆ M̂startreadB,readeri .
Applying sequential consistency tov′ andv′′ with v′→readeri v

′′ such thatv′(pc
readeri

) =
startreadB, v′(ww)= 0 andv′(ar)≥ 0 andv′(aw)∈{0,1}, we obtainMstartreadC,readeri

⊆ M̂startreadC,readeri .
Analogously we getMfinishreadB,readeri ⊆ M̂finishreadB,readeri , MfinishreadC,readeri ⊆
M̂finishreadC,readeri (1≤ i ≤ n) andMaskwriteB,writer j ⊆ M̂askwriteB,writer j , MaskwriteC,writer j

⊆ M̂askwriteC,writer j , MstartwriteB,writer j ⊆ M̂startwriteB,writer j , MstartwriteC,writer j ⊆

M̂startwriteC,writer j , MfinishwriteB,writer j ⊆ M̂finishwriteB,writer j , MfinishwriteC,writer j

⊆ M̂finishwriteC,writer j (1≤ j ≤m). SoP is really the smallest Owicki-Gries-core proof.

24

Now we will show thatγOG(P) equals

{v∈ ConsState| v(ww),v(ar) ∈ N0 ∧ v(aw) ∈ {0,1}

∧ ∀ i ∈ {1, . . . ,n} :

(v(pc
readeri

) ∈ {xready,read | x∈ {start,finish}

∧ y∈ {A,B,C}})

∧ (v(pc
readeri

) = startreadB⇒ v(ww) = 0)

∧ (v(pc
readeri

) = startreadC⇒ v(ww) = 0< v(ar))

∧ ∀ j ∈ {1, . . . ,m} :

(v(pc
writer j

) ∈ {xwritey,write | x∈ {ask,start,finish}

∧ y∈ {A,B,C}})

∧ (v(pc
writer j

) = askwriteC⇒ v(ww)> 0)

∧ (v(pc
writer j

) = startwriteB⇒ v(ar) = v(aw) = 0)

∧ (v(pc
writer j

) = startwriteC⇒ v(ar) = 0< v(aw))

∧ (v(pc
writer j

) = finishwriteC⇒ v(aw) = 0)} .

“⊆”: Since there are no local data variables, the defining condition of γOG(P) restricts
the variables ofcontrol at least once: either by the resource invariant, or by the
annotation of a control flow location in a critical region. Since both the resource
invariant as well as the annotations of all control flow locations inside the critical
regions allow only values 0 and 1 ofaw, we haveπaw(γOG(P)) ⊆ {0,1}. Some
M... are empty, restricting the program counters of the readers and writers. If the
variablesww, ar are restricted beyond being nonnegative, then the restriction comes
from the nonempty annotations of the control flow points.

“⊇”: Take a statev from the right hand side. It satisfies the resource invariantin any
case. Ifcontrol is available inv, then no control flow annotation imposes additional
restrictions onv, so v is in the left hand side. If a state’s location is in a critical
section, then the location is unique. The annotation of thatlocation is satisfied ei-
ther because the annotation is exactly the resource invariant. Or the annotation is
satisfied by a condition of the right hand side.

⊓⊔

Extension of Example 2.The syntactic structure of Upper is given by
– Tid = {1,2};
– PL = {A,B,C, . . . ,V,W};
– Val= PL∪̇{0,1};
– Res= {r, r ′} wherer = {u,z}, r ′ = {x,y};
– Local1 = {l ,x,pc1}, Local2 = {y,z,pc2};
– ProofVar(r) = {u,z} = r, ProofVar(r ′) = {x,y} = r ′;
– rsc : PL→P(Res) given by

p A,G,J,M,N,O,P,S,W B,E,F,K,L,T,U,V H,I,Q,R C,D

rsc(p) /0 {r} {r ′} {r, r ′}

25

We have
init = { [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 0, l 7→ 0,pc1 7→ A,pc2 7→ O] ,

[u 7→ 0,z 7→ 1,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ A,pc2 7→ O] } .
Let P = ([r 7→ Ir , r ′ 7→ Ir ′],(Mp,t)p∈PL,t∈Tid), where
Ir = { [u 7→ 0,z 7→ 1], [u 7→ 1,z 7→ 0]},
Ir ′ = { [x 7→ 0,y 7→ 0], [x 7→ 0,y 7→ 1], [x 7→ 1,y 7→ 1]},
MA,1 = { [x 7→ 0, l 7→ 0], [x 7→ 1, l 7→ 1]},
MB,1 = { [u 7→ 0,z 7→ 1,x 7→ 0, l 7→ 0], [u 7→ 1,z 7→ 0,x 7→ 1, l 7→ 1]},
MC,1 = { [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 0, l 7→ 0], [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0] ,

[u 7→ 1,z 7→ 0,x 7→ 1,y 7→ 1, l 7→ 1]} ,
MD,1 = { [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 0, l 7→ 0], [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0] ,

[u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 1, l 7→ 1]} ,
ME,1 = { [u 7→ 0,z 7→ 1,x 7→ 0, l 7→ 0], [u 7→ 1,z 7→ 0,x 7→ 0, l 7→ 1]},
MO,2 = { [y 7→ 0,z 7→ 0], [y 7→ 1,z 7→ 1]},
Mx,t = /0 for (x, t) ∈ (PL×Tid)\ {(A,1),(B,1),(C,1),(D,1),(E,1),(O,2)}.
Notice that the two initial states satisfy annotations of locationsA andO as well as the
resource invariants. Thus the program annotationP admits the initial states. Further-
more,P is sequentially consistent. ThusP is an Owicki-Gries-core proof.
Now we’ll show thatP is smaller than or equal to any Owicki-Gries-core proof([r 7→
Îr , r ′ 7→ Îr ′],(M̂p,t)p∈PL,t∈Tid). From the initial condition we get[u 7→ 0,z 7→ 1], [u 7→
1,z 7→ 0] ∈ Îr , soIr ⊆ Îr . The initial condition also implies[x 7→ 0, l 7→ 0], [x 7→ 1, l 7→ 1]
∈ M̂A,1, soMA,1 ⊆ M̂A,1. Again from the initial condition we get[y 7→ 0,z 7→ 0], [y 7→
1,z 7→ 1] ∈ M̂O,2, so MO,2 ⊆ M̂O,2. At last the initial condition gives[x 7→ 0,y 7→ 0],
[x 7→ 1,y 7→ 1] ∈ Îr ′ . Now let
vA = [u 7→ 1,z 7→ 0,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ A,pc2 7→ O] and
vB = [u 7→ 1,z 7→ 0,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ B,pc2 7→ O].
Notice thatrsc(A) = /0, rsc(B) = {r}, so
vA|LocalDataVar1∪

⋃
ProofVar(rsc(A)) = [x 7→ 1, l 7→ 1] ∈ M̂A,1 and

vA|ProofVar(r) = [u 7→ 1,z 7→ 0] ∈ Îr .
SincevA(u) = 1= vA(l), we havevA→1vB. By sequential consistency,
vB|LocalDataVar1∪

⋃
ProofVar(rsc(B)) ∈ M̂B,1, i.e.,[u 7→ 1,z 7→ 0,x 7→ 1, l 7→ 1] ∈ M̂B,1. Let

vC = [u 7→ 1,z 7→ 0,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ C,pc2 7→ O].
SincevB|ProofVar(r ′) = [x 7→ 1,y 7→ 1] ∈ Îr ′ andvB→1vC, we obtain from the sequential
consistency condition thatvC|LocalDataVar1∪

⋃
ProofVar(rsc(C)) ∈ M̂C,1.

Let
vD = [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 1, l 7→ 1,pc1 7→ D,pc2 7→ O].
SincevC→1vD, sequential consistency givesvD|LocalDataVar1∪

⋃
ProofVar(rsc(D))∈M̂D,1.

Let
vE = [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 1, l 7→ 1,pc1 7→ E,pc2 7→ O].
FromvD→1vE, sequential consistency andr ′ ∈ rsc(D)\ rsc(E) we get
vE|LocalDataVar1∪

⋃
ProofVar(rsc(E)) ∈ M̂E,1 andÎr ′ ∋ vE|ProofVar(r ′) = [x 7→0,y 7→1].

ThusIr ′ ⊆ Îr ′ .
Now let
v̄A = [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0,pc1 7→ A,pc2 7→ O] and
v̄B = [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0,pc1 7→ B,pc2 7→ O].

26

Sincev̄A(u) = 0= v̄A(l), we have ¯vA →1 v̄B. Since additionally
v̄A|LocalDataVar1∪

⋃
ProofVar(rsc(A)) = [x 7→ 0, l 7→ 0] ∈ M̂A,1, rsc(v̄B) \ rsc(v̄A) = {r} and

v̄A|ProofVar(r) = [u 7→ 0,z 7→ 1] ∈ Îr , we have
M̂B,1 ∋ v̄B|LocalDataVar1∪

⋃
ProofVar(rsc(B)) = [u 7→ 0,z 7→ 1,x 7→ 0, l 7→ 0].

Since[u 7→ 1,z 7→ 0,x 7→ 1, l 7→ 1], [u 7→ 0,z 7→ 1,x 7→ 0, l 7→ 0] ∈ M̂B,1, we have
MB,1 ⊆ M̂B,1.
From [u 7→ 0,z 7→ 1,x 7→ 0, l 7→ 0], [u 7→ 1,z 7→ 0,x 7→ 1, l 7→ 1] ∈ M̂B,1, [x 7→0,y 7→0],
[x 7→0,y 7→1], [x 7→1,y 7→1] ∈ Îr ′ we get[u 7→0,z 7→1,x 7→0,y 7→0, l 7→0], [u 7→0,z 7→
1,x 7→0,y 7→1, l 7→0], [u 7→1,z 7→0,x 7→1,y 7→1, l 7→1] ∈ M̂C,1. Thus,MC,1 ⊆ M̂C,1.
Applying sequential consistency with respect tox := 0 we get[u 7→ 0,z 7→ 1,x 7→ 0,y 7→
0, l 7→ 0], [u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0], [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 1, l 7→ 1] ∈ M̂D,1,
i.e.,MD,1 ⊆ M̂D,1.
Applying sequential consistency to[u 7→0,z 7→1,x 7→0,y 7→0, l 7→0], [u 7→1,z 7→0,x 7→
0,y 7→1, l 7→1] ∈ M̂D,1 we get[u 7→0,z 7→1,x 7→0, l 7→0], [u 7→1,z 7→0,x 7→0, l 7→1] ∈
M̂E,1, i.e.,ME,1 ⊆ M̂E,1.
We have shown thatP is the smallest Owicki-Gries-core proof. It denotes the following
states (column = state):

u 0 0 1 0 0 0 0 1
z 1 1 0 1 1 1 1 0
x 0 1 0 0 0 0 0 0
y 1 1 0 1 1 1 1 0
l 0 1 0 0 0 0 0 1
pc1 A A A B C D E E

pc2 O O O O O O O O

⊓⊔

Extension of Example 3.A syntactic structure= (Tid,PL,Val,Res,(Localt ,pct)t∈Tid,

ProofVar, rsc) belongs to the classStrSimpleiff |Res| ≤ 1, (∀ t ∈ Tid : Localt ∩
⋃

Res=
/0) and(∀ r ∈ Res: ProofVar(r) = r 6= /0). An RPL transition system(init,(→t)t∈Tid)
belongs to the classSimpleiff it obeys a syntactic structure from StrSimple.
All programs from the family Readers-Writers are in Simple. ⊓⊔

Extension of Example 4.A syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar,
rsc) belongs to the classStrSepThreadsiff Res= /0 andTid is finite. An RPL transition
system(init,(→t)t∈Tid) belongs to the classSepThreadsiff it obeys a syntactic structure
from StrSepThreads and∀ v∈ConsState: (∀ t∈Tid ∃ ṽ∈ init : v∼Localt ṽ)⇒ v∈ init.
Notice that StrSepThreads⊆ StrSimple and SepThreads⊆ Simple.
We will show later, using the lower bound, that the smallest Owicki-Gries-core proof
of an RPL transition system from SepThreads denotes the strongest invariant5. ⊓⊔

5 For infiniteTid only those states are reachable that have finitely many non-initial components,
but the Owicki-Gries-core proof denotes states that may have arbitrary many non-initial com-
ponents. Thus we study here the finite-threaded case only.

27

C Owicki-Gries core as abstract interpretation

Within the section C, fix a syntactic structure and an RPL transition system obeying it
as in section A. Let

next#OG : PA→ PA,
(I ,M) 7→ (({v′|ProofVar(r) | ∃ t∈Tid,v : v→t v′ ∧

v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Mv(pct),t ∧

r ∈ rsc(v(pct))\ rsc(v′(pct))})r∈Res,

({v′|LocalDataVart∪
⋃

ProofVar(rsc(p)) | ∃ v : v→t v′ ∧ v′(pct) = p
∧ v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t ∧
∀ r ∈ rsc(p)\rsc(v(pct)) : v|ProofVar(r) ∈ Ir})p∈PL,

t∈Tid
) ,

I init = ({v|ProofVar(r) | v∈ init})r∈Res,

Minit = ({v|LocalDataVart | v∈ init ∧ v(pct) = p})p∈PL,t∈Tid .

Let thesound Owicki-Gries-core abstract successor mapbe

post#OG : PA→ PA,
(I ,M) 7→ (I ,M)⊔next#OG(I ,M) ,

and theOwicki-Gries-core abstract transformerbe

F#
OG : PA→ PA,
(I ,M) 7→ (I init ,Minit)⊔post#OG(I ,M) .

Lemma 28. The map next#
OG is monotone.

Proof. Let (I ,M)⊑ (Î ,M̂) be program annotations,next#OG(I ,M) = (I ′,M′), next#OG(Î ,M̂)
= (Î ′,M̂′).
“∀ r ∈ Res: I ′r ⊆ Î ′r ”: Let r ∈ Res. Let w ∈ I ′r . Then there is a threadt ∈ Tid and some

transitionv→tv′ such thatv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈Mv(pct),t , r ∈ rsc(v(pct))\

rsc(v′(pct)) andv′|ProofVar(r) = w. ThenM̂v(pct),t ∋ v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
.

Sow∈ Î ′r .
“∀ t ∈ Tid, p∈ PL : M′

p,t ⊆ M̂′
p,t ”: Let t ∈ Tid, p∈ PL. Let w∈ M′

p,t . Then there is some
transitionv→t v′ such thatv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t , v′(pct) = p,
∀ r ∈ rsc(p)\rsc(v(pct)) : v|ProofVar(r) ∈ Ir andw = v′|LocalDataVart∪

⋃
ProofVar(rsc(p)).

Then M̂v(pct),t ∋ v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
and ∀ r ∈ rsc(p)\ rsc(v(pct)) :

v|ProofVar(r) ∈ Îr . Sow∈ M̂′
p,t .

Corollary 29. The Owicki-Gries-core abstract transformer F#
OG is monotone.

Corollary 29 implies that the Owicki-Gries-core abstract transformer has a least
fixpoint, which follows from a well-known fixpoint theorem6.

A postfix pointof a mapf : X →X on a poset(X,≤) is anyx∈X such thatf (x)≤ x.
Let postfp(f) be the set of postfix points off .

6 Known today as Tarski’s fixpoint theorem (Thm. 1 in [28]). This existence of the least fixpoint,
however, was also mentioned independently, e.g., Exercise5 in §4 of Chapter IV of [2] in year
1948. See also [3], Ch. V,§3, p. 115.

28

Theorem 30. Every Owicki-Gries-core proof is a postfix point of the Owicki-Gries-
core abstract transformer and vice versa. Formally:

O= postfp(F#
OG) .

Proof. “⊆”: Let (I ,M) ∈ O. We will show that(I ′,M′) := F#
OG(I ,M) is less than or

equal to(I ,M). Let (Î ,M̂) = next#OG(I ,M).
“∀ r ∈ Res: I ′r ⊆ Ir ”: Let r ∈ Res. Let w∈ I ′r . Thenw∈ I init

r ∪ Ir ∪ Îr .
Casew∈ I init

r . Then there is somev ∈ init such thatv|ProofVar(r) = w. By the
initial condition, v ∈ γOG(I ,M). Since every resource is available in an
initial state,r ∈ Res\

⋃
rsc(v(PCVar)). Thusv|ProofVar(r) ∈ Ir .

Casew∈ Ir . Then we don’t have to prove anything more.
Casew∈ Îr . Then there ist∈Tid, (v,v′)∈→t such thatv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t , r ∈ rsc(v(pct))\rsc(v′(pct)) andw= v′|ProofVar(r). By (5) we have
rsc(v(pct))⊇ rsc(v′(pct)). Sequential consistency impliesv′|ProofVar(r) ∈ Ir .

In all casesw∈ Ir . SoI ′r ⊆ Ir .
“∀ t ∈ Tid, p∈ PL : M′

p,t ⊆ Mp,t ”: Let t ∈ Tid, p ∈ PL. Let w ∈ M′
p,t . Then w ∈

Minit
p,t ∪Mp,t ∪ M̂p,t .

Casew∈ Minit
p,t . Then there is somev ∈ init such thatv(pct) = p and w =

v|LocalDataVart . By the initial condition,v ∈ γOG(I ,M). From definition of
γOG andrsc(v(pct)) = [v∈ init] /0 we getv|LocalDataVart ∈ Mp,t .

Casew∈ Mp,t . Then nothing more has to be proven.
Casew∈ M̂p,t . Then there is(v,v′)∈→t such thatv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t , v′(pct) = p, ∀ r ∈ rsc(p)\ rsc(v(pct)) : v|ProofVar(r) ∈ Ir andw
= v′|LocalDataVart∪

⋃
ProofVar(rsc(p)). Thenv′|LocalDataVart∪

⋃
ProofVar(rsc(p)) ∈ Mp,t

by sequential consistency.
In any casew∈ Mp,t . SoM′

p,t ⊆ Mp,t .
“⊇”: Let (I ,M) ∈ postfp(F#

OG), i.e., for(I ′,M′) = F#
OG(I ,M) we have(I ′,M′)⊑ (I ,M).

We’ll show that(I ,M) is an Owicki-Gries-core proof.
Sequential consistency: Lett ∈ Tid, (v,v′) ∈→t , p = v(pct), p′ = v′(pct), R =

rsc(p), R′ = rsc(p′), v|LocalDataVart∪
⋃

ProofVar(rsc(p)) ∈ Mp,t and ∀ r ∈ R′ \ R :
v|ProofVar(r) ∈ Ir . By definition ofnext#OG we obtainv′|LocalDataVart∪

⋃
ProofVar(rsc(p′))

∈ M′
p′,t ⊆ Mp′,t . If any r ∈ R\R′ is given, the definition ofnext#OG implies

v′|ProofVar(r) ∈ I ′r ⊆ Ir .
Initial condition: Letv∈ init.

Let r ∈ Res\
⋃

rsc(v(PCVar)). Thenv|ProofVar(r) ∈ I init
r ⊆ I ′r ⊆ Ir .

Now let t ∈ Tid. Thenv|LocalDataVart ∈ Minit
v(pct),t

. Since initial states don’t have

any busy resources,v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Minit

v(pct),t
⊆ M′

v(pct),t
⊆

Mv(pct),t .
We have shownv∈ γOG(I ,M). Thusinit ⊆ γOG(I ,M).

Restatement of Theorem 5.The smallest Owicki-Gries-core proof is the least fixpoint
of the Owicki-Gries-core abstract transformer, formally

inf(O) = lfp(F#
OG) .

29

Proof. inf(O) = [Thm. 30] inf(postfp(F#
OG)) = [Tarski’s fixpoint theorem]lfp(F#

OG).

Proposition 31. The map post#
OG is sound with respect to the concrete successor map

post. Formally:
∀ P∈ PA: post◦ γOG(P)⊆ γOG◦post#OG(P) .

Proof. Let (I ,M)∈PA. Letv′ ∈ post(γOG(I ,M)). Let(I ′,M′) = next#OG(I ,M) and(Î ,M̂)
= post#OG(I ,M). Then(Î ,M̂) = (I ,M)⊔ (I ′,M′). By definition ofpostthere is somet∈
Tid and somev∈γOG(I ,M) such thatv→t v′. By definition ofγOG we havev|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t . To show thatv′ is in γOG(Î ,M̂) we have to prove the following two claims.

“∀ r ∈ Res\
⋃

rsc(v′(PCVar)) : v′|ProofVar(r) ∈ Îr ”: Let r ∈ Res\
⋃

rsc(v′(PCVar)).
Caser ∈ rsc(v(pct̃)) for somet̃ ∈ Tid. Thenr ∈ rsc(v(pct̃))\rsc(v′(pct̃)), sov(pc̃t)

6= v′(pc̃t). Then (1) implies that̃t = t. So r ∈ rsc(v(pct)) \ rsc(v′(pct)). Then
v′|ProofVar(r) ∈ I ′r by definition ofnext#OG.

Caser 6∈
⋃

rsc(v(PCVar)). The definition ofγOG implies thatv|ProofVar(r) ∈ Ir . No-
tice thatr 6∈ rsc(v(pct))∩ rsc(v′(pct)). Thus for allx ∈ ProofVar(r) we have
v(x) = v′(x). Sov∼ProofVar(r) v′. Sov′|ProofVar(r) ∈ Ir .

In both casesv′|ProofVar(r) ∈ Îr .
“∀ t̃ ∈ Tid : v′|LocalDataVar̃t∪

⋃
ProofVar(rsc(v′(pc̃t)))

∈ M̂v′(pc̃t ,t̃)
”: Let t̃ ∈ Tid.

Casẽt= t. Consider an arbitraryr ∈ rsc(v′(pct))\rsc(v(pct)) (there may be none).
Fromv′∈ConsStatewe getr 6∈

⋃
t̂∈Tid\{t}rsc(v′(pct̂)), so (1) givesr 6∈

⋃
t̂∈Tid\{t}rsc(v(pct̂)).

Thusr is available inv. Fromv∈ γOG(I ,M) we getv|ProofVar(r)∈ Ir . Thus∀ r ∈
rsc(v′(pct))\rsc(v(pct)) : v|ProofVar(r) ∈ Ir . From the definition ofnext#OG we
getM′

v′(pct),t
∋ v′|LocalDataVart∪

⋃
ProofVar(rsc(v′(pct)))

.

Casẽt 6= t. By (1) we havev∼Local̃t v
′, sov(pc̃t) = v′(pc̃t). Take anyr ∈ rsc(v′(pc̃t))

(there may be none). Fromv′∈ConsStatewe getr 6∈ rsc(v′(pct)). In particular,
r 6∈ rsc(v(pct))∩rsc(v′(pct)). By definition ofProofVar, for all x∈ ProofVar(r)
we havev(x)= v′(x). Thusv∼ProofVar(r) v′. Sov∼LocalDataVar̃t∪

⋃
ProofVar(rsc(v′(pc̃t)))

v′. Notice thatv|LocalDataVar̃t∪
⋃

ProofVar(rsc(v(pc̃t)))
∈Mv(pc̃t),t̃

. Then we haveMv′(pc̃t),t̃
∋ v′|LocalDataVar̃t∪

⋃
ProofVar(rsc(v′(pc̃t)))

.
In both casesv′|LocalDataVar̃t∪

⋃
ProofVar(rsc(v′(pc̃t)))

∈ M̂v′(pc̃t),t̃ .

Thus v′ ∈ γOG(Î ,M̂). Sincev′ ∈ post◦ γOG(I ,M) was arbitrary, we have shown that
post◦ γOG(I ,M) ⊆ γOG◦post#OG(I ,M).

Remark 32. A reader might wonder why we have not taken the mapPA→PA, (I ,M) 7→
(I init ,Minit)⊔next#OG(I ,M) as the abstract transformer. It is also monotone and the set
of its postfix points is equal to the set of Owicki-Gries-coreproofs. However,next#OG is
in general not a sound approximation ofpostunder(αOG,γOG). ⊓⊔

D Upper bound on precision

Within the current section D, fix a syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,

ProofVar, rsc), let ConsStatebe the set of consistent states,D = P(ConsState) and
(PA,⊑) the lattice of program annotations.

30

Let

αOG : D → PA,

S 7→ (({v|ProofVar(r) | v∈ S∧ r 6∈
⋃

rsc(v(PCVar))})r∈Res,

({v|LocalDataVart∪
⋃

ProofVar(rsc(p)) | v∈ S∧ p= v(pct)})p∈PL,
t∈Tid

) .

A pair of adjoint maps7 between two posets(X,≤), (Y,�) is a pair of maps(α,γ) such
thatα : X →Y, γ : Y → X and

∀ x∈ X,y∈Y : α(x)� y⇔ x≤ γ(Y) .

Proposition 33. (αOG,γOG) is a pair of adjoint maps between(D,⊆) and(PA,⊑).

Proof. Let S∈ D, αOG(S) = (I ,M), T = (J,N) ∈ PA. We will show thatαOG(S)⊑ T if
and only ifS⊆ γOG(T).
“only if”: Let v∈S. By definition ofD we getv∈ConsState. Let r ∈Res\

⋃
rsc(v(PCVar)).

By definition ofαOG we getv|ProofVar(r) ∈ Ir . By assumption,Ir ⊆ Jr , sov|ProofVar(r) ∈
Jr .
Now lett ∈Tid andp= v(pct). By definition ofαOG we getv|LocalDataVart∪

⋃
ProofVar(rsc(p))

∈Mp,t . By assumption,Np,t ⊇Mp,t . ThusNv(pct),t ∋ v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
.

Combining, we obtainv∈ γOG(T).
“if”: Let r ∈Res. Letu∈ Ir . By definition ofαOG there isv∈Ssuch thatr 6∈

⋃
rsc(v(PCVar))

and u = v|ProofVar(r). By assumption,v ∈ γOG(T). By definition of γOG we have
u∈ Jr . ThusIr ⊆ Jr .
Let t ∈ Tid andp∈ PL. Let u∈ Mp,t . By definition ofαOG there is somev∈ Ssuch
that p= v(pct) andv|LocalDataVart∪

⋃
ProofVar(rsc(p)) = u. By assumption,v ∈ γOG(T).

By definition ofγOG we getu∈ Np,t . ThusMp,t ⊆ Np,t .
Combining, we obtainαOG(S)⊑ T.

Let ρ = γOG◦αOG.
Then forQ∈ D we haveρ(Q) =





v∈ ConsState

∣∣∣∣∣∣∣∣

∀ r ∈Res\
⋃

rsc(v(PCVar))∃ v̂∈Q :

(
r 6∈

⋃
rsc(v̂(PCVar))

∧ v∼ProofVar(r) v̂

)

∧
∀ t∈Tid ∃ ṽ∈ Q : v∼Localt∪

⋃
ProofVar(rsc(v(pct)))

ṽ




.

A closure(sometimes called anupper closure operator) on a poset(X,≤) is a map
ρ : X → X which is monotone, extensive and idempotent. (For an introduction to clo-
sures see [31].)

Proposition 34. ρ : D → D is a closure operator.

7 As of year 2011, it is also called a(monotone) Galois connection. The definition of a Galois
connection is changing over time, see, e.g.,§ 6 in Chapter IV of [2], also§ 8 in Chapter V
of [3], for a more antique definition where the mapsα andγ are antitone.

31

Proof. By a standard result (exercise for the reader, see also [9], Corollary 5.3.0.5),
applying the right adjoint after the left adjoint gives a closure operator.

Restatement of Theorem 10.Abstract interpretation withρ proves the strongest Owicki-
Gries-provable property.
Formally, letT = (init, . . .) be an RPL transition system that obeys the given syntactic
structure and has successor operatorpostand letO be the lattice of Owicki-Gries-core
proofs ofT; then

lfp(λx.ρ(init ∪post(x))) ⊆ γOG(infO) .

Proof. Let P= infO. By Prop. 27 we have

init ∪post(γOG(P))⊆ γOG(P) .

Since(αOG,γOG) is a pair of adjoint maps, we have

αOG(init ∪post(γOG(P)))⊑ P.

Right adjoints are monotone, so

γOG(αOG(init ∪post(γOG(P)))) ⊆ γOG(P) ,

otherwise stated
ρ(init ∪post(γOG(P))) ⊆ γOG(P) .

Let F = λx.ρ(init ∪ post(x)), thenγOG(P) ∈ postfp(F). Since the least fixpoint of a
monotone map is the infimum of its postfix points,lfp(F) ⊆ γOG(P). Apply Corollary
26.

In particular, abstract interpretation withρ allows proving at least as many proper-
ties as the core of the Owicki-Gries method.

Extension of Example 11. We will see later in Example 19 thatlfp(λx.ρ(init ∪
post(x))) = γOG(I ,M). So, for Readers-Writers, the Owicki-Gries-core proof method
and abstract interpretation withρ are equally strong. ⊓⊔

Extension of Example 12. Notice thatρ(init ∪post(init)) = ρ(init ∪ /0) = ρ(init) ⊆
init. Sinceinit is the set of reachable states,lfp(λx.ρ(init∪post(x))) = init. Thus for the
RPL transition system Upper abstract interpretation underρ can prove strictly stronger
properties than the core of the Owicki-Gries method. ⊓⊔

Extension of Example 13.For the programs of the class Simple we will show later in
Example 22 thatlfp(λx.ρ(init ∪post(x))) = γOG(infO).

Extension of Example 14.For the RPL transition systems in the class SepThreads we
will show later that the abstract interpretation using the lower bound produces exactly
the set of reachable states. Thus abstract interpretation using the upper boundρ will
also produce the set of reachable states. ⊓⊔

32

E Lower bound on precision

For a setX of sets, let

Part(X) =
{
Y | ∃ T ⊆ X : Y =

(⋂
T
)
∩
(⋂

Z∈X\T

((
⋃

X)\Z)
)
6= /0
}

be thepartition of X, where
⋂

/0=
⋃

X by convention. The elements of a partition are
calledblocks.

Lemma 35. Let X be a set of sets. Then:
1.
⋃

Part(X) =
⋃

X;
2. for all different s1,s2 ∈ Part(X) we have s1∩s2 = /0;
3. if s∈ Part(X) and S∈ X, then either s∩S= /0 or s⊆ S;
4. if X is finite, so is Part(X).

Proof. 1. “⊆”: Intersection of subsets of
⋃

X produces a subset of
⋃

X.
“⊇”: Let x∈

⋃
X. Let T = {S∈ X | x∈ S}. Then for allZ ∈ X \T we havex 6∈ Z.

Sox∈
(⋂

T
)
∩
(⋂

Z∈X\T((
⋃

X)\Z)
)
.

2. Let T1,T2 ⊆ X be such that fors1 =
(⋂

T1
)
∩
(⋂

Z∈X\T1
((
⋃

X) \Z)
)
6= /0 ands2 =(⋂

T2
)
∩
(⋂

Z∈X\T2
((
⋃

X) \Z)
)
6= /0 we haves1 6= s2. Assume for the purpose of

contradiction that there is somey in s1∩s2. Sinces1 6= s2, there is somex in (s1 \
s2)∪(s2\s1). Without loss of generality letx∈ s1\s2, the other case is symmetrical.
Thenx∈ (

⋃
X)\ s2, so there are two cases.

– Case∃S∈ T2 : x 6∈S. Take suchS. ThenS 6∈ T1, thusS∈X\T1, soy∈ (
⋃

X)\S.
SinceS∈ T2, we havey∈ S. Contradiction!

– Case∃ Z ∈ X \T2 : x 6∈ (
⋃

X)\Z. ThenZ 6∈ X \T1 (otherwisex were not ins1).
SoZ ∈ T1. Soy∈ Z. But y∈ s2, soy∈ (

⋃
X)\Z. Contradiction!

3. Let s ∈ Part(X) and S∈ X. Assume for the purpose of contradiction thats∩S
contains some element, say,x, buts\Salso contains some element, say,y. There is
someT ⊆ X such thats=

(⋂
T
)
∩
(⋂

Z∈X\T((
⋃

X) \Z)
)
. Soy∈

⋂
T. If S∈ T, we

gety 6∈
⋂

T, a contradiction. IfS 6∈ T, thenS∈ X \T, sox∈ s⊆ (
⋃

X)\S implies
x 6∈ S, also a contradiction.

4. If X is finite, |Part(X)| ≤ 2|X|.

For the rest of section E, fix a syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,

ProofVar, rsc), let ConsStatebe the set of consistent states andD =P(ConsState). Let

RL= Res∪{Localt | t ∈ Tid} and R̃L= Part(RL) .

Let

ρ̄ : D → D, Q 7→



v∈ConsState

∣∣∣∣∣∣∣∣∣∣∣∣




∀ s∈ R̃L, r ∈ Res: s⊆ r ⇒

(r 6∈

⋃
rsc(v(PCVar))⇒∃v̂∈Q: v∼sv̂∧ r 6∈

⋃
rsc(v̂(PCVar)))

∧(
∀t∈Tid : r∈ rsc(v(pct))⇒∃v̌∈Q: v∼(Localt\

⋃
Res)∪sv̌

)







∧(
∀ t∈Tid ∃ ṽ∈ Q : v∼Localt\

⋃
Resṽ

)





,

33

and
ρc : D → D, Q 7→ {v∈ ConsState| ∀ s∈ R̃L∃ v̄∈ Q : v∼s v̄}.

Note that neither̄ρ norρc depend on the mapProofVar. Thus for syntactic structures
that differ only in the mapProofVarwe have the samēρ and the sameρc.

Proposition 36. ρ̄ is a closure operator on(D,⊆).

Proof. Monotonicity. LetQ⊆ Q′ ⊆ ConsState. Let v∈ ρ̄(Q).
• Let s∈ R̃L, r ∈ Res, s⊆ r.

∗ Assume for a moment thatr is available inv. Then there is ˆv∈ Q such that
v∼s v̂ andr is available in ˆv. Notice that ˆv∈ Q′.

∗ Let t ∈Tid andr ∈ rsc(v(pct)). Then there is ˇv∈Qsuch thatv∼(Localt\
⋃

Res)∪s
v̌. Notice that ˇv∈ Q′.

• Let t ∈ Tid. Then there is ˜v∈ Q such thatv∼Localt\
⋃

Resṽ. Notice that ˜v∈ Q′.
We have shown thatv∈ ρ̄(Q′). Thusρ̄(Q)⊆ ρ̄(Q′).

Extensivity. LetQ∈ D. Let v∈ Q.
• Let s∈ R̃L, r ∈ Res, s⊆ r.

∗ Assume for the moment thatr 6∈
⋃

rsc(v(PCVar)). Takev̂ := v.
∗ Let t ∈ Tid andr ∈ rsc(v(pct)). Takev̌ := v.

• Let t ∈ Tid. Takeṽ := v.
Thusv∈ ρ̄(Q). We have shown thatQ⊆ ρ̄(Q).

Idempotence. LetQ∈ D. Let v∈ ρ̄(ρ̄(Q)). We’ll show thatv is in ρ̄(Q).
• Let s∈ R̃L, r ∈ Res, s⊆ r.

∗ Assume for a moment thatr is available inv. Then there is ˆv∈ ρ̄(Q) such
thatv∼s v̂ andr is available in ˆv. Then there iŝ̂v∈ Q such that ˆv∼s ˆ̂v and
r is available inˆ̂v. Notice thatv∼s ˆ̂v.

∗ Let t ∈ Tid such thatr ∈ rsc(v(pct)). Then some ˇv∈ ρ̄(Q) exists such that
v∼(Localt\

⋃
Res)∪s v̌. Thenv(pct) = v̌(pct), sor ∈ rsc(v̌(pct)). Then there is

ˇ̌v ∈ Q such that ˇv∼(Localt\
⋃

Res)∪s
ˇ̌v. Notice thatv∼(Localt\

⋃
Res)∪s

ˇ̌v.
• Let t ∈ Tid. Then there is ˜v∈ ρ̄(Q) such thatv∼Localt\

⋃
Resṽ. Then there is̃̃v∈Q

such that ˜v∼Localt\
⋃

Res˜̃v. Notice thatv∼Localt\
⋃

Res˜̃v.
Thusv∈ ρ̄(Q). We have shown that̄ρ(ρ̄(Q))⊆ ρ̄(Q). The opposite inclusion fol-
lows from extensivity.

Proposition 37. ρc is a closure operator on(D,⊆)

Proof. We will show the three properties of a closure operator.
– Monotonicity. Let Q ⊆ Q′ be sets of consistent states andv ∈ ρc(Q). Then v ∈

ConsStateand for each blocks∈ R̃L there is a state ¯v ∈ Q such thatv ∼s v̄. No-
tice that such ¯v are also inQ′. We have shownρc(Q)⊆ ρc(Q′).

– Extensivity. LetQ ∈ D. Let v ∈ Q. Let s∈ R̃L. Certainlyv ∼s v. Thusv ∈ ρc(Q).
We have shownQ⊆ ρc(Q).

– Idempotence. LetQ ∈ D. Let v ∈ ρc(ρc(Q)). Let s∈ R̃L. Then there is some ¯v ∈
ρc(Q) such thatv∼s v̄. Then there is somē̄v∈Q such that ¯v∼s ¯̄v. Thenv∼s ¯̄v. Thus
v ∈ ρc(Q). We have shownρc(ρc(Q)) ⊆ ρc(Q). The opposite inclusion follows
from extensivity.

34

Proposition 38. For all Q ∈ D we haveρ̄(Q)⊆ ρc(Q).

Proof. Let Q∈ D. Letv∈ ρ̄(Q). Lets∈ R̃L. By part 3 of Lemma 35 we have two cases.
Case there isr ∈ Ressuch thats⊆ r. There are two subcases.

Caser is available inv. Then there is some ˆv∈Q such thatv∼s v̂. Let v̄ := v̂.
Caser ∈ rsc(v(pct)) for somet ∈ Tid. Then there is ˇv∈Qsuch thatv∼(Localt\

⋃
Res)∪s

v̌. Let v̄ := v̌.
Cases∩

⋃
Res= /0. Sinces 6= /0, there is somet∈Tid such thats⊆Localt\

⋃
Res. There

is ṽ∈ Q such thatv∼Localt\
⋃

Resṽ. Let v̄ := ṽ.
In any case there is ¯v∈ Q such thatv∼s v̄.

For the purpose of the proof letT = (init,(→t)t∈Tid) be an RPL transition system
that obeys the given syntactic structure and has successor operatorpost. Let F = λx∈
D. ρ̄(init ∪post(x)), let µ ∈ Ord have cardinality greater than the cardinality ofD and
let (Y(i))i∈µ be theµ-termed upper iteration sequence forF starting with /0∈ D:

Y(0) = /0, Y(σ+1) = F
(
Y(σ)

)
for σ +1∈ µ , Y(ωσ) =

⋃

σ̄∈ωσ
Y(σ̄) for ωσ ∈ µ .

Let Q= lfp(F). The sequence(Y(i))i∈µ is monotonously increasing, and its limit isQ.

Lemma 39. Let t 6= t̃ in Tid. Then
1. ∀ τ ∈ Tid,(v,v′)∈→τ : v∼Localt∩Local̃t v′ ∧ v∼⋂

t̂∈Tid Local̂t v′;
2. Localt ∩Local̃t =

⋂
t̂∈Tid Local̂t .

Proof. 1. Let τ ∈Tid, v→τ v′. Thenτ 6= t or τ 6= t̃. From (1) we getv∼Localt v′ or
v∼Local̃t v′. In any casev∼Localt∩Local̃t v′. In particular,v∼⋂

t̂∈Tid Local̂t v′.
2. “⊆”: Let x∈ Localt ∩Local̃t andt̂ ∈ Tid. To show thatx is in Local̂t , let τ ∈ Tid\

{t̂} and (v,v′)∈→τ . As shown above,v ∼Localt∩Local̃t v′, so v(x) = v′(x). By
definition of RPL,x∈ Local̂t .

“⊇”: Follows fromLocalt ⊇
⋂

t̂∈Tid Local̂t andLocal̃t ⊇
⋂

t̂∈Tid Local̂t .

Lemma 40. Let s∈ R̃L, t 6= t̃ in Tid such that s⊆ Localt ∩Local̃t ∩
⋃

Res.
Then∀ σ ∈ µ , v∈Y(σ) ∃ w∈ init : v∼s w.

Proof. By transfinite induction. Letσ ∈µ and∀ σ̄ ∈σ ∀v∈Y(σ̄) ∃w∈ init : v∼sw. Let
v∈Y(σ). Thenσ > 0. There are two cases.
Caseσ = σ̄ +1 for someσ̄ ∈ µ . There is somer ∈ Ressuch thats⊆ r. There are two

cases.
Caser ∈ rsc(v(pct)) for somet ∈ Tid. By definition ofρ̄ there is ˇv∈ init∪post(Y(σ̄))

such thatv ∼(Localt\
⋃

Res)∪s v̌. In particular,v ∼s v̌ andv(pct) = v̌(pct). Thus
r ∈ rsc(v̌(pct)). Since in initial states all resources are available, ˇv 6∈ init. So
there is somez∈ Y(σ̄) such that ˇv ∈ post({z}). Part 1 of Lemma 39 implies
v̌∼s z, sov∼s z.

Caser 6∈
⋃

rsc(v(PCVar)). Then there is ˆv ∈ init ∪post(Y(σ̄)) such thatv ∼s v̂. If
v̂∈ init, takew := v̂. Otherwise there isz∈Y(σ̄) such that ˆv∈ post({z}). Part 1
of Lemma 39 implies ˆv∼s z, sov∼s z.

35

If we have not found a suitablew so far, there isz∈Y(σ̄) such thatv∼s z. Applying
the induction hypothesis tōσ < σ andz∈ Y(σ̄) we get somew ∈ init such that
z∼s w, which impliesv∼s w.

Caseσ is a limit ordinal. Then there is̄σ ∈ σ such thatv∈Y(σ̄). Apply the induction
hypothesis.

Lemma 41. Let t 6= t̃ in Tid. Then∀σ ∈ µ , v∈Y(σ) ∃w∈ init : v∼(Localt∩Local̃t)\
⋃

Resw.

Proof. LetC= (Localt ∩Local̃t)\
⋃

Res. We’ll use transfinite induction. Letσ ∈ µ and
∀ σ̄ ∈ σ ∀ v∈Y(σ̄) ∃ w∈ init : v∼C w. Let v∈Y(σ). Thenσ > 0.
Caseσ = σ̄ +1 for someσ̄ ∈ µ . By definition ofY(σ̄+1) there is ˜v∈ init ∪post(Y(σ̄))

such thatv ∼Localt\
⋃

Res ṽ. Thenv ∼C ṽ. If ṽ ∈ init, let w := ṽ. Otherwise there is

z∈Y(σ̄) such that ˜v∈ post({z}). Part 1 of Lemma 39 implies that ˜v∼C z, sov∼C z.
Applying the induction hypothesis tōσ andz we obtain somew ∈ init such that
z∼C w, sov∼C w.

Caseσ is a limit ordinal. Then there is̄σ ∈ σ such thatv∈Y(σ̄). Apply the induction
hypothesis.

Lemma 42. Let s∈ R̃L, t∈Tid, r∈Res, s⊆ r∩Localt , and∀ t̃ ∈Tid\{t} : s∩Local̃t = /0.
Then∀ σ ∈µ , v∈Y(σ) : r 6∈ rsc(v(pct)) ⇒ ∃ w∈Y(σ) : v∼sw∧ r is available in w.

Proof. We’ll use transfinite induction. Letσ ∈ µ and∀ σ̄∈σ ∀ v∈Y(σ̄) : r 6∈rsc(v(pct)) ⇒
∃w∈Y(σ̄) : v∼sw∧r is available inw. Letv∈Y(σ) such thatr 6∈rsc(v(pct)). Thenσ > 0.
Caseσ = σ̄ +1 for someσ̄ ∈ µ . If r is available inv, takew := v. Otherwise there is

somet̄ ∈ Tid \{t} such thatr ∈ rsc(v(pc̄t)). By definition of ρ̄ there isy ∈ init ∪
post(Y(σ̄)) such thatv∼(Local̄t\

⋃
Res)∪sy. Thenv(pc̄t) = y(pc̄t) andv∼sy. In particular,

r ∈ rsc(y(pc̄t)). Theny 6∈ init. So there isz∈Y(σ̄), τ ∈ Tid such thatz→τ y. Remark
thatr 6∈ rsc(y(pct)).
Caseτ = t. Fromτ 6= t̄ and (1) we obtainrsc(z(pct̄)) = rsc(y(pc̄t)), thusr ∈ rsc(z(pct̄)).

Fromz∈ConsStatewe getr 6∈rsc(z(pct)). Thusr ∈Res\(rsc(y(pct))∪rsc(z(pct))).
From (2) we getz∼r y, soz∼s y, soz∼s v. Apply the induction hypothesis to
σ̄ andz.

Caseτ 6= t. From (1) we obtainz∼Localt y, so z∼s y, so z∼s v. Also z(pct) =
y(pct), thusr 6∈ rsc(z(pct)). Apply the induction hypothesis tōσ andz.

Caseσ is a limit ordinal. Then there is̄σ ∈ σ such thatv ∈ Yσ̄ . Apply the induction
hypothesis tōσ andv.

Lemma 43. Let t∈ Tid, v∈ Q, r ∈ Res\rsc(v(pct)), s∈ R̃L, s⊆ r ∩Localt .
Then∃ w∈Q: v∼s w∧ r is available in w.

Proof. There is someσ ∈ µ such thatv∈Y(σ).
Case there is̃t ∈ Tid\ {t} such thats⊆ Local̃t . By Lemma 40 there is somew∈ init ⊆

Q such thatv∼s w. Notice that all resources are available inw.
Case∀ t̃∈Tid\{t} : s∩Local̃t = /0. Lemma 42 provides a suitablew∈Y(σ) ⊆ Q.

Lemma 44. Let t∈ Tid, v∈ Q, r ∈ Res\ rsc(v(pct)). Then there is w∈ Q such that r is
available in w and w∼Localt∪

⋃
rsc(w(pct)) v.

36

Proof. If r is available inw, takew := v. Otherwise there is̄t ∈ Tid\{t} such thatr ∈
rsc(v(pc̄t)). Lemma 41 implies the existence of someu∈ init such thatu∼(Localt∩Local̄t)\

⋃
Res

v. Let

w : Var→Val, x 7→

{
u(x) , if x∈ (Local̄t\

⋃
Res)∪ ((

⋃
rsc(v(pc̄t)))\Localt) ,

v(x) , otherwise.

We’ll show:
“ rsc(v(pc̄t))∩

⋃
rsc(w(PCVar))= /0”: rsc(v(pc̄t))∩

⋃
rsc(w(PCVar))= rsc(v(pc̄t))∩(rsc(w(pc̄t))

∪
⋃

t̂∈Tid\{t̄} rsc(w(pĉt))) = rsc(v(pc̄t))∩(/0∪
⋃

t̂∈Tid\{t̄} rsc(v(pĉt))) = [sincev∈ConsState]
/0.

“ r is available inw”: Follows from r ∈ rsc(v(pc̄t)).
“w∼Localt∪

⋃
rsc(w(pct))

v”: Let x∈ Localt ∪
⋃

rsc(w(pct)). There are two cases.
Casex∈ (Local̄t\

⋃
Res)∪ ((

⋃
rsc(v(pc̄t)))\Localt). Thenw(x) = u(x).

Casex∈Local̄t\
⋃

Res. Then x ∈ (Localt ∪
⋃

rsc(w(pct)))∩ (Local̄t \
⋃

Res) =
(Localt ∩Local̄t)\

⋃
Res. Thenu(x) = v(x), sow(x) = v(x).

Casex∈(
⋃

rsc(v(pc̄t)))\Localt . Then there is ˜r ∈ rsc(v(pc̄t)) such thatx ∈ r̃.
By the already proven, ˜r 6∈

⋃
rsc(w(PCVar)), so x 6∈

⋃
rsc(w(pct)). Also

x 6∈ Localt . Thusx 6∈ Localt ∪
⋃

rsc(w(pct)), a contradiction.
Casex 6∈ (Local̄t\

⋃
Res)∪ ((

⋃
rsc(v(pc̄t)))\Localt). Thenw(x) = v(x).

“w∈ Q”: We’ll show first thatw is in ρ̄(Q) as follows.
Initially, we’ll show thatw is a consistent state.
For all t̂ ∈ Tid we havew(pct̂) ∈ {u(pĉt),v(pĉt)} ⊆ PL and rsc(u(pĉt)) = /0 ⊆
rsc(v(pĉt)). Thus fort1 6= t2 inTid we haversc(w(pct1))∩rsc(w(pct2))⊆ rsc(v(pct1))∩
rsc(v(pct2)) = /0. Thusw∈ ConsState.
Next, lets∈ R̃L and ˜r ∈ Ressuch thats⊆ r̃. We will show that
“ (r̃ 6∈

⋃
rsc(w(PCVar))⇒∃ŵ∈Q: w∼sŵ∧ r̃ 6∈

⋃
rsc(ŵ(PCVar)))

∧
(
∀ t̃∈Tid : r̃ ∈ rsc(w(pct̃))⇒∃w̌∈Q: w∼(Local̃t\

⋃
Res)∪sw̌

)
”.

Notice thats∩ (Localt \
⋃

Res) = /0.
• Assume for a moment that ˜r 6∈

⋃
rsc(w(PCVar)). We distinguish two cases.

Case ˜r ∈ rsc(v(pct̄)). By part 3 of Lemma 35 one of the following cases holds.
Cases⊆ Localt . Thens∩ ((

⋃
rsc(v(pct̄)))\Localt) = /0, sow∼s v. From

v ∈ ConsStatewe get ˜r 6∈ rsc(v(pct)). By Lemma 43 there is ˆw ∈ Q
such thatv∼s ŵ and ˜r is available in ˆw. Thenw∼s ŵ.

Cases∩Localt = /0. Thenw∼s u. Takeŵ := u.
Case ˜r 6∈ rsc(v(pc̄t)). Thenw∼sv. Fromr̃ 6∈

⋃
t̂∈Tid\{t̄}rsc(w(pĉt)) =

⋃
t̂∈Tid\{t̄}rsc(v(pĉt))

we get that ˜r is available inv. Takeŵ := v.
• Let t̃ ∈ Tid such that ˜r ∈ rsc(w(pct̃)). From ˜r 6∈ /0 = rsc(w(pct̄)) we gett̃ 6= t̄,

so r̃ ∈ rsc(v(pc̃t)). From consistency ofv we get ˜r 6∈ rsc(v(pc̄t)). Thuss∩⋃
rsc(v(pc̄t)) = /0. Sos∩((Local̄t\

⋃
Res)∪ ((

⋃
rsc(v(pc̄t)))\Localt)) = /0, thus

w∼s v. Now letx∈ Local̃t\
⋃

Res. Thenx 6∈ (
⋃

rsc(v(pct̄)))\Localt .
Casex∈ Local̄t\

⋃
Res. Thenx∈ (Local̃t ∩Local̄t)\

⋃
Res= [part 2 of Lemma

39] (
⋂

t̂∈Tid Local̂t)\
⋃

Res= [part 2 of Lemma 39](Localt ∩Local̄t)\
⋃

Res.
Sow(x) = [definition ofw] u(x) = [defining property ofu] v(x).

Casex 6∈ Local̄t\
⋃

Res. Thenw(x) = v(x) by definition ofw.
In total,w∼(Local̃t\

⋃
Res)∪s v. Takew̌ :=v.

37

At last, we’ll prove that “∀ t̃∈Tid ∃ w̃∈ Q : w∼Local̃t\
⋃

Resw̃”.
Let t̃ ∈ Tid. We distinguish two cases.
Casẽt = t̄. Thenw∼Local̃t\

⋃
Resu. Takew̃ := u.

Casẽt 6= t̄. Notice thatLocal̃t \
⋃

Res= ((Local̃t ∩Local̄t)\
⋃

Res)∪(Local̃t \(Local̄t ∪⋃
Res)). We havew∼(Local̃t∩Local̄t)\

⋃
Resu∼(Localt∩Local̄t)\

⋃
Resv. Part 2 of Lemma

39 implies thatLocal̃t ∩ Local̄t = [since t̃ 6= t̄]
⋂

t̂∈Tid Local̂t = [since t 6= t̄]
Localt ∩Local̄t . Therefore,w∼(Local̃t∩Local̄t)\

⋃
Resv. Alsow∼Local̃t\(Local̄t∪

⋃
Res)

v. Takew̃ := v.
We have shownw∈ ρ̄(Q). Fromρ̄(Q) = Q we obtainw∈ Q.

Restatement of Lemma 17.Let t ∈ Tid, (v,v′)∈→t , R= rsc(v(pct)), R′ = rsc(v′(pct)),
r ∈ R′\R, v̂,ṽ∈Q, r is available in ˆv, v∼Localt∪

⋃
R ṽ, v∼r v̂. Then there isw′ ∈ Q such

thatw′ ∼Localt∪
⋃

R′ v′.

Proof. Notice thatr 6∈ rsc(v(pct)) = rsc(ṽ(pct)). Applying Lemma 44 to ˜v we obtain
some ˇv∈ Q such thatr is available in ˇv andv̌∼Localt∪

⋃
rsc(v̌(pct))

ṽ. Let

w : Var→ Val, x 7→

{
v̂(x) , if x∈ r ,

v̌(x) , if x 6∈ r .

We claim:
“ r is available inw”: Follows from rsc(w(PCVar)) = rsc(v̌(PCVar)).
“w∼Localt∪

⋃
R′ v”: By (5) we haveLocalt ∪

⋃
R′ = (Localt\r)∪r∪

⋃
R. Thenw∼(Localt\r)∪

⋃
R

v̌ ∼(Localt\r)∪
⋃

R ṽ∼(Localt\r)∪
⋃

R v andw∼r v̂ ∼r v.
“w∈ Q”: First we’ll show thatw is in ρ̄(Q).

Initially, we’ll show thatw is consistent. For all̂t ∈Tid we havew(pct̂) = v̌(pct̂) ∈
PL. So fort1 6=t2 in Tid we haversc(w(pct1))∩rsc(w(pct2)) = rsc(v̌(pct1))∩rsc(v̌(pct2))
= [sincev̌∈ ConsState] /0.
Next, lets∈ R̃L, r̃ ∈ Res, s⊆ r̃. We have to show two statements.
“ r̃ 6∈

⋃
rsc(w(PCVar))⇒∃ŵ∈Q: w∼sŵ∧ r̃ 6∈

⋃
rsc(ŵ(PCVar))”: Assume for a mo-

ment that ˜r is available inw. We distinguish two cases.
Case ˜r = r. Notice thatw∼r̃ v̂, v̂∈Q and ˜r is available in ˆv. Takeŵ := v̂.
Case ˜r 6= r. Then ˜r∩r = /0, so we havew∼r̃ v̌. Sincersc(w(PCVar)) = rsc(v̌(PCVar)),

we obtain that ˜r is available in ˇv. Takeŵ := v̌.
“∀t̃ ∈Tid: r̃ ∈ rsc(w(pct̃))⇒∃w̌∈Q: w∼(Local̃t\

⋃
Res)∪sw̌”: Let t̃ ∈ Tid such that

r̃ ∈ rsc(w(pct̃)). Sincer is available inw, we haver 6= r̃, sow∼(Local̃t\
⋃

Res)∪s v̌.
Takew̌ := v̌.

At last, we’ll show
“∀ t̃ ∈ Tid ∃ w̃∈ Q: w∼Local̃t\

⋃
Resw̃”: Let t̃ ∈ Tid be given. Thenw∼Local̃t\

⋃
Resv̌.

Takew̃ := v̌.
We have shownw∈ ρ̄(Q). Fromρ̄(Q) = Q we obtainw∈ Q.

By (4) and Remark 23 there isw′ such thatw→t w′ andw′ ∼Localt∪
⋃

R′ v′. Notice that
w′ ∈ post(Q)⊆ Q.

LetO be the lattice of Owicki-Gries-core proofs ofT.

38

Restatement of Theorem 18.The strongest property provable by abstract interpreta-
tion with ρ̄ is provable by the Owicki-Gries core. Formally:

γOG(infO) ⊆ lfp(λx. ρ̄(init ∪post(x))) .

Proof. For eachr ∈ Reslet

Ir = {u∈ (ProofVar(r)→ Val) | ∃ v̂∈ Q : u∼r v̂ ∧ r is available in ˆv} ,

and for allt ∈ Tid, p∈ PL let

Mp,t = {u∈ ((LocalDataVart ∪
⋃

ProofVar(rsc(p)))→ Val) | ∃ ṽ∈ Q :

u∼LocalDataVart∪
⋃

rsc(p) ṽ ∧ ṽ(pct) = p} .

Let P = ((Ir)r∈Res,(Mp,t)p∈PL,t∈Tid). We’ll show thatP is an Owicki-Gries-core proof
that denotes a subset ofQ by proving the following three properties.
Sequential consistency. Lett ∈ Tid, (v,v′) ∈→t , p = v(pct), p′ = v′(pct), R= rsc(p),

R′ = rsc(p′), v|LocalDataVart∪
⋃

ProofVar(R) ∈ Mp,t and∀ r ∈ R′\R : v|ProofVar(r) ∈ Ir . Then
there is ˜v∈ Q such thatv∼LocalDataVart∪

⋃
R ṽ andṽ(pct) = p. Thenṽ(pct) = v(pct).

Thusṽ∼Localt∪
⋃

R v. By (5) there are two cases.
CaseR′ ⊆ R. Thenṽ∼Localt∪

⋃
R′ v. By (4) and Remark 23 there is some ˜v′ ∈ConsState

such that(ṽ, ṽ′)∈→t andṽ′ ∼Localt∪
⋃

R′ v′. Thenṽ′ ∈ post(Q)⊆ Q. Also ṽ′(pct)
= v′(pct) = p′ andṽ′ ∼LocalDataVart∪

⋃
rsc(p′) v′. Thusv′|LocalDataVart∪

⋃
ProofVar(rsc(p′))

∈ Mp′,t .
Now take anyr ∈ R\R′ (by (5) there is one or none). Notice thatr∈ rsc(ṽ(pct)).
Sinceṽ∈ConsState, we getr 6∈

⋃
t̃∈Tid\{t} rsc(ṽ(pc̃t)) = [by (1)]

⋃
t̃∈Tid\{t} rsc(ṽ′(pc̃t)).

Moreover,r 6∈ rsc(ṽ′(pct)). Thusr is available in ˜v′. We havev′∼r [by (3)] v∼r [since
r ∈ R] ṽ∼r [by (3)] ṽ′. Thusv′|ProofVar(r) ∈ Ir .

CaseR′ = R∪̇{r} for somer ∈ Res. From assumptionv|ProofVar(r) ∈ Ir we obtain
some ˆv∈Qsuch thatv∼r v̂ andr is available in ˆv. By Lemma 17 there isw′ ∈Q
such thatw′∼Localt∪

⋃
R′ v′. Fromw′ ∈Q, w′(pct)= p′ andw′ ∼LocalDataVart∪

⋃
rsc(p′)

v′ we obtainv′|LocalDataVart∪
⋃

ProofVar(rsc(p′)) ∈ Mp′,t .
Initial condition. Letv∈ init. Thenv∈ ConsState, all resources are available inv and

v∈ Q. Thus for anyr ∈ Reswe havev|ProofVar(r) ∈ Ir . Now lett ∈ Tid. By definition
of Mv(pct),t we obtainv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t . So v ∈ γOG(P).
We’ve showninit ⊆ γOG(P).

Safe condition. Letv∈ γOG(P). Thenv∈ ConsState.
Let s∈ R̃L, r ∈ Res, s⊆ r. We’ll show two statements.
“ r 6∈

⋃
rsc(v(PCVar))⇒∃v̂∈Q: v∼sv̂∧ r 6∈

⋃
rsc(v̂(PCVar))”: Assume for a moment

thatr 6∈
⋃

rsc(v(PCVar)). The definition ofγOG implies thatv|ProofVar(r) ∈ Ir . So
there is ˆv ∈ Q such thatv∼r v̂ andr is available in ˆv. Thenv∼s v̂.

“∀t∈Tid : r∈ rsc(v(pct))⇒∃v̌∈Q: v∼(Localt\
⋃

Res)∪sv̌”: Let t ∈Tid andr ∈ rsc(v(pct)).
Thenv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ [definition ofγOG] Mv(pct),t . Then there
is ṽ∈Qsuch that ˜v∼LocalDataVart∪

⋃
rsc(v(pct))

vandṽ(pct)= v(pct). Thusṽ∼Localt\
⋃

Res
v andṽ∼s v. Takev̌ := ṽ.

Now we’ll show that
“∀ t ∈ Tid ∃ ṽ ∈ Q: v ∼Localt\

⋃
Res ṽ”: Let t ∈ Tid. The definition ofγOG(P) im-

pliesv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈Mv(pct),t . So there is ˜v∈Q such that ˜v(pct) =

39

v(pct) andṽ∼LocalDataVart∪
⋃

rsc(v(pct))
v. Thenṽ∼Localt\

⋃
Resv.

We’ve shown thatv ∈ ρ̄(Q) ⊆ [sinceQ is in the image ofρ̄ by definition, it is a
fixpoint of ρ̄] Q.
ThusγOG(P)⊆ Q.

Thus any property provable by abstract interpretation withρ̄ has an Owicki-Gries-
core proof.

Corollary 45. Let lfp(λx.ρc(init ∪ post(x))) ⊆ safe∈ D. Then safe has an Owicki-
Gries-core proof.

Proof. Let S= lfp(λx.ρc(init ∪post(x))), S⊆ safe∈ D. From Prop. 38 we get̄ρ(init ∪
post(S))⊆ ρc(init∪post(S)) = S, soSis a postfix point ofλx. ρ̄(init∪post(x)) which is
by Tarski’s fixpoint theorem greater than or equal to its least fixpoint. Thuslfp(λx. ρ̄(init∪
post(x))) ⊆ S⊆ safe. Apply Thm. 18.

Proposition 46. Fix a syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar,
rsc) from StrSimple and let ConsState be the set of consistent states of this syntactic
structure and D its powerset. Let̄ρ andρ be defined for StrSimple as in Sections D and
E, respectively. Then the following statements hold.
1. ρ = ρ̄ .
2. For all RPL transitions systems(init,(→t)t∈Tid) from Simple that have successor

map post and the set of Owicki-Gries-core proofsO we have

γOG(inf(O)) = lfp(λx. ρ̄(init ∪post(x))) = lfp(λx.ρ(init ∪post(x))) .

Proof. 1. LetQ∈ D. Since|Res| ≤ 1, we distinguish two cases.
CaseRes= /0. Then

ρ(Q) = {v∈ ConsState| ∀ t ∈ Tid ∃ ṽ∈ Q: v∼Localt ṽ} = ρ̄(Q) .

CaseRes= {r}. Thenr 6= /0. Thenρ(Q) =





v∈ ConsState

∣∣∣∣∣∣∣∣

(
r 6∈
⋃

rsc(v(PCVar))⇒∃ v̂∈Q:

(
r 6∈
⋃

rsc(v̂(PCVar))
∧ v∼r v̂

))

∧
∀ t ∈ Tid∃ ṽ∈ Q: v∼Localt∪

⋃
rsc(v(pct))

ṽ





[sincer 6= /0 and is disjoint from allLocalt (t ∈ Tid), we haver ∈ R̃L]
= ρ̄(Q).

2. Let (init,(→t)t∈Tid) be an RPL transition system from Simple that obeys the fixed
syntactic structure and has a set of Owicki-Gries-core proofs O and successor
map post. Then lfp(λx.ρ(init ∪ post(x))) ⊆ [Thm. 10] γOG(infO) ⊆ [Thm. 18]
lfp(λx. ρ̄(init ∪post(x))) ⊆ [part 1 of this Lemma]lfp(λx.ρ(init ∪post(x))).

Extension of Example 19.Consider the RPL transition system Readers-Writers from
Example 1.
Notice that|Res|= 1. Moreover,∀ t ∈Tid: Localt ∩control= {pct}∩{ww,ar,aw}= /0

40

andProofVar(control) = control. Thus Readers-Writers belongs to Simple and its syn-
tactic structure belongs to StrSimple. By Prop. 46, part 2, the strongest Owicki-Gries-
core-provable property is equal tolfp(λx. ρ̄(init∪post(x))) = lfp(λx.ρ(init∪post(x))).

⊓⊔

Extension of Example 20.For the RPL transition system Upper from Example 2 we
haveRL= {r, r ′,Local1,Local2}= {{u,z},{x,y},{x, l ,pc1},{y,z,pc2}}, R̃L= {{u},{z},{x},{y},
{l ,pc1},{pc2}}. Let

C = {v∈ ConsState| v(u),v(z),v(x),v(y),v(l) ∈ {0,1} ∧ v(pc2) = O} .

The upper iteration sequence(X(i))i∈ω for λx. ρ̄(init ∪post(x)) starting from /0∈ D is
below.

X(0) = /0,

X(1) = ρ̄(init) = {v∈C | v(pc1) = A} ,

post(X(1)) = {v∈C | v(pc1) = B ∧ v(l) = v(u)} ,

X(2) = ρ̄(init ∪post(X(1))) =

{
v∈C

∣∣∣∣
v(pc1) = A

∨ (v(pc1) = B ∧ v(u) = v(l))

}
,

post(X(2)) = {v∈C | v(pc1) ∈ {B,C} ∧ v(u) = v(l)} ,

X(3) = ρ̄(init ∪post(X(2))) =

{
v∈C

∣∣∣∣
v(pc1) = A

∨ (v(pc1) ∈ {B,C} ∧ v(u) = v(l))

}
,

post(X(3)) =

{
v∈C

∣∣∣∣
(v(pc1) ∈ {B,C} ∧ v(u) = v(l))

∨ (v(pc1) = D ∧ v(u) = v(l) ∧ v(x) = 0)

}
,

X(4) = ρ̄(init ∪post(X(3))) =



v∈C

∣∣∣∣∣∣

v(pc1) = A

∨ (v(pc1) ∈ {B,C} ∧ v(u) = v(l))
∨ (v(pc1) = D ∧ v(u) = v(l) ∧ v(x) = 0)



 ,

post(X(4)) =

{
v∈C

∣∣∣∣
(v(pc1) ∈ {B,C} ∧ v(u) = v(l))

∨ (v(pc1) ∈ {D,E} ∧ v(u) = v(l) ∧ v(x) = 0)

}
,

X(5) = ρ̄(init ∪post(X(4))) =



v∈C

∣∣∣∣∣∣

v(pc1) = A

∨ (v(pc1) ∈ {B,C,E} ∧ v(u) = v(l))
∨ (v(pc1) = D ∧ v(u) = v(l) ∧ v(x) = 0)



 ,

post(X(5)) =

{
v∈C

∣∣∣∣
(v(pc1) ∈ {B,C} ∧ v(u) = v(l))

∨ (v(pc1) ∈ {D,E} ∧ v(u) = v(l) ∧ v(x) = 0)

}
⊆ X(5)

, so

X(6) = ρ̄(init ∪post(X(5))) ⊆ ρ̄(init ∪X(5)) = ρ̄(X5) = X(5)
.

Thus

lfp(λx. ρ̄(init ∪post(x))) =



v∈C

∣∣∣∣∣∣

v(pc1) = A

∨ (v(pc1) ∈ {B,C,E} ∧ v(u) = v(l))
∨ (v(pc1) = D ∧ v(u) = v(l) ∧ v(x) = 0)





is strictly weaker than the strongest Owicki-Gries-core-provable property, e.g., contain-
ing the state[u 7→0,z7→0,x 7→0,y 7→0, l 7→0,pc1 7→A,pc2 7→O] 6∈ γOG(infO). ⊓⊔

41

Extension of Example 22. Fix an RPL transition system from SepThreads. For all
S⊆ ConsStatewe have

ρ̄(S) = {v∈ ConsState| ∀ t ∈ Tid ∃ ṽ∈ S: v∼Localt ṽ} = ρ(S) .

Let F = λx. init ∪post(x) andQ= lfp(F). Notice thatpostis a join-morphism, so isF .
By Kleene’s fixpoint theoremQ=

⋃
i∈N0

F i(/0).

Letv∈ ρ̄(Q). Then there is a mapm: Tid→N0 such that∀ t ∈Tid∃ ṽ∈Fm(t)(/0) : v∼Localt
ṽ. SinceTid is finite and the sequence(F i(/0))i∈N0 is monotonically increasing,∀ t ∈
Tid ∃ ṽ∈ Fmax(m(Tid))(/0) : v∼Localt ṽ. Thusv∈ ρ̄(Fmax(m(Tid))(/0)).
We have shown that̄ρ(Q) ⊆

⋃
i∈N0

ρ̄(F i(/0)). Now we are going to show by induction
that for eachi ∈ N0 the setρ̄(F i(/0)) is a subset ofQ.
Casei = 0.

CaseTid = /0. ThenConsState= {v∈ Var→Val | ∀ t∈Tid : . . .} = (Var→Val) =
{ /0}= ρ̄(/0). By definition of SepThreads,∀ v∈ConsState: ((∀ t∈Tid : . . .)⇒
v∈ init). Thusinit = { /0}. Thenρ̄(F0(/0)) = init ⊆ Q.

CaseTid 6= /0. Thenρ̄(F0(/0)) = /0⊆ Q.
Casei = 1. We haveρ̄(F1(/0)) = ρ̄(init)⊆ [def. of SepThreads]init ⊆ Q.
Casei > 1. Let v ∈ ρ̄(F i(/0)), i.e., v ∈ ρ̄(init ∪ post(F i−1(/0))). There is a subset of

Tid (e.g., the empty subset) such that for allt from this subset there is ˜v ∈ init
such thatv∼Localt ṽ. Let I be a maximal (with respect to inclusion) subset of such
form. Then for allt ∈ Tid\ I there is ˜v∈ post(F i−1(/0)) such thatv∼Localt ṽ. There
is a subset ofTid \ I (e.g., the empty subset) such that for allt from this subset
there is ˜v ∈ F i−1(/0) such thatv ∼Localt ṽ. Let J be a maximal (with respect to
inclusion) such subset. LetK = Tid \ (I ∪ J). For eacht ∈ K there is some ˆv ∈
F i−1(/0) such that there is some ˜v ∈ post({v̂}) such thatv ∼Localt ṽ; maximality
of J implies v̂ 6∼Localt v, so v̂ 6∼Localt ṽ, so (1) implies ˆv→t ṽ. Thus there are maps
f , f ′ : K→ConsStatesuch that∀ t∈K : f (t)∈F i−1(/0)∧ f (t)→t f ′(t)∧ f ′(t)∼Localt
v. Let C =

⋃
t1,t2∈Tid

t1 6=t2

(Localt1 ∩Localt2). There is a maph: ((Var\C) → Tid) such

that∀ x∈Var\C: x∈ Localh(x). Such a maph is unique. There is some enumeration
of K, fix it: K = {τk | 1≤ k≤ n} for n= |K|. For eachk∈ N0∩ [0,n] let

w(k) :Var→Val, x 7→





v(x), if x∈C∪

(
⋃

t∈I∪J
Localt

)
∪

(
k⋃

j=1
Localτ j

)
,

f (h(x))(x), if x∈
n⋃

j=k+1
Localτ j \C.

To show that eachw(k) is well-defined (0≤ k≤ n), notice that

• Var ⊆ C∪

(
⋃

t∈I∪J
Localt

)
∪

(
k⋃

j=1
Localτ j

)
∪

(
n⋃

j=k+1
Localτ j \C

)
;

• (I ∪J)∩K = /0 and the definition ofC imply that fora∈ I ∪J∪{τ j | 1≤ j ≤ k}
andb∈ {τ j | k< j ≤ n} we haveLocala∩ (Localb\C) = /0.

Now we’ll show by induction that for allk∈ N0∩ [0,n] we havew(k) ∈ Q.
Casek= 0. First we’ll show thatw(0) is in ρ̄(F i−1(/0)). Let t ∈ Tid.

42

Caset ∈ I . Thenw(0) ∼Localt v. By definition of I , there is some ˜v∈ init such
thatv∼Localt ṽ. Thenw(0) ∼Localt ṽ. From i −1≥ 1 we getF i−1(/0) ⊇ init
∋ ṽ.

Caset ∈ J. Thenw(0) ∼Localt v. By definition ofJ, there is some ˜v ∈ F i−1(/0)
such thatv∼Localt ṽ. Thenw(0) ∼Localt ṽ.

Caset ∈ K. Letx∈ Localt . There is somej ∈N+∩ [1,n] such thatt = τ j ; then
x∈ Localτ j .

Casex∈C. Thenw(0)(x) = v(x) = f ′(τ j)(x) = [part 1 of Lemma 39) and
x∈C] f (τ j)(x).

Casex 6∈C. Thenw(0)(x) = f (h(x))(x) = [from x∈ Localτ j and unique-
ness ofh] f (τ j)(x).

We have shown that for allx∈ Localτ j we havew(0)(x) = f (τ j)(x). Thus

w(0)∼Localt f (t). Notice thatf (t) ∈ F i−1(/0).
Thusw(0) ∈ ρ̄(F i−1(/0)). By induction hypothesis,̄ρ(F i−1(/0))⊆Q. Thusw(0) ∈
Q.

Casek≥ 1. We are going to show two auxiliary statements.
“ f (τk)∼Localτk

w(k−1)”: Let x∈ Localτk.
Casex∈C. Then f (τk)(x) = [part 1 of Lemma 39]f ′(τk)(x) = v(x) =

w(k−1)(x).
Casex 6∈C. Notice thath(x) = τk. Then f (τk)(x) = w(k−1)(x).

“w(k−1) →τk w(k): From (4) andf (τk)→τk f ′(τk) we obtain somew′ such that
w(k−1) →τk w′ andw′ ∼Localτk

f ′(τk). We’ll show now thatw′ is equal to

w(k). So letx∈ Var.
Casex∈C∪

⋃
t∈I∪J Localt . If x∈C, part 1 of Lemma 39 impliesw′(x) =

w(k−1)(x). If x∈ Localt for somet ∈ I ∪ J, thent 6= τk, so (1) implies
w′(x) = w(k−1)(x). In both casesw′(x) = w(k−1) = v(x) = w(k)(x).

Casex∈ Localτk. Thenw′(x) = f ′(τk)(x) = v(x) = w(k)(x).
Casex∈ Localτ j for somej 6= k. Thenw′(x) = [by (1)] w(k−1)(x). If j <

k, thenw(k−1)(x) = [since j ≤ k−1] v(x) = [since j ≤ k] w(k)(x). If
j > k, thenw(k−1)(x) = [since j ≥ k] f (h(x))(x) = [since j ≥ k+1]
w(k)(x). In both casesw′(x) = w(k)(x).

We have shown thatw′ = w(k). Thusw(k−1) →τk w(k)

By induction hypothesis,w(k−1) ∈ Q. Thenw(k) ∈ post({w(k−1)}) ⊆ post(Q)
⊆ Q.

In particular,v= w(n) ∈ Q.
We have proven by induction that∀ i ∈N0 : ρ̄(F i(/0))⊆Q. Thusρ̄(Q)⊆Q. Soρ̄(F(Q))
= ρ̄(Q) = Q, i.e.,Q is a fixpoint ofρ̄ ◦F. SinceQ= lfp(F) ⊆ lfp(ρ̄ ◦F) ⊆ Q,

lfp(λx. ρ̄(init ∪post(x))) = lfp(λx. init ∪post(x)) .

By theorems 10 and 18 we also get

lfp(λx.ρ(init ∪post(x))) = γOG(infO) =

lfp(λx. ρ̄(init ∪post(x))) = lfp(λx. init ∪post(x)) .

⊓⊔

43

F Absence of equivalent semantic characterization in abstract
interpretation

Given a complete latticeD, a semantic transformationover D is a mapF# ∈ (D →
D)→ D → D such that

– for all join morphismsτ ∈ D → D, the mapF#
τ : D → D is monotone and

– for all join morphismsτ1,τ2 ∈ D → D we have
lfp(τ1) = lfp(τ2)⇒ lfp(F#

τ1
) = lfp(F#

τ2
).

Lemma 47. Let (D,⊆) be a complete lattice and f: (D×D)→ D be any map that is
monotone in the second component. Then

F# : (D→D)→D→D , τ 7→ λx. f

(({
lfp(τ) , if τ is monotone,

supD , otherwise.

)
,x

)

is a semantic transformation.

Proof. For all join morphismsτ ∈ D → D and all elementsx⊆ y of D we haveF#
τ (x)

= f (lfp(τ),x) ⊆ f (lfp(τ),y) = F#
τ (y).

Now take two join morphismsτ1,τ2 ∈ D → D such thatlfp(τ1) = lfp(τ2). Then
lfp(F#

τ1
) = lfp(λx. f (lfp(τ1),x)) = lfp(λx. f (lfp(τ2),x)) = lfp(F#

τ2
).

Example 48. Given a complete latticeD, the following maps are semantic transforma-
tions (where infimum over the empty set is the top ofD):

– λ τ ∈ D→D.λx∈ D. sup(D);
– λ τ ∈ D→D.λx∈ D. inf{y∈ D | τ(y) = y};
– λ τ ∈ D→D.λx∈ D. sup{inf{y∈ D | τ(y) = y},x}. ⊓⊔

Given a syntactic structure(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar, rsc), let

Trace= ConsState∗ , D̃ = P(Trace) and α̃ : D̃ → D, T 7→
⋃

δ∈T

π2(δ) ,

where a trace is viewed as a finite word, i.e., a map fromNn for some naturaln∈N+ to
consistent states, and whereπ2(δ) = {y | ∃ x: (x,y) ∈ δ} is the set of states occurring
in the traceδ .

Given a program(init,(→t)t∈Tid) that obeys the above syntactic structure, has the
set ofinitial tracesĩnit = {{(1,v)} | v∈ init} and thetrace extension operator

p̃ost: D̃ → D̃ , T 7→ {δvv′ | δv∈ T ∧ ∃ t ∈ Tid : (v,v′) ∈→t} .

Restatement of Theorem 6.There is a syntactic structure
(Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar, rsc)
such that forConsState, D, D̃, α̃ defined as above, all the following statements hold:
1. There is no semantic transformationF# over D such that for any RPL transition

system(init, . . .) that obeys the syntactic structure, has successor mappostand the
least Owicki-Gries-core proofP, we have

γOG(P) = lfp(F#
λ x.init∪post(x)) ;

44

2. There is no monotone operatorρ : D → D such that for any RPL transition system
(init, . . .) that obeys the syntactic structure, has successor mappostand the least
Owicki-Gries-core proofP, we have

γOG(P) = lfp(λx.ρ(init ∪post(x))) .

3. There is no monotone operatorρ̃ : D̃ → D̃ such that for any RPL transition system
that obeys the syntactic structure, has a set of initial tracesĩnit, has a trace extension
operatorp̃ostand has the least Owicki-Gries-core proofP, we have

γOG(P) = α̃(lfp(λx. ρ̃(ĩnit ∪ p̃ost(x)))) .

Proof. Consider the syntactic structureSgiven by
– Tid = {1,2};
– PL = {A,B,C, . . . ,V,W};
– Val= PL∪̇{0,1};
– Res= {r, r ′} wherer = {u,z}, r ′ = {x,y};
– Local1 = {l ,x,pc1}, Local2 = {y,z,pc2};
– ProofVar(r) = r andProofVar(r ′) = r ′.
– rsc : PL→P(Res) given by

p A,G,J,M,N,O,P,S,W B,E,F,K,L,T,U,V H,I,Q,R C,D

rsc(p) /0 {r} {r ′} {r, r ′}
The distribution of variables into different sets is given in Figure 4.

r u r ′

Local2 z y pc2

Local1 l x pc1

Fig. 4: Distribution of variables of program UpperA.

Let D be the powerset of the set of consistent states defined byS as stated in the
theorem.

The RPL transition system UpperA defined by Fig. 5 obeysS. It differs from Upper
only at locationA.

We are going to show an Owicki-Gries-core proof of propertyinit for UpperA. Let
Ir = { [u 7→ 0,z 7→ 1], [u 7→ 1,z 7→ 0]}, Ir ′ = { [x 7→ 0,y 7→ 0], [x 7→ 1,y 7→ 1]},
MA,1 = { [x 7→ 0, l 7→ 0], [x 7→ 1, l 7→ 1]},
MO,2 = { [y 7→ 0,z 7→ 0], [y 7→ 1,z 7→ 1]} and
Mx,t = /0 for (x, t) ∈ (PL×Tid)\ {(A,1),(O,2)}.

Let PUpperA= ([r 7→ Ir , r ′ 7→ Ir ′],(Mx,t)x∈PL,t∈Tid). Now we will show thatPUpperA is
an Owicki-Gries-core proof denotinginit.

By definition,PUpperA∈
(P(ProofVar(r)→ Val)×P(ProofVar(r ′)→ Val))×

45

// Thread 1 // Thread 2

A: with r when false do O: assume false;
B: with r ′ do P: with r ′ do

C: x := 0 Q: y := 0
D: endwith; R: endwith;

E: assume false S: with r do

F: endwith; T: u := 0;
G: with r ′ do U: z:= 0
H: x := 0 V: endwith

I: endwith; W:

J: with r do

K: u := 0
L: endwith;

M: l := 0
N:

init = { [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 0, l 7→ 0,pc1 7→ A,pc2 7→ O] ,
[u 7→ 0,z 7→ 1,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ A,pc2 7→ O] } .

Fig. 5: Program UpperA.

(P(LocalDataVar1 → Val)×P(LocalDataVar2 → Val)×
P((LocalDataVar1∪ProofVar(r))→ Val)×
. . .),
where the components are indexed byr, r ′ in the first line and(A,1), (O,2), (B,1) and
so on in the remainder. ThusPUpperA∈ PA. We’ll show:
- sequential consistency. Lett ∈ Tid, (v,v′) ∈→t , R= rsc(v(pct)), R′ = rsc(v′(pct)), as

well asv|LocalDataVart∪
⋃

ProofVar(R) ∈ Mv(pct),t and∀ r̃ ∈ R′ \R : v|ProofVar(r̃) ∈ Ir̃ .
• Casev(pct) ∈ {A,O}. Then threadt can’t proceed fromv, a contradiction.
• Casev(pct) 6∈ {A,O}. Thenv|LocalDataVart∪

⋃
ProofVar(R) ∈ /0, a contradiction.

- initial condition. We have
γOG(PUpperA) = { [u 7→ 1,z 7→ 0,x 7→ 0,y 7→ 0, l 7→ 0,pc1 7→ A,pc2 7→ O],

[u 7→ 0,z 7→ 1,x 7→ 1,y 7→ 1, l 7→ 1,pc1 7→ A,pc2 7→ O]} .
Notice thatinit ⊆ γOG(PUpperA).

SinceγOG(PUpperA)⊆ init, PUpperA is an Owicki-Gries-core proof of propertyinit for the
program UpperA.

The RPL transition system Upper from Example 2 also obeysS and has the same
initial states as UpperA, but, as stated in the example, has no Owicki-Gries-core proof
of init.

Now we’ll show the claims of the theorem.
Let postUbe the successor map of Upper andpostUAthe successor map of UpperA.

Notice thatpostU(init) = postUA(init), since the values of program variablesl andu
are different in each state ofinit. Moreover,init is exactly the set of reachable states of
both Upper and UpperA. In particular,init is the strongest Owicki-Gries-core-provable
property of UpperA.
1. Assume for the purpose of contradiction that a semantic transformationF# overD

exists such that for any RPL transition systemT = (init, . . .) that obeysSand has

46

successor mappostwe have

γOG(the smallest Owicki-Gries-core proof ofT) = lfp(F#
λ x.init∪post(x)) ;

Notice thatλx. init ∪postU(x) andλx. init ∪postUA(x) are join-morphisms on the
same lattice and their least fixpoints coincide. By the assumption, for UpperA
with successor mappostUA, the strongest Owicki-Gries-core-provable property is
lfp(F#

λ x.init∪postUA(x)). Thusinit = lfp(F#
λ x.init∪postUA(x)) = [property ofF#] lfp(F#

λ x.init∪postU(x)).
By the assumption again,init is also the strongest Owicki-Gries-core-provable
property of Upper. Contradiction!

2. Assume for the purpose of contradiction that a monotone operatorρ : D → D ex-
ists such that for any RPL transition systemT = (init, . . .) that obeysS and has
successor mappostwe have

γOG(the smallest Owicki-Gries-core proof ofT) = lfp(λx.ρ(init ∪post(x))) .

Then for UpperA with initial statesinit and successor mappostUAwe havelfp(λx.ρ(init∪
postUA(x))) = init. Thusρ(init∪postUA(init))= init. SincepostUA(init)= postU(init),
we getρ(init ∪postU(init)) = init. Thenlfp(λx.ρ(init ∪postU(x)))⊆ init. Apply-
ing the assumption to Upper, we get an Owicki-Gries-core proof P of Upper such
that γOG(P) ⊆ init. But Upper has no Owicki-Gries-core proof ofinit. Contradic-
tion!

3. Assume for the purpose of contradiction that a monotone operatorρ̃ : D̃→ D̃ exists
such that for any RPL transition systemT = (init, . . .) that obeysSand hasĩnit as
a set of initial traces and the trace extension operatorp̃ostwe have

γOG(the smallest Owicki-Gries-core proof ofT) = α̃(lfp(λx.ρ̃(ĩnit ∪ p̃ost(x)))).

Then for UpperA with the set of initial traces̃init and the trace extension operator

p̃ostUAwe haveinit = α̃(lfp(λx. ρ̃(ĩnit∪p̃ostUA(x)))). From definition of̃α we get

lfp(λx. ρ̃(ĩnit∪ p̃ostUA(x)))⊆ init∗. Consider the upper fixpoint iteration sequence

(Xi)i∈µ for λx. ρ̃(ĩnit ∪ p̃ostUA(x)) that starts withX0 = /0 and whereµ > |D̃| is
some ordinal. This sequence is monotonously increasing andits limit is a subset

of init∗. Sincep̃ostU(init∗) = /0 = p̃ostUA(/0), we haveρ̃(ĩnit ∪ p̃ostU(init∗)) =

ρ̃(ĩnit∪ p̃ostUA(X0)) = X1 ⊆ init∗. Soinit∗ ∈ postfp(λx. ρ̃(ĩnit∪ p̃ostU(x))). Thus

lfp(λx. ρ̃(ĩnit ∪ p̃ostU(x))) ⊆ init∗, so α̃(lfp(λx. ρ̃(ĩnit ∪ p̃ostU(x)))) ⊆ init. By
assumption, the smallest Owicki-Gries-core proof of Upperdenotes a subset of
init. But Upper has no Owicki-Gries-core proof ofinit. Contradiction!

Remark 49. The proof relied on the statementsassume falseto denote blocking. Strictly
speaking, Owicki’s RPL does not have anassume statement. A purist may emulate it
bywhile true do begin end or bywith r ′′ when false do endwith for an empty
fresh resourcer ′′.

It is also possible to rewrite Upper and UpperA into nonblocking terminating pro-
grams usingif-then-else statements.

47

Moreover, the programs of the proof depend on realizabilityof the overlap of re-
sources and locals, but require a relatively small number (five) of data variables.

As a consequence, Thm. 6 holds even for the restricted class of programs that are
written strictly in the original Owicki’s syntax, in which every execution terminates
with threads at their final locations, and that use at most fivedata variables. ⊓⊔

G Improving precision

Now we will show a method, called Relaxed Frontier Search [21], that allows improving
precision of many abstract interpretations, in particular, of the Owicki-Gries core. First
we will show the general case and then specialize it to the Owicki-Gries core.

G.1 Relaxed Frontier Search - in general

Now we will show relaxed frontier search for a large class of abstract transfer functions.
Within Section G.1, let(D,⊆) be a complete lattice of sets,(D#,⊑) a complete

lattice,(α,γ) a pair of adjoint maps,init ∈ D, post: D → D a complete join morphism
andpost# : D# → D# a monotonic operator such that∀Y ∈ D# : αpostγY ⊑ post#Y.

Intuitively, D is the powerset of program states,init is the set of initial states,post
maps a set of states to the set of their direct successors,D# is an abstract lattice used for
analysis andpost# is an abstract transformer.

The relaxed frontier search sequenceis the sequence(T(i))i∈N0 of elements ofD#

defined recursively by
T(0) = α init,

T(i+1) =

{
post#T(i) , if post#T(i) 6⊑

⊔i
j=0T(j) ,

T(i)⊔post#T(i) , if post#T(i) ⊑
⊔i

j=0T(j) .

Let k= min{i | T(i+1) ⊑ T(i)} ∈ N0∪̇{∞} (where∞ = min /0).
Theheightof a partial order is the supremum over cardinalities of its chains.
The above (in general non-monotone) sequence is the basis ofour algorithm, which

needs only elements of the sequence up to positionk. First we prove thatk is well-
defined, and is asymptotically at most quadratic in the height of ⊑.

Proposition 50. If the height h of(D#,⊑) is finite, then k≤ h(h−1).

Proof. Let h be finite. The elements of the monotone sequence(
⊔k′

i=0T(i))k′≥0 build a

chain, so this sequence stabilizes for somek′ ≥ 0, i.e.,T(j) ⊑
⊔k′

i=0T(i) for all j ≥ k′.
Take the smallest suchk′. For all j ≥ k′ we haveT(j+1) ⊒ post#T(j) and thuspost#T(j) ⊑⊔k′

i=0T(i). By definition of the algorithm, the sequence(T(j)) j≥k′ is monotonously in-
creasing. The domain has finite height, so there is ak≥ k′ with T(k+1) = T(k). Take the
smallest suchk.

Now we derive the number of iteration steps. There are two cases
Casepost#T(0) ⊑ T(0). Thenpost#T(0) ⊑

⊔0
j=0T(j), soT(1) =T(0). Thenk=0≤h(h−

1).

48

Casepost#T(0) 6⊑ T(0). Thenpost#T(0) 6⊑
⊔0

j=0T(j), soT(1) = post#T(0) 6⊑ T(0). There-

fore
⊔0

i=0T(i) 6=
⊔1

i=0T(i) (otherwiseT(1) were less than or equal toT(0)).
Since{

⊔ j
i=0T(i) | j ∈N0} is a chain, there are at mosth−1 indicesj > 0 such that

⊔ j−1
i=0 T(i) 6=

⊔ j
i=0T(i), the smallest such index is 1. Consider any two such “neigh-

bor” indicesa< b with

a−1⊔

i=0

T(i) 6=
a⊔

i=0

T(i) and
b−1⊔

i=0

T(i) 6=
b⊔

i=0

T(i) and 0< a

so that for allc with a< c< b we have

c−1⊔

i=0

T(i) =
c⊔

i=0

T(i)
.

The sequence(T(c))a≤c<b is increasing by the definition of the relaxed frontier
sequence. The increase is strict, i.e.,T(c−1) 6= T(c) for a< c< b (since otherwise
the sequence(T(i))i≥c were constant for somec< b, contradicting the choice ofb).
The maximal chain length givesb− a≤ h and finallyk− k′ < h. The number of
such neighbor pairs(a,b) as above is at mosth−2, the last suchb is k′, the first
sucha is 1. Thusk′ − 1 ≤ h(h− 2). Thusk′ ≤ h2− 2h+ 1 andk ≤ k′ + h− 1 ≤
h2−h.

Proposition 51. The set
⋃

i∈N0
γT(i) is an inductive invariant. Formally:

init ∪post

(
⋃

i∈N0

γT(i)

)
⊆
⋃

i∈N0

γT(i)
.

Proof. By extensivity ofγα we obtaininit ⊆ γα init = γT(0). Moreover

post

(
⋃

i∈N0

γT(i)

)
=
⋃

i∈N0

postγT(i) ⊆ [by definition of a pair of adjoint maps]

⊆
⋃

i∈N0

γpost#T(i) ⊆
⋃

i∈N0

γT(i+1) ⊆
⋃

i∈N0

γT(i)
.

Proposition 52. If k < ∞, then
k⋃

i=0
γT(i) is an inductive invariant. Formally:

k< ∞ ⇒ init ∪post

(
k⋃

i=0

γT(i)

)
⊆

k⋃

i=0

γT(i)
.

Proof. By definition ofk we haveT(k+1) ⊑ T(k). If for some j > k we haveT(j) ⊑ T(k),
then T(j+1) ⊑ T(j) ⊔ post#T(j) ⊑ [by assumption and monotonicity ofpost#] T(k) ⊔
post#T(k) ⊑ T(k) ⊔T(k+1) ⊑ [by definition ofk] T(k). By inductionT(j) ⊑ T(k) for all
j ≥ k. ThusγT(j) ⊆ γT(k) for all j ≥ k, implying

⋃k
i=0 γT(i) =

⋃
i∈N0

γT(i).

As a corollary, if(D#,⊑) has a finite height,
⋃k

i=0 γT(i) is an inductive invariant.

49

G.2 Relaxed Frontier Search - specialized for the Owicki-Gries core

Now we are going to specialize relaxed frontier search from Section G.1 to the Owicki-
Gries core8.

Let (Tid,PL,Val,Res,(Localt ,pct)t∈Tid,ProofVar, rsc) be an arbitrary but fixed syn-
tactic structure,D the powerset of consistent states,D# the set of program annotations
equipped with componentwise order,(init,(→t)t∈Tid) an RPL program that obeys the
syntactic structure,post its successor map,O the lattice of Owicki-Gries-core proofs,
and

p#
OG : PA→ PA, (I ,M) 7→









u∈
ProofVar(r)→Val

∣∣∣∣∣∣∣∣

∃ t∈Tid,(v,v′)∈→t : r 6∈ rsc(v′(pct))∧
v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t ∧(
(r 6∈ rsc(v(pct)) ∧ u∈ Ir) ∨
(r ∈ rsc(v(pct)) ∧ u= v|ProofVar(r))

)








r∈Res

,








u∈(
LocalDataVart∪⋃

ProofVar(rsc(p))

)

→Val

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∃ t̃ ∈ Tid\{t},(v,v′)∈→t̃ : u∈ Mp,t∧
v|LocalDataVar̃t∪

⋃
ProofVar(rsc(v(pc̃t)))

∈Mv(pct̃),t̃
∧

(rsc(v(pc̃t))∪ rsc(v′(pc̃t)))∩ rsc(p) = /0




∨


∃ (v,v′) ∈→t : v′(pct) = p∧
u= v′|LocalDataVart∪

⋃
ProofVar(rsc(p))∧

v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))∈Mv(pct),t∧
∀r ∈ rsc(p)\rsc(v(pct)) : v|ProofVar(r) ∈ Ir











p∈PL,
t∈Tid




.

We callp#
OG theimproved Owicki-Gries-core abstract successor map. As before in Sec-

tion C, let

I init = ({v|ProofVar(r) | v∈ init })r∈Res,

Minit = ({v|LocalDataVart | v∈ init ∧ v(pct) = p})p∈PL,t∈Tid .

and theimproved Owicki-Gries-core abstract transformerbe

G#
OG : PA→ PA,
(I ,M) 7→ (I init ,Minit)⊔ p#

OG(I ,M) .

Proposition 53. p#
OG is monotone.

Proof. Let (I ,M) ⊑ (Î ,M̂) be program annotations,p#
OG(I ,M) = (I ′,M′), p#

OG(Î ,M̂) =
(Î ′,M̂′).
“∀ r ∈ Res: I ′r ⊆ Î ′r ”: Let r ∈ Res. Let w∈ I ′r . Then there is a threadt ∈ Tid and some

transitionv →t v′ such thatv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Mv(pct),t , which is a

subset ofM̂v(pct),t , r 6∈ rsc(v′(pct)), and eitherr 6∈ rsc(v(pct)) ∧ w∈ Ir , which is a
subset of̂Ir , or r ∈ rsc(v(pct))∧w= v|ProofVar(r). Thenv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈

8 Using post#OG would not give us more precision: the generated inductive invariant would be
equal toγOG(lfp(F#

OG)). We cannot usenext#OG, as it does not overapproximateαOG◦post◦
γOG in general. We are going to suggest an operator in between: itwill overapproximate
αOG◦post◦γOG and underapproximatepost#OG, allowing more precision in the relaxed frontier
search.

50

M̂v(pct),t ; also eitherr 6∈ rsc(v(pct)) ∧ w∈ Îr , or r ∈ rsc(v(pct))∧w= v|ProofVar(r).
Thusw∈ Î ′r .

“∀ t ∈ Tid, p∈ PL : M′
p,t ⊆ M̂′

p,t ”: Let t ∈ Tid, p ∈ PL. Let w ∈ M′
p,t . There are two

cases.
• Either there is̃t ∈Tid\{t} and(v,v′)∈→t̃ such thatv|LocalDataVar̃t∪

⋃
ProofVar(rsc(v(pct̃)))

∈Mv(pct̃),t̃ , w∈ Mp,t and /0= rsc(p)∩ (rsc(v(pc̃t))∪ rsc(v′(pc̃t))). Notice that
Mp,t ⊆ M̂p,t and Mv(pct̃),t̃

⊆ M̂v(pct̃),t̃
. Thusv|LocalDataVar̃t∪

⋃
ProofVar(rsc(v(pc̃t)))

∈

M̂v(pct̃),t̃ andw∈ M̂p,t . Sow∈ M̂′
p,t .

• Or there is a transitionv→t v′ of the same threadt such thatv′(pct) = p, w=
v′|LocalDataVart∪

⋃
ProofVar(rsc(p)), v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t and
∀ r ∈ rsc(p)\rsc(v(pct)) : v|ProofVar(r) ∈ Ir . Notice thatMv(pct),t ⊆ M̂v(pct),t and
for all r ∈ Reswe haveIr ⊆ Îr . ThenM̂v(pct),t ∋ v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

and∀r ∈ rsc(p)\rsc(v(pct)) : v|ProofVar(r) ∈ Îr . Thenw∈ M̂′
p,t .

Thus the improved Owicki-Gries-core abstract transformeris also monotone.

Proposition 54. The set of Owicki-Gries-core proofs coincides with the set of postfix
points of the improved Owicki-Gries-core abstract transformer. Formally:

O= postfp(G#
OG) .

Proof. “⊆”: Let (I ,M)∈O and(Î ,M̂)= p#
OG(I ,M). We will show that(I ′,M′) := G#

OG(I ,M)
is less than or equal to(I ,M).
“∀ r ∈ Res: I ′r ⊆ Ir ”: Let r ∈ Res. Let w∈ I ′r .

If w ∈ I init
r , there is somev ∈ init such thatv|ProofVar(r) = w. By the initial

condition,v ∈ γOG(I ,M). Since every resource is available in an initial state,
r ∈ Res\

⋃
rsc(v(PCVar)). Thusv|ProofVar(r) ∈ Ir .

Otherwisew ∈ Îr . So there is somet ∈ Tid and some transitionv →t v′ such
thatv|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t , r 6∈ rsc(v′(pct)) and eitherr 6∈
rsc(v(pct)) ∧ w∈ Ir or r ∈ rsc(v(pct))∧w = v|ProofVar(r). Assume for the pur-
pose of contradiction thatw 6∈ Ir . Then r ∈ rsc(v(pct))\ rsc(v′(pct)) ∧ w =
v|ProofVar(r). By (5) we haversc(v(pct)) ⊇ rsc(v′(pct)). Sequential consistency
impliesv′|ProofVar(r) ∈ Ir . Contradiction!
We have shown that in both casesw∈ Ir . SoI ′r ⊆ Ir .

“∀ t ∈ Tid, p∈ PL : M′
p,t ⊆ Mp,t ”: Let t ∈ Tid, p∈ PL. Let w∈ M′

p,t .
If w∈ Minit

p,t , there is somev∈ init such thatv(pct) = p andw = v|LocalDataVart .
By the initial condition,v ∈ γOG(I ,M). From definition ofγOG andrsc(v(pct))
= [v∈ init] /0 we getv|LocalDataVart ∈ Mp,t .
Otherwisew∈ M̂p,t . Assume for the purpose of contradiction thatw 6∈Mp,t . By
definition ofp#

OG there is a transitionv→t v′ such thatw= v′|LocalDataVart∪
⋃

ProofVar(rsc(p)),
v|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈Mv(pct),t , v′(pct)= pand∀ r∈rsc(p)\rsc(v(pct)) :
v|ProofVar(r) ∈ Ir . From sequential consistency we getv′|LocalDataVart∪

⋃
ProofVar(rsc(p)) ∈

Mp,t . Contradiction!
In both casesw∈ Mp,t . SoM′

p,t ⊆ Mp,t .

51

“⊇”: Let (I ,M)∈postfp(G#
OG), i.e., for(I ′,M′) = G#

OG(I ,M) we have(I ′,M′)⊑ (I ,M).
We’ll show that(I ,M) is an Owicki-Gries-core proof.
Sequential consistency: Lett ∈ Tid, (v,v′) ∈→t , p = v(pct), p′ = v′(pct), R =

rsc(p), R′ = rsc(p′), v|LocalDataVart∪
⋃

ProofVar(rsc(p)) ∈ Mp,t and ∀ r ∈ R′ \ R :
v|ProofVar(r) ∈ Ir . By definition ofp#

OG we obtainv′|LocalDataVart∪
⋃

ProofVar(rsc(p′)) ∈

M′
p′,t ⊆ Mp′,t . If any r ∈R\R′ is given, the definition ofp#

OG impliesv′|ProofVar(r)

= [by (3)] v|ProofVar(r) ∈ I ′r ⊆ Ir .
Initial condition: Letv∈ init.

Let r ∈ Res\
⋃

rsc(v(PCVar)). Thenv|ProofVar(r) ∈ I init
r ⊆ I ′r ⊆ Ir .

Now let t ∈ Tid. Thenv|LocalDataVart ∈ Minit
v(pct),t

. Since initial states don’t have

any busy resources,v|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Minit

v(pct),t
⊆ M′

v(pct),t
⊆

Mv(pct),t .
We have shownv∈ γOG(I ,M). Thusinit ⊆ γOG(I ,M).

Corollary 55. The smallest Owicki-Gries-core proof is the least fixpoint of the im-
proved Owicki-Gries-core abstract transformer, formally

lfp(G#
OG) = infO .

Proof. infO= [Prop. 54] inf(postfp(G#
OG)) = [Tarski’s fixpoint theorem]lfp(G#

OG).

Proposition 56. The map p#OG overapproximates the best abstract successor map with
respect to the pair of adjoint maps(αOG,γOG). Formally:

∀ P∈ PA : αOG◦post◦ γOG(P)⊑ p#
OG(P) .

Proof. Let P = (I ,M) ∈ PA, (IL,ML) = αOG◦ post◦ γOG(P), (IR,MR) = p#
OG(P). We

have to show two facts.
“∀ r ∈ Res: IL

r ⊆ IR
r ”: Let r ∈ Res. Let w∈ IL

r . Then there ist ∈ Tid, (v,v′) ∈→t such
thatv∈ γOG(P), r is available inv′ andv′|ProofVar(r) = w. By definition ofγOG we
havev|LocalDataVart∪

⋃
ProofVar(rsc(v(pct)))

∈ Mv(pct),t . There are two cases.
Caser ∈ rsc(v(pct)). Thenrsc(v(pct)) 6= rsc(v′(pct)). From (3) we concludev|ProofVar(r)

= v′|ProofVar(r). Thenw= v|ProofVar(r). By definition ofp#
OG we getw∈ IR

r .
Caser 6∈ rsc(v(pct)). Thenr 6∈ rsc(v(pct))∪rsc(v′(pct)). In particular,r 6∈ rsc(v(pct))∩

rsc(v′(pct)). If x∈ProofVar(r), we havev(x) = v′(x) by definition ofProofVar.
Thusw= v|ProofVar(r). Sincer is available inv′, it is also available inv, since
resources of threads other thant don’t change in the transition. By definition of
γOG we getv|ProofVar(r) ∈ Ir , thusw∈ Ir . By definition ofp#

OG we havew∈ IR
r .

We have shownIL
r ⊆ IR

r .
“∀ p∈ PL, t ∈ Tid : ML

p,t ⊆ MR
p,t ”: Let p∈PL and t ∈Tid. Let w ∈ ML

p,t . Then there is
somet̃ ∈ Tid, (v,v′) ∈→t̃ such thatw = v′|LocalDataVart∪

⋃
ProofVar(rsc(p)), v ∈ γOG(P)

andv′(pct) = p. There are two cases.
Caset 6= t̃. By (1) we havev∼Localt v′. Take anyr ∈ rsc(p); thenr 6∈ rsc(v′(pc̃t));

thusv∼ProofVar(r) v′. So v|LocalDataVart∪
⋃

ProofVar(rsc(p)) = w. From definition of
γOG we getv|LocalDataVar̃t∪

⋃
ProofVar(rsc(v(pct̃)))

∈Mv(pc̃t),t̃ andv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))

∈ Mv(pct),t . Notice thatv(pct) = p. Thusw ∈ Mp,t and from definition of con-
sistent states we getrsc(p) ∩ rsc(v(pc̃t)) = /0. Thus rsc(p) ∩ (rsc(v(pc̃t)) ∪
rsc(v′(pc̃t))) = /0. By definition ofp#

OG we getw∈ MR
p,t .

52

Caset = t̃. By definition ofγOG we getv|LocalDataVart∪
⋃

ProofVar(rsc(v(pct)))
∈ Mv(pct),t .

Consider an arbitraryr ∈ rsc(p)\rsc(v(pct)) (there may be none). Fromv′ ∈
ConsStateand (1) we getr 6∈

⋃
t̂∈Tid\{t} rsc(v(pct̂)). Thusr is available inv.

By definition of γOG we get v|ProofVar(r) ∈ Ir . By definition of p#
OG we get

v′|LocalDataVart∪
⋃

ProofVar(rsc(p)) ∈ MR
p,t . Thusw∈ MR

p,t .
We have shownML

p,t ⊆ MR
p,t .

The last proposition allows usingp#
OG in the relaxed frontier search.

G.3 Examples

Example 57. Consider the program Upper from Example 2. Let(T(i))i∈N0 be the re-
laxed frontier search sequence for Upper. Then:

T(0) = αOG(init) =




[
r 7→ {[u 7→0,z7→1], [u 7→1,z7→0]},
r ′ 7→ {[x 7→0,y 7→0], [x 7→1,y 7→1]}

]
,



(A,1) 7→ {[x 7→0, l 7→0], [x 7→1, l 7→1]},
(O,2) 7→ {[y 7→0,z7→0], [y 7→1,z7→1]},
(everything else) 7→ /0






,

p#
OG(T

(0)) =




[r 7→ /0, r ′ 7→ {[x 7→0,y 7→0], [x 7→1,y 7→1]}] ,

(B,1) 7→ {[u 7→0,z7→1,x 7→0, l 7→0], [u 7→1,z7→0,x 7→1, l 7→1]},
(O,2) 7→ {[y 7→0,z7→0], [y 7→1,z7→1]},
(everything else) 7→ /0







6⊑
0⊔

j=0

T(j)
, soT(1) = p#

OG(T
(0)),

p#
OG(T

(1)) =




[r 7→ /0, r ′ 7→ /0] ,

(C,1) 7→

{
[u 7→0,z7→1,x 7→0,y 7→0, l 7→0],
[u 7→1,z7→0,x 7→1,y 7→1, l 7→1]

}
,

(O,2) 7→ {[y 7→0,z7→0], [y 7→1,z7→1]},
(everything else) 7→ /0







6⊑
1⊔

j=0

T(j)
, soT(2) = p#

OG(T
(1)),

p#
OG(T

(2)) =




[r 7→ /0, r ′ 7→ /0] ,

(D,1) 7→

{
[u 7→0,z7→1,x 7→0,y 7→0, l 7→0],
[u 7→1,z7→0,x 7→0,y 7→1, l 7→1]

}
,

(O,2) 7→ {[y 7→0,z7→0], [y 7→1,z7→1]},
(everything else) 7→ /0







6⊑
2⊔

j=0

T(j)
, soT(3) = p#

OG(T
(2)),

53

p#
OG(T

(3)) =




[r 7→ /0, r ′ 7→ {[x 7→0,y 7→0], [x 7→0,y 7→1]}] ,

(E,1) 7→ {[u 7→0,z7→1,x 7→0, l 7→0], [u 7→1,z7→0,x 7→0, l 7→1]},
(O,2) 7→ {[y 7→0,z7→0], [y 7→1,z7→1]},
(everything else) 7→ /0







6⊑
3⊔

j=0

T(j)
, soT(4) = p#

OG(T
(3)),

p#
OG(T

(4)) =
(
[r 7→ /0, r ′ 7→ /0],(/0)p∈PL,t∈Tid

)
⊑

4⊔

j=0

T(j)
, so

T(5) = T(4)⊔ p#
OG(T

(4)) = T(4)
.

FromT(5) ⊑ T(4) we getk= 4. By Prop. 52, the generated inductive invariant is

k⋃

j=0

γOG(T
(j)) =





[u 7→0,z7→1,x 7→1,y 7→1, l 7→1,pc1 7→A,pc2 7→O],
[u 7→1,z7→0,x 7→0,y 7→0, l 7→0,pc1 7→A,pc2 7→O],
[u 7→0,z7→1,x 7→0,y 7→1, l 7→0,pc1 7→E,pc2 7→O],
[u 7→1,z7→0,x 7→0,y 7→0, l 7→1,pc1 7→E,pc2 7→O]




.

Notice that
⋃k

j=0γOG(T(j)) is strictly stronger thanγOG(infO), e.g.,[u 7→0,z7→1,x 7→

0,y 7→1, l 7→0,pc1 7→A,pc2 7→O] ∈ γOG(infO)\
(⋃k

j=0γOG(T(j))
)

. ⊓⊔

H Comparison to modular methods for general programs

Modular methods for general programs are variants of the original Owicki method [25],
rely-guarantee reasoning [17], thread-modular model-checking [14], local proofs [7]
and multithreaded Cartesian abstraction [20,22]. We are going to compare the Owicki-
Gries core with multithreaded Cartesian abstraction. We will show that the methods for
programs with and without resources, when treated without auxiliary variables, have
similar but incomparable precision.

Fix a syntactic structure and an RPL transition system obeying this syntactic struc-
ture.

Let us consider, for instance, the variant of multithreadedCartesian approximation
on the powerset of states that describes the core of Owicki-Gries for general multi-
threaded programs exactly:

S 7→ {ṽ | ∀ t ∈ Tid ∃ v∈ S: ṽ∼{pct}∪DataVar v} .

This approximation is not directly usable for RPL, since itsvalues are not necessarily
subsets ofConsState. But a similar mapping on the powerset of consistent statesD =
P(ConsState), namely

ρOG,mc : D → D, S 7→ {v∈ ConsState| ∀ t ∈ Tid ∃ ṽ∈ S: v∼{pct}∪DataVar ṽ},

is usable for RPL.

54

Proposition 58. ρOG,mc : D → D is a closure operator on D.

Proof. We will prove the defining properties of a closure.

Monotonicity. LetQ⊆ Q′ be sets of consistent states andv∈ ρOG,mc(Q). Let t ∈ Tid.
Then there is some ˜v ∈ Q such thatv ∼{pct}∪DataVar ṽ. Notice that ˜v ∈ Q′. Thus
v∈ ρOG,mc(Q′). We have shownρOG,mc(Q)⊆ ρOG,mc(Q′).

Extensivity. LetQ ∈ D. Let v ∈ Q. Certainly∀ t ∈ Tid : v ∼{pct}∪DataVar v. Thusv ∈
ρOG,mc(Q). We have shownQ⊆ ρOG,mc(Q′).

Idempotence. LetQ∈ D. Let v∈ ρOG,mc(ρOG,mc(Q)). Let t ∈ Tid. Then there is some
ṽ ∈ ρOG,mc(Q) such thatv ∼{pct}∪DataVar ṽ. Then there is somẽ̃v ∈ Q such that
ṽ ∼{pct}∪DataVar ˜̃v. Then v ∼{pct}∪DataVar ˜̃v. Thus v ∈ ρOG,mc(Q). We have shown
ρOG,mc(ρOG,mc(Q))⊆ ρOG,mc(Q).

Theoretically, other equivalent proof methods (rely-guarantee reasoning, thread-
modular model-checking or local proofs) could be adapted toRPL. However, to the
best of our knowledge, such adaptations have not been cleanly formulated so far. In their
original formulation, they are also not exactly equivalent, e.g., the “locals” of threads in
thread-modular reasoning have to be disjoint, the “locals”of threads in RPL may over-
lap, the “locals” of threads in Owicki-Gries for general multithreaded programs consist
only of the program counters.

The question, whether the straightforward adaptation of thread-modular model check-
ing is equivalent to abstract interpretation withρOG,mc, is not so easy for RPL. However,
at least one direction holds: following the proof of Thm. 1.7.2 in [20], we relatively eas-
ily obtain that abstract interpretation withρOG,mc always proves properties at least as
strong as those provable by thread-modular model checking.

We are going to proceed with comparison of the Owicki-Gries core with abstract
interpretation under the closureρOG,mc.

Example 59 (Readers-Writers).For the program Readers-Writers, letF = λx.ρOG,mc(init∪
post(x)) andQ= lfp(F). We will show thatQ equals the strongest Owicki-Gries-core-

55

provable property

{v∈ ConsState| v(ww),v(ar) ∈ N0 ∧ v(aw) ∈ {0,1}

∧ ∀ i ∈ Nn :

(v(pc
readeri

) ∈ {xready,read | x∈ {start,finish}

∧ y∈ {A,B,C}})

∧ (v(pc
readeri

) = startreadB⇒ v(ww) = 0)

∧ (v(pc
readeri

) = startreadC⇒ v(ww) = 0< v(ar))

∧ ∀ j ∈ Nm :

(v(pc
writer j

) ∈ {xwritey,write | x∈ {ask,start,finish}

∧ y∈ {A,B,C}})

∧ (v(pc
writer j

) = askwriteC⇒ v(ww)> 0)

∧ (v(pc
writer j

) = startwriteB⇒ v(ar) = v(aw) = 0)

∧ (v(pc
writer j

) = startwriteC⇒ v(ar) = 0< v(aw))

∧ (v(pc
writer j

) = finishwriteC⇒ v(aw) = 0)} .

“⊆”: First we show the right hand side (RHS) is closed underρOG,mc. Letv∈ ρOG,mc(RHS).
By definition ofρOG,mc there is somew∈ RHS such thatv∼{pc

reader1
,ww,ar,aw} w.

Thenv(ww), v(ar) ∈ N0 andv(aw) ∈ {0,1}.
Let i ∈Nn. Then there isw∈RHS such thatv∼{pcreaderi

,ww,ar,aw} w. Thusv(pc
readeri

)

∈ {startreadA,startreadB,startreadC,read,finishreadA,finishreadB,finishreadC}.
If v(pc

readeri
) = startreadB, thenw(pc

readeri
) = startreadB, sow(ww) = 0 by

definition of RHS, sov(ww)= 0. If v(pc
readeri

)= startreadC, thenw(pc
readeri

)=
startreadC, sow(ww) = 0< w(ar) by definition of RHS, sov(ww) = 0< v(ar).
Let j ∈Nm. Then there isw∈RHS such thatv∼{pc

writer j
,ww,ar,aw} w. Thusv(pc

writer j
)

∈ {askwriteA,askwriteB,askwriteC,startwriteA,startwriteB,startwriteC,
write,finishwriteA,finishwriteB,finishwriteC}. If v(pc

writer j
)= askwriteC,

thenw(pc
writer j

) = askwriteC, sow(ww) > 0, sov(ww) > 0. If v(pc
writer j

) =

startwriteB, thenw(pc
writer j

) = startwriteB, sow(ar) =w(aw) = 0, sov(ar)
= v(aw) = 0. If v(pc

writer j
) = startwriteC, thenw(pc

writer j
) = startwriteC,

sow(ar) = 0 < w(aw), sov(ar) = 0 < v(aw). If v(pc
writer j

) = finishwriteC,
thenw(pc

writer j
) = finishwriteC, sow(aw) = 0, sov(aw) = 0.

Thus v ∈ RHS. Sincev was arbitrary,ρOG,mc(RHS) ⊆ RHS. Notice thatinit ∪
post(RHS) ⊆ RHS, thusρOG,mc(init ∪ post(RHS)) ⊆ RHS, so RHS is a postfix
point ofF, soQ⊆ RHS.

“⊇”: Let
CritR = {xready | x∈ {start,finish}, y∈ {B,C}},
CritW = {xwritey | x∈ {ask,start,finish}, y∈ {B,C}},
NonCritR = {read,xreadA | x∈ {start,finish}},
NonCritW= {write,xwriteA | x∈ {ask,start,finish}} .

56

(I) First we will show that for alla,b ∈ N0, c ∈ {0,1}, the statev with (∀ i ∈
Nn : v(pc

readeri
) = startreadA) ∧ (∀ j ∈Nn : v(pcwriter j

) = askwriteA) ∧

v(ww) = a∧ v(ar) = b ∧ v(aw) = c is in Q.
We will do that in 3 steps.
Step 1. We’ll show this claim fora= b= 0. If c= 0, notice that such a state

is in init ⊆ Q. Otherwisec = 1. Take the initial state, make 3 steps of
writer1, resulting in a statev1∈Q with v1(pc

writer1
) = startwriteA,

all other writers are ataskwriteA, all readers are atstartreadA, v1(ww)=
1, v1(ar) = 0, v1(aw) = 0. Making 3 steps ofwriter2 from the initial
state results in a statev2 ∈ Q with v2(pc

writer2
) = startwriteA, all

other writers are ataskwriteA, all readers are atstartreadA, v2(ww)=
1,v2(ar)=0,v2(aw)= 0. Consider the statev3 such thatv3(pc

writer1
)=

v3(pc
writer2

) = startwriteA ∧ (∀ j ∈ Nm \ {1,2} : v3(pc
writer j

) =

askwriteA) ∧ (∀ i ∈ Nn : v3(pc
readeri

) = startreadA) ∧ v3(ww) = 1
∧ v3(ar) = v3(aw) = 0. By definition ofρOG,mc, v3∈ Q. Making seven
steps ofwriter1 from v3 results in a statev4∈ Q such that(∀ i ∈ Nn :
v4(pc

readeri
) = startreadA) ∧ v4(pc

writer2
) = startwriteA∧ (∀ j ∈

Nm\{2} : v4(pc
writer j

) = askwriteA) ∧ v4(ww) = v4(ar) = v4(aw) =
0. Making three steps ofwriter2 from v4 results in a statev5∈ Q such
that(∀ i ∈ Nn : v5(pc

readeri
) = startreadA) ∧ v5(pc

writer2
) = write

∧ (∀ j ∈ Nm\ {2} : v5(pc
writer j

) = askwriteA) ∧ v5(ww) = v5(ar)
= 0 ∧ v5(aw) = 1. Analogously, starting fromv3, making seven steps
of writer2 and three steps ofwriter1 results in a statev6 ∈ Q such
that(∀ i ∈ Nn : v6(pc

readeri
) = startreadA) ∧ v6(pc

writer1
) = write

∧ (∀ j ∈ Nm\ {1} : v6(pc
writer j

) = askwriteA) ∧ v6(ww) = v6(ar) =
0 ∧ v6(aw) = 1. By definition ofρOG,mc there is somev7∈ Q such that
(∀ i ∈ Nn : v7(pc

readeri
) = startreadA) ∧ (∀ j ∈ Nm : v7(pc

writer j
) =

askwriteA) ∧ v7(ww) = v7(ar) = 0 ∧ v7(aw) = 1. Thenv7 satisfies
the stated conditions forv.

Step 2. Now we will show that for allb ∈ N0, c ∈ {0,1}, the statev with
(∀ i ∈ Nn : v(pc

readeri
) = startreadA) ∧ (∀ j ∈ Nm : v(pc

writer j
) =

askwriteA) ∧ v(ww) = 0∧ v(ar) = b∧ v(aw) = c is in Q.
For b = 0 the claim has been shown in step 1. Now assume thatb > 0
and the claim has been proven forb− 1. Let c ∈ {0,1}. By induction
assumption there is a statev1 ∈ Q in which each thread sits at its ini-
tial location andv1(ww) = 0 ∧ v1(ar) = b− 1 ∧ v1(aw) = c. Mak-
ing three steps ofreader1 from v1 results in a statev2 ∈ Q such that
v2(pc

reader1
) = read ∧ (∀ i ∈ Nn \ {1} : v2(pc

readeri
) = startreadA)

∧ (∀ j ∈Nm : v2(pc
writer j

) = askwriteA) ∧ v2(ww) = 0∧ v2(ar) = b
∧ v2(aw) = c. Making three steps ofreader2 from v1, we get a state
v3∈Q such thatv3(pc

reader2
) = read∧ (∀ i ∈Nn\{2} : v3(pc

readeri
) =

startreadA) ∧ (∀ j ∈Nm : v3(pc
writer j

) = askwriteA) ∧ v3(ww) = 0
∧ v3(ar) = b ∧ v3(aw) = c. SinceQ is a fixpoint ofρOG,mc, the statev

57

in which all threads are at their initial locations,v(ww) = 0 ∧ v(ar) = b
∧ v(aw) = c is in Q.

Step 3. Now we will show that for alla∈ N0, b∈ N0, c∈ {0,1}, the statev
with (∀ i ∈Nn : v(pc

readeri
)= startreadA)∧ (∀ j ∈Nm : v(pc

writer j
)=

askwriteA) ∧ v(ww) = a∧ v(ar) = b∧ v(aw) = c is in Q.
Fora= 0 the claim has been shown in step 2. Now assume thata> 0 and
the claim has been proven fora−1. Letb∈N0, c∈ {0,1}. By induction
assumption there is a statev1∈ Q in which each threads sits at its initial
location,v(ww) = a− 1 ∧ v(ar) = b ∧ v(aw) = c. Making three steps
of writer1 from v1 results in a statev2∈ Q such thatv2(pc

writer1
) =

startwriteA, all other threads are at their initial locations,v2(ww) = a
∧ v2(ar) = b ∧ v2(aw) = c. Making three steps ofwriter2 from v1
results in a statev3 ∈ Q such thatv3(pc

writer2
) = startwriteA, all

other threads are at their initial locations,v3(ww) = a ∧ v3(ar) = b ∧
v3(aw) = c. Fromv2∈ Q, v3∈ Q and the definition ofρOG,mc we obtain
that the statev such that all threads inv are at their initial locations,
v(ww) = a∧ v(ar) = b∧ v(aw) = c is in Q.

(II) We’ll show now that for alla,b ∈ N0, c ∈ {0,1}, i ∈ Nn the statev such
thatv(pc

readeri
) = read ∧ (∀ k ∈ Nn \ {i} : v(pc

readerk
) = startreadA) ∧

(∀ j ∈Nm : v(pc
writer j

)= askwriteA)∧ v(ww)= a∧ v(ar)=b∧ v(aw)= c
is in Q. We’ll use induction ona.
Casea= 0. Let b ∈ N, c ∈ {0,1}, i ∈ Nn. From (I) we already know that

there is somev1 ∈ Q in which all threads are at their initial locations,
v1(ww) = 0 ∧ v1(ar) = b ∧ v1(ar) = c. Making three steps by thread
readeri results in a statev2 ∈ Q such thatv2(pc

readeri
) = read, all

other threads are at their initial location,v2(ww) = 0 ∧ v2(ar) = b+1
∧ v2(aw) = c. Sincen ≥ 2, there is somek ∈ Nn \ {i}. Making three
steps fromv1 by threadreaderk results in a statev3 ∈ Q such that
v3(pc

readerk
) = read, all other threads are at their initial locations,v3(ww)=

0 ∧ v3(ar) = b+ 1 ∧ v3(aw) = c. Combiningv2 ∈ Q, v3 ∈ Q and us-
ing the definition ofρOG,mc we obtainv4 ∈ Q such thatv4(pc

readeri
)

= v4(pc
readerk

) = read, all threads exceptreaderi andreaderk are
at their corresponding initial location,v4(ww) = 0, v4(ar) = b+1 and
v4(aw) = c. Making four steps fromv4 by threadreaderk results in the
statev∈Qsuch thatv(pc

readeri
) = read∧ (∀ l ∈Nn\{i} : v(pc

readerl
)=

startreadA) ∧ v(ww) = 0∧ v(ar) = b ∧ v(aw) = c.
Casea> 0. Letb∈N, c∈ {0,1}, i ∈Nn. By assumption hypothesis there is

v1∈ Q such thatv1(pc
readeri

) = read, all other threads are at their ini-
tial locations,v1(ww) = a−1∧ v1(ar) = b ∧ v1(aw) = c. Taking three
steps ofwriter1 from v1 results in a statev2∈Q such thatv2(pc

readeri
)

= read ∧ v2(pc
writer1

) = startwriteA, all other threads are at their
initial locations,v2(ww) = a ∧ v2(ar) = b ∧ v2(aw) = c. In particular,
v2(pc

writer2
) = askwriteA. Taking three steps ofwriter2 from v1 re-

sults in a statev3∈ Q such thatv3(pc
readeri

) = read ∧ v3(pc
writer2

) =
startwriteA, all other threads are at their initial locations,v3(ww) = a

58

∧ v3(ar) = b ∧ v3(aw) = c. In particular,v3(pc
writer1

) = askwriteA.
Combiningv2∈ Q andv3 ∈ Q we get that the statev with v(pc

readeri
)

= read, all other threads are at their initial locations,v(ww) = a ∧
v(ar) = b∧ v(aw) = c is in Q.

(III) We claim that for everyi ∈ Nn, a,b ∈ N0, c ∈ {0,1}, the statev such that
v(pc

readeri
) = finishreadA∧ (∀ k∈Nn\{i} : v(pc

readerk
)= startreadA)

∧ (∀ j ∈Nm : v(pc
reader j

)= askwriteA)∧ v(ww)= a∧ v(ar)= b∧ v(aw)=
c is in Q.
To see that, make one step from a state described in (II).

(IV) We claim that for alla,b ∈ N0, c ∈ {0,1}, j ∈ Nm, the statev such that
(∀ i ∈ Nn : v(pc

readeri
) = startreadA) ∧ v(pc

writer j
) = startwriteA ∧

(∀ k ∈ Nm\ { j} : v(pc
writerk

) = askwriteA) ∧ v(ww) = a ∧ v(ar) = b ∧
v(aw) = c is in Q. Let a∈N0. We case split ona.
Casea= 0. We’ll induct onb.

Caseb= 0. Let j ∈Nm, c∈ {0,1}. Making from the initial state (which
is inQ) three steps ofwriter j results inv1∈Qsuch thatv1(pc

writer j
)

= startwriteA, all other threads are at their initial locations,v1(ww)=
1 ∧ v1(ar) = v1(aw) = 0. Sincem≥ 2, there is somek ∈ Nm \
{ j}. Taking three steps ofwriterk from the initial state results in
v2 ∈ Q such thatv2(pc

writerk
) = startwriteA, all other threads

are at their initial locations,v2(ww) = 1 ∧ v2(ar) = v2(aw) = 0.
Combiningv1∈ Q andv2 ∈ Q, we obtain a statev3∈ Q such that
v3(pc

writer j
) = v3(pc

writerk
) = startwriteA, all other threads are

at their initial locations,v3(ww) = 1 ∧ v3(ar) = v3(aw) = 0. Mak-
ing seven steps ofwriterk from v3 results in a statev4 ∈ Q such
thatv4(pc

writer j
) = startwriteA, all other threads are at their ini-

tial locations,v4(ww) = v4(ar) = v4(aw) = 0.
Casec= 0. Notice thatv4 satisfies all the requirements forv.
Casec= 1. Making seven steps ofwriter j from v3 results in a

statev5 ∈ Q such thatv5(pc
writerk

) = startwriteA, all other
threads are at their initial locations,v5(ww) = v5(ar) = v5(aw)
= 0. Combiningv4 ∈ Q, v5 ∈ Q and the definition ofρOG,mc,
results in a statev6 ∈ Q such thatv6(pc

writer j
) = v6(pc

writerk
)

= startwriteA, all other threads are at their initial locations,
v6(ww) = v6(ar) = v6(aw) = 0. Making three steps ofwriterk

fromv6 results in a statev7∈Qsuch thatv7(pc
writer j

) = startwriteA

∧ v7(pc
writerk

) = write, all other threads are at their initial lo-
cations,v7(ww) = v7(ar) = 0 ∧ v7(aw) = 1. By (I) there is
some statev8 ∈ Q in which all threads are at their initial loca-
tions andv8(ww) = v8(ar) = 0∧ v8(aw) = 1. Combiningv7∈ Q
andv8 ∈ Q, we obtain the statev ∈ Q such thatv(pc

writer j
) =

startwriteA, all other threads are at their initial locations, and
v(ww) = v(ar) = 0∧ v(aw) = 1.

Caseb≥ 1. Let j ∈ Nm, c ∈ {0,1}. By induction assumption there is
somev1 ∈ Q such thatv1(pc

writer j
) = startwriteA, all other

59

threads are at their initial locations,v1(ww) = 0 ∧ v1(ar) = b−1
∧ v1(aw) = c. Making three steps ofreader1 from v1 results in
a statev2 ∈ Q such thatv2(pc

reader1
) = read ∧ v2(pc

writer j
) =

startwriteA, all other threads are at their initial locations,v2(ww)=
0 ∧ v2(ar) = b ∧ v2(aw) = c. Making three steps ofreader2 from
v1 results in a statev3∈Qsuch thatv3(pc

reader2
) = read∧ v3(pc

writer j
)

= startwriteA, all other threads are at their initial locations,v3(ww)=
0∧ v3(ar)= b∧ v3(aw)= c. Notice thatv2(pc

reader2
) = v3(pc

reader1
)

= startreadA. Fromv2∈ Q, v3∈ Q we get the statev ∈ Q such
thatv(pc

writer j
) = startwriteA, all other threads are at their ini-

tial locations,v(ww) = 0∧ v(ar) = b∧ v(aw) = c.
Casea≥ 1. Let j ∈ Nm, b∈ N0, c∈ {0,1}. From (I) we obtain a statev1∈

Q in which all threads are at their initial locations,v1(ww) = a− 1 ∧
v1(ar) = b ∧ v1(aw) = c. Making three steps bywriter j results in a
statev∈ Q such thatv(pc

writer j
) = startwriteA, all other threads are

at their initial locations,v(ww) = a ∧ v(ar) = b∧ v(aw) = c.
(V) We claim that for alla,b∈N0, c∈ {0,1}, j ∈Nm the statev such that(∀ i ∈

Nn : v(pc
readeri

) = startreadA) ∧ v(pc
writer j

) = write∧ (∀ k∈Nm\{ j} :
v(pc

writerk
) = askwriteA) ∧ v(ww) = a∧ v(ar) = b∧ v(aw) = c is in Q.

We’ll use induction ona.
Casea= 0. We’ll use induction onb.

Caseb= 0. Letc∈ {0,1}, j ∈ Nm.
Casec= 0. Making six steps ofwriter j from the initial state re-

sults in a statev1 ∈ Q such thatv1(pc
writer j

) = write, other
threads are at their initial locations,v1(ww) = v1(aw) = 1 and
v1(ar) = 0. Letk∈ Nm\ { j}. Making six steps ofwriterk from
the initial state results in a statev2 ∈ Q such thatv2(pc

writer j
)

= write, other threads are at their initial locations,v2(ww) =
v2(aw) = 1 andv2(ar) = 0. Combiningv2∈ Q, v3∈Q andk 6= j,
we obtain a statev3∈ Q such thatv3(pc

writer j
) = v3(pc

writerk
)

= write, other threads are at their initial locations,v3(ww) =
v3(aw) = 1 andv3(ar) = 0. Making four steps ofwriterk from
v3 results in the statev ∈ Q such thatv(pc

writer j
) = write, all

other threads are at their initial locations,v(ww) = v(aw) = v(ar)
= 0.

Casec=1. By (IV) the statev1 such thatv1(pc
writerj

)= startwriteA,
all other threads are at their initial locations,v1(ww) = v1(ar) =
v1(aw) = 0 is inQ. Make three steps by threadwriter j .

Caseb≥ 1. Letc∈ {0,1}, j ∈ Nm.
By induction assumption, there is a statev1∈Qsuch thatv1(pc

writer j
)

= write, other threads are at their initial locations,v1(ww) = 0
∧ v1(ar) = b− 1 ∧ v1(aw) = c. Making three steps ofreader1

from v1 results in a statev2 ∈ Q such thatv2(pc
writer j

) = write,
v2(pc

reader1
) = read, all other threads (includingreader2) are at

60

their initial locations,v2(ww) = 0∧ v2(ar) = b∧ v2(aw) = c. Mak-
ing three steps ofreader2 from v1 results in a statev3 ∈ Q such
thatv3(pc

writer j
) = write, v3(pc

reader2
) = read, all other threads

(including reader1) are at their initial locations,v3(ww) = 0 ∧
v3(ar) = b ∧ v3(aw) = c. Combiningv2 ∈ Q andv3 ∈ Q we get
the statev∈ Q such thatv(pc

writer j
) = write, all other threads are

at their initial locations andv(ww) = 0 ∧ v(ar) = b∧ v(aw) = c.
Casea≥ 1. Let b∈ N0, c∈ {0,1}, j ∈ Nm. By induction hypothesis, there

is somev1 ∈ Q such thatv1(pc
writer j

) = write, all other threads are
at their initial locations,v1(ww) = a−1,v1(ar) = b, v1(aw) = c. Since
m≥ 2, there isk ∈ Nm such thatk 6= j. Making three steps ofwriterk

fromv1 results in a statev2∈Qsuch thatv2(pc
writer j

) = write, v2(pc
writerk

)

= startwriteA, v2(ww) = a, v2(ar) = b, v2(aw) = c. By (I), there is a
statev3∈Q in which all threads are at their initial locations,v3(ww) = a,
v3(ar) = b, v3(aw) = c. In particular,v3(pc

writerk
) = askwriteA. From

v2 ∈ Q and v3 ∈ Q we obtain that the statev such thatv(pc
writer j

)

= write, all other threads are at their initial locations,v(ww) = a ∧
v(ar) = b∧ v(aw) = c is in Q.

(VI) We claim that for alla,b∈ N0, c∈ {0,1}, j ∈ Nm the statev∈ Q such that
(∀ i ∈ Nn : v(pc

readeri
) = startreadA) ∧ v(pc

writer j
) = finishwriteA ∧

(∀ k ∈ Nm\ { j} : v(pc
writerk

) = askwriteA) ∧ v(ww) = a ∧ v(ar) = b ∧
v(aw) = c is in Q.
To see that, leta,b∈ N0, c∈ {0,1}, j ∈ Nm, and make one step ofwriter j

from the corresponding state from (V).
(VII) We claim that for alla,b ∈ N0, c ∈ {0,1}, any statev such that(∀ i ∈ Nn :

v(pc
readeri

)∈NonCritR) ∧ (∀ j ∈Nm : v(pc
writer j

)∈NonCritW) ∧ v(ww)=
a∧ v(ar) = b∧ v(aw) = c is in Q.
This follows from (I), (II), (III), (IV), (V), (VI) and the definition of ρOG,mc.

(VIII) We claim that for allb∈N0, c∈{0,1}, i ∈Nn, any statevsuch thatv(pc
readeri

)
= startreadB ∧ (∀ k ∈ Nn \ {i} : v(pc

readerk
) ∈ NonCritR) ∧ (∀ j ∈ Nm :

v(pc
writer j

) ∈ NonCritW) ∧ v(ww) = 0∧ v(ar) = b∧ v(aw) = c is in Q.
To see that, letb∈ N0, c∈ {0,1}, i ∈ Nn, andv as above. By (VII), the state
v1= v[pc

readeri
7→startreadA] is in Q. Make one step ofreaderi .

(IX) We claim that for allb∈N+, c∈{0,1}, i ∈Nn, any statevsuch thatv(pc
readeri

)
= startreadC ∧ (∀ k ∈ Nn \ {i} : v(pc

readerk
) ∈ NonCritR) ∧ (∀ j ∈ Nm :

v(pc
writer j

) ∈ NonCritW) ∧ v(ww) = 0∧ v(ar) = b∧ v(aw) = c is in Q.

To see that, letb∈ N+, c∈ {0,1}, i ∈ Nn andv as stated. By (VIII) the state
v1= v[pc

readeri
7→startreadB,ar 7→b−1] is in Q. Make one step of thread

readeri .
(X) We claim that for alla,b ∈ N0, c ∈ {0,1}, i ∈ Nn, any statev such that

v(pc
readeri

) = finishreadB∧ (∀ k∈Nn\{i} : v(pc
readerk

) ∈ NonCritR) ∧
(∀ j ∈Nm : v(pc

writer j
)∈ NonCritW) ∧ v(ww) = a∧ v(ar) = b∧ v(aw) = c

is in Q.

61

To see that, leta,b∈N0, c∈ {0,1}, i ∈Nn, v as required. By (VII), the state
v1= v[pc

readeri
7→finishreadA] is in Q. Take one step byreaderi from v1.

(XI) We claim that for alla,b ∈ N0, c ∈ {0,1}, i ∈ Nn, any statev such that
v(pc

readeri
) = finishreadC∧ (∀ k∈Nn\{i} : v(pc

readerk
) ∈ NonCritR) ∧

(∀ j ∈Nm : v(pc
writer j

)∈ NonCritW) ∧ v(ww) = a∧ v(ar) = b∧ v(aw) = c
is in Q.
To see that, leta,b∈ N0, c∈ {0,1}, i ∈ Nn andv as above. By (X), the state
v1= v[pc

readeri
7→finishreadB,ar 7→b+1] is in Q. Take one step by thread

readeri .
(XII) We claim that for all a,b ∈ N0, c ∈ {0,1}, j ∈ Nm any statev such that

(∀ i ∈ Nn : v(pc
readeri

) ∈ NonCritR) ∧ v(pc
writer j

) = askwriteB ∧ (∀ k ∈

Nm\ { j} : v(pc
writerk

) ∈ NonCritW) ∧ v(ww) = a∧ v(ar) = b ∧ v(aw) = c
is in Q.
To see that, leta,b∈ N0, c∈ {0,1}, j ∈ Nm, v as stated. By (VII), the state
v1= v[pc

writer j
7→askwriteA] is in Q. Apply one step ofwriter j .

(XIII) We claim that for all a ∈ N+, b ∈ N0, c ∈ {0,1}, j ∈ Nm any statev such
that (∀ i ∈ Nn : v(pc

readeri
) ∈ NonCritR) ∧ v(pc

writer j
) = askwriteC ∧

(∀ k ∈ Nm \ { j} : v(pc
writerk

) ∈ NonCritW) ∧ v(ww) = a ∧ v(ar) = b ∧
v(aw) = c is in Q.
To see that, leta∈ N+, b∈ N0, c∈ {0,1}, j ∈ Nm andv as stated. By (XII)
the statev1= v[pc

writer j
7→askwriteB,ww7→a−1] is in Q. Apply one step

of writer j to v1.
(XIV) We claim that for all a ∈ N0, j ∈ Nm any statev such that(∀ i ∈ Nn :

v(pc
readeri

)∈NonCritR) ∧ v(pc
writer j

) = startwriteB∧ (∀ k∈Nm\{ j} :
v(pc

writerk
) ∈ NonCritW) ∧ v(ww) = a ∧ v(ar) = v(aw) = 0 is in Q.

To see that, leta∈N0, j ∈Nm, vas stated. By (VII) the statev1= v[pc
writer j

7→

startwriteA] is in Q. Apply one step ofwriter j to v1.
(XV) We claim that for all a ∈ N0, j ∈ Nm any statev such that(∀ i ∈ Nn :

v(pc
readeri

)∈NonCritR) ∧ v(pc
writer j

) = startwriteC∧ (∀ k∈Nm\{ j} :
v(pc

writerk
) ∈ NonCritW) ∧ v(ww) = a ∧ v(ar) = 0∧ v(aw) = 1 is inQ.

To see that, leta ∈ N0, j ∈ Nm and v as stated. By (XIV) the statev1 =
v[pc

writer j
7→ startwriteB,aw 7→ 0] is in Q. Make one step fromv1 by

threadwriter j .
(XVI) We claim that for alla,b∈N0, c∈ {0,1}, j ∈Nm any statev such that(∀ i ∈

Nn : v(pc
readeri

) ∈ NonCritR) ∧ v(pc
writer j

) = finishwriteB ∧ (∀ k ∈

Nm\ { j} : v(pc
writerk

) ∈ NonCritW) ∧ v(ww) = a∧ v(ar) = b ∧ v(aw) = c
is in Q.
To see that, leta,b∈N0, c∈ {0,1}, j ∈Nm, v as stated. By (VII) the statew
= v[pc

writer j
7→finishwriteA] is in Q. Apply one step ofwriter j from w.

(XVII) We claim that for all a,b ∈ N0, j ∈ Nm any statev such that(∀ i ∈ Nn :
v(pc

readeri
) ∈ NonCritR) ∧ v(pc

writer j
) = finishwriteC ∧ (∀ k ∈ Nm\

{ j} : v(pc
writerk

) ∈ NonCritW) ∧ v(ww) = a ∧ v(ar) = b ∧ v(aw) = 0 is in
Q.

62

To see that, leta,b ∈ N0, j ∈ Nm, v as stated. By (XVI) the statew =
v[pc

writer j
7→ finishwriteB,aw 7→ 1] is in Q. Apply one step ofwriter j

from w.
Let v∈RHS. Ifcontrol is available inv, apply (VII). Otherwise there is some thread
at a critical location. . .B or . . .C. If the critical location is in a reader, apply one of
(VIII), (IX), (X), (XI), if the critical location is in a writer, apply one of (XII),
(XIII), (XIV), (XV), (XVI), (XVII).

Thus the precision of the Owicki-Gries core and abstract interpretation withρOG,mc

coincide on Readers-Writers. ⊓⊔

Example 60 (Upper). Consider the RPL transition system Upper. We’ll show that
ρOG,mc(init) is a subset ofinit.

Letv∈ ρOG,mc(init). For the left thread we have somev1∈ init such thatv∼{pc1,u,z,x,y,l}
v1. Thusv(pc1) = A andv(u) 6= v(z) = v(x) = v(y) = v(l). For the right thread we have
somev2∈ init such thatv∼{pc2,u,z,x,y,l} v2. Thusv(pc2) = O. Thenv∈ init.

Then ρOG,mc(init ∪ post(init)) ⊆ ρOG,mc(init) ⊆ init. Thus lfp(λx.ρOG,mc(init ∪
post(x))) = init.

Thus the result of abstract interpretation withρOG,mc is strictly stronger than the
strongest Owicki-Gries-core-provable property. ⊓⊔

Example 61 (SepThreads).Consider an RPL transition system from SepThreads. For
the syntactic structure StrSepThreads andQ∈ D we haveρOG,mc(Q) = {v∈ConsState|
∀ t∈Tid ∃ ṽ∈Q: v∼{pct}∪DataVar ṽ} ⊆ {v∈ConsState| ∀ t∈Tid ∃ ṽ∈Q: v∼Localt ṽ} =
ρ̄(Q). Thuslfp(λx. init ∪post(x)) ⊆ lfp(λx.ρOG,mc(init ∪post(x))) ⊆ lfp(λx. ρ̄(init ∪
post(x))) ⊆ [Example 22] lfp(λx. init ∪ post(x)) = γOG(infO). Then γOG(infO) =
lfp(λx.ρOG,mc(init ∪post(x))). The precision of Owicki-Gries-core and abstract inter-
pretation withρOG,mc is the same on RPL transition systems from SepThreads.⊓⊔

Example 62. In Fig. 6 we see two threads executing the same code, togetherwith its
smallest Owicki-Gries-core proof.

resource r(x)
initially x= 0;

A: {true} A: {true}
with r do with r do

B: {x= 0} B: {x= 0}
x := 1; x := 1;

C: {x= 1} C: {x= 1}
assume false assume false

D: {false} D: {false}
endwith endwith

E: {false} E: {false}
Ir = {x= 0}

Fig. 6: RPL transition system progAssign1with its smallestOwicki-Gries-core proof.

63

The proof denotes the property

γOG(infO) =





[x 7→0,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→C,pc2 7→A], [x 7→1,pc1 7→A,pc2 7→C]



 .

Consider the upper fixpoint iteration sequence(X(i))i∈ω for λx.ρOG,mc(init ∪post(x)):

X(0) = /0,

X(1) = {[x 7→0,pc1 7→A,pc2 7→A]} ,

X(2) =

{
[x 7→0,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A]

}
,

init ∪post(X(2)) =





[x 7→0,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→C], [x 7→1,pc1 7→C,pc2 7→A]



 ,

X(3) =





[x 7→0,pc1 7→A,pc2 7→A], [x 7→1,pc1 7→A,pc2 7→A]
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→C], [x 7→1,pc1 7→C,pc2 7→A]



 ,

init ∪post(X(3)) =





[x 7→0,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→B], [x 7→1,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→C], [x 7→1,pc1 7→C,pc2 7→A]





,

X(4) =





[x 7→0,pc1 7→A,pc2 7→A], [x 7→1,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→B], [x 7→1,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→C], [x 7→1,pc1 7→C,pc2 7→A]





,

init ∪post(X(4)) =





[x 7→0,pc1 7→A,pc2 7→A],
[x 7→0,pc1 7→A,pc2 7→B], [x 7→0,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→B], [x 7→1,pc1 7→B,pc2 7→A],
[x 7→1,pc1 7→A,pc2 7→C], [x 7→1,pc1 7→C,pc2 7→A]





,

X(5) = X(4)
.

Notice thatγOG(infO) (lfp(λx.ρOG,mc(init ∪post(x))).
So abstract interpretation withρOG,mc produces a strictly weaker property than the
strongest Owicki-Gries-core proof on this example. ⊓⊔

From Examples 60 and 62 we obtain that Owicki-Gries core is incomparable with
multithreaded Cartesian abstraction, adapted to RPL in themost straightforward way.

Example 63. The RPL program given by Fig. 7 hasTid = {1,2}, PL = {A,B}, Val=
PL∪̇{0,1}, Res= /0, Local1 = {pc1, l1}, Local2 = {pc2, l2}, ProofVar= /0, rsc(A) =
rsc(B) = /0.

64

integer l1 = l2 ∈ {0,1}
A: {true} A: {true}

assume false; assume false;
B: {false} B: {false}

l1 := 0 l2 := 0
C: {false} C: {false}

Fig. 7: RPL transition system progAssign2 with its smallestOwicki-Gries-core proof.

Then
γOG(infO) = { [l1 7→0, l2 7→0,pc1 7→A,pc

2
7→A],

[l1 7→0, l2 7→1,pc1 7→A,pc
2
7→A],

[l1 7→1, l2 7→0,pc1 7→A,pc
2
7→A],

[l1 7→1, l2 7→1,pc1 7→A,pc
2
7→A]} ,

and
ρOG,mc(init) = init, thus lfp(λx.ρOG,mc(init ∪post(x))) = init .

So the strongest Owicki-Gries-core-provableproperty is strictly weaker than the strongest
property provable by abstract interpretation withρOG,mc. ⊓⊔

Both progAssign1 and progAssign2 belong to Simple. For progAssign2 the strongest
Owicki-Gries-core-provableproperty is strictly weaker than the strongest property prov-
able by abstract interpretation withρOG,mc, for progAssign1 the strongest Owicki-
Gries-core provable property is strictly stronger. Thus, for Simple, the Owicki-Gries
core is in general incomparable with abstract interpretation with ρOG,mc.

Owicki-Gries for RPL and general programs target differentverification tasks. Owicki-
Gries for RPL allows verifying properties assuming mutual exclusion (external veri-
fication). Owicki-Gries for general programs (= multithreaded Cartesian abstraction)
allows checking synchronization details without assumingmutual exclusion (internal
verification). This section presents an initial step in comparing the two proof systems.
The incomparability result shows that if both systems can beunified, it is not going to
be trivial.

Although it is impossible to present a verification methodology that has exactly
the same precision as both proof systems, there is a verification method that produces
properties which are stronger than both proof systems, and which can be viewed as
a generalization of both proof systems, namely the deny-guarantee framework [12],
SL+ [27], SAGL [13], or RGSep [29,30]. These logics, however, do not generalize the
“pure” Owicki-Gries system, but separation-logic-based approaches.

We also conjecture that it is possible to prove all Owicki-Gries-core-provable prop-
erties by abstract interpretation withρOG,mc with the following fixed choice of auxiliary
variables. Namely, for each resource, we add a resource variable that indicates which
thread is in the critical section for that resource.

I Practical implications

Now we look at the importance of results for practical verification.

65

Many real-life specified properties of programs are simple:they involve only few
variables, which are, for example, local, or all belong to the same resource. In this
case the property is likely to be a fixpoint of one of the considered closures, which
retain dependencies between certain variables. Checking this fact is easy: it does not
depend on the program’s transition relation. If in additionthe property is expected to be
inductive, we obtain a clear choice of an analysis to confirm our expectation: it would
be abstract interpretation with any closure for which the property is a fixpoint.

Abstract interpretation with a chosen closure might also derive a property which is
coarser than expected. In this case, in the chain

ρc – ρ̄ – Owicki-Gries core –ρ – identity

it is useless to try out analyses with a lower precision. On the contrary, an analysis with
a higher precision, which tracks more variable dependencies, might help.

An analysis from this chain might also run out of time or space, failing to produce
any property. Without further assumptions, predicting time or space consumption of
other analyses is hard. However, for certain finite-state scenarios predictions are still
possible. For example, abstract interpretation withρc and the Owicki-Gries core can be
easily executed as fixpoint iterations on the domains of Cartesian products and program
annotations, respectively. The worst-case space for storing the iterates is larger for the
Owicki-Gries core than forρc, also the height of the domain of program annotations is
larger than the height of the domain of products of blocks. Ifthe worst case is expected
(e.g., by an insight of an expert), machines which are slow orhave low memory might
be too restricted to execute the Owicki-Gries core, so abstract interpretation withρc

should be recommended to attempt first.

66

	On the Strength of Owicki-Gries for Resources

