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Abstract
Conflict learning plays a key role in modern Boolean constraint solving. Advanced in satisfia-
bility testing, it has meanwhile become a base technology in many neighboring fields, among
them answer set programming (ASP). However, learned constraints are only valid for a currently
solved problem instance and do not carry over to similar instances. We address this issue in ASP
and introduce a framework featuring an integrated feedback loop that allows for reusing conflict
constraints. The idea is to extract (propositional) conflict constraints, generalize and validate
them, and reuse them as integrity constraints. Although we explore our approach in the context
of dynamic applications based on transition systems, it is driven by the ultimate objective of
overcoming the issue that learned knowledge is bound to specific problem instances. We imple-
mented this workflow in two systems, namely, a variant of the ASP solver clasp that extracts
integrity constraints along with a downstream system for generalizing and validating them.
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1 Introduction

Modern solvers for answer set programming (ASP) such as cmodels [13], clasp [11], and
wasp [1] owe their high effectiveness to advanced Boolean constraint processing techniques
centered on conflict-driven constraint learning (CDCL; [2]). Unlike pure backtracking, CDCL
analyzes encountered conflicts and acquires new constraints while solving, which are added
to the problem specification to prune the remaining search space. This strategy often leads
to considerably reduced solving times compared to simple backtracking. However, constraints
learned in this way are propositional and only valid for the currently solved logic program.
Learned constraints can thus only be reused as is for solving the very same problem; they
cannot be transferred to solving similar problems, even if they share many properties. For
illustration, consider a maze problem, which consists of finding the shortest way out of a
labyrinth. When solving an instance, the solver might learn that shortest solutions never
contain a move west followed by a move east, that is, a simple loop. However, the solver only
learns this for a specific step but cannot transfer the information to other steps, let alone for
solving any other maze instance.
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9:2 Answer Set Solving with Generalized Learned Constraints

In what follows, we address this shortcoming and introduce a framework for reusing learned
constraints, with the ultimate objective of overcoming the issue that learned knowledge is
bound to specific instances. Reusing learned constraints consists of enriching a program
with conflict constraints learned in a previous run. More precisely, our approach proceeds
in four steps: (1) extracting constraints while solving, (2) generalizing them, which results
in candidates, (3) validating the candidates, and (4) enriching the program with the valid
ones. Since this mechanism involves a feedback step, we refer to it as constraint feedback. We
implemented our framework as two systems, a variant of the ASP solver clasp 3 addressing
step (1), referred to as xclasp, and a downstream system dealing with steps (2) and (3),
called ginkgo. Notably, we use ASP for implementing different proof methods addressing
step (3). The resulting integrity constraints can then be used to enrich the same or “similar”
problem instances. To be more precise, we apply our approach in the context of automated
planning, as an exemplar of a demanding and widespread application area representative of
dynamic applications based on transition systems. As such, our approach readily applies to
other related domains, such as action languages or model checking. Furthermore, automated
planning is of particular interest because it involves invariants. Although such constraints
are specific to a planning problem, they are often independent of the planning instance and
thus transferable from one instance of a problem to another. Returning to the above maze
example, this means that the constraint avoiding simple loops does not only generalize to all
time steps, but is moreover independent of the particular start and exit position.

2 Background

A logic program is a set of rules of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an (1)

where each ai is a first-order atom for 0 ≤ i ≤ n and “∼” stands for default negation. If
n = 0, rule (1) is called a fact. If a0 is omitted, rule (1) represents an integrity constraint.
Further language constructs exist but are irrelevant to what follows (cf. [3]). Rules with
variables are viewed as shorthands for the set of their ground instances. Whenever we deal
with authentic source code, we switch to typewriter font and use “:-” and “not” instead
of “←” and “∼”; otherwise, we adhere to the ASP language standard [4]. Semantically, a
ground logic program induces a collection of answer sets, which are distinguished models of
the program determined by answer set semantics; see [12] for details.

Accordingly, the computation of answer sets of logic programs is done in two steps. At
first, an ASP grounder instantiates a given logic program. Then, an ASP solver computes
the answer sets of the obtained ground logic program. In CDCL-based ASP solvers, the
computation of answer sets relies on advanced Boolean constraint processing. To this end,
a ground logic program P is transformed into a set ∆P of nogoods, a common (negative)
way to represent constraints [8]. A nogood can be understood as a set {`1, . . . , `n} of literals
representing an invalid partial truth assignment. Logically, this amounts to the formula
¬(`1 ∧ · · · ∧ `n), which in turn can be interpreted as an integrity constraint of the form
“← `1, . . . , `n.” By representing a total assignment as a set S of literals, one for each available
atom, S is a solution for a set ∆ of nogoods if δ 6⊆ S for all δ ∈ ∆. Conversely, S is conflicting
if δ ⊆ S for some δ ∈ ∆. Such a nogood is called a conflict nogood (and the starting point of
conflict analysis in CDCL-based solvers). Finally, given a nogood δ and a set S representing a
partial assignment, a literal ` 6∈ S is unit-resulting for δ with respect to S if δ \S = {`}, where
` is the complement of `. Such a nogood δ is called a reason for `. That is, if all but one literal
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of a nogood are contained in an assignment, the complement of the remaining literal must hold
in any solution extending the current assignment. Unit propagation is the iterated process
of extending assignments with unit-resulting literals until no further literal is unit-resulting
for any nogood. For instance, consider the partial assignment {a 7→ t, b 7→ f} represented by
{a,∼b}. Then, ∼c is unit-resulting for {a, c}, leading to the extended assignment {a,∼b,∼c}.
In other words, {a, c} is a reason for ∼c in {a,∼b,∼c}. In this way, nogoods provide reasons
explaining why literals belong to a solution. Note that any individual assignment is obtained
by either a choice operation or unit propagation. Accordingly, assignments are partitioned
into decision levels. Level zero comprises all initially propagated literals; each higher decision
level consists of one choice literal along with successively propagated literals. Further Boolean
constraint processing techniques can be used to analyze and recombine inherent reasons for
conflicts, as described in Section 3.1. We refer the reader to [11] for a detailed account of the
aforementioned concepts.

3 Generalization of Learned Constraints

This section presents our approach by following its four salient steps. At first, we detail how
conflict constraints are extracted while solving a logic program and turned into integrity
constraints. Then, we describe how the obtained integrity constraints can be generalized
by replacing specific terms by variables. Next, we present ASP-based proof methods for
validating the generated candidate constraints. For clarity, these methods are developed in
the light of our application area of automated planning. Finally, we close the loop and discuss
the range of problem instances that can be enriched by the resulting integrity constraints.

While we implemented constraint extraction as an extension to clasp, referred to as xclasp,
our actual constraint feedback framework involving constraint generalization and validation is
comprised in the ginkgo system. The implementation of both systems is detailed in Section 4.

3.1 Extraction
Modern CDCL solvers gather knowledge in the form of conflict nogoods while solving.
Accessing these learned nogoods is essential for our approach. To this end, we have to
instrument a solver such as clasp to record conflict nogoods resulting from conflict analysis.
This necessitates a modification of the solver’s conflict resolution scheme, as the learned
nogoods can otherwise contain auxiliary literals (standing for unnamed atoms, rule bodies,
or aggregates) having no symbolic representation.

The needed modifications are twofold, since literals in conflict nogoods are either obtained
by a choice operation or by unit propagation. On the one hand, enforcing named choice
literals can be done by existing means, namely, the heuristic capacities of clasp. To this end,
it is enough to instruct clasp to strictly prefer atoms in the symbol table (declared via #show
statements) for nondeterministic choices.1

On the other hand, enforcing learned constraints with named literals only needs changes to
clasp’s internal conflict resolution scheme. In fact, clasp, as many other ASP and SAT solvers,
uses the first unique implication point (1UIP) scheme [20]. In this scheme, the original conflict
nogood is transformed by successive resolution steps into another conflict nogood containing
only a single literal from the decision level at which the conflict occurred. This is either the
last choice literal or a literal obtained by subsequent propagation. Each resolution step takes

1 This is done by launching clasp with the options --heuristic=domain --dom-mod=1,16.
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a conflict nogood δ containing a literal ` and resolves it with a reason ε for `, resulting in the
conflict nogood (δ \ {`}) ∪ (ε \ {`}). We rely upon this mechanism for eliminating unnamed
literals from conflict nogoods. To this end, we follow the 1UIP scheme but additionally resolve
out all unnamed (propagated) literals. We first derive a conflict nogood with a single named
literal from the conflicting decision level and then resolve out all unnamed literals from other
levels. As with 1UIP, the strategy is to terminate resolution as early as possible. In the best
case, all literals are named and we obtain the same conflict nogood as with 1UIP. In the worst
case, all propagated literals are unnamed and thus resolved out. This yields a conflict nogood
comprised of choice literals, whose naming is enforced as described above.2 Hence, provided
that the set of named atoms is sufficient to generate a complete assignment by propagation,
our approach guarantees all conflict nogoods to be composed of named literals. Finally, each
resulting conflict nogood {`1, . . . , `n} is output as an integrity constraint “← `1, . . . , `n.”

Eliminating unnamed literals burdens conflict analysis with additional resolution steps
that result in weaker conflict nogoods and heuristic scores. To quantify this, we conducted
experiments contrasting solving times with clasp’s 1UIP scheme and our named variant,
with and without the above heuristic modification (yet without logging conflict constraints).
We ran the configurations up to 600 seconds on each of the 100 instances of track 1 of
the 2015 ASP competition. Timeouts were accounted for as 600 seconds. clasp’s default
configuration solved 70 instances in 28 014 seconds, while the two named variants solved 65
in 29 982 and 63 in 29 700 seconds, respectively. Additionally, we ran all configurations on the
42 instances of our experiments in Section 5. While clasp solved all instances in 5596 seconds,
the two named variants solved 22 in 16 133 and 16 in 17 607 seconds, respectively. Given that
these configurations are meant to be used offline, we consider this loss as tolerable.

3.2 Selection
In view of the vast amount of learnable constraints, it is indispensable to select a restricted
subset for constraint feedback. To this end, we allow for selecting a given number of constraints
satisfying certain properties. We consider the
1. length of constraints (longest vs. shortest),
2. number of decision levels associated with their literals3 (highest vs. lowest), and
3. time of recording (first vs. last).
To facilitate the selection, xclasp initially records all learned conflict constraints (within a
time limit), and the ginkgo system then picks the ones of interest downstream.

The simplest form of reusing learned constraints consists of enriching an instance with
subsumption-free propositional integrity constraints extracted from a previous run on the
same instance. We refer to this as direct constraint feedback. We empirically studied the
impact of this feedback method along with the various selection options in [19] and for brevity
only summarize our results here. Our experiments indicate that direct constraint feedback
generally improves performance and leads to no substantial degradation. This applies to
runtime but also to the number of conflicts and decisions. We observed that solving times
decrease with the number of added constraints,4 except for two benchmark classes5 showing

2 This worst-case scenario corresponds to the well-known decision scheme, using conflict clauses containing
choice literals only (obtained by resolving out all propagated literals). Experiments with a broad
benchmark set [19] showed that our named 1UIP-based scheme uses only 41 % of the time needed with
the decision scheme.

3 This is known as the literal block distance (LBD).
4 We varied the number of extracted constraints from 8 to 16 384 in steps of factor

√
2.

5 These classes consist of Solitaire and Towers of Hanoi puzzles.
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no pronounced effect. This provided us with the pragmatic insight that the addition of
constraints up to a magnitude of 10 000 does not hamper solving. The analysis of the above
criteria yielded that (1) preferring short constraints had no negative effect over long ones but
sometimes led to significant improvements, (2) the number of decision levels had no significant
impact, with a slight advantage for constraints with fewer ones, and (3) the moment of
extraction ranks equally well, with a slight advantage for earlier extracted constraints. All in
all, we observe that even this basic form of constraint feedback can have a significant impact
on ASP solving, though its extent is hard to predict. This is not as obvious as it might seem,
since the addition of constraints slows down propagation, and initially added constraints
might not yet be of value at the beginning of solving.

3.3 Generalization
The last section indicated the prospect of improving solver performance through constraint
feedback. Now, we take this idea one step further by generalizing the learned constraints before
feeding them back. The goal of this is to extend the applicability of extracted information
and make it more useful to the solver ultimately. To this end, we proceed in two steps. First,
we produce candidates for generalized conflict constraints from learned constraints. But since
the obtained candidates are not necessarily valid, they are subject to validation. Invalid
candidates are rejected, valid ones are kept. We consider two ways of generalization, namely,
minimization and abstraction. Minimization eliminates as many literals as possible from
conflict constraints. The smaller a constraint, the more it prunes the search space. Abstraction
consists of replacing designated constants in conflict constraints by variables. This allows for
extending the validity of a conflict constraint from a specific object to all objects of the same
domain. This section describes generalization by minimization and abstraction, while the
validation of generalized constraints is detailed in Section 3.4.

3.3.1 Minimization
Minimization aims at finding a minimal subset of a conflict constraint that still constitutes a
conflict. Given that we extract conflicts in the form of integrity constraints, this amounts to
eliminating as many literals as possible. For example, when solving a Ricochet Robots puzzle
encoded by a program P , our extended solver xclasp might extract the integrity constraint

← ∼go(red, up, 3), go(red, up, 4),∼go(red, left, 5) (2)

This established conflict constraint tells us that P ∪ {h ← C,← ∼h} is unsatisfiable for
C = {∼go(red, up, 3), go(red, up, 4),∼go(red, left, 5)}. The minimization task then consists
of determining some minimal subset C ′ of C such that P ∪ {h ← C ′,← ∼h} remains
unsatisfiable, which in turn means that no answer set of P entails all of the literals in C ′.

To traverse (proper) subsets C ′ of C serving as candidates, our ginkgo system pursues a
greedy approach that aims at eliminating literals one by one. For instance, given C as above,
it may start with C ′ = C \ {∼go(red, up, 3)} and check whether P ∪ {h ← C ′,← ∼h} is
unsatisfiable. If so, “← C ′” is established as a valid integrity constraint; otherwise, the literal
∼go(red, up, 3) cannot be eliminated. Hence, depending on the result, either C ′\{`} or C \{`}
is checked next, where ` is one of the remaining literals go(red, up, 4) and ∼go(red, left, 5).
Then, (un)satisfiability is checked again for the selected literal `, and ` is either eliminated
or not before proceeding to the last remaining literal.

Clearly, the minimal subset C ′ determined by this greedy approach depends on the order
in which literals are selected to check and possibly eliminate them. Moreover, checking
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whether P ∪{h← C ′,← ∼h} is unsatisfiable can be hard, and in case P itself is unsatisfiable,
eventually taking C ′ = ∅ amounts to solving the original problem. The proof methods of
ginkgo, described in Section 3.4, refer to problem relaxations to deal with the latter issue.

3.3.2 Abstraction
Abstraction aims at deriving candidate conflict constraints by replacing constants in ground
integrity constraints with variables covering their respective domains. For illustration, consider
integrity constraint (2) again. While this constraint is specific to a particular robot (red), it
might also be valid for all the other available robots:

← robot(R),∼go(R, up, 3), go(R, up, 4),∼go(R, left, 5)

Here, the predicate robot delineates the domain of robot identifiers. Further candidates can
be obtained by extending either direction up or left to any possible direction. In both cases,
we extend the scope of constraints from objects to unstructured domains.

Unlike this, the third parameter of the go predicate determines the time step at which the
robot moves and belongs to the ordered domain of nonnegative integers. Thus, the conflict
constraint might be valid for any sequence of points in time, given by the predicate time:

← time(T ), time(T+1), time(T+2),∼go(red, up, T ), go(red, up, T+1),∼go(red, left, T + 2)

The time domain is of particular interest when it comes to checking candidates, since it
allows for identifying invariants in transition systems (see Section 3.4). This is a reason why
the current prototype of ginkgo focuses on abstracting temporal constants to variables. In
fact, ginkgo extracts all time points t1, . . . , tn in a constraint in increasing order and replaces
them by T, T + (t2 − t1), . . . , T + (tn − t1), where T is a variable and ti < ti+1 for 0 < i < n.
We refer to integrity constraints obtained by abstraction over a domain of time steps as
temporal constraints, denote them by “← C[T ],” where T is the introduced temporal variable,
and refer to the difference tn − t1 as the degree.

3.4 Validation
Validating an integrity constraint is about showing that it holds in all answer sets of a logic
program. To this end, we use counterexample-oriented methods that can be realized in ASP.
Although the respective approach at the beginning of Section 3.3.1 is universal, as it applies to
any program, it has two drawbacks. First, it is instance-specific, and second, proof attempts
face the hardness of the original problem. With hard instances, as encountered in planning,
this is impracticable, especially when checking many candidates. Also, proofs neither apply
to other instances of the same planning problem nor carry over to different horizons (plan
lengths). To avoid these issues, we pursue a problem-specific approach by concentrating on
invariants of transition systems (induced by planning problems). Accordingly, we restrict
ourselves to temporal abstractions, as described in Section 3.3, and require problem-specific
information, such as state and action variables.

In what follows, we develop two ASP-based proof methods for validating candidates in
problems based on transition systems. We illustrate the proof methods below for sequential
planning and detail their application in Section 4. We consider planning problems consisting
of a set F of fluents and a set A of actions, along with instances containing an initial state I
and a goal condition. Letting A[t] and F [t] stand for action and fluent variables at time step t,
a set I[0] of facts over F [0] represents the initial state and a logic program P [t] over A[t] and
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F [t−1]∪F [t] describes the transitions induced by the actions of a planning problem (cf. [17]).
That is, the two validation methods presented below and corresponding ASP encodings given
in [9] do not rely on the goal.

3.4.1 Inductive Method
The idea of using ASP for conducting proofs by induction traces back to verifying properties in
game descriptions [14]. To show that a temporal constraint “← C[T ]” of degree k is invariant
to a planning problem represented by I[0] and P [t], two programs must be unsatisfiable:

I[0] ∪ P [1] ∪ · · · ∪ P [k] ∪ {h(0)← C[0],← ∼h(0)} (3)
S[0] ∪ P [1] ∪ · · · ∪ P [k + 1] ∪ {h(0)← C[0],← h(0)} ∪ {h(1)← C[1],← ∼h(1)} (4)

Program (3) captures the induction base and rejects a candidate if it is satisfied (starting) at
time step 0. Note that when a constraint spans k different time points, all trajectories of
length k starting from the initial state are examined.

The induction step is captured in program (4) by using a program S[0] for producing
all possible predecessor states (marked by “0”). To this end, S[0] contains a choice rule
“{f(0)} ←” for each fluent f(0) in F [0]. Moreover, program (4) rejects a candidate if the
predecessor state (starting at time step 0) violates the candidate or if the successor state
(starting at 1) satisfies it. To apply the candidate to the successor step, it is shifted by 1
via h(1). That is, the induction step requires one more time step than the base. If both
programs (3) and (4) are unsatisfiable, the candidate is validated. Although the obtained
integrity constraint depends on the initial state, it is independent of the goal and applies to
varying horizons. Hence, the generalized constraint cannot only be used for enriching the
planning instance at hand but also carries over to instances with different horizons and goals.

3.4.2 State-Wise Method
We also consider a simpler validation method that relies on exhaustive state generation. This
approach replaces the two-fold induction method with a single search for counterexamples:

S[0] ∪ P [1] ∪ · · · ∪ P [k] ∪ {h(0)← C[0],← ∼h(0)} (5)

As in the induction step above, a state is nondeterministically generated via S[0]. But instead
of performing the step, program (5) rejects a candidate if it is satisfied in the generated state.
As before, the candidate is validated if program (5) is unsatisfiable. While this simple proof
method is weaker than the inductive one, it is independent of the initial state, and validated
generalized constraints thus carry over to all instances of a planning problem. We empirically
contrast both approaches in Section 5.

3.5 Feedback
Combining all the previously described steps allows us to enrich logic programs with validated
generalized integrity constraints. We call this process generalized constraint feedback.

The scope of our approach is delineated by the chosen proof methods. First, they deal
with problems based on transition systems. Second, both methods are incomplete, since they
might find infeasible counterexamples stemming from unreachable states. However, both
methods rely on relatively inexpensive proofs, since candidates are bound by their degree
rather than the full horizon. This also makes valid candidates independent of goal conditions
and particular horizons; state-wise proven constraints are even independent of initial states.

ICLP 2016 TCs
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4 Implementation

We implemented our knowledge generalization framework as two systems: xclasp is a variant
of the ASP solver clasp 3 capable of extracting learned constraints while solving, and the
extracted constraints are then automatically generalized and validated offline by ginkgo. In
this way, ginkgo produces generalized constraints that can be reused through generalized
constraint feedback. Both xclasp and ginkgo are available at the Potassco Labs website.6

4.1 xclasp
xclasp implements the instrumentation described in Section 3.1 as a standalone variant of
clasp 3.1.4 extended by constraint extraction. The option --log-learnts outputs learned
integrity constraints so that the output can be readily used by any downstream application.
The option --logged-learnt-limit=n stops solving once n constraints were logged. Finally,
the named-literals resolution scheme is invoked with --resolution-scheme=named.

4.2 ginkgo

generalized constraints

candidates for
generalized constraints

ground logic program

+

validation
proven

unproven

grounding

learned constraints

logic program

extraction (xclasp)

generalization 

×

Figure 1 ginkgo’s proce-
dure for automatically gener-
alizing learned constraints.

ginkgo incorporates the different techniques developed in Sec-
tion 3. After recording learned constraints, ginkgo offers post-
processing steps, one of which is sorting logged constraints by
multiple criteria. This option is interesting for analyzing the
effects of reusing different types of constraints. Another post-
processing step used throughout this paper is (propositional)
subsumption, that is, removing subsumed constraints. In fact,
xclasp often learns constraints that are subsets of previous
ones (and thus more general and stronger). For example, when
solving the 3-Queens puzzle, recorded integrity constraints
might be subsumed by “← queen(2, 2),” as a single queen in
the middle attacks entire columns and rows.

Figure 1 illustrates ginkgo’s generalization procedure. In our
setting, the input to ginkgo consists of a planning problem, an
instance, and a fixed horizon. First, ginkgo begins to extract a
specified number of learned constraints by solving the instance
with our modified solver xclasp. Then, ginkgo abstracts the
learned constraints over the time domain, which results in
a set of candidates (see Section 3.3.2). These candidates are
validated and optionally minimized (see Section 3.3.1) one by
one. For this purpose, ginkgo uses either of the two presented
validation methods (see Section 3.4), where the candidates
are validated in ascending order of degree. This is sensible
because the higher the degree, the larger is the search space
for counterexamples. Among candidates with the same degree, the ones with fewer literals
are tested first, given that the optional minimization of constraints (using the same proof
method as for validation) requires less steps for them. Moreover, proven candidates are
immediately added to the input logic program in order to strengthen future proofs (while
unproven ones are discarded). Finally, ginkgo terminates after successfully generalizing a

6 http://potassco.sourceforge.net/labs.html

http://potassco.sourceforge.net/labs.html
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user-specified number of constraints. The generalized constraints can then be used to enrich
the same or a related logic program via generalized constraint feedback.

ginkgo offers multiple options to steer the constraint generalization procedure. --horizon
specifies the planning horizon. The validation method is selected via --proof-method.
--minimization-strategy defines whether constraint minimization is used. --constraints-
to-extract decides how many constraints ginkgo extracts before starting to validate them,
where the extraction step can also be limited with --extraction-timeout. By default,
ginkgo tests all initially extracted constraints before extracting new ones.7 Alternatively, new
constraints may be extracted after each successful proof (controlled via --testing-policy).
Candidates exceeding a specific degree (--max-degree) or number of literals (--max-number-
of-literals) may be skipped. Additionally, candidates may be skipped if the proof takes too
long (--hypothesis-testing-timeout). ginkgo terminates after generalizing a number of
constraints specified by --constraints-to-prove (or if xclasp’s constraints are exhausted).

5 Evaluation

To evaluate our approach, we instruct ginkgo to learn and generalize constraints autonomously
on a set of benchmark instances. These instances stem from the International Planning
Competition (IPC) series and were translated to ASP with plasp [10].

First, we study how the solver’s runtime is affected by generalized constraint feedback—
that is, enriching instances with generalized constraints that were obtained beforehand with
ginkgo. In a second experiment, generalized constraint feedback is performed after varying
the instances’ horizons. Among other things, this allows us to study scenarios in which
constraints are first generalized using simplified settings to speed up the solving process of
the actual instances later on. The benchmark sets are available at ginkgo’s website.6

5.1 Generalized Constraint Feedback
In this experiment, we use ginkgo to generalize a specific number of learned constraints for
each instance. Then, we enrich the instances via generalized constraint feedback and measure
how the enriched instances relate to the original ones in terms of runtime. This setup allows
us to assess whether reusing generalized constraints improves solving the individual instances.

The benchmark set consists of 42 instances from the 2000, 2002, and 2006 IPCs and
covers nine planning domains: Blocks World (8), Driver Log (4), Elevator (11), FreeCell (4),
Logistics (5), Rovers (1), Satellite (3), Storage (4), and Zeno Travel (2). We selected instances
with solving times within 10 to 600 seconds on the benchmark system (using clasp with
default settings). For 33 instances, we used minimal horizons. We chose higher horizons for
the remaining nine instances because timeouts occurred with minimal horizons.

Given an instance and a fixed horizon, 1024 generalized constraints are first generated
offline with ginkgo. Afterward, the solving time of the instance is measured multiple times.
Each time, the instance is enriched with the first n generalized constraints, where n varies
between 8 and 1024 in exponential steps. The original instance is solved once more without
any feedback for reference. Afterward, the runtimes of the enriched instances are compared
to the original ones. All runtimes are measured with clasp’s default configuration, not xclasp.

We perform this experiment with the four ginkgo configurations shown in Table 1. First, we

7 Note that extracting more constraints is only necessary if the initial chunk of learned constraints does
not lead to the requested number of generalized constraints. In practice, this rarely happens when
choosing a sufficient number of constraints to extract initially.
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Table 1 Configurations of ginkgo for studying generalized constraint feedback.

validation method minimization constraint feedback

(a) state-wise on generalized
(b) inductive on generalized
(c) state-wise off generalized
(d) state-wise on direct

select the state-wise proof method and enable minimization (a). We chose this configuration
as a reference because the state-wise proof method achieves instance independence (see
Section 3.4.2) and because minimization showed to be useful in earlier experiments [19]. To
compare the two validation methods presented in this paper, we repeat the experiment with
the inductive proof method (b). In configuration (c), we disable constraint minimization to
assess the benefit of this technique. Finally, configuration (d) replaces generalized with direct
constraint feedback (that is, the instances are not enriched with the generalized constraints
but the ground learned constraints they stem from). With configuration (d), we can evaluate
whether generalization renders learned constraints more useful.

We fix ginkgo’s other options across all configurations. Generalization starts after xclasp
extracted 16 384 constraints or after 600 seconds. Candidates with degrees greater than 10 or
more than 50 literals are skipped, and proofs taking more than 10 seconds are aborted. After
ginkgo terminates, the runtimes of the original and enriched instances are measured with a
limit of 3600 seconds. Timeouts are penalized with PAR-10 (36 000 seconds). The benchmarks
were run on a Linux machine with Intel Core i7-4790K at 4.4 GHz and 16 GB RAM.

As Figure 2a shows, generalized constraint feedback reduced the solver’s runtime by up
to 55 %. The runtime decreases the more generalized constraints are selected for feedback.
On average, validating a candidate constraint took 73 ms for grounding and 22 ms for solving
in reference configuration (a). 38 % of all proofs were successful, and ginkgo terminated after
1169 seconds on average. The tested candidates had an average degree of 2.2 and contained
9.3 literals. Constraint minimization eliminated 63 % of all literals in generalized constraints.

While lacking the instance independence of the state-wise proof, the supposedly stronger
inductive proof did not lead to visibly different results (see Figure 2b). Additionally, validating
candidate constraints took about 2.3 times longer. With 2627 seconds, the average total
runtime of ginkgo was 2.2 times higher with the inductive proof method. Disabling constraint
minimization had rather little effect on the generalized constraints’ utility in terms of solver
runtime, as seen in Figure 2c. However, without constraint minimization, ginkgo’s runtime was
reduced to 332 seconds (a factor of 3.5 compared to the reference configuration). Interestingly,
direct constraint feedback was never considerably useful for the solver (see Figure 2d). Hence,
we conclude that learned constraints are indeed strengthened by generalization.

5.2 Generalized Constraint Feedback with Varying Horizons
This experiment evaluates the generality of the proven constraints—that is, whether priorly
generalized constraints improve the solving performance on similar instances. For this purpose,
we use ginkgo to extract and generalize constraints on the benchmark instances with fixed
horizons. Then, we vary the horizons of the instances and solve them again, after enriching
them with the previously generalized constraints.

We reuse the 33 instances with minimal (optimal) horizons from Section 5.1, referring to
them as the H0 set. In addition, we analyze two new benchmark sets. H−1 consists of the
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Figure 2 Runtimes after generalized constraint feedback with four different ginkgo configurations.

H0 instances with horizons reduced by 1, which renders all instances in H−1 unsatisfiable. In
another benchmark set, H+1, we increase the fixed horizon of the H0 instances by 1.8

The benchmark procedure is similar to Section 5.1. This time, constraints are extracted
and generalized on a specific benchmark set but then applied to the corresponding instances
of another set. For instance, H−1 → H0 refers to the setting where constraints are generalized
with H−1 and then reused while solving the respective instances in H0. In total, we study
six settings: {H−1, H0} → {H−1, H0, H+1}. The choice of {H−1, H0} as sources reflects
the extraction from unsatisfiable and satisfiable instances, respectively. To keep the results
comparable across all configurations, we removed five instances whose reference runtime
(without feedback) exceeded the time limit of 3600 seconds in at least one of H−1, H0, and
H+1. For this reason, the results shown in Figure 3 refer to the remaining 28 instances. In this
experiment, the state-wise validation method and minimization are applied. The benchmark
environment is identical to Section 5.1.

As Figure 3 shows, generalized constraint feedback permits varying the horizon with no
visible penalty. Across all six settings, the runtime improvements are very similar (up to 70 or
82 %, respectively). Runtime improvements are somewhat more pronounced when constraints
are generalized with H−1 rather than H0. Furthermore, generalized constraint feedback on
H−1 is slightly more useful than on H0 and H+1. Apart from this, generalized constraint
feedback seems to work well no matter whether the programs at hand are satisfiable or not.

6 Discussion

We have presented the systems xclasp and ginkgo, jointly implementing a fully automated
form of generalized constraint feedback for CDCL-based ASP solvers. This is accomplished in
a four-phase process consisting of extraction (and selection), generalization (via abstraction

8 The alleged small change of the horizon by 1 is motivated by maintaining the hardness of the problem.
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Figure 3 Runtimes after generalized constraint feedback with varied horizons. In setting Hx → Hy,
constraints were extracted and generalized with benchmark set Hx and reused for solving Hy.

and minimization), validation, and feedback. While xclasp’s extraction of integrity constraints
is domain-independent, the scope of ginkgo is delineated by the chosen proof method. Our
focus on inductive and state-wise methods allowed us to study the framework in the context
of transition-based systems, including the chosen application area of automated planning. We
have demonstrated that our approach allows for reducing the runtime of planning problems
by up to 55 %. Moreover, the learned constraints cannot only be used to accelerate a program
at hand, but they moreover transfer to other goal situations, altered horizons, and even other
initial situations (with the state-wise technique). In the latter case, the learned constraints
are general enough to apply to all instances of a fixed planning problem. Interestingly, while
both proof methods often failed to prove valid, handcrafted properties, they succeeded on
relatively many automatically extracted candidates (about 38 %). Generally speaking, it is
worthwhile to note that our approach had been impossible without ASP’s first-order modeling
language along with its distinction of problem encoding and instance.

Although xclasp and ginkgo build upon many established techniques, we are unaware of
any other approach combining the same spectrum of techniques similarly. In ASP, the most
closely related work was done in [26] in the context of the first-order ASP solver omiga [6].
Rules are represented as Rete networks, propagation is done by firing rules, and unfolding is
used to derive new reusable rules. ASP-based induction was first used for verifying predefined
properties in game descriptions [14]. Inductive logic programming in ASP [22, 16] is related in
spirit but works from different principles, such as deriving rules compatible with positive and
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negative examples. In SAT, k-induction [24, 25] is a wide-spread technique in applications to
model checking. Our state-wise proof method is similar to 0-induction. In FO(ID), [7] deals
with detecting functional dependencies for deriving new constraints, where a constraint’s
validity is determined by a first-order theorem prover. In CP, automated modeling constitutes
an active research area (cf. [21]). For instance, [5] addresses constraint reformulation by
resorting to machine learning and theorem proving for extraction and validation. Finally,
invariants in transition systems have been explored in several fields, among them general
game playing [14], planning [23, 15], model checking [24, 25], and reasoning about actions [18].
While inductive and first-order proof methods are predominant, invariants are either assumed
to be given or determined by dedicated algorithms.

Our approach aims at overcoming the restriction of learned knowledge to specific problem
instances. However, it may also help to close the gap between highly declarative and highly
optimized encodings by enriching the former through generalized constraint feedback.
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