Solving Constrained Horn Clauses by Property Directed Reachability

Arie Gurfinkel

HCVS 2017: 4th Workshop on Horn Clauses for Verification and Synthesis
Automated Verification

Deductive Verification

• A user provides a program and a verification certificate
 – e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
• A tool automatically checks validity of the certificate
 – this is not easy! (might even be undecidable)
• Verification is manual but machine certified

Algorithmic Verification (My research area)

• A user provides a program and a desired specification
 – e.g., program never writes outside of allocated memory
• A tool automatically checks validity of the specification
 – and generates a verification certificate if the program is correct
 – and generates a counterexample if the program is not correct
• Verification is completely automatic – “push-button”

Algorithmic Logic-Based Verification

Program + Spec

Verification Condition (in Logic)

Decision Procedure

Yes

No

Safety Properties

Constrained Horn Clauses

Spacer
Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

- now part of Z3
 - https://github.com/Z3Prover/z3 since commit 72c4780
 - use option fixedpoint.engine=spacer
- development version at http://bitbucket.org/spacer/code

Supported SMT-Theories

- Best-effort support for many SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic
- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC

- for procedure summaries in inter-procedural verification conditions
- for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.
Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti
Logic-based Algorithmic Verification

Simulink

C/C++

concurrent/distributed systems

CPR

Java

SeaHorn

T2

Spacer

Lustre

CoCoSim

Termination for C

Zustre

JayHorn

Java

C/C++
Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of the form

$$\forall V . (\phi \land p_1[X_1] \land ... \land p_n[X_n] \rightarrow h[X]),$$

where

- A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- ϕ is a constrained in the background theory A
- $p_1, ..., p_n, h$ are n-ary predicates
- $p_i[X]$ is an application of a predicate to first-order terms
CHC Satisfiability

A model of a set of clauses Π is an interpretation of each predicate p_i that makes all clauses in Π valid.

A set of clauses is **satisfiable** if it has a model, and is unsatisfiable otherwise.

Given a theory A, a model M is **A-definable**, if each p_i in M is definable by a formula ψ_i in A.

In the context of program verification:

- a program satisfies a property iff corresponding CHCs are satisfiable
- verification certificates correspond to models
- counterexamples correspond to derivations of false
IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)
IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

ArrayPDR: CHC with constraints over Arithmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan: Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015
Safety Verification Problem

Is Bad reachable?
Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!
Safety Verification Problem

Is Bad reachable?

No. There is an inductive invariant
Programs, Cexs, Invariants

A program $P = (V, \text{Init}, Tr, \text{Bad})$

- Notation: $F(X) = \exists u. (X \land Tr) \lor \text{Init}$

P is UNSAFE if and only if there exists a number N s.t.

$$\text{Init}(X_0) \land \left(\bigwedge_{i=0}^{N-1} \text{Tr}(X_i, X_{i+1}) \right) \land \text{Bad}(X_N) \not\equiv \perp$$

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

$$\text{Init} \Rightarrow \text{Inv}$$

$$\text{Inv}(X) \land \text{Tr}(X, X') \Rightarrow \text{Inv}(X')$$

$$\text{Inv} \Rightarrow \neg \text{Bad}$$
IC3/PDR Overview

Input: Safety problem \(\langle \text{Init}(X), \text{Tr}(X, X'), \text{Bad}(X) \rangle \)

\[F_0 \leftarrow \text{Init}; N \leftarrow 0 \text{ repeat} \]

\[G \leftarrow \text{PdrMkSafe}([F_0, \ldots, F_N], \text{Bad}) \]

if \(G = [] \) then return \text{Reachable};

\[\forall 0 \leq i \leq N \cdot F_i \leftarrow G[i] \]

\[F_0, \ldots, F_N \leftarrow \text{PdrPush}([F_0, \ldots, F_N]) \]

if \(\exists 0 \leq i < N \cdot F_i = F_{i+1} \) then return \text{Unreachable};

\[N \leftarrow N + 1; F_N \leftarrow \emptyset \]

until \(\infty; \)
IC3/PDR In Pictures: MkSafe

\[x = 3, y = 0 \]

\[x = 1, y = 0 \]

\[x \neq 3 \lor y \neq 0 \]
IC3/PDR in Pictures: Push

Algorithm Invariants

F_i → ¬ Bad
Init → F_i

F_i → F_{i+1}
F_i ∧ Tr → F_{i+1}
IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment \(s \) s.t. \((s \land R_i \land Tr \land cex')\) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause \(L \) s.t. \(L \Rightarrow \neg cex \), \(Init \Rightarrow L \), and \(L \land R_i \land Tr \Rightarrow L' \)

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals
Decide Rule: Generalizing Predecessors

Decide If \(\langle m, i + 1 \rangle \in Q \) and there are \(m_0 \) and \(m_1 \) s.t. \(m_1 \rightarrow m \), \(m_0 \land m'_1 \) is satisfiable, and \(m_0 \land m'_1 \rightarrow F_i \land Tr \land m' \), then add \(\langle m_0, i \rangle \) to \(Q \).

Decide rule chooses a (generalized) predecessor \(m_0 \) of \(m \) that is consistent with the current frame.

Simplest implementation is to extract a predecessor \(m_0 \) from a satisfying assignment of \(M \models F_i \land Tr \land m' \)

- \(m_0 \) can be further generalized using ternary simulation by dropping literals and checking that \(m' \) remains forced.

An alternative is to let \(m_0 \) be an implicant (not necessarily prime) of \(F_i \land \exists X'.(Tr \land m') \)

- finding a prime implicant is difficult because of the existential quantification
- we settle for an arbitrary implicant. The side conditions ensure it is not trivial.
Conflict Rule: Inductive Generalization

A clause φ is inductive relative to F iff

- $\text{Init} \rightarrow \varphi$ (Initialization) and $\varphi \land F \land \text{Tr} \rightarrow \varphi$ (Inductiveness)

Implemented by first letting $\varphi = \neg m$ and generalizing φ by iteratively dropping literals while checking the inductiveness condition

Theorem: Let F_0, F_1, \ldots, F_N be a valid IC3 trace. If φ is inductive relative to F_i, $0 \cdot i < N$, then, for all $j \cdot i$, φ is inductive relative to F_j.

- Follows from the monotonicity of the trace
 - if $j < i$ then $F_j \rightarrow F_i$
 - if $F_j \rightarrow F_i$ then $(\varphi \land F_i \land \text{Tr} \rightarrow \varphi) \rightarrow (\varphi \land F_j \land \text{Tr} \rightarrow \varphi')$
From Propositional PDR to Solving CHC

Infinite Theories
- infinitely many satisfying assignments
- can’t simply enumerate (in decide)
- can’t block one assignment at a time (in conflict)

Non-Linear Horn Clauses
- multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that makes progress
- don’t get stuck in a decidable fragment
PDR FOR ARITHMETIC CHC
IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
- terminate the algorithm when a solution is found

Unfold
- increase search bound by 1

Candidate
- choose a bad state in the last frame

Decide
- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. $(s \land R_i \land Tr \land \text{cex}')$ is SAT

Conflict
- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. $L \Rightarrow \neg \text{cex}$, $\text{Init} \Rightarrow L$, and $L \land R_i \land Tr \Rightarrow L'$

Induction
- propagate a lemma as far into the future as possible
- (optionally) strengthen by dropping literals

Theory dependent
\[((F_i \land Tr) \lor Init') \Rightarrow \varphi' \]

\[\varphi' \Rightarrow \neg c' \]

Looking for \(\varphi' \)

ARITHMETIC CONFLICT
Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that \(A \implies \neg B \), then there exists a FO formula I, denoted ITP(A, B), such that

\[
A \implies I \quad I \implies \neg B
\]

\[
\text{atoms}(I) \subseteq \text{atoms}(A) \cap \text{atoms}(B)
\]

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of \(A \land B \)

In Model Checking, Craig Interpolation Theorem is used to safely over-approximate the set of (finitely) reachable states
Craig Interpolant
Useful properties of existing interpolation algorithms [CGS10] [HB12]

- \(I \in \text{ITP} (A, B) \) then \(\neg I \in \text{ITP} (B, A) \)
- if A is syntactically convex (a monomial), then \(I \) is convex
- if B is syntactically convex, then \(I \) is co-convex (a clause)
- if A and B are syntactically convex, then \(I \) is a half-space
Arithmetic Conflict

Notation: \(\mathcal{F}(A) = (A(X) \land Tr) \lor Init(X') \).

Conflict For \(0 \leq i < N \), given a counterexample \(\langle P, i + 1 \rangle \in Q \) s.t.
\(\mathcal{F}(F_i) \land P' \) is unsatisfiable, add \(P^\uparrow = \text{ITP}(\mathcal{F}(F_i), P') \) to \(F_j \) for \(j \leq i + 1 \).

Counterexample is blocked using Craig Interpolation

- summarizes the reason why the counterexample cannot be extended

Generalization is not inductive

- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem
IC3/PDR In Pictures: MkSafe

$x = 3, y = 0$

$x = 1, y = 0$

$x < y$
Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for $A \land B$
- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver
- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form $(\land B_i \Rightarrow \lor A_j)$

Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)
- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations
\[s \subseteq \text{pre}(c) \]

\[\equiv s \Rightarrow \exists X'. Tr \land c' \]

Computing a predecessor \(s \) of a counterexample \(c \)

ARITHMETIC DECIDE
Model Based Projection

Definition: Let \(\varphi \) be a formula, \(U \) a set of variables, and \(M \) a model of \(\varphi \). Then \(\psi = \text{MBP} (U, M, \varphi) \) is a Model Based Projection of \(U, M \) and \(\varphi \) iff

1. \(\psi \) is a monomial
2. \(\text{Vars}(\psi) \subseteq \text{Vars}(\varphi) \setminus U \)
3. \(M \vDash \psi \)
4. \(\psi \Rightarrow \exists U . \varphi \)

Model Based Projection under-approximates existential quantifier elimination relative to a given model (i.e., satisfying assignment)
Loos-Weispfenning Quantifier Elimination

\(\phi \) is LRA formula in Negation Normal Form

\(E \) is set of \(x=t \) atoms, \(U \) set of \(x < t \) atoms, and \(L \) set of \(s < x \) atoms

There are no other occurrences of \(x \) in \(\phi[x] \)

\[
\exists x . \phi[x] \equiv \phi[\infty] \lor \bigvee_{x=t \in E} \phi[t] \lor \bigvee_{x<t \in U} \phi[t-\epsilon]
\]

where

\[
(x < t')[t-\epsilon] \equiv t \leq t' \quad (s < x)[t-\epsilon] \equiv s < t \quad (x = e)[t-\epsilon] \equiv false
\]

The case of lower bounds is dual

- using \(-\infty \) and \(t+\epsilon \)
Model Based Projection

Expensive to find a quantifier-free

\[\psi(y) \equiv \exists x \cdot \varphi(x, y) \]

1. Find model M of \(\varphi(x,y) \)

2. Compute a partition containing M
MBP for Linear Rational Arithmetic

Compute a **single** disjunct from LW-QE that includes the model

- Use the Model to uniquely pick a substitution term for x

\[
Mbp_x(M, x = s \land L) = L[x \leftarrow s]
\]

\[
Mbp_x(M, x \neq s \land L) = Mbp_x(M, s < x \land L) \text{ if } M(x) > M(s)
\]

\[
Mbp_x(M, x \neq s \land L) = Mbp_x(M, -s < -x \land L) \text{ if } M(x) < M(s)
\]

\[
Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \leq t_j \text{ where } M(t_0) \leq M(t_i), \forall i
\]

MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types
Arithmetic Decide

Notation: \(\mathcal{F}(A) = (A(X) \land \text{Tr}(X, X') \lor \text{Init}(X')). \)

Decide If \(\langle P, i+1 \rangle \in Q \) and there is a model \(m(X, X') \) s.t. \(m \models \mathcal{F}(F_i) \land P' \), add \(\langle P_{\downarrow}, i \rangle \) to \(Q \), where \(P_{\downarrow} = \text{MBP}(X', m, \mathcal{F}(F_i) \land P') \).

Compute a predecessor using an under-approximation of quantifier elimination – called Model Based Projection

To ensure progress, Decide must be finite
- finitely many possible predecessors when all other arguments are fixed

Alternatives
- Completeness can follow from the **Conflict** rule only
 - for Linear Arithmetic this means using Fourier-Motzkin implicants
- Completeness can follow from an interaction of **Decide** and **Conflict**
PDR FOR NON-LINEAR CHC
Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to satisfiability of THREE clauses of the form

\[\text{Init}(X) \rightarrow P(X) \]
\[P(X) \rightarrow \neg \text{Bad}(X) \]
\[P(X) \land P(X^o) \land Tr(X, X^o, X') \rightarrow P(X') \]

where, \(X' = \{x' \mid x \in X\} \), \(X^o = \{x^o \mid x \in X\} \), \(P \) a fresh predicate, and \(\text{Init} \), \(\text{Bad} \), and \(\text{Tr} \) are constraints.
Generalized GPDR

Input: A safety problem $(\text{Init}(X), \text{Tr}(X, X^o, X'), \text{Bad}(X))$.
Output: Unreachable or Reachable
Data: A cex queue Q, where a cex $(c_0, \ldots, c_k) \in Q$ is a tuple, each $c_j = \langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level N.

A trace F_0, F_1, \ldots

Notation: $F(A, B) = \text{Init}(X') \lor (A(X) \land B(X^o) \land \text{Tr})$, and
$F(A) = F(A, A)$
Initially: $Q = \emptyset$, $N = 0$, $F_0 = \text{Init}$, $\forall i > 0 \cdot F_i = \emptyset$
Require: $\text{Init} \not\equiv \neg \text{Bad}$

repeat

Unreachable If there is an $i < N$ s.t. $F_i \subseteq F_{i+1}$ return Unreachable.

Reachable if exists $t \in Q$ s.t. for all $\langle c, i \rangle \in t$, $i = 0$, return Reachable.

Unfold If $F_N \to \neg \text{Bad}$, then set $N \leftarrow N + 1$ and $Q \leftarrow \emptyset$.

Candidate If for some m, $m \to F_N \land \text{Bad}$, then add $\langle \langle m, N \rangle \rangle$ to Q.

Decide If there is a $t \in Q$, with $c = \langle m, i + 1 \rangle \in t$, $m_1 \to m$, $l_0 \land m_0^o \land m_1'$ is satisfiable, and $l_0 \land m_0^o \land m_1' \to F_i \land F_i^o \land \text{Tr} \land m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, \hat{i} \rangle$, and $\langle m_0, \hat{i} \rangle$.

Conflict If there is a $t \in Q$ with $c = \langle m, i + 1 \rangle \in t$, s.t. $F_i \land m'$ is unsatisfiable. Then, add $\varphi = \text{ITP}(F_i, m')$ to F_j, for all $0 \leq j \leq i + 1$.

Leaf If there is $t \in Q$ with $c = \langle m, i \rangle \in t$, $0 < i < N$ and $F_{i-1} \land m'$ is unsatisfiable, then add \hat{t} to Q, where \hat{t} is t with c replaced by $\langle m, i + 1 \rangle$.

Induction For $0 \leq i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \not\in F_{i+1}$, $F(\phi \land F_i) \to \phi'$, then add φ to F_j, for all $j \leq i + 1$.

until ∞;

counterexample is a tree

two predecessors

theory-aware Conflict
Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE

- we call such a derivation a counterexample

For linear CHC, the counterexample is a path
For non-linear CHC, the counterexample is a tree
At each step, one CTI in the frontier is chosen and its two children are expanded.
GPDR: Deciding predecessors

Decide If there is a $t \in Q$, with $c = \langle m, i + 1 \rangle \in t$, $m_1 \rightarrow m$, $l_0 \land m_0 \land m'_1$ is satisfiable, and $l_0 \land m_0 \land m'_1 \rightarrow F_i \land F_i^o \land Tr \land m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, i \rangle$, and $\langle m_0, i \rangle$.

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
- e.g., BFS or DFS exploration order

Number of predecessors is unbounded
- incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions
- worst-case exponential for Boolean Push-Down Systems
Input: A safety problem \(\langle \text{Init}(X), \text{Tr}(X, X^o, X'), \text{Bad}(X) \rangle \).

Output: Unreachable or Reachable

Data: A cex queue \(Q \), where a cex \(c \in Q \) is a pair \(\langle m, i \rangle \), \(m \) is a cube over state variables, and \(i \in \mathbb{N} \). A level \(N \). A set of reachable states Reach. A trace \(F_0, F_1, \ldots \)

Notation: \(\mathcal{F}(A, B) = \text{Init}(X') \lor (A(X) \land B(X^o) \land \text{Tr}) \), and \(\mathcal{F}(A) = \mathcal{F}(A, A) \)

Initially: \(Q = \emptyset \), \(N = 0 \), \(F_0 = \text{Init}, \forall i > 0 \cdot F_i = \emptyset \), Reach = Init

Require: \(\text{Init} \rightarrow \neg \text{Bad} \)

repeat

Unreachable If there is an \(i < N \) s.t. \(F_i \subseteq F_{i+1} \) return Unreachable.

Reachable If Reach \land \text{Bad} \) is satisfiable, return Reachable.

Unfold If \(F_N \rightarrow \neg \text{Bad} \), then set \(N \leftarrow N + 1 \) and \(Q \leftarrow \emptyset \).

Candidate If for some \(m \), \(m \rightarrow F_N \land \text{Bad} \), then add \(\langle m, N \rangle \) to \(Q \).

Successor If there is \(\langle m, i+1 \rangle \in Q \) and a model \(M M \models \psi \), where \(\psi = \mathcal{F}(\lor \text{Reach}) \land m' \). Then, add \(s \) to \(\text{Reach} \), where \(s' \in \text{MBP}(\{X, X^o\}, \psi) \).

DecideMust If there is \(\langle m, i+1 \rangle \in Q \) and a model \(M M \models \psi \), where \(\psi = \mathcal{F}(F_i, \lor \text{Reach}) \land m' \). Then, add \(s \) to \(Q \), where \(s \in \text{MBP}(\{X^o, X'\}, \psi) \).

DecideMay If there is \(\langle m, i+1 \rangle \in Q \) and a model \(M M \models \psi \), where \(\psi = \mathcal{F}(F_i) \land m' \). Then, add \(s \) to \(Q \), where \(s' \in \text{MBP}(\{X^o, X'\}, \psi) \).

Conflict If there is an \(\langle m, i+1 \rangle \in Q \), s.t. \(\mathcal{F}(F_i) \land m' \) is unsatisfiable. Then, add \(\varphi = \text{ITP}(\mathcal{F}(F_i), m') \) to \(F_j \), for all \(0 \leq j \leq i + 1 \).

Leaf If \(\langle m, i \rangle \in Q \), \(0 < i < N \) and \(\mathcal{F}(F_{i-1}) \land m' \) is unsatisfiable, then add \(\langle m, i + 1 \rangle \) to \(Q \).

Induction For \(0 \leq i < N \) and a clause \(\langle \varphi \lor \psi \rangle \in F_i \), if \(\varphi \not\in F_{i+1} \), \(\mathcal{F}(\varphi \land F_i) \rightarrow \varphi' \), then add \(\varphi \) to \(F_j \), for all \(j \leq i + 1 \).

until \(\infty \);
Unfold the derivation tree in a fixed depth-first order

- use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up

- use MBP to propagate facts bottom up
Successor Rule: Computing Reachable States

Successor If there is \(\langle m, i + 1 \rangle \in Q \) and a model \(M M \models \psi \), where \(\psi = F(\forall \text{REACH}) \land m' \). Then, add \(s \) to \(\text{REACH} \), where \(s' \in \text{MBP}(\{X, X^o\}, \psi) \).

Computing new reachable states by under-approximating forward image using MBP
- since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP
- orthogonal to the use of MBP in Decide
- \(\text{REACH} \) can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
- complexity is polynomial in the number of states
- same as reachability in Push Down Systems
Decide Rule: Must and May refinement

DecideMust If there is \(\langle m, i + 1 \rangle \in Q\), and a model \(M M \models \psi\), where
\[
\psi = \mathcal{F}(F_i, \lor \text{REACH}) \land m'.
\]
Then, add \(s\) to \(Q\), where
\[
s \in \text{MBP}(\{X^o, X'\}, \psi).
\]

DecideMay If there is \(\langle m, i + 1 \rangle \in Q\) and a model \(M M \models \psi\), where
\[
\psi = \mathcal{F}(F_i) \land m'.
\]
Then, add \(s\) to \(Q\), where \(s^o \in \text{MBP}(\{X, X'\}, \psi)\).

DecideMust
- use computed summary to skip over a call site

DecideMay
- use over-approximation of a calling context to guess an approximation of the call-site
- the call-site either refutes the approximation (**Conflict**) or refines it with a witness (**Successor**)
Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories

- extends IC3/PDR from SAT to SMT
- interpolation to over-approximate a possible model
- model-based projection to summarize derivations

The curse of interpolation

- interpolation is fantastic at quickly discovering good lemmas
- BUT it is highly unstable: small changes to input (or code) drastically change what is discovered
- what is easy today might be difficult tomorrow 😞

Harnessing the power of parallelism (see FMCAD’17)

- Spacer is highly non-deterministic: many sound choices for bounded exploration and lemma generation
- Lemmas (invariants) are easy to share between multiple instances
- Problems are naturally partitioned in Decide rule
Farkas Lemma

Let $M = t_1 \geq b_1 \land \ldots \land t_n \geq b_n$, where t_i are linear terms and b_i are constants. M is unsatisfiable iff $0 \geq 1$ is derivable from M by resolution.

M is unsatisfiable iff $M \vdash 0 \geq 1$

- e.g., $x + y > 10$, $-x > 5$, $-y > 3 \vdash (x+y-x-y) > (10 + 5 + 3) \vdash 0 > 18$

M is unsatisfiable iff there exist Farkas coefficients g_1, \ldots, g_n such that

- $g_i \geq 0$
- $g_1 \times t_1 + \ldots + g_n \times t_n = 0$
- $g_1 \times b_1 + \ldots + g_n \times b_n \geq 1$
Interpolation for Linear Real Arithmetic

Let $M = A \land B$ be UNSAT, where

- $A = t_1 \geq b_1 \land \ldots \land t_i \geq b_i$, and
- $B = t_{i+1} \geq b_i \land \ldots \land t_n \geq b_n$

Let g_1, \ldots, g_n be the Farkas coefficients witnessing UNSAT

Then

- $g_1 \times (t_1 \geq b_1) + \ldots + g_i \times (t_i \geq b_i)$ is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \geq b_i) + \ldots + g_n \times (t_n \geq b_n)$ is an interpolant between B and A

- $g_1 \times t_1 + \ldots + g_i \times t_i = - (g_{i+1} \times t_{i+1} + \ldots + g_n \times t_n)$
- $\neg (g_{i+1} \times (t_{i+1} \geq b_i) + \ldots + g_n \times (t_n \geq b_n))$ is an interpolant between A and B
Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]

- \(I \in \text{ITP} (A, B) \) then \(\neg I \in \text{ITP} (B, A) \)
- if \(A \) is syntactically convex (a monomial), then \(I \) is convex
- if \(B \) is syntactically convex, then \(I \) is co-convex (a clause)
- if \(A \) and \(B \) are syntactically convex, then \(I \) is a half-space

\[A = \mathcal{F}(R_i) \]