
CdmCL, a Specific Textual Constraint Language for
Common Data Model

Ahmed Ahmed, Paola Vallejo, Mickaël Kerboeuf, Jean-Philippe Babau

Lab-STICC / UBO / UEB, Brest, France
alahmed4ever@yahoo.com,{vallejoco,kerboeuf, babau}@univ-brest.fr

Abstract. Common Data Model is an abstract data model for scientific datasets
that can be constrained by OCL. To hide complexity of OCL, CdmCL is pro-
posed as a specific textual constraint language for CDM. CdmCL is based on
the CDM structure and results in a set of constraint categories. CdmCL provides
a user-friendly front end in order to define constraints which are subsequently
translated to OCL. The conformity tool is based on an existing OCL checker in-
tegrated in EMF. CdmCL is experimented on the OceanSITES standard.

Keywords: OCL, common data model, conformity, constraint generation

1 Introduction

To improve interoperability, scientific dataset modeling follows standards like
Unidata’s Common Data Model (CDM) [1]. Since CDM is a general purpose model,
scientists use specific standards like OceanSITES [2] for specific data modeling. A
standard defines a set of additional constraints, classically expressed in a natural lan-
guage. To check if CDM data conforms to a standard, like OceanSITES, a code-
oriented checker is used classically. Thus, the constraints are not formalized and a
modification in the standard results in a manual modification of the code.

To handle the problems of a code-centric approach, constraints can be implement-
ed using Object Constraints Language (OCL) [3]. OCL is a formal language that sig-
nificantly improves the clarity of models and makes them more precise [4]. But unfor-
tunately, it is difficult to write correct OCL statement as many OCL constraints re-
sults in inaccurate and erroneous constraints [5], [6].

In this paper, we propose a textual domain specific constraint language CdmCL to
reduce the complexity of handling OCL syntax. CdmCL is dedicated for scientific
data standards. It is based on a set of constraints categories deduced from the CDM
structure. Then, OCL constraints are generated and used by an OCL checker integrat-
ed in the Eclipse Modeling Framework (EMF) [7].

The paper is organized as follows. In the first section, CDM is introduced. Then
OceanSITES is presented as a motivating example. CdmCL and the conformity tool
generation are then presented before to be evaluated on OceanSITES. Before to con-
clude, related works are discussed.

2 Common Data Model

Unidata’s Common Data Model (CDM) is an abstract data model for scientific da-
tasets. It is based on three layers, data access layer, coordinate system layer and scien-
tific feature type layer. Our work focuses on data access layer also called syntactic
layer that handles data modeling part. The complete data model and detailed descrip-
tion is given in [1]. The main classes (see Figure 1) are:
─ DataSet: a file, such as NetCDF file, characterized by a file name (location).
─ Group: a container for dimensions, attributes, variables and nested subGroups.
─ Dimension: the array shape of a Variable, characterized by a name and a length;
─ Variable: a container for data, characterized by a name, a dataType, a set of dimen-

sions that define its array shape, and optionally a set of attributes.
─ Attribute: a metadata to characterize a Variable or a Group, characterized by a

name, a dataType and a value.

Fig. 1. An excerpt of the Common Data Model ecore (CDM.ecore)

3 OceanSITES

OceanSITES [2] is a worldwide system for gathering and measuring scientific da-
ta especially for time series sites, called ocean reference stations. It conforms to the
CDM model but with some constraints. The OceanSITES User Manual holds around
30 pages of constraints expressed in natural language. These constraints are of differ-
ent forms: naming conventions, possible attribute values, constraints on dimension
length and many others. As example, a DataSet should hold instances of Dimension
called TIME, LATITUDE, LONGITUDE, instances of Attributes called data_type and
format_version, and an instance of Variable called TIME. The variable TIME should
be of double datatype. Figure 2 illustrates a small excerpt of OceanSITES standard
from the manual to the left and a small excerpt of CDM data respecting the OceanS-
ITES standard to the right.

To check the data conformity to OceanSITES, a Java tool already exists [8]. Since
constraints are not formalized and the tool is hand-coded, there is no guaranty on
checking. Furthermore, for each different data format, a particular tool should be de-
veloped. To avoid constraint edition ambiguity and to reduce conformity tool devel-
opment, we present now the CdmCL language.

Fig. 2. Excerpts of OceanSITES manual and CDM instance

4 CdmCL Language

4.1 Concept References

This work focuses on the automatic generation of OCL constraints from CdmCL.
On the one hand, the CdmCL front end needs to be human readable and close to the
classical standard. Therefore, Xtext has been used to define the textual grammar. On
the other hand, each CdmCL concept has a semantic expressed using OCL.

In standards, most of the constraints are related to a specific instance of a named
CDM concept (Variable, Dimension and Attribute): “the attribute named data_type
can hold either the value OceanSITES metadata, or OceanSITES profile data”; “the
dimension of the variable named TIME is the dimension TIME”. Thus, CdmCL is
structured by three abstract classes DimensionConstraint, VariableConstraint and
AttributeConstraint (see figure 3). Then, to express a constraint related to a specific
instance, CdmCL follows the three different scenarios, defining nine concrete con-
cepts:

─ Constraint is applied to a specific CDM concept referenced by its name: aDimen-
sionConstraint, aVariableConstraint or anAttributeConstraint.

─ Constraint is applied to items whose name matches a specific regular expression:
TemplateDimensionRegex, TemplateVariableRegex, or TemplateAttributeRegex.

─ Constraint is applied to a set of items, characterized by a set of names: Tem-

plateDimensionList, TemplateVariableList or TemplateAttributeList.

OceanSITES Manual

CDM instance respecting OceanSITES

Fig. 3. An excerpt of the ecore CdmCL model (CdmCL.ecore)

4.2 Common Constraints

The following section introduces the constraints that are common between Dimen-
sionConstraint, VariableConstraint and AttributeConstraint.

Mandatory: This constraint verifies that the name of the related concept exists. For

the template list concept, an extra Boolean attribute or permits to indicate whether
one of the items of the list is mandatory or all the items are mandatory. As an exam-
ple, figure 4 presents the CdmCL expressions and the corresponding OCL statements
for aDimension called DEPTH (a single dimension) and a TemplateDimensionList
(coordinate dimension list holding LATITUDE and LONGITUDE).
The values between parentheses permit the definition of dimension length and are
explained in the next section. Figure 5 presents a CDM instance to the left respecting
the OceanSITES standard, thus the instance is valid, whereas the other instance is not
valid because the mandatory dimension LONGITUDE and the mandatory variable
TIME are missing, thus the OCL constraints checkMandato-
ry_dimension_LONGITUDE and checkMandatory_variables_TIME are violated.

Repetition: This constraint checks that a name of a concept is never repeated.

Format: This constraint verifies that names of a set of concept have a specific

format, either uppercase, lowercase or matches a specific regular expression.

User Defined Constraints: This concept increases the flexibility of the language,

by allowing the user to enter manually an OCL statement. However, it is the user’s
responsibility to verify the correctness of the OCL statement regarding the CDM met-
amodel. These constraints are defined in the context of Group.

Fig. 4. Mandatory constraint example with CdmCL and OCL correspondence

Fig. 5. CDM data respecting and not respecting OceanSITES standards

4.3 Concept Related Constraints

In addition, other constraints are related to specific concepts.
• Dimensions length constraints: The length value for a dimension can be a

limited or unlimited (any positive value). For the limited length, it can be a
specific value, a value in a range, greater than or equal to a specific value,
smaller than or equal. To achieve these constraint objectives, dimensionCon-
straint concept has two Integer attributes called minLength and maxLength
and one Boolean attribute called IsUnlimited (see table 1).

case Min Max isUnlimited Description
1 - - true Length is unlimited, i.e. any positive value
2 x x false Length is equal to x, a specific value
3 x y false Length is between x and y, y>x>0
4 x -1 false Length is greater than x
5 -1 y false Length is smaller than y
6 -1 -1 false No constraint on length

Table 1. Dimension length constraints categories

Figure 6 illustrates the OCL statement generated for aDimension TIME with un-
limited dimension length who’s CdmCL is given in figure 4. The concept related

constraints are built all in the same way. The first part of the OCL constraint (ex-
ists, select) defines the context of the specific concept (here the TIME Dimen-
sion). Then, the second part expresses the constraint itself (forAll).

Fig. 6. Dimension length OCL constraint

• Variable shape constraint: A variable is characterized by a set of shapes
i.e. a set of dimensions (see figure 1). A variable can have a shape of the
same name as the variable’s name. For example a variable named TIME is
associated with a dimension named TIME. Moreover, a variable can be asso-
ciated with a dimension or a set of dimensions. For example, a variable
named TIME_QC is associated with dimension named TIME. To accom-
plish this type of verification, we have two concepts SimilarDimensionCon-
straint and/or a set of PredefinedShape concept for a VariableConstraint.
On one hand SimilarDimensionConstraint concept allow the generation of an
OCL invariant that verifies that a variable is associated with a dimension of
same variable’s name. On the other hand PredefinedShape concept permits
to verify that a variable is associated with any preexisting dimensions. Figure
7 illustrates the previous discussion and presents the CdmCL representation
along with the OCL to be generated.

• VariableConstraint and AttributeConstraint DataType: This constraint
verifies that the variables and the attributes can have any data type from a list
of data types.

• Attribute Value Constraint: A constraint on the value of an Attribute, the
possible categories are given in table 2.

Case Constraint
Unique value The value should have this and only this value
Regular Expr The value should match the regular expression
Range A range of values between min and max, similar to dimension length
List The value can be any value from a list of values.
Standard The value matches a regex given by a standard (e.g. ISO8601).

Table 2. Attribute’s value constraints categories

5 Conformity tool and experiment

Based on CdmCL, we developed a conformity checker for netCDF1 files which
conform to CDM metamodel. The tool architecture is shown in figure 8. It is devel-
oped in Java and based on the Eclipse Modeling Framework (EMF). First, the tool
transforms the CdmCL model into OCL statements in a separated file. This part

1 NetCDF (Network Common Data Form) is a CDM compliant file serialization format

(CdmCL2OCL) uses Xtext API, and the library we developed for the transformation
of CdmCL expressions to OCL constraints. Then, the tool transforms a NetCDF file
into an instance of CDM model. This part (nc2CDM) is simply based on the Java
NetCDF API and on the CDM Java API (provided by EMF). Finally, the tool checks
the conformity of the CDM file to the CDM metamodel enriched with the generated
OCL file, and indicates whether it is valid or not. This part is based on the integrated
OCL checker of the EMF modeling tool.

Fig. 7. CdmCL representation for two variables one with PredefinedShape concept and the

other with SimilarDimensionConstraint concept and their corresponding OCL

The tool has been tested on OceanSITES. Due to the lack of space we express
only the OceanSITES global attributes standard given in figure 2 in CdmCL. The
CdmCL shown in figure 9 indicates that a global attribute named data_type is manda-
tory, of type string and has any of the values presented by the list dataTypeGlobal-
List. This list hold the values OceanSITES metadata, OceanSITES profile data,
OceanSITES time-series data or OceanSITES trajectory data. Furthermore, it indi-
cates that a global attribute named format_version, of type string and should hold the
value “1.1”. The CdmCL expressions and the generated OCL after using
CdmCL2OCL tool are given in figure 9.

Fig. 8. CdmCL conformity tool architecture

The generated OCL file is then used with the CDM model to check the conformity

of an input netCDF file. If the input file does not respect the constraints, a message
indicates that the input file does not conform to CDM model with the set of OCL
violated constraints. Figure 10 presents an excerpt of CDM data converted from a
netcdf file. These data are validated with this generated OCL. It is seen that the left
instance is valid whereas the right instance is invalid because the global attribute for-
mat_version value constraint is violated.

Fig. 9. CdmCL and generated OCL for OceanSITES

Figure 10 illustrates that the right version is invalid because format_version con-
straints was violated, but in reality this global attribute can have the value of 1.2 and
even 1.3 since OceanSITES standard has been evaluated to the new version 1.3 with
backward compatibility. Therefore by just modifying the CdmCL format_version
value to hold the values (1.1, 1.2 or 1.3), we can have the new standard OCL repre-
sentation without any professional interference and the instance will be valid with
respect to OceanSITES version 1.3.

Fig. 10. Valid and Invalid cdm instance with respect to OceanSITES standard version 1.1

Experimenting CdmCL on OceanSITES, it is observed that more than 90% percent
of the constraints are achieved in the CdmCL except the constraints that are related to
multiple CDM concepts at the same time. For example, a constraint verifies the exist-
ence of either a variable named TIME with attribute named QC_indicator or a varia-
ble named TIME_QC.

Fig. 11. User defined OCL constraints

For CdmCL syntax readability, the two global attributes of OceanSITES given in

figure 2 are represented by approximately eight lines in CdmCL expressions and gen-
erate around 30 lines of OCL statements. One page of textual constraints from the
standard is expressed by around 25 lines in CdmCL and generates around 300 lines of
OCL.

The language CdmCL was introduced to OceanSITES users (standard reader) and
they confirm the expressiveness and the readability of CdmCL.

6 Related Works

Several studies are proposed to support OCL integration on modeling processes.
The Dresden OCL Toolkit [9] proposes an OCL library and the recent version pro-
vides an OCL-to-Java Code Generator. USE (UML-based Specification Environment)
[10] is a tool to facilitate the validation of UML models with OCL constraints. USE
supports consistency, independence of constraints, and relevance of constraints analy-
sis. These OCL tools are complementary to the proposed approach and can be used to
facilitate the management of the generated OCL constraints.

In the domain of OCL generation, [11] propose OCL automatic generation from
UML class diagrams. The approach aims at simplifying the process of generation of
OCL statements. The approach involves expressing constraints by a class diagram. In
the addressed domain, most of the constraints are related to specific instances. Fol-
lowing this approach would result in too many classes (one per instance constrained),
and the class diagram syntax is far from the scientific standard edition.

In [12], the authors propose to convert natural language expressions to the equiva-
lent OCL statements. The expressions are constraints and pre/post conditions related
to UML diagrams. OCL generation is based on the Semantic Business Vocabulary
and Rules language (SBVR) to avoid inconsistencies. With CdmCL, we prefer to
define a DSL because, in a small and well identified domain, it promotes the devel-
opment of efficient and accurate solutions [13]. As a DSL, CdmCL disambiguates
scientific standard edition. And in addition, it is close enough to the natural language

so that its use does not require technical skills on OCL. However, the creation of a
DSL usually requires both domain knowledge and language development expertise
[13]. But, the production cost of CdmCL is low since it relies directly on OCL seman-
tics, while hiding unnecessary OCL features. Thus, translation to OCL may be direct-
ly done without considering SBVR intermediate level.

7 Conclusion

This paper proposes a domain specific constraint language for CDM. The language
structure is based on CDM structure and results in a set of constraint categories. These
categories permit to define constraints in a human readable language and serves in the
automatic generation of OCL. The approach hides the complexity of writing OCL
manually and increases the productivity by generating a large number of OCL state-
ments for few lines written in CdmCL. Furthermore, any standard edition and con-
formity checking can be done easily without OCL and programming interference.

In perspective, we are working on developing domain specific operators to auto-
mate scientific data migration from a standard to another one.

8 References

1. Unidata, Common Data Model (CDM). Version 4.
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/

2. OceanSITES User’s Manual, Version 1.2. http://www.oceansites.org/
3. Object Management Group: Object Constraint Language (OCL) Specification, Version,

2.4, http://www.omg.org/spec/OCL/2.3.1/
4. Meyer B., Object-Oriented Software Construction, International Series in Computer Sci-

ence, Second Edition, Prentice-Hall (1997)
5. Linehan M., Ontologies and rules in Business Models, in the 11h IEEE Enterprise Distrib-

uted Object Conference (EDOC), 149-156, 2008.
6. Wahler M., Using Patterns to Develop Consistent Design Constraints, PhD Thesis, ETH

Zurich, Switzerland, 2008.
7. Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/
8. OceanSITES file format checker. http://www.coriolis.eu.org/Observing-the-

ocean/Observing-system-networks/OceanSITES/Access-to-data.
9. Schütze L., Wilke C., Demut B., Tool-Supported Step-By-Step Debugging for the Object

Constraint Language, In OCL@MODELS 2013, 2013.
10. Gogolla M., et al. USE: A UML-Based Specification Environment for Validating UML and

OCL, Science of Computer Programming, Vol. 69, 27-34, 2007.
11. Li Tan, Zongyuan Yang and Jinkui Xie, OCL Constraints Automatic Generation for UML

Class Diagram, IEEE International Conference on Software Engineering and Service Sci-
ences (ICSESS) 392 – 395, 2010.

12. Bajwa I.S., Bordbar B. and Lee M.G., OCL Constraints Generation from Natural Lan-
guage Specification, in the 14th IEEE Enterprise Distributed Object Conference (EDOC),
204-213, 2010.

13. Mernik M., Heering J.and Sloane A. When and how to develop domain-specific languages
in ACM Computing Surveys, 37(4), 316-344, 2005.

