
Introduction

● OCL evaluation must be side-effect free
● But constraints may be used otherwise, e.g.:

a. Generating models satisfying these constraints
■ e.g., test generation

b. Updating models so that they are satisfied
■ e.g., synchronization of element properties (may be used for derived 

features, in transformation engines, etc.)

● Achieving b. may rely on active operations[1]
[1] O. Beaudoux et al., Active Operations on Collections, MODELS’10



OCL Active Operations
● Basis: incremental algorithms for computing OCL operations on collections
● Principle: observation of mutation events on source collections
● Example 1:

○ self.childrenAges := self.memberAges->select(e | e < 18)
○ “For each e added into memberAges at index i, add e into childrenAges at 

index j=(see [1]) if e<18.”
● Example 2:

○ self.children := self.members->select(e | e.age < 18)
○ In this case, e.age can change, therefore we may also need to update children 

if the age of any element of members changes.
● Algorithms for all OCL collection operations have been specified and implemented.
● Remark: the above examples use a new “:=” operator instead of “=” to denote the 

direction of updates. An operator denoting bidirectional synchronization also exists.


