
© COPYRIGHT IKERLAN 2014

Xabier De Carlos | Goiuria Sagardui | Salvador Trujillo
[xdecarlos@ikerlan.es]

30th September, 2014
14th International Workshop on

OCL and Textual Modeling
Applications and Case Studies

© COPYRIGHT IKERLAN 2014

IN THIS PRESENTATION...

Background and Motivation

MQT

Preliminary Evaluation

Related Work

Conclusions and Future Work

2

© COPYRIGHT IKERLAN 2014

QUERYING MODELS

MODEL XMI FILE

3 MQT

Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

Queried using Model-Level query languages:
• Close to modelling engineers and widely used by them
• Focused on interacting with models, persistence-agnostic
• For example: OCL, EOL, INCQuery, EMFQuery, etc.

load in memory

“XMI-based serialization in EMF results to be extremely inefficient”
 [Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., & Launay, D. (2014, July). Neo4EMF, a Scalable Persistence Layer for EMF Models.
 In ECMFA-European conference on Modeling Foundations and applications.]

LARGE-SCALE

© COPYRIGHT IKERLAN 2014

QUERYING LARGE-SCALE MODELS

LARGE-SCALE
MODEL XMI FILE

Load only required information.

DATABASE

MORSA, EMF Fragments, Neo4EMF, CDO, MongoEMF, etc.

4 MQT

Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

Persistence-level query languages
•Leverage capabilities of persistence.
•Persistence-specific and dependent.
•For example: MorsaQL, SQL, Cypher,etc.

© COPYRIGHT IKERLAN 2014

MOTIVATION

PROBLEM. Model-Level query languages are closer to
modelling engineers but they do not have the
efficiency of persistence-level query languages to
query large models persisted in databases.

 5 MQT

Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

© COPYRIGHT IKERLAN 2014

MOTIVATION

CHALLENGE. Use a model-level
query language with the

efficiency of a persistence-level

language.

PROPOSED SOLUTION.
Automate query translation
from model-level
to persistence-level

 6 MQT

Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

© COPYRIGHT IKERLAN 2014 7

ODEL M
Q

T

UERY

RANSLATOR

Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

© COPYRIGHT IKERLAN 2014

MQT: MODEL QUERY TRANSLATOR

EOL to SQL

8 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

Work based on “An Approach for Efficient
Querying of Large Relational Datasets with

OCL-based Languages” [D.S. Kolovos D.S.,
R. Wei, K. Barmpis In XM’13]

MQT uses EMC

Naive and Custom translation

 Based on a metamodel-agnostic
data-schema

 for EOL Query↔Model interaction

Runtime Translation

© COPYRIGHT IKERLAN 2014

MQT OVERVIEW

9 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

MQTModel

MQTResultSetList

MQTResultObject

MQTPrimitiveValueList

EOLModule

EOL Query
EMC

SQL

SQL

SQL

IModel
implements

SQL

© COPYRIGHT IKERLAN 2014

MQT+NAIVE TRANSLATION

 Based on naive translation provided by EMC.

 Each query expression translated and executed one-by-one

10 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

EClass.all.select(...)
1) Parses and translates EClass.all:

• New instance of MQTResultSetList
• Executes constructed SQL query

2) Parses and translates .select(...):
• Executes a SQL query for each result of

the list to check the condition.

EOL

SQL

© COPYRIGHT IKERLAN 2014

MQT+CUSTOM TRANSLATION

MQTResultSetList implements IAbstractOperationContributor,
overriding translation of select, collect, reject, etc.

 Group dependent queries into a single translated SQL query to
be executed once.

11 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

EOL

SQL

EClass.all.select(...)
1) Parses and translates EClass.all:

• New instance of MQTResultSetList
2) Parses and translates .select(...):

• Completes query construction with the
select condition

• Executes query and return results.

© COPYRIGHT IKERLAN 2014

Translation example:

­ Translation example of custom translation

­ Compare with naive translation

Query:

12 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

MQT CUSTOM TRANSLATION
EXAMPLE

© COPYRIGHT IKERLAN 2014 13 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

MQT CUSTOM TRANSLATION
EXAMPLE

© COPYRIGHT IKERLAN 2014 14 Evaluation

Related Work

Concl. & Future

Backgr. & Motiv.

MQT

* X

N1

N2

* Y N3

C1

MQT+CUSTOM = C1

MQT+NAIVE= N1 + N2*X +N3*Y

MQT CUSTOM TRANSLATION
EXAMPLE

© COPYRIGHT IKERLAN 2014

MQT PRELIMINARY EVALUATION

Models: five, from 45MB to 403MB
­ Created using Java Discoverer of MoDISCO

­ Models conform to a JAVA metamodel

­ Persisted in a relational DB with a metamodel-agnostic
schema and using H2 database back-end

Query: identify singleton classes
­ Based on the GraBats’09 Reverse Engineering Contest

­ EOL

Execution: 100 times
­ MQT+Naive

­ MQT+Custom

 15 Related Work

Concl. & Future

Backgr. & Motiv.

MQT

Evaluation

© COPYRIGHT IKERLAN 2014

MQT PRELIMINARY EVALUATION

Results

 Correctness of the query results:

­ Execute query against models persisted in XMI

 Query translation time:

­ M1 3.35ms | M2 4,51ms | M3 0.77ms |
M4 0.8ms | M5 0.64ms

 16 Related Work

Concl. & Future

Backgr. & Motiv.

MQT

Evaluation

MQT + Naive Trans.

MQT + Custom Trans.

M1 M2 M3 M4 M5
size (MB) 45 72 212 327 403
objects 165741 330761 875988 1343207 1566890

methods 5366 8129 11393 15386 19366
 # singleton classes 9 8 6 0 0

MQT+naive 185ms 302ms 676ms 950ms 1243ms
MQT+custom 13ms 11ms 10ms 3ms 1ms

Custom translation more
scalable than naive.

© COPYRIGHT IKERLAN 2014

RELATED WORK

 A Framework for Generating Query Language Code from OCL
Invariants [by F. Heidenreich, C. Wende, and B. Demuth]

­ Generate SQL queries from OCL invariants.

 OCL as a Specification Language for Business Rules in
Database Applications [by B. Demuth, H. Hussmann and S. Loecher]

­ Generate views from OCL constraints, and use views to check
integrity of persisted data.

 A DBMS-Based Approach for Automatic Checking of OCL
Constraints [by U. Marder, N. Ritter, H. Steiert]

­ A similar approach for integrity checking.

While these approaches translate
queries at compilation-time, our
approach performs translation at runtime.

17 Concl. & Future

Backgr. & Motiv.

MQT

Evaluation

Related Work

© COPYRIGHT IKERLAN 2014

CONCLUSIONS

MQT: approach for runtime
translation of EOL queries to SQL.

MQT prototype:
­ Supports read-only EOL expressions.

­ Modification expressions are not
supported.

MQT preliminary evaluation:
­ MQT+Custom translation more

scalable than MQT+naive translation

­ Need to perform a more complete
evaluation

18 Backgr. & Motiv.

MQT

Evaluation

Related Work

Concl. & Future

© COPYRIGHT IKERLAN 2014

FUTURE WORK

Extend MQT with support for:

• Modification expressions.

• Additional model-level query languages (e.g. OCL)

• Additional persistence-level query languages (e.g. Cypher)

Evaluation:

• Compare with XMI

• More complex queries

Open issues: how to
provide extensibility
to facilitate the integration
of new query languages.

19 Backgr. & Motiv.

MQT

Evaluation

Related Work

Concl. & Future

© COPYRIGHT IKERLAN 2014

THANK YOU.
QUESTIONS?

20

© COPYRIGHT IKERLAN 2014

Xabier De Carlos | Goiuria Sagardui | Salvador Trujillo
[xdecarlos@ikerlan.es]

30th September, 2014
14th International Workshop on

OCL and Textual Modeling
Applications and Case Studies

