
Verifying Tolerant Systems using Polynomial
Approximations

Pavithra Prabhakar
Dept. of Comp. Sci
University of Illinois

at Urbana-Champaign, USA
pprabha2@illinois.edu

Vladimeros Vladimerou
Reglerteknik, LTH
Lund University
Lund, Sweden

vladimer@control.lth.se

Mahesh Viswanathan
Dept. of Comp. Sci
University of Illinois

at Urbana-Champaign, USA
vmahesh@illinois.edu

Geir E. Dullerud
MechSE Dept.

University of Illinois
at Urbana-Champaign, USA

dullerud@illinois.edu

Abstract—In this paper, we approximate a hybrid system with
arbitrary flow functions by systems with polynomial flows; the
verification of certain properties in systems with polynomial flows
can be reduced to the first order theory of reals, and is therefore
decidable. The polynomial approximations that we construct ε-
simulate (as opposed to “simulate”) the original system, and at
the same time are tight. We show that for systems that we call
tolerant, safety verification of a system can be reduced to the
safety verification of the polynomial approximation. Our main
technical tool in proving this result is a logical characterization of
ε-simulations. We demonstrate the construction of the polynomial
approximation, as well as the verification process, by applying it
to an example protocol in air traffic coordination.

Index Terms—hybrid systems; ε-simulation; approximation;
logical characterization; hybrid automata;

I. INTRODUCTION

Embedded systems are often conveniently modelled using
hybrid automata [2], which have finitely many control (or
discrete) states, and continuous states evolving continuously
with time. The verification problem for such automata is well
studied, and boundaries of decidability have been extensively
explored. It is known that many verification problems are de-
cidable for timed automata [3], certain special kinds of rectan-
gular hybrid automata [11], o-minimal hybrid automata [12],
and STORMED hybrid automata [27]. All these decidable
classes have very simple continuous dynamics ranging from
variables evolving linearly with time (timed and rectangular
hybrid automata) to those where the evolution of the variables
can be described using rich logic structures (o-minimal and
STORMED systems). The many undecidability results for the
verification problem of hybrid systems [2], [11], [4], [5], [15]
strongly suggest that simple continuous dynamics is essential
for the verification problem to be decidable.

However, the continuous dynamics of actual systems are
typically much more complicated. Therefore, the models of
such systems cannot be algorithmically analyzed with ease.
The typical approach is to construct a system with simpler
dynamics that abstracts the original system; the abstracted
system has more behaviors than the original system. Analyzing
the abstraction can give useful information about the original
system. If the abstraction is safe, then one can usually conclude
the safety of the original system. On the other hand, if the

abstraction is unsafe, then no reliable information can be
inferred about the original system.

Instead of using abstractions to simplify dynamics, in this
paper we take a slightly different approach. Given a hybrid
system H with arbitrary flows, we construct a hybrid system
polyε(H) all of whose flows are polynomials1, using the Stone-
Weierstrass [24] theorem. Systems with polynomial flows are
desirable, because for such systems, reachability in bounded
executions can be reduced to the first order theory of reals,
and is therefore decidable. The system polyε(H) that we
construct, is not an abstraction of H in the traditional sense
of exhibiting all the behaviors of H. We show that polyε(H)
ε-simulates (as introduced in [8]) H. In other words, for every
execution of H, there is an execution of polyε(H) that remains
within distance ε at all times. In addition, we show that our
polynomial approximation is tight. More precisely, we show
that polyε(H) itself is ε-simulated by an over-approximation
of H. Thus, polyε(H) has approximations to every behavior
of H but not much more. The fact that polyε(H) is a tight
approximation, allows us to conclude that verifying polyε(H)
gives us a precise answer about the safety of H, for certain
special systems that we call tolerant.

An ε-tolerant system, intuitively is one where even if the
invariants, guards and resets are perturbed slightly (by ε),
the system remains safe. Tolerance is a desirable property of
a system, and usually good designs are tolerant. Our main
result characterizes how the safety of tolerant systems can be
determined by analyzing its polynomial approximation. We
show that for a 2ε-tolerant system H, H is safe if and only
if polyε(H) is safe. Thus, in the case of tolerant systems,
the flows can be reliably simplified without affecting the
verification result.

This begs the question, how do we know if the system we
start with is tolerant? First,we observe that even if the tolerance
of a system H is unknown, analyzing polyε(H) gives useful
information. Our proof shows that if polyε(H) is safe, then H
is guaranteed to be safe, very much like the case of traditional
abstractions. On the other hand, if polyε(H) is unsafe then it
is either the case that H is unsafe or it is not 2ε-tolerant. Thus,

1Not only polynomials but any algebraically defined representations such
as piece-wise polynomials or splines, etc.

if ε is small, it suggests that H is badly designed and must be
modified, independent of whether it is actually safe. Second,
we consider the problem of verifying tolerance of a system.
For a class of hybrid systems, we show that the problem
of verifying tolerance is as difficult as safety verification, by
demonstrating a formal reduction.

Our result reducing the safety verification of tolerant sys-
tems to the verification of polynomial approximations, relies
on a logical characterization of ε-simulations. Our character-
ization is remarkably similar to the logical characterization
of (classical) simulation using Hennessy-Milner logics [14].
This is surprising in the light of the fact that ε-simulation
is not a preorder as it is not transitive. Further, as in the
case of simulations, our characterization is exact for finite
branching transition systems. This logical characterization of
ε-simulation maybe of independent interest.

Finally, we apply our technique to the verification of a
protocol in air traffic coordination, demonstrating all the steps
in our approach, including the construction of polynomial
approximations and their verification.

a) Related Work.: Obtaining tight approximations of
systems using simple flows (using polyhedra or polynomials)
has been previously explored [21], [10], [13]. In all these
case the system constructed is indeed an abstraction, unlike in
our case where we have a “close simulation” or ε-simulation.
Moreover, the simplified system is only guaranteed to closely
approximate the set of reachable states, and need not ε-
simulate the system. The notion of ε-simulation was intro-
duced in [8], where a characterization in terms of simulation
functions was given. ε-overapproximations of systems have
also been considered [13], where the flows are approximated
by polynomials. However this approximation only preserves
reachability properties. In [9], finite symbolic models which
are approximately bisimilar to switched systems is considered.
In [10], the authors present techniques to approximate non-
linear hybrid systems into linear hybrid automata. In [22],
methods which approximate reachable sets of Lipschitz dif-
ferential inclusion with arbitrary precision are given.

II. PRELIMINARIES

A. First-order Logic

Let τ be a vocabulary and A a τ -structure. Let A be the
domain of A. A k-ary relation S ⊆ Ak is definable in A
if there is a first-order formula ϕ(x1, x2, . . . xk) over τ with
free variables x1, . . . xk, such that S = {(a1, . . . , ak) | A |=
ϕ[xi 7→ ai]ki=1}. A k-ary function f will be said to be defin-
able if its graph, i.e., the set of all (x1, . . . , xk, f(x1, . . . xk)),
is definable. A theory Th(A) of a structure A is the set of
all sentences that hold in A. Th(A) is said to be decidable if
there is an effective procedure to decide membership in the
set Th(A).

In this paper we consider the theory of real-closed fields,
namely, the set of all sentences true over (R, 0,+, ., <),
denoted Th(R), where R is the set of real numbers and 0,
+, . and < have the standard interpretations of the constant 0,
addition, multiplication and comparison over the real numbers.

When we refer to a first-order formula over the reals, we
mean a formula over (R, 0,+, ., <). We know from Tarski’s
theorem that Th(R) admits quantifier elimination and hence it
is decidable.

Theorem 1 (Tarski’s theorem[26]): The theory of real-
closed fields Th(R) is decidable.

B. Stone- Weierstrass Theorem

A family A of real functions defined on a set E is said to
be an algebra if for all f, g ∈ A and r ∈ R, f + g ∈ A, fg ∈
A, rf ∈ A. A sequence of functions {fn}, n = 1, 2, 3, · · · ,
converges uniformly on E to a function f if for every ε > 0,
there is an integer N such that n ≥ N implies |fn(x)−f(x)| ≤
ε for all x ∈ E. Let B be the set of all functions which are
limits of uniformly convergent sequences of members of A.
Then B is called the uniform closure of A. Let A be a family
of functions on a set E. Then A is said to separate points
on E if for every pair of distinct points x1, x2 ∈ E, there
corresponds a function f ∈ A such that f(x1) 6= f(x2). If
for each x ∈ E, there corresponds a function g ∈ A such that
g(x) 6= 0, A is said to vanish at no point in E.

Theorem 2 (Stone-Weierstrass): Let A be an algebra of real
continuous functions on a compact set K. If A separates points
on K and if A vanishes at no point of K, then the uniform
closure B of A consists of all real continuous functions on K.

We will use this theorem to approximate arbitrary functions
by polynomial functions.

Definition 3: A function f : Rn → Rm is a polynomial
function if there exist polynomials P1, · · · , Pm over the vari-
ables x1, · · · , xn such that for all v = (v1, · · · , vn) ∈ Rn,
f(v) = (P1[xi 7→ vi]ni=1, · · · , Pm[xi 7→ vi]ni=1).
Note that a polynomial function is definable in (R, 0,+, ., <).

Since the set of polynomial functions form an algebra,
every arbitrary function is the limit of a uniformly converging
sequence of polynomial functions. We will use |x−y| to denote
the euclidean distance between x and y.

Corollary 4: Given any continuous function f : Rn → Rm,
a compact subset K of Rn and an ε > 0, there exists a
polynomial function P : Rn → Rm such that

|f(x)− P (x)| < ε,∀x ∈ K.

Definition 5: Given a function f : Rn → Rm, a compact
subset K of Rn, we define polyε(f,K) to be the polynomial
function obtained by the above Corollary.

C. Metric Spaces

A metric space M is a pair (M,d) where M is a set and
d : M ×M → R≥0 ∪ {∞} is a distance function such that
for all m1, m2 and m3,

1) (Non-negativity) d(m1,m2) ≥ 0.
2) (Identity of indiscernibles) d(m1,m2) = 0 if and only

if m1 = m2.
3) (Symmetry) d(m1,m2) = d(m2,m1).
4) (Triangle inequality) d(m1,m3) ≤ d(m1,m2) +

d(m2,m3).

We define an open ball of radius ε around a point x to
be the set of all points which are within a distance ε from
x. Formally, Bε(x) = {y ∈ M | d(x, y) < ε}. Given a set
X , we define the shrink and expand of the set as follows.
For X ⊆ M , shrinkε(X) = {x ∈ M |Bε(x) ⊆ X}, and
expandε(X) = {x ∈M |Bε(x) ∩X 6= ∅}.

D. Transition systems and simulation

1) Transition Systems: A transition system T =
(Q,Act, Lab, {→a}a∈Act, 〈〈·〉〉), where:
• Q is a (finite or infinite) set of states,
• Act is a finite set of action labels,
• Lab is a (finite or infinite) set of state labels,
• →a⊆ Q×Q, and
• 〈〈·〉〉 : Q→ Lab.

Notation: We will often write q1
a−→ q2 to mean

(q1, q2) ∈→a.
A transition system is finite branching iff ∀q ∈ Q, a ∈ Act,

the set {q′|q a−→ q′} is finite. A metric transition system is
a transition system T = (Q,Act, Lab, {→a}, 〈〈·〉〉) where the
space of state labels is a metric space, i.e., (Lab, d) is a metric
space for some d.

2) Simulation: Given transition systems
T1 = (Q1,Act, Lab, {→1

a}a∈Act, 〈〈·〉〉1) and T2 =
(Q2,Act, Lab, {→2

a}a∈Act, 〈〈·〉〉2), R ⊆ Q1 × Q2 is said
to be a simulation between T1 and T2 if and only if for all
(q1, q2) ∈ R:

1) 〈〈q1〉〉1 = 〈〈q2〉〉2, and
2) if q1

a−→1 q′1 then there is a q′2 s.t. q2
a−→2 q′2 and

(q′1, q
′
2) ∈ R.

We will say that q1 is simulated by q2 or q2 simulates q1,
denoted q1 � q2, if there is some simulation R such that
(q1, q2) ∈ R.

a) ε-simulation: We now define a notion of approximate
simulation, which requires every transition of one system to be
matched by the other approximately. Given metric transition
systems T1 = (Q1,Act, Lab, {→1

a}a∈Act, 〈〈·〉〉1) and T2 =
(Q2,Act, Lab, {→2

a}a∈Act, 〈〈·〉〉2) with a distance function d
on Lab, R ⊆ Q1 ×Q2 is said to be an ε-simulation between
T1 and T2 if and only if for all (q1, q2) ∈ R:

1) d(〈〈q1〉〉1, 〈〈q2〉〉2) < ε, and
2) if q1

a−→1 q′1 then there is a q′2 s.t. q2
a−→2 q′2 and

(q′1, q
′
2) ∈ R.

We will say that q1 �ε q2 if there is some ε-simulation R such
that (q1, q2) ∈ R.

III. LOGICAL CHARACTERIZATION OF SIMULATION

In this section we present the logical characterization of
simulation in terms of safe Hennessy-Milner Logic and extend
it to obtain a logical characterization of ε-simulation.

A. Safe Hennessy-Milner Logic

Given an alphabet Act and a set of labels Lab, we denote
the Safe Hennessy-Milner Logic formulas over (Act, Lab) as

SHM(Act, Lab). The formulas in SHM(Act, Lab) are defined
inductively as:

φ ::= p | [a]φ | φ1 ∧ φ2 | φ1 ∨ φ2,

where p ⊆ Lab is an atomic proposition and a ∈ Act.
The semantics of Safe HM is defined as follows. Given

a transition system T , a state q of it, and a formula φ over
SHM(Act, Lab), where Act is the set of action labels and Lab,
the set of state labels of T , we define T at q satisfies φ,
denoted T , q |= φ, inductively as:

T , q |= p iff 〈〈q〉〉 ∈ p,
T , q |= [a]φ iff ∀q′, q

a−→ q′ ⇒ T , q′ |= φ,
T , q |= φ1 ∧ φ2 iff T , q |= φ1 ∧ T , q |= φ2,
T , q |= φ1 ∨ φ2 iff T , q |= φ1 ∨ T , q |= φ2.

For a state q in the transition system T , define [[q]]T = {φ ∈
SHM(Act, Lab) | T , q |= φ}. Let q be a state in T1 and q2 be
a state in T2. We say that q1 is SHM simulated by q2 denoted
q1 vSHM q2, if [[q2]]T2 ⊆ [[q1]]T1 .

Remark 6: When Lab ⊆ Rk, we say that φ ∈
SHM(Act, Lab) is definable in (R,≤,+, ·), if every propo-
sition of φ is definable in (R,≤,+, ·).

Next, we present a logical characterization of simulation
due to Milner.

Proposition 7 ([14]): Let T1 and T2 be two transition sys-
tems and let q1 be a state of T1 and q2 be a state of T2. Then:

1) q1 � q2 implies q1 vSHM q2
2) T2 is finite branching and q1 vSHM q2 implies q1 � q2.

The proof is standard and skipped.

B. Logical characterization of ε-simulation

In this section we give a logical characterization of ε-
simulation along the lines of that for simulation given by
Milner. We require the notion of the shrink of a formula.
Intuitively, the shrink of a formula is satisfied by some valu-
ation if the original formula is satisfied by all the valuations
in an ε ball around it. Let (Lab, d) be a metric space. For a
formula φ ∈ SHM(Act, Lab) we define shrinkε(φ) inductively
as follows:
• φ = p, where p ⊆ Lab: shrinkε(φ) = shrinkε(p). That is,

shrink of the formula φ is the same as the shrink of the
set p.

• φ = [a]ψ : shrinkε(φ) = [a]shrinkε(ψ).
• φ = ψ1 ∧ ψ2 : shrinkε(φ) = shrinkε(ψ1) ∧ shrinkε(ψ2).
• φ = ψ1 ∨ ψ2 : shrinkε(φ) = shrinkε(ψ1) ∨ shrinkε(ψ2).

Observe that shrinkε(shrinkε(φ)) = shrink2ε(φ). For a set of
formulas Γ, shrinkε(Γ) = {shrinkε(φ)|φ ∈ Γ}.

We first generalize the notion of q1 is SHM simulated by q2
to q1 is ε SHM simulated by q2 using the shrink of formulas.
We assume for the rest of the section that T1 and T2 are metric
transition systems with Lab, the set of state labels, Act, the
set of action labels and d the distance function.

Definition 8: For a state q1 in T1 and a state q2 in T2 we
say q1 vεSHM q2 iff [[q2]]T2 ⊆ shrinkε([[q1]]T1).

We now logically characterize ε-simulation by relating it to
ε SHM simulation.

Theorem 9: Let T1 and T2 be two metric transition systems.
Let q1 and q2 be states in T1 and T2 respectively. Then

1) q1 �ε q2 ⇒ q1 vεSHM q2.
2) T2 is finite branching and q1 vεSHM q2 ⇒ q1 �ε q2.

Proof:
Proof of part (i). Let q1 �ε q2. We will show by structural

induction on φ that if T2, q2 |= shrinkε(φ) then T1, q1 |= φ.
Then we can conclude that q1 vεSHM q2.

Base case: φ = p ⊆ Lab. T2, q2 |= shrinkε(φ) im-
plies 〈〈q2〉〉 ∈ shrinkε(p). Since q1 �ε q2 we know that
d(〈〈q1〉〉, 〈〈q2〉〉) < ε and hence 〈〈q1〉〉 ∈ p. Therefore, T1, q1 |=
φ.

Induction step: In the case of φ = ψ1 ∨ ψ2 or φ = ψ1 ∧
ψ2 the proof is straightforward. Hence we consider the case
when φ = [a]ψ. shrinkε(φ) = [a]shrinkε(ψ). Now suppose
q1

a−→ q′1. Then ∃q′2 . q2
a−→ q′2 ∧ q′1 �ε q′2. Further, since

q2 |= [a]shrinkε(ψ), we have q′2 |= shrinkε(ψ). By induction
hypothesis T1, q′1 |= ψ ⇒ q1 |= [a]ψ.

Proof of part (ii). Suppose q1 vεSHM q2. We will show that
vεSHM is an ε-simulation.
(a) Let 〈〈q2〉〉 = l. Clearly q2 |= shrinkε(Bε(l)). Therefore
q1 |= Bε(l)⇒ d(〈〈q1〉〉, 〈〈q2〉〉) < ε.
(b) Suppose q1

a−→ q′1. There must be some q′2 such that
q2

a−→ q′2 and q′1 vεSHM q′2. If not, consider NotSim =
{q′2|q2

a−→ q′2 and q
′
1 6vεSHM q′2}. Now, for every q′2 ∈ NotSim,

by definition of vεSHM, there is a formula φq′2 , such that
q′2 |= shrinkε(φq′2) and q′1 6|= φq′2 . Take φ = [a]

∨
q′2∈NotSim

φq′2 .

Now shrinkε(φ) = [a]
∨

q′2∈NotSim

shrinkε(φq′2). Since NotSim

contains all a-successors of q2, T2, q2 |= shrinkε(φ). But since
q′1 6|= φq′2 ∀q

′
2 ∈ NotSim, we have q1 6|= φ, which contradicts

the fact that q1 vεSHM q2.
Remark 10: In this work we consider SHM logic instead of

ACTL or ACTL? because we are interested in bounded-horizon
verification. Theorem 9 clearly extends in a straightforward
manner to those logics.

Remark 11: The transition systems arising from hybrid
systems are not finite branching because of the time passing
transitions. However, for special hybrid systems, such as timed
automata [3], o-minimal hybrid systems[12], and STORMED
hybrid systems[27], all of which admit finite bisimulations,
part (ii) of Theorem 9 applies. Therefore, for these systems
we have an exact logical characterization of ε-simulation.
However, we do not need an exact logical characterization
for the following results.

IV. POLYNOMIAL APPROXIMATIONS AND ε-SIMULATIONS

In this section we introduce hybrid systems and approximate
them by hybrid systems with only polynomial flows. We will
show that the approximation ε-simulates the original system.

A. Hybrid System: Definition and semantics

b) Hybrid System.: A hybrid system is a
tuple H = (Loc,ActH ,LabH , δ,X, l0, X0, inv, flow,

guard, reset,Labf) where:

• Loc is a finite set of locations,
• ActH is a finite set of action labels,
• LabH is a finite set of location labels,
• δ ⊆ Loc× ActH × Loc is a set of edges,
• X = Rn is the set of continuous states,
• l0 is the initial location,
• X0 ⊆ X is the initial set of continuous states,
• inv : Loc → 2X is the function which associates an

invariant with every location,
• flow : Loc×X → (R≥0 → X) is the flow function,
• guard : δ → 2X associates a guard with every edge,
• reset : Loc× ActH → 2X×X is the reset function, and
• Labf : Loc→ LabH is the labelling function.

We will say that H is definable in a structure S = (R,≤
, · · ·) whenever X0, inv, flow, guard, reset and 〈〈·〉〉 are all
definable in S. In this document we will only deal with
definable hybrid systems.

c) TISC flows.: We will assume that the flow function
is time-independent spatially consistent (TISC) by which we
mean that if we can reach x1 from x0 in time t1 and can reach
x2 from x1 in time t2, then we can also reach x2 from x0 in
time t1 + t2. Formally, the flow function flow : Loc × X →
(R≥0 → X) is said to be TISC if for every l ∈ Loc and
x ∈ X , flow(l, x) satisfies the following conditions:

1) flow(l, x) is continuous and flow(l, x)(0) = x.
2) It satisfies the following “semi-group” property: for

every t1, t2 ≥ 0 and x ∈ X , flow(l, x)(t1 + t2) =
flow(l, flow(l, x)(t1))(t2).

Henceforth we will only be considering systems with TISC
flows.

d) Semantics of hybrid systems.: The semantics
of a hybrid system H = (Loc,ActH ,LabH ,
δ,X, l0, X0, inv, flow, guard, reset,Labf) is represented
by the following transition system [[H]]. The semantics
of a hybrid system H is the timed transition system
[[H]] = (Q,Act, Lab, {→a}a∈Act, 〈〈·〉〉) where:

• Q = Loc×X ,
• Act = ActH ∪ R≥0,
• Lab = LabH × Rn,
• (l, x) a−→ (l′, x′) if

– either a ∈ ActH and there exists e = (l, a, l′) ∈ δ
such that x ∈ inv(l) ∩ guard(e) and (x, x′) ∈
reset(e).

– or a ∈ R≥0, l = l′ and there exist x0, t1 and t2
such that flow(l, x0)(t1) = x, flow(l, x0)(t2) = x′,
a = t2 − t1, and for all t′ ∈ [0, t2], flow(l, x0)(t′) ∈
inv(l) and

• 〈〈(l, x)〉〉 = (LabH(l), x).

[[H]] is a metric transition system, with metric space
(Lab, d), where the distance function d((p1, x1), (p2, x2)) =
∞ if p1 6= p2 and is equal to the Euclidean distance between
x1 and x2 otherwise.

B. Polynomial ε-expansions

The main thesis of this paper is that the Stone-Weierstrass
theorem can be used to approximate complex continuous
dynamics of the hybrid systems by polynomials. This requires
that the invariants associated with the locations are compact. In
this section, we define the notion of polynomial approximation
of a hybrid system and prove some of its properties.

We will assume that the flows are such that there is a bound
on the total time that can be spent in any compact invariant.
We note that this is generally the case, as seen for example in
timed automata, rectangular hybrid automata, and so on.

In the polynomial approximation, we remember the initial
state in which the current continuous transition was taken. We
do this to ensure that the polynomial expansion of the system
is TISC. We approximate the flows of the hybrid system with
polynomial functions which are ε-close at all time. The flows
in polyε(H) could transition to states outside the invariants
and guards, even when the flows in H corresponding to them
didn’t. However, the flows will not deviate more than ε from
the flow of H. Hence we expand invariants, guards and resets
to accommodate these flows.

Definition 12 (Polynomial ε-expansion): Given a
hybrid system H = (Loc,ActH ,LabH , δ,X, l0, X0,
inv, flow, guard, reset,Labf), with inv(l) a compact
set for all l, let tb be the time taken for any
flow to transition out of expand2ε(inv(l))). We
define the polynomial ε-expansion of H, denoted by
polyε(H), as the hybrid system (Loc,ActH ,LabH ,
δ,X ′, l0, X

′
0, inv′, flow′, guard′, reset′,Lab′f) where:

• X ′ = R2n+1, where X = Rn,
• X ′0 = X0 × {0} ×X0,
• inv′(l) = inv(l)× R≥0 × expandε(inv(l)),
• flow′(l, (x0, t0, x))(t) = (x0, t0 +
t, polyε(flow(l), inv(l)× {tb})(x0, t0 + t)),

• guard′(e) = inv(l) × R≥0 × expandε(guard(e))), where
e = (l, a, l′),

• reset′(e) = {((x1, t1, y1), (x2, t2, y2) | t2 = 0, x2 =
y2,∃y′1, d(y1, y′1) < ε∧(y′1, y2) ∈ reset(e)∧y2 ∈ inv(l′)},
for e = (l, a, l′),

• Lab′f (l, (x0, t0, x)) = Labf (l, x).
Remark 13: We will assume that flow′(l, (x0, 0, x0))(0) =

(x0, 0, x0) or equivalently polyε(flow(l), inv(l) ×
{tb})(x0, 0) = x0. This can be achieved by subtracting
the polynomial with t = 0, from the original polynomial.
Since the difference at t = 0 was less than ε, the difference
at any t would be bounded by 2ε.

In the polynomial expansion, we extend the continuous state
space to include the initial continuous state and the time spent
in the current location. We do this to ensure that the resulting
hybrid system is TISC.

Proposition 14: The polynomial ε-expansion polyε(H) is
TISC.

Proof: Follows from the way flow′ is defined.
Next we show that H is ε-simulated by its polynomial ε-

expansion.

Theorem 15: [[H]] �ε [[polyε(H)]].
Proof: We define a relation R ⊆ (Loc × Rn) × (Loc ×

R2n+1) as follows. ((l, x), (l′, (x0, t1, x1))) ∈ R iff l = l′

and flow(l, x0)(t1) = x. If there is a continuous transition
from (l, x) to (l, x′) at time t1, then there is a continuous
transition from x0 to x′′ at time t + t1 in the polynomial
approximation such that d(x′, x′′) < ε. But then there is a
continuous transition in polyε(H) from (x0, t, x1) to (x0, t+
t1, x

′′). Further since the invariants are expanded, at all times
in the interval [0, t1] the continuous state satisfies the invariant,
hence the above transition exists in polyε(H).

Similarly if there is a discrete transition from (l, x) to
(l′, x′), it is easy to see that there is a discrete transition from
(l, (x0, t, x1)) to (l′, (x′, 0, x′)), since d(x, x1) < ε and the
invariants, guards and resets are expanded by ε.

Corollary 16: Given a hybrid system H and a SHM for-
mula φ, polyε(H) |= shrinkε(φ) =⇒ H |= φ.

The next theorem says that the model-checking problem is
decidable for the polynomial approximation with respect to
formulas in the Hennessy-Milner Logic. Let H be a hybrid
system for which its polynomial approximation polyε(H) is
defined. Further its initial continuous space, invariants, guards
and resets are all given as formulas in (R, <,+, ·). Let φ ∈
SHM be a formula over Lab = LabH ×Rk for some k. Each
atomic proposition of φ is a finite union of sets of the form
{p} ×X where p ∈ LabH and X ⊆ Rk. Suppose for each of
the X for all the propositions in φ is given as first-order logic
formula in (R, <,+, ·). We call such a φ definable.

Theorem 17: Given H and φ as above, the problem of
whether [[polyε(H)]] |= shrinkε(φ) is decidable.

Proof: First, note that if φ is definable, then
so is shrinkε(φ), since for each set X defined by
φ(x1, · · · , xk), shrinkε(X) is given by the formula
∀y1, . . . , yk∀d ((ψd(x1, . . . , xk, y1, . . . , yk, d) ∧ d < ε)
→ φ(y1, . . . , yk)), where ψd(x1, . . . , xk, y1, . . . , yk, d) is
given by ∃d1 · · · dk(d2

1 + · · · + d2
k = d2 ∧ abs(x1, y1, d1) ∧

· · · ∧ abs(xk, yk, dk)) and abs(xi, yi, di) = (xi ≥ yi ∧ xi =
yi + di) ∨ (xi ≤ yi ∧ yi = xi + di).

Next checking whether polyε(H) |= shrinkε(φ) can be
reduced to the satisfiability of a first-order formula over the
theory of reals, which is decidable by Tarski’s theorem.

C. ε-expansion of Hybrid Systems

Here we define the ε-expand of a hybrid system in which
we expand the invariant, guards and resets by ε, but leave the
flows untouched.

Definition 18: Given a hybrid system H =
(Loc,ActH ,LabH , δ,X, l0, X0, inv, flow, guard, reset,Labf),
we define the ε-expansion of H, denoted by
expandε(H), as the hybrid system (Loc,ActH ,LabH ,
δ,X, l0, X0, inv′, flow, guard′, reset′,Labf) where:
• inv′(l) = expandε(inv(l)),
• guard′(e) = expandε(guard(e)),
• reset′(e) = {((x, y) | ∃x′, d(x, x′) < ε ∧ (x′, y) ∈

reset(e)}.

It is easy to see that the ε-expansion of a system ε-simulates
the system.

Proposition 19: [[H]] �ε [[expandε(H)]].
We now have the following theorem which says that the

polynomial expansion of H can be simulated by some expan-
sion of H. More precisely, the 2ε-expansion of H, ε-simulates
the polynomial ε-expansion of H.

Theorem 20: [[polyε(H)]] �ε [[expand2ε(H)]].
Proof: The proof is similar to that of Theorem 15. We

consider a relation R′ which is the inverse of R in the proof
of Theorem 15, that is, R′ = R−1. Let (l, (x0, t1, x1))R′(l, x)
and flow(x0, t1) = x.

If there is a continuous transition (l, (x0, t1, x1)) t2−→
(l, (x0, t1 + t2, x2)), then flow(l, x0)(t1 + t2) = x′′ where
|x′′ − x2| < ε, and at all time 0 ≤ t ≤ t1 + t2, the flow from
x0 in H is ε-close to the flow of polyε(H). This is guaranteed
by the fact that tb is taken to be the time required to exit
expand2ε(inv(l)). Hence, every flow in H is ε-close to the
corresponding flow in polyε(H) for at least time tb, and since
the flow in H exits expand2ε(inv(l)) in time tb, the flow in
polyε(H) at least exits expandε(inv). Therefore as long as the
flow in polyε(H) is within the invariant, there is a flow in the
original system which is ε-close to it.

The discrete case is similar to that of Theorem 15.

V. VERIFICATION OF TOLERANT SYSTEMS

In this section we show that model checking problem is
decidable for a class of hybrid systems which are tolerant with
respect to small perturbations in the property to be verified
and the system constraints. We show that for such systems
model-checking is equivalent to model-checking a polynomial
expansion which is decidable by the theorem in the previous
section.

We now define the notion of tolerance formally.
Definition 21 (ε-tolerance): A hybrid system H is said to

be ε-tolerant for some ε > 0 with respect to a property φ ∈
SHM if and only if H |= φ ⇒ expandε(H) |= shrinkε(φ).

Next we show that model-checking a system with respect
to a problem is equivalent to model checking its polynomial
expansion, if the system is tolerant.

Theorem 22: Let φ be a formula in SHM logic. Let H be
a hybrid system which is 2ε-tolerant with respect to φ. Then,

H |= φ⇔ polyε(H) |= shrinkε(φ).

Proof: (⇒) Since H is 2ε-tolerant we know that
expandε(H) |= shrink2ε(φ) which is equivalent to
shrinkε(shrinkε(φ)). Next, since polyε(H) �2ε expand2ε(H),
we have from the logical characterization of 2ε-simulation that
polyε(H) |= shrinkε(φ).
(⇐) Since H �ε polyε(H), from logical characterization of
ε-simulation we obtain H |= φ.

Remark 23: In practice, we would not know whether a
system H is 2ε-tolerant with respect to φ. However, if ε is
small and polyε(H) 6|= shrinkε(φ) then either H 6|= φ or H is
not tolerant. Either way it suggests that the design of H needs
to be modified.

VI. DECIDING ε-TOLERANCE

We now turn to the problem of checking whether a system is
ε-tolerant with respect to a given ε. Let C be a class of hybrid
systems which are closed under ε-expansion in the sense that
if H ∈ C, then expandε(H) ∈ C. Further let us assume
the invariants, guards and resets are definable in (R, <,+, .).
The following theorem states that for the class C checking ε-
tolerance with respect to φ is equivalent to checking whether
H satisfies φ.

Theorem 24: Given H, ε and φ, where H ∈ C and φ ∈
SHM, the problem of deciding whether H is ε-tolerant with
respect to φ is equivalent to checking if H |= φ.

Proof: (⇒) Suppose the problem of verifying if H is ε-
tolerant with respect to φ is decidable. We can then check if
H is ε-tolerant with respect to φ, if it is, then we know from
Theorem 22 H |= φ iff polyε(H) |= shrinkε(φ). Since the
latter is decidable, we can decide whether H |= φ in this case.
Suppose H is not ε-tolerant with respect to φ. Then from the
definition of ε-tolerance, we know H |= φ.

(⇐) Now suppose we can decide if H |= φ. Then if H 6|= φ,
then we know H is ε-tolerant. Suppose H |= φ, then we check
if expandε(H) |= shrinkε(φ). If the latter is true then we can
conclude the H is ε-tolerant, otherwise we can conclude that
H is not ε-tolerant.

VII. VERIFYING COMPACT SYSTEMS WITH STRONG
RESETS

In this section we show that for systems with strong resets
we can in fact verify ACTL∗ formulas. Since Theorem 9 also
extends to ACTL∗, ε-simulation preserves ACTL∗ properties.
A hybrid system H is said to have strong resets if reset(l) is
of the form X1 ×X2, where X1, X2 ⊆ Rn.

Theorem 25: Let H be a hybrid system, whose flows,
guards, invariants and resets are definable in (R, <,+, .) and
compact. If the system has strong resets. then for any ACTL∗

formula φ, the problem of whether [[polyε(H)]] |= φ is
decidable.

Proof: Since our polynomial approximations preserve the
TISC property of flows, and ensure that if H has strong resets
then polyε(H) has strong resets, our approximation gives us
an o-minimal hybrid system, which is shown in [12] to exhibit
finite computable bisimulation. Hence we can verify ACTL∗

formulas for such systems.

VIII. STONE WEIERSTRASS THEOREM IN PRACTICE

Stone Weierstrass Theorem is not constructive in that it
does not given an algorithm to compute an approximation of a
function. However there are various approximation techniques
available in the literature which are efficient for certain classes
of functions.

One popular approximation technique is Taylor approxima-
tion. In this a smooth function is approximated by taking the
first few terms of its Taylor expansion. This method requires
computing the values of the derivatives of the function at
certain points. If the function is defined in its closed form,
then one can use Bernstein polynomials [25], [7]. These

approximate the function by sampling it at various points.
Unlike Taylor approximation, these do not require computing
derivative of the function. However the degree of the polyno-
mial is equal to the number of samples taken and hence might
be high. These polynomials are dense in the set of continuous
real functions. Hence given an ε, there exists a polynomial
which is ε close to the original function. In fact, given a
Lipschitz bound on the function, one can easily calculate the
rate of sampling so that the obtained polynomial has an error
less than a given ε. Another method of approximation is the
Remez algorithm [23], which is an iterative minimax method.
However such iterative methods are often expensive in terms
of the computation time. Hence there is a trade-off between the
computaiton time, accuracy and the size of the approximation.

Further, when the function is not available in closed
form, but is given as the solution of a differential equation,
there are methods known as collocation method to obtain
polynomial approximations. At an abstract level, a form of
the polynomial is selected and the differential equation is
evaluated at various points to determine the coefficients of
this polynomial. A method which is based on the above is
the Piccard operation [18]. Another efficient method, which
improves upon the Picard operation, is the Parker-Sochacki
method [17]. The Parker-Sochacki method can be carried
out entirely symbolically and hence one can use a software
package like Maple which supports maniputaions of algebraic
expressions. The LdeApprox package in Mathematica uses
methods from [6] to find polynomial approximations to both
symbolic and numerical forms of linear differential equations
with or without boundary value constraints given a range for
the input variable. The output of the algorithm is a closed form
polynomial expression on the input and the symbols used as
parameters.

IX. AIR TRAFFIC COORDINATION: AN EXAMPLE

In this section we apply the approximation techniques
introduced in this paper to verify an air traffic coordination
protocol. In [16], an optimal controller was synthesized for a
similar collision avoidance protocol. The example was also
considered in [19] and [20]. However the analyses used
linear approximations without explicity quantifying the error
of approximation.

A. Problem description

The system in Figure 1 describes a situation where two
aircraft 1 and 2 which are flying in directions perpendicular to
each other want to merge on to the x-axis. Aircraft 1 is initially
at distance d1 from the origin, i.e., at coordinates (−d1, 0) and
aircraft 2 is at coordinates (−d2−r,−r). Aircraft 1 is moving
along the positive x axis with velocity v1 and aircraft 2 is
moving along the positive y axis with velocity v2. Aircraft
1 travels a total distance of d1 + dr. At some point within
distance d2 from its initial position aircraft 2 may choose to
accelerate or decelerate at a constant rate a. Then its velocity
changes till it reaches the point X which is at distance d2

from the initial point. Let its velocity at point X by v. After

Fig. 1. The smooth landing paths adopted from [16].

this, the aircraft follows a circular trajectory with velocity v
along the boundary of a circle with center c0 = (0,−r) and
radius r till it reaches the origin. Then it continues to travel
along the positive x-axis with velocity v.

We want to ensure that the two aircraft merge safely. We
require that at any point of time when aircraft 1 has not reached
its destination, the distance between the two aircraft is at least
dsafe. We will solve the following problem: given a value of
acceleration a, does there exist a time t to start the acceleration
(or deceleration) so that the two aircraft merge safely?

As will be seen later, a formal model of this system will
contain functions which are not polynomials. Our first step
would be to construct an approximate system which would
be an ε-approximation of the original system. In fact we
calculate the value of ε for the approximated system. This
quantification of the error is an interesting feature of our
analysis. The abstractions of the problem considered earlier
did not explicitly quantify the error. For example, in [16] the
authors consider a linear model of the above system, but do
not provide any upper bounds on the error. After constructing
the approximate system, we verify the safety property for this
system. We know from our results that if the approximated
system is safe, then the original system is safe.

B. Formal Model

The formal model of the system has four states, namely,
init, accel, turn and final, corresponding to the different phases
of aircraft 2 as shown in Figure 2. We have three variables
z1, z2 and v. z1 has the distance of aircraft 1 from the
origin. z2 has the distance of aircraft 2 to the origin along
its trajectory. v2 is the velocity of aircraft 2. For example, the
initial value of z1 is −d1 and that of z2 is −d2 − πr

2 . So
Loc = {init, accel, turn, final}. X0 = {−d1,−d2 − πr

2 }.

Fig. 2. Hybrid system model of the protocol

• inv(init) = z1 ≤ dr ∧ z2 ≤ −d2.
• inv(accel) = z1 ≤ dr ∧ z2 ≤ −d2.
• inv(turn) = z1 ≤ dr ∧ zr ≤ 0.
• inv(final) = z1 ≤ dr.

The set of edges δ = {(init, accel), (accel, turn), (turn, final)}.
• guard(init, accel) is z2 ≤ −πr2 .
• guard(accel, turn) is z2 = −πr2 .
• guard(turn, final) is z2 = 0.

There are no resets in the system.
• flow(init, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).
• flow(accel, (z1, z2, v2))(t) = (z1+v1t, z2+v2t+1

2at
2,v2+at).

• flow(turn, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).
• flow(final, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).

We want to analyse the system for safety. In particular we
want to verify that the distance between the two aircraft is
always greater than dsafe. Hence let us define dist(z1, z2), the
distance between z1 and z2 as follows.

dist(z1, z2)=



√
(z1 + r)2 + (z2 + πr

2 − r)2
when z2 ≤ −πr2√

(z1+r sinθ2)2+r2(1−cosθ2)2)
when − πr

2 < z2≤ 0√
(z1 − z2)2

when z2 > 0

dist(z1, z2) can be thought of as just another variable which
evolves as described above. The expression for dist(z1, z2) is
clearly not polynomial. In the next section we will approximate
it by a polynomial.

We want to find the time ts when we should switch such
that the distance between the two aircraft is always at least
dsafe. So we consider the time ts as a parameter of the system.
We expand the continuous statespace of the system by a com-
ponent τ which evolves with time as τ(t) = τ(0)+ t. We then
allow the first discrete transition to happen only when τ = ts.
This then restricts guard(init, accel) to guard(init, accel)

redef
=(

z2 < −πr2 ∧ τ = ts
)
.

The problem is then solved in the following way. We define
an SHM formula SAFETY(ts) which says that the two aircraft
are at safe distance if we start the acceleration at time ts. We
will define the formula SAFETY(ts) on the transition system
which is similar to transition system of the above hybrid

system except that it has only two action labels, namely, tt and
dt, and every time transition, i.e, those labelled by a ∈ R≥0 is
now labelled by tt and every discrete transition is now labelled
by dt. The formula is then defined as:

SAFETY(ts) := DIST ∧ [tt](DIST ∧ [dt]
(DIST ∧ [tt](DIST ∧ [dt]
(DIST ∧ [tt](DIST ∧ [dt]
(DIST ∧ [tt]DIST))))))

where DIST is an atomic proposition defining dist(z1, z2) >
dsafe. We then need to verify if ∃tsSAFETY(ts) is true.

As mentioned before, the above formula can be written as a
first order formula with DIST as an atomic formula. Let us call
this formula FO(SAFETY). Since DIST is not an algebraic
formula, FO(SAFETY) is not a formula over the structure of
reals. FO(SAFETY) can be written as:

FO(SAFETY)(ts) :=
∧

0≤i≤3

(reachi(z1, z2)⇒ dist(z1, z2) > ds).

where reachi(z1, z2) is an expression which says that the value
(z1, z2) is reachable by taking i discrete transitions. Since
dist(z1, z2) is not a formula over the reals, we cannot use
the decidability of Th(R) to verify ∃tsSAFETY(ts). Hence
we approximate dist and obtain an ε-approximation of the
system. We then need to verify if shrinkε(SAFETY) is true in
the approximated system. Equivalently, we will need to check
if FO(shrinkε(SAFETY)) holds, which can be done since this
formula is algebraic. If this formula is true, then from Theorem
15 and Theorem 9, we have that the original system satisfies
SAFETY. In the next section, we discuss details about the
construction of the approximation.

C. Polynomial approximations

In this section, we describe the approximation of the prob-
lem, quantification of the errors and some results we obtained.

As explained before, the general technique to approximate
the sytem would involve approximating the flows, and expand-
ing the guards, resets and the invariants. In the construction
we need to expand the constraints to compensate for the error
introduced due to approximation of the flows. We observe that
for the problem at hand the flows are already algebraic except
for that of the variable dist(z1, z2). However this does not
occur in any guards, resets or invariants. Hence it is easy to see
that if we just approximate dist(z1, z2) with a approximation
error ε and do not change the guards, resets, invariants and
the other flows, then the approximated system ε simulates
the original system. Also in this case, FO(shrinkε(SAFETY))
will just be FO(SAFETY) with DIST replaced by DISTε :=
Polyε(dist(z1, z2)) > dsafe + ε, where Polyε(dist(z1, z2)) is
a polynomial approximation of dist(z1, z2) with an ε upper
bound on error in the range of interest.

Now let us turn to the approximation of dist(z1, z2). The
expression that needs to be approximated is dist(z1, z2) =
z2
1−2z1r sin z2

r +r2−2r2 cos z2r in the range −πr2 < z2 ≤ 0.
In particular, we will need to approximate the functions
coshalfpi(y) := cos(π2 y) and sinhalfpi(y) :=∈ (π2 y) in the
range 0 ≤ y ≤ 1. We approximate these functions using Taylor

expansions. For a 5-th order Taylor approximation around
zero, we obtain an upper bound of 0.025 as the approximation
error in this range. We find the error by plotting the error in
Mathematica and visually identifying the maximum absolute
error in the range of interest. This kind of analysis suffices
when the function under consideration is smooth as in our
case. We explain later a general grid based method to do the
same. Then the approximation error for the whole function dist
will be less than ε := |0.05z1r| + |0.05r2|. Given the values
of z1 and r, this gives us the value of ε. When z1 ≤ r, the
approximation error will be ε := r2

10 .
Now we turn to the issue of computation of approximation

error. We note that computing the error of approximation
is crucial to our analysis. This is because we are required
to verify an approximate formula which depends on the
approximation error of the approximated system. Unfortu-
nately, it is rarely possible to exactly calculate the maximum
approximation error throughout the approximation region. On
the other hand, one can find upper bounds on the error which
suffices for our analysis. There are analytic and grid based
methods for this. Most of the methods are based on finding
Lipschitz bounds for the function to be approximated. Here we
explain a grid based method to compute a Lipschitz bound.

In order to find a bound for the maximum error, we divide
the domain of the error function into a multidimensional grid
of pitch δ. For each grid we find the accuracy which is
proportional to the pitch value δ and the maximum gradient
in each cell. Also we sample one point in every grid. The
maximum error is then bounded from above by the sum of
accuracy and the maximum sample value. Details can be found
in [1]. We explain it through an example.

Let us consider the function sinhalfpi(y) = sin(π2 y). In
the range 0 ≤ y ≤ 1, we can easily see that π

2 is an
upper bound for the derivative, i.e, sup

0≤y≤1

∣∣∣∂sinhalfpi(y)
∂y

∣∣∣ ≤ π
2 .

The polynomial approximations maximum gradient within the
range [0, π2] is 1.0. This can be verified by differentiating
the approximating polynomials and finding the maximum of
absolute value of the resulting polynomial derivatives. For
example, for the 5th degree Taylor expansion of sinhalfpi the
maximum absolute gradient (derivative) or Lipschitz constant
within the range will be bounded by y given by quantifier
elimination of the following: ∀x (0 ≤ x ≤ 1) ⇒ y2 <(
∂
∂x (πx2 −

π3x3

48 + π5x5

3840)
)2

. So the maximum error can be
determined with accuracy 0.01 by sampling it on a grid of
pitch equal to 0.01(π2 + 1.0). To find a bound for the error we
simply add the accuracy to the maximum error sample. After
obtaining the error of the trigonometric functions we recurse
into finding the maximum error for the whole approximation.

D. Verification results

We now describe some results we obtained for the ver-
ification problem: Does there exists a time ts to start the
acceleration, such that the two aircraft maintain a safe distance
dsafe.

We used the following constants for verification. v1 = 100,
d1 = d2 = dr = r = 1000, v2i = 100, z1i = −d1 and z2i =
−d2 − πr/2, where z1i, z2i and v2i are the initial values of
z1, z2 and v2 respectively. Resulting approximation errors for
3rd and 5th degree polynomial approximations were ε3 = r2

and ε5 = r2/10, respectively.
When we set the acceleration a = 10, and used the 3rd

degree polynomial approximation, we obtained that the system
is unsafe. Next we increased the degree of approximation to 5.
In this case, the quantifier elimination in Mathematica lasted
quite a few minutes and returned false again. For this value of
a, we could not conclude if the system was safe. Then we tried
a = 40. Again we did not succeed with a degree 3 polynomial.
However when a degree 5 polynomial was used, the quantifier
elimination returned the constraint 0 ≤ ts ≤ 7.887784 within
a few minutes. Hence in this case we can conclude that the
values of ts returned is a conservative bound on the value of
the time to start accelerating so that the aircraft maintain a
safe distance. More details on the formula used can be found
in Appendix X.

In this section, we have illustrated how we can use our
theoretical results of the earlier sections to verify a safety
property. Our results in the earlier sections are quite general
and do not specify the method to use for the approximation.
In this section we saw that there are various methods for
approximations and error computations, and one method may
be better than the other depending on the system we are
analysing. Once the approximation is obtained, we need to
verify the approximated formula. Software tools for quantifier
elimination might not be able to handle large formulas, and
hence in practice we might require some manual preprocessing
and careful formulation of the problem as in our case.

X. CONCLUSIONS

We presented a technique to approximate hybrid systems
with arbitrary flows by hybrid systems with polynomial flows
such that if the original system is tolerant then verifying its
safety is equivalent to verifying the polynomial approximation.
Our main technical tool in achieving this was a logical charac-
terization of ε-simulation. We have shown, with an example,
the application of these ideas to analyze hybrid systems, their
practical limits and some workarounds. Investigation of more
restrictive subclasses should result to faster methods. Another
interesting direction to explore would be to characterize ε-
bisimulation [8] logically, like we did for ε-simulations.

REFERENCES

[1] https://netfiles.uiuc.edu/pprabha2/approx.pdf.
[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[4] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of
dynamical systems having piecewise-constant derivatives. Theoretical
Computer Science, 138(1):35–65, 1995.

[5] Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Pa-
padimitriou, and John N. Tsitsiklis. Deciding stability and mortality
of piecewise affine dynamical systems. Theoretical Computer Science,
255(1–2):687–696, 2001.

[6] V. K. Dzyadyk. Approximation methods for solutions of differential and
integral equations. VSP, Utrecht, The Netherlands, 1995.

[7] Lorentz G. G. Bernstein Polynomials. University of Toronto Press,
Toronto, 1953.

[8] Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate
simulation relations for hybrid systems. Discrete Event Dynamic
Systems, 18(2):163–179, 2008.

[9] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately
bisimilar symbolic models for incrementally stable switched systems,
2008.

[10] T.A. Henzinger, P.H. Ho, and H. Wong Toi. Algorithmic analysis of
nonlinear hybrid systems. IEEE Transactions on Automatic Control,
43:540–554, 1998.

[11] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Proc. 27th Annual ACM
Symp. on Theory of Computing (STOC), pages 373–382, 1995.

[12] G. Lafferriere, G. Pappas, and S. Sastry. O-minimal hybrid systems,
1998.

[13] Ruggero Lanotte and Simone Tini. Taylor approximation for hybrid
systems. Inf. Comput., 205(11):1575–1607, 2007.

[14] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc,
1989.

[15] V. Mysore and A. Pnueli. Refining the undecidability frontier of
hybrid automata. In Proceedings of the International Conference on the
Foundations of Software Technology and Theoretical Computer Science,
pages 261–272, 2005.

[16] Y. Pang, M. P. Spathopoulos, and Hao Xia. Reachability and optimal
control for linear hybrid automata: A quantifier elimination approach.
IJC, 80(5):731–748, May 2007.

[17] G. Edgar Parker and James S. Sochacki. Implementing the picard
iteration. Neural, Parallel, and Scientific Computations, (4):97–112,
1996.

[18] Charles Émile Picard. Traite D’Analyse, volume 3. Guthier-Villars,
Paris, France, 1922-28.

[19] André Platzer and Edmund M. Clarke. Computing differential invariants
of hybrid systems as fixedpoints. In ICAV, pages 176–189, 2008.

[20] Andreé Platzer and Edmund Clarke. Computing differential invariants
of hybrid systems as fixedpoints. Technical Report CMU-CS-08-103,
Pittsburg, PA, February 2008.

[21] A. Puri, V. Borkar, and P. Varaiya. ε-Approximation of differential
inclusions. In Proceedings of HSCC, pages 362–376, 1996.

[22] A. Puri, P. Varaiya, and V. Borkar. ε-approximation of differential
inclusions. Decision and Control, 1995., Proceedings of the 34th IEEE
Conference on, 3:2892–2897 vol.3, Dec 1995.

[23] Evgeny Yakovlevich Remez. On the determination of polynomial
approximations of a given degree, volume 10. 1934.

[24] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd
edition, 1976.

[25] Bernstein S. Dmonstration du thorme de weierstrass fonde sur le calcul
des probabilities. Communications of the Mathematical Society, 13:1–2,
1912.

[26] Alfred Tarski. A Decision Method for Elementary Algebra and Geom-
etry. University of California Press, 2nd edition, 1951.

[27] V. Vladimerou, P. Prabhakar, M. Viswanathan, and G. E. Dullerud.
Stormed hybrid systems. In ICALP Proceedings, Reykjavı́k, 2008.

VERIFICATION RESULTS

For reference, we provide the formulas verified below:
Given the polynomial approximations Polysin,Polycos the

distances along the different segments of the trajectory for
aircraft 2 are

dd1[z1, z2] := (z1 + r)2 + (z2 + πr/2− r)2
dd2[z1, z2] := (z1 + rPolysin[−z2/r])2

+(r2)(1− Polycos[−z2/r])2
dd3[z1, z2] := (z1 − z2)2

Given ts, the time of initiating the acceleration, we can
define the discrete transition times:

t1 = (ats − v2i +
√

2ad2 − 2atsv2i + v2
2i)/a

t2 = (πr/2)/(v2i + at1)
t3 = (d1 + d2)/v1i − (ts + t1 + t2)

Safety along each of the 4 discrete states is:
reach0 = r0 ∧ (0 ≤ ts ≤ d2/v2i)
reach1 = r1 ∧ (0 ≤ ts ≤ d2/v2i)
reach2 = r2 ∧ (0 ≤ ts ≤ d2/v2i)
reach3 = r3 ∧ (0 ≤ ts ≤ d2/v2i)

where

r0 = ∀t 0 ≤ t < ts ⇒
dd1[z1i + tv1, z2i + tv2i] > d2

s + ε
r1 = ∀t 0 ≤ t ≤ t1⇒
dd1[z1i + (ts + t)v1, z2i + tsv2i + tv2i + (1/2)at2] > d2

s + ε
r2 = ∀t 0 ≤ t ≤ t2 ⇒
dd2[z1i + (ts + t1 + t)v1,
z2i + t1v2i + t1v2i + (1/2)at21 + t(at1 + v2i)] > d2

s + ε
r3 = ∀t 0 ≤ t ≤ t3 ⇒ dd3[z1i + (ts + t1 + t2 + t)v1,
z2i + t1v2i + t1v2i + (1/2)at21 + (t2 + t)(at1 + v2i)] > d2

s + ε

Finally, a quantifier-free expression for possible switching
times (hence safe trajectories) is given by the conjunction of
quantifier free versions of reachi, i = 0, 1, 2, 3:

result = (reach0) ∧ (reach1) ∧ (reach2) ∧ (reach3)
Note that each quantifier-free reachi is an expression on

ts and if for any i the respective reachi is False there is
no need to check the rest of reachj 6=i. This decomposition
can be used in parallel processing of quantifier elimination
procedures.

