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Verification of Bounded Discrete Horizon Hybrid
Automata

Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan, and Geir Dullerud

Abstract—We consider the class of o-minimally definable
hybrid automata with a bounded discrete-transition horizon.
We show that for every hybrid automata is this class, there
exists a bisimulation of finite index, and that the bisimulation
quotient can be effectively constructed when the underlying o-
minimal theory is decidable. More importantly, we give natural
specifications for hybrid automata which ensure the boundedness
of discrete-transition horizon. In addition, we show that these
specifications are reasonably tight with respect to the decidability
of the models and that they can model modern day real-time and
embedded systems. As a result, the analysis of several problems
for these systems admit effective algorithms. We provide a
representative example of a hybrid automaton in this class.

Unlike previously examined subclasses of o-minimally defined
hybrid automata with decidable verification properties (such as
o-minimal [1] and extended o-minimal hybrid automata [2]), we
do not impose re-initialization of the continuous variables in a
memoryless fashion when a discrete transition is taken. Our class
of hybrid systems has both rich continuous dynamics and strong
discrete-continuous coupling, showing that it is not necessary to
either simplify the continuous dynamics or restrict the discrete
dynamics to achieve decidability.

Index Terms—Verification, O-minimality, Hybrid Au-
tomata, Cyber Physical Systems.

I. INTRODUCTION

A. Motivation, related work and contributions

With the wide use of embedded computing and control
algorithms for complex systems it is important to have models
for the interaction of computer software and the dynamic
environment it deals with. A widely known model for such
systems is that of hybrid automata (HA) [3]. Hybrid automata
have both discretely and continuously varying states whose
dynamics may be tightly coupled. An analysis or verification
problem asks if a given property is satisfied by a given model
of a system.

Due to the complexity allowed by the general class of hybrid
automata models, even simple properties such as the reacha-
bility problem [4] are known to be undecidable. Previous sub-

V. Vladimerou (vladimeros.vladimerou@tema.toyota.com, corresponding
author) is with the Integrated Vehicle Systems Department at the Toyota
Technical Center in Anna Arbor, MI. (Tel) 734-995-0062, (Fax) 734-778-
8956.

P. Prabhakar (pavithra@caltech.edu) is with the IMDEA Software Institue
and the Center for the Mathematics of Information at Caltech, MC 305-16,
Pasadena, California 91125.

M. Viswanathan (vmahesh@illinois.edu) is with the Department of Com-
puter Science at University of Illinois at Urbana-Champaign, 201 N Goodwin
Avenue, Urbana, IL 61801. (Tel) 217-265-6298, (Fax) 217-265-6591.

G.E. Dullerud (dullerud@illinois.edu) is with the Department of Mechan-
ical Science and Engineering at University of Illinois at Urbana-Champaign,
1206 West Green Street, Urbana, IL 61801. (Tel) 217-265-5078, (Fax) 217-
244-6534. G.E. Dullerud is partially supported by AFOSR under grant
FA9550-09-1-0221 and NSF under grant 0729500

classes of hybrid automata that do admit algorithms for tem-
poral property verification require either very simple dynamics
for their continuous components (timed [5] and rectangular [4]
hybrid automata) or strong resets which decouple the discrete
dynamics from the continuous dynamics (o-minimal hybrid
automata [1], or extended o-minimal hybrid automata [2]).
These observations reinforced the folklore impression that in
order to achieve decidability a model has to have either re-
stricted coupling between continuous and discrete dynamics or
simple continuous dynamics. Some exceptions have appeared,
such as piecewise constant derivatives (PCD) systems [6] or
polygonal systems [7]. However, the decidability in these cases
is restricted to very low dimensions.

In this article we show that we can attain decidability even
when simultaneously allowing complex continuous dynamics
and strong coupling between the discrete-continuous inter-
actions. We make use of a notion of boundedness in the
discrete dynamics. We consider hybrid systems whose flows,
invariants, guards and resets are definable in an o-minimal
theory and have bounded number of discrete transitions in
any execution. We show that such systems have a finite
bisimulation which can be effectively constructed when the
underlying theory is decidable. The observation that bounded
horizon guarantees finite bisimulation was independently ob-
served in [8] and [9]. In [9], the observation was made in the
context of CTL model-checking by successive abstractions.
Systems with bounded time have been studied in the context of
timed automata [10], [11]; these consider the execution over a
bounded time allowing arbitrary number of discrete transitions
within the specified time, where as we allow arbitrary time
elapse between transitions (in fact unbounded time after the
last discrete transition) but constrain the number of discrete
transitions in the executions.

We then introduce a natural class of specifications which
satisfy discrete boundedness property. STORMED systems
were first introduced in [8] as a class of systems with natural
conditions on flows, guards, invariants and resets, which are
satisfied by various physical systems, and the conditions are
such that they ensure discrete boundedness property. We
present STORMED hybrid systems and show that they satisfy
the bounded discrete horizon property. We also show that
these models are relatively tight by showing that the relax-
ation of certain constraints on STORMED systems renders
the reachability problem undecidable. We illustrate that our
specifications can be used to model and verify real systems
through a concrete example. The present article builds upon
the results in [8] and [9]. In comparison to [8], here we present
extensions to the STORMED model which are decidable; and
present an example of a STORMED system.
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B. Summary of article

As a first observation, we prove that systems with a
bounded-discrete-horizon that are definable in an o-minimal
structure admit a finite bisimulation. When the theory is
decidable (e.g., semi-algebraic FOL) there are algorithms to
construct such a bisimulation. We therefore give a simpler and
less restrictive, in a way, specification for a subclass of hybrid
automata which suffices to obtain decidability of expressive
temporal logics such as CTL? or µ-calculus [12].

Subsequently we show how an extended class of models
suitable for embedded and real-time systems satisfies these
specifications and hence verification of a CTL? property in
that class is equivalent to verifying a property on a finite
automaton which is known to be decidable. This subclass
comprises of so called STORMED hybrid systems[8] (with
extensions) which satisfy the following constraints: They have
the guards of two discrete transitions separable by some min-
imum positive distance. Next, they are definable in an order-
minimal (o-minimal) theory. Furthermore, the flows (solutions
of differential equations) of the continuous states have positive
projections on some monotonic direction φ on which their
guards have delimited-ends.

We show the constraints of this subclass are reasonably
tight, as relaxations of any of the them yield undecidable
models. We also argue for the suitability of it for modeling
embedded and real-time systems by giving an very general
example of a system that can be modeled as such.

The article is sectioned as follows:
• We give a brief introduction to o-minimality and bisim-

ulation.
• We define hybrid automata, adopted from [3] as well as

o-minimally definable bounded-discrete-horizon hybrid
automata.

• We present our main result, which is that the bounded
discrete horizon hybrid automata, which are o-minimally
definable admit a finite bisimulation which respects a
given definable partition

• We revise STORMED hybrid systems [8] and show that
they are bounded-discrete-horizon. We also show that the
STORMED specifications are tight by proving that when
any of them are removed, we have undecidability, by
using reduction from two-counter machines.

• Before our concluding remarks we give an example of a
real-time system, showing that it can be modeled as an ex-
tended STORMED hybrid system, therefore o-minimally
definable bounded-discrete-horizon systems can describe
such systems.

II. PRELIMINARIES

In this section, we introduce definitions and notation we will
use in the rest of the paper. In particular, we will define certain
concepts related to logic, transition systems and relations.

A. Order-minimality (o-minimality)

We will assume that the reader is familiar with first-
order logic. We use the the standard symbols ∧ and ∨ to

represent the logical connectives conjunction and disjunction;
and |= to represent satisfaction. A vocabulary or language
consists of a finite set of relation symbols and a finite set
of function symbols1. In this article we will consider first
order vocabularies consisting of only relation2 and constant
symbols. A structure over a language consists of a non-
empty set called domain, together with an assignment of a
relation on the domain for each relation symbol in the language
and an element of the domain for each constant symbol.
Structures are used to define the semantics of First Order
Logic (outside the scope of this introduction). We will call
A to be a τ -structure if it is a structure over the signature
τ . Let A be the domain of a τ -structure A. We say that
a k-ary relation S ⊆ Ak is definable in a τ -structure A if
there is a formula ϕ(χ1, χ2, . . . χk) over τ with free variables
χ1, . . . χk, such that S = {(a1, . . . , ak)|A |= ϕ[χi 7→ ai]

k
i=1}.

A k-ary function f is definable if its graph (i.e. the set
{(χ1, . . . , χk, f(χ1, . . . χk))}) is definable. The set of all
sentences that hold in a structure A is called the theory of
A, denoted by T (A). We say that T (A) or simply A is
decidable if membership in the set T (A) can be decided by
some algorithm. For example, in a decidable structure one can
check the emptiness of a definable relation, as well as whether
two definable relations are equal.

A binary relation ≤ on a set A that is reflexive, transitive,
antisymmetric (∀a, b ((a ≤ b ∧ b ≤ a) ⇒ a = b)), and
total (∀a, b (a ≤ b ∨ b ≤ a)) is said to be a total ordering. A
totally ordered set is a set on which we have a total ordering.
An interval is a subset of a totally order set, which can be
defined using one or two bounds as follows: {x : a ≤ x ≤ b},
{x : x ≤ a}, and {x : a ≤ x}. The interval {x : a ≤ x ≤ b}
with a = b, is a single point. We write A = (A,≤, . . .) to
imply that the τ -structure A has a total ordering relation ≤
and other elements in its structure.

Definition 2.1 (o-minimal): We say that a totally ordered
structure A = (A,≤, . . .) is o-minimal (order-minimal) if
every definable subset3 of A can be expressed as a finite union
of intervals [13].
Some examples of o-minimal structures are
• (R, <,+,×, exp), and
• (R, <,+,×),

where +,×, exp are the addition, multiplication and exponen-
tiation operations on reals, respectively. Additional examples
can be found in [14], [13]. The theory of (R, <,+,×) is
known to be decidable [15]. We call anything defined in this
structure semi-algebraically definable.

B. Transition System, Simulation and Bisimulation

A binary relation R on a set A is a subset of A × A.
We denote (a, b) ∈ R by aRb . A binary relation R on a
set A that is reflexive (aRa), symmetric (aRb ⇔ bRa) and

1Finitary functions include nullary functions which are constants.
2A (partial) function can be represented as a relation corresponding to its

graph, for example, the function, which maps a real number x to its positive
square root, has as its graph the relation (x,

√
x) := {(x, a) : a2 = x ∧ a ≥

0}.
3Note that a definable set here refers to subset of A, which is essentially

a unary relation on A.
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transitive (aRb∧bRc⇒ aRc) is called an equivalence relation.
An equivalence relation partitions the set A into equivalence
classes: [a]R = {b ∈ A | aRb}. A partition Π of the set A
defines a natural equivalence relation ≡Π, where a ≡Π b iff a
and b belong to the same partition in Π. In this article, when
we refer to a partition Π of a set S, we essentially mean
an equivalence relation on S. Hence we will use the terms
equivalence relation and partition interchangeably. Finally, we
will say an equivalence relation R1 refines another equivalence
relation R2 iff R1 ⊆ R2.

A transition system is given by a tuple S = (Q,Q0,→),
where Q is a set of states, Q0 ⊆ Q is the set of initial states,
and →⊆ Q × Q is the transition relation. Given a transition
system S = (Q,Q0,→), a simulation relation is a binary
relation R ⊆ Q × Q so that, if (q1, q

′
1) ∈ R and q1 → q2,

there is q′2 such that q′1 → q′2 and (q2, q
′
2) ∈ R.

Definition 2.2 (bisimulation): A relation R is said to be
a bisimulation iff both R and R−1 are simulation relations.
A state q1 is said to be bisimilar to q2 when there is a
bisimulation relation R such that (q1, q2) ∈ R. This is denoted
by q1

∼= q2.
A bisimulation R is said to respect a partition P iff R refines
the equivalence relation defined by P . By convention, bisimi-
larity with respect to a partition P , is an equivalence relation
on Q which is also the largest (or coarsest) bisimulation
relation on the system which respects the partition P [16].
It is said to be of finite index, or simply finite, if it has finitely
many equivalence classes.

III. BOUNDED DISCRETE HORIZON HYBRID AUTOMATA

Hybrid automata is a popular formalism to model systems
with mixed-discrete continuous behaviors, namely, hybrid sys-
tems. We define hybrid automata [4] (HA) below.

Definition 3.1: A hybrid automaton H is a tuple (Loc,
Edge, Cont, Cont0, Loc0, Inv, Flow, Guard,Reset) where

• Loc is a finite set of control states, also called discrete
states.

• Edge ⊆ Loc × Loc is the set of edges between control
states.

• Cont = Rn is the domain of the continuous (part of
the) state. (Here n is called the dimension of the hybrid
automaton).

• Cont0 ⊆ Cont is the set of initial continuous states.
• Loc0 ∈ Loc is the initial control state.
• Inv : Loc → 2Cont is the function that associates with

every control state an invariant.
• Flow : Loc × Cont → (R≥0 → Cont) associates with

each (q, x) ∈ Loc × Cont a flow function that describes
how the continuous state changes with time.

• Guard : Edge → 2Cont assigns to each edge a guard,
which is a continuous state constraint that must hold in
order to take the discrete transition.

• Reset : Edge → 2Cont×Cont associates with each edge
a reset, a binary relation between the current and new
continuous state at the point where a discrete transition
is taken.

A. Conventions

The pair Loc and Edge form what is commonly called the
control graph. The elements of Loc×Cont are called (hybrid)
states. In our notation, for readability, we will often put the
argument of a function as a subscript. Specifically, Iq := I(q),
G(p,q) := G(p, q) and also R(p,q) := R(p, q).

We also assume that the flow functions satisfy the semi-
group property:

1) Flow(q,x) is continuous and Flow(q,x)(0) = x.
2) for every t ≥ 0 and x′ ∈ Cont, if Flow(q,x)(t) = x′

then for every t′ ≥ 0, we have that Flow(q,x)(t + t′) =
Flow(q,x′)(t

′).
We say that such flows have time-independent semi-group
(TISG) property. This property is (roughly) ensured by spec-
ifying the continuous dynamics by a time-independent dif-
ferential equation. A TISG flow would then be a solution to
such a differential equation. Although it is often common to
use differential equations to define the continuous dynamics
of a hybrid automaton, we have chosen a definition, in this
article, that uses the solutions instead, for reasons that will be
made obvious later. Note that, in general, TISG flows are not
required to have continuous derivatives.

B. Hybrid Automata Semantics

The behavior of a hybrid system modeled by a hybrid
automaton H is studied by considering what is called the
semantics of a hybrid automaton. The semantics of a hybrid
automaton H is a transition system [[H]] = (Q,Q0,→), where
• Q = Loc× Cont is the set of states.
• Q0 = Loc0 × Cont0 is the set of initial states.
• Its transition relation → is the union of time transitions
→t and discrete transitions →d given by
◦ (q1, x1) →t (q2, x2) iff q1 = q2 = q and ∃t ∈ R≥0

such that x2 = Flow(q,x1)(t) and ∀t′ ∈ [0, t],
Flow(q,x1)(t

′) ∈ Invq .
◦ (q1, x1) →d (q2, x2) iff there is an edge (q1, q2) ∈

Edge such that x1 ∈ Invq1 , x2 ∈ Invq2 , x1 ∈
Guard(q1,q2), and (x1, x2) ∈ Reset(q1,q2).

We will use [[H]]t to denote the restriction of the transition
system [[H]] to its continuous transitions, that is, [[H]]t =
(Q,Q0,→t).

In words, during a time transition, the discrete part q1

does not change, but the continuous part of the state evolves
according to the flow Flow(q1,x1) and always remains within
the invariant Invq1 . During a discrete transition, the control
state changes according to an edge (q1, q2) in the control
graph, such that just before the transition is taken the con-
tinuous part of the state is satisfies the guard associated with
(q1, q2). In addition, the result of taking the transition changes
(or “resets”) the continuous state to a new continuous state
such that the pair of continuous states (before and after the
transition) satisfy the reset condition associated with the edge.

An execution starting from a state (q, x) is a sequence
of states (q1, x1), (q2, x2), . . . , (qk, xk) such that (q1, x1) =
(q, x), and ∀i < k, (qi, xi)→ (qi+1, xi+1). Note that a prefix
of an execution is also an execution.
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Let us denote the number of discrete transitions in an execu-
tion e = (q1, x1), (q2, x2), . . . , (qk, xk) by NumDisTran(e),
where:

NumDisTran(e) := |{i : 0 < i < k ∧ (qi, xi)→d (qi+1, xi+1)}|.

If there exists an execution (q1, x1), (q2, x2), . . . , (qk, xk)
then (qk, xk) is said to be reachable from (q, x). For a HA
H, we say that a control state q is reachable, if for some
x ∈ Cont, (q, x) is reachable from an initial state (q0, x0).
Given a hybrid automaton H, the reachability problem is to
determine whether a given control state is reachable or not.
Similarly, the “state-to-state” reachability problem is to decide
if a given state (q2, x2) is reachable from a given state (q1, x1).
Also, given two sets of states R1, R2 ⊆ Loc×Cont, deciding
whether there exists some state in R2 which is reachable from
some state in R1, is called the “region-to-region” reachability
problem.

C. Definability in an o-minimal structure

A hybrid systemH is said to be definable in a structureA =
{A,≤, . . .} or simply A-definable, if all its initial conditions,
invariants, flows, resets and guards are definable in A. WhenA
is some o-minimal structure then H is said to be o-minimally
definable.

Remark 3.1: The term o-minimal hybrid automata in pre-
vious literature [1] refers to hybrid automata as defined above
with the additional restriction that all resets are strong. This
means that for any edge (p, q) the reset R(p,q) is of the form
G(p,q) × Cont′ for some Cont′ ⊆ Cont. This decouples the
system into separate dynamical systems, with the discrete
transitions nondeterministically placing the continuous state
on some set at each discrete step. Our result does not require
this decoupling, i.e. we do not require strong resets but we
make use of o-minimal definability, therefore we have chosen
a slightly different nomenclature and call our systems “o-
minimally definable” as above.

D. Bounded-discrete-horizon Hybrid Automata

From now on we will consider HA for which there is an
upper bound δmax <∞ on the number of discrete transitions
in any execution. Bounded discrete horizon hybrid automata
are a class of hybrid automata which are similar in spirit to
bounded model-checking which is the problem of deciding if
every path whose length is within a given bound satisfies a
property [17]. As we will see later, various natural restrictions
on the class of hybrid automata lead to bounded discrete
horizon hybrid automata.

Definition 3.2: A HA H = (Loc, Edge, Cont, Cont0, Loc0,
Inv, Flow, Guard,Reset) has a bounded discrete horizon if
there exists a positive integer δmax such that all its executions
have at most δmax discrete transitions, that is, for every
execution e, NumDisTran(e) ≤ δmax.

IV. FINITE BISIMULATION RESULT

We are now ready to present our main result which fol-
lows after some facilitating definitions. Let us fix a hybrid

automaton H = (Loc, Edge, Cont, Cont0, Loc0, Inv, Flow,
Guard,Reset) for the rest of this section.

Definition 4.1: For partition V of Loc × Cont (recall that
V is an equivalence relation on Loc×Cont), define F ?t (V) to
be the largest bisimulation of [[H]]t that respects V . Also, let
Fd(V) := {(s1, s2)|

(
∃s′1 . s1 →d s

′
1

)
⇒
(
∃s′2 . s2 →d s

′
2 ∧

s′1Vs′2
)
,
(
∃s′2 . s2 →d s

′
2

)
⇒
(
∃s′1 . s1 →d s

′
1∧s′1Vs′2

)
}∩V .

Observe that Fd(V) is an equivalence relation when V is.
In fact, Fd(V) is the largest refinement of V such that for
any equivalence class P of Fd(V), the set of states reached
by a single discrete transition from P are contained in some
equivalence class of V . In contrast F ∗t denotes the refinement
of V which has the above property with respect to arbitrary
number of continuous transitions, hence the ∗.

Definition 4.2: For a hybrid system, we define the i-th
neighborhood Ni ∈ Loc × Cont to be the set of all states
starting from which there is no execution that can have more
than i discrete transitions. Note that Ni+1 ⊇ Ni.

An example of a state belonging to an i-th neighborhood is
given in Section VII-C.

The following are some observations about the functionals
F ?t and Fd.

Proposition 4.1: (a) The functionals F ?t (·) and Fd(·) are
both monotonic, that is, given partitions V1 ⊆ V2,
F ?t (V1) ⊆ F ?t (V2) and Fd(V1) ⊆ Fd(V2);

(b) F ?t (V) is a refinement of V and so is Fd(V), i.e., F ?t (V) ⊆
V and Fd(V) ⊆ V;

(c) F ?t (·) is idempotent, i.e., F ?t (F ?t (V)) = F ?t (V).
Note that the idempotency of F ?t follows from the fact that
F ?t (V) is the coarsest bisimulation of [[H]]t respecting V ,
and since F ?t (V) is a bisimulation of [[H]]t, the coarsest
bisimulation of [[H]]t respecting F ?t (V) is F ?t (V) itself.

Lemma 4.2: Le H = (Loc, Edge, Cont, Cont0, Loc0,
Inv, Flow, Guard,Reset) be a hybrid automaton o-minimally
definable in A and let P be an A-definable partition of its state
space Loc× Cont. Let ∼= be the coarsest bisimulation (which
need not be of finite index) relation on H refining P . Define
a sequence of partitions {W0,W1, . . .} inductively by setting
W0 = F ?t (P) and Wi+1 = F ?t (Fd(Wi)). The following hold
for all i ≥ 0:
(a) Wi is a finite partition definable in the o-minimal theory.
(b) ∼=⊆Wi.
(c) Wi is a bisimulation on the i-th neighborhood Ni and

refines P .
Proof: We prove the claims one after the other.

Claim(a): The proof follows by an induction on i. We know
that for any finite partition P definable in the o-minimal
structure A,F ?t (P) has only finitely many equivalence classes
and is definable in the o-minimal theory [18]. In particular,
Theorem 12.3.5 in [19] shows that F ?t (P) is of finite index
when the dynamics satisfies a “suffix determinism” property,
which is trivially true in our case due to the semi-group
property which ensures that the suffix of any flow passing
through a continuous state x starting from x is the same.

The above result uses the o-minimality of the structure A.
Therefore, W0 is o-minimal definable; hence, the claim is true
for i = 0. It is easy to see from the definition of Fd that
it is also o-minimal definable. In addition, for any partition



5

P which is definable in the o-minimal theory, Fd(P) has
finitely many equivalence classes because there are finitely
many discrete transitions possible from each part of P . Thus,
from these observations we have Wi+1 is definable in the o-
minimal theory and has finitely many equivalence classes, if
Wi does, since Wi+1 = F ?t (Fd(P)).
Claim (b): Proof by induction on i.

Case i = 0: From the definition of ∼=, ∼=⊆ P . Since F ?t (·) is
monotonic (from Proposition 4.1 (a)), F ?t (∼=) ⊆ F ?t (P). But
since F ?t (∼=) =∼= (since ∼= is a bisimulation on [[H]], it is also
a bisimulation on [[H]]t), we have ∼=⊆ F ?t (P) = W0. Hence
∼=⊆W0.

Case i ≥ 1: By induction hypothesis ∼=⊆Wi−1. By mono-
tonicity of the functionals F ?t (·) and Fd(·) (from Proposition
4.1(a)), we have F ?t (Fd(∼=)) ⊆ F ?t (Fd(Wi−1)). But since ∼=
is a bisimulation, F ?t (Fd(∼=)) =∼=. Hence ∼=⊆ F ?t (Fd(Wi−1))
and therefore ∼=⊆Wi.
Claim (c): We will prove the claim by induction on i.

Case i = 0: Let (q, x), (p, y) ∈ N0, and (q, x)W0(p, y).
Suppose (q, x) → (q1, x1). Since (q, x) ∈ N0, it cannot
take a discrete transition, hence (q, x) →t (q1, x1). But
since W0 = F ?t (P), (q, x)F ?t (P)(p, y) and hence there exists
(p1, y1) such that (p, y) →t (p1, y1) and (q1, x1)W0(p1, y1).
Therefore (p, y) simulates (q, x). We can argue similarly that
(q, x) simulates (p, y). Hence W0 is a bisimulation on N0

refining P .
Case i > 1: By induction hypothesis Wi is a bisimulation

on all states in Ni refining P . We need to prove that Wi+1

is a bisimulation relation on all states in Ni+1. Wi+1 is a
refinement of P since Wi is a refinement of P and Wi+1 =
F ?t (Fd(Wi)). Given two states (q, x) and (p, y) in Ni+1 that
satisfy (q, x)Wi+1(p, y), we will prove that (p, y) simulates
(q, x) and by symmetry, the reverse will also be true.
(1) Suppose (q, x)→t (q1, x1). Since Wi+1 = F ?t (Fd(Wi)),

we know that there is a (p1, y1) such that (p, y) →t

(p1, y1) and (q1, x1)Wi+1(p1, y1). In addition both
(q1, x1) and (p1, y1) will still be in Ni+1 since no discrete
transition has occurred.

(2) Suppose (q, x) →d (q1, x1). Since Wi+1 =
F ?t (Fd(Wi)) ⊆ Fd(Wi), we have (q, x)Wi+1(p, y) im-
plies (q, x)Fd(Wi)(p, y). Thus by the definition of Fd,
we know that there is a (p1, y1) such that (p, y) →d

(p1, y1) and (q1, x1)Wi(p1, y1). Note that both (q1, x1)
and (p1, y1) will now be in Ni. Since Wi and Wi+1

agree on Ni (follows from the fact that all transitions
starting from a particular Ni go into Ni) we have
(q1, x1)Wi+1(p1, y1).

Therefore Wi+1 is a bisimulation relation on all states in Ni+1

and refines P . This concludes the induction proof of Claim
(c).

Theorem 4.3: Given a HA H which is definable in some
o-minimal structure A, with a δmax-bounded discrete horizon
and given a A-definable partition P of its state space, the
transition system of H has a finite bisimulation that respects
P . In addition, if T (A) is decidable, then the bisimulation can
be constructed.

Proof: By Lemma 4.2, Wδmax(P) is a bisimulation
on the δmax-th neighborhood, Nδmax

. However, due to the

bounded horizon property of H, Nδmax
is all of the state

space. By the same lemma, Wδmax(P) is definable partition
of finite and it respects P . If A is decidable, then there is
an effective algorithm that constructs this finite bisimulation
quotient, since for such theories one can determine if there is a
transition between two partitions of the bisimulation quotient
by reducing it to the problem of satisfiability of a formula
in the logic. (Note that the one can effectively construct the
formulas defining the partitions).

The bisimulation construction gives us the ability to verify
temporal properties of a hybrid system that include reachabil-
ity, safety, and others. Verifying these and other more complex
properties is equivalent to verifying a CTL property on a
bisimilar finite-state transition system, which is decidable [12].
It is also possible to verify simple properties by quantifier
elimination of first logic formulas directly as we will see in
an example in Section VII.

In the next two sections we review STORMED hybrid
systems, a subclass briefly introduced in [8] and show how
they satisfy the bounded discrete horizon property.

V. STORMED HYBRID SYSTEMS AND EXTENSIONS

STORMED hybrid systems [8] form a special subclass of
hybrid automata in that their specifications arise from the
design of engineering systems and at the same time they
have nice decidability properties since they are o-minimally
definable and have a bounded discrete horizon. Again, we start
with some auxiliary definitions. We will use . to represent the
standard vector dot product and ‖ ‖ to denote the euclidean
distance.

A. Separable guards

A hybrid system H = (Loc, Edge, Cont, Cont0, Loc0, Inv,
Flow, Guard,Reset) has separable guards if ∃ dmin > 0 such
that ∀ (p1, q1), (p2, q2) ∈ Edge, where p1 6= p2, we have
min{‖x1−x2‖ : x1 ∈ G(p1,q1) ∧ x2 ∈ G(p2,q2)} ≥ dmin. The
guards are said to be dmin-separable.

This property, coupled with equality resets along discrete
jumps, essentially helps remove Zeno behavior, avoiding un-
bounded number of discrete steps in finite time. Note that
guards originating from the same discrete state are not required
to be separable, thus allowing non-determinism. Technically
we will see that equality resets are not required when more
constraints are added.

In embedded and digital systems, separability of guards is
a natural consequence of control signals, which often have a
minimum actuation or sensing period, or reaction time, due to
the use of microprocessors and digital clocks.

B. Monotonic Flows and Resets

The flow F of H is monotonic with respect to some vector
φ ∈ Cont, if ∃ ε > 0 such that ∀ q ∈ Loc, x ∈ Cont, and
∀ t, τ ≥ 0,

φ · (Flow(q,x)(t+ τ)− Flow(q,x)(t)) ≥
ε‖Flow(q,x)(t+ τ)− Flow(q,x)(t)‖,
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We call such a set of flows (ε, φ)-monotonic.
Monotonicity implies that as the continuous state evolves

with time, the projection on φ increases at a minimum rate ε.
This guarantees that the projection on φ will never decrease.

Some examples of monotonic flows are:

1) Linear flows of the form Flow(q,x)(t) = x+αq(t), where
x ∈ Rn, and αq ∈ (R≥0 − {0})n.

2) Analytic flows with their time-derivatives ranging on only
one half-space, i.e., there exists a φ such that for all
q ∈ Loc and x ∈ Cont, we have ∇tFlow(q,x)(t) · φ >
ε‖∇tFlow(q,x)(t)‖.

Monotonic flows appear in the form of Lyapunov function
decrement, energy depletion, progress towards a goal, time
passing,

The reset function R of H is said to be monotonic with
respect to some φ ∈ Cont, if ∃ ε, ζ > 0 such that ∀ (p, q) ∈
Edge and x1, x2 ∈ Cont s.t. (x1, x2) ∈ R(p,q), we have:

(i) if p = q, then either x1 = x2 or φ · (x2 − x1) ≥ ζ, and
(ii) If p 6= q, then φ · (x2 − x1) ≥ ε‖x2 − x1‖.
Such a reset function is called (ε, ζ, φ)-monotonic.

Remark 5.1: An important fact is that monotonicity and
separability are A-definable properties of an A-definable hy-
brid automaton and can be verified for decidable theories
automatically.

Remark 5.2: When the discrete state changes, it is not
required to move the continuous state along φ by any minimum
value. Note that we also allow identity resets.

One can see that, when the flow of the hybrid systems is
(ε, φ)-monotonic, resets are (ε, ζ, φ)-monotonic and its guards
are dmin-separable, a minimum distance of min{ζ, εdmin}
has to be traveled along φ between two successive discrete
transitions. The only exception is when the discrete state does
not change and the reset is the identity map. We call such a
transition trivial since the system behaves as if it was never
taken. In all other cases, condition the constraints avoid Zeno
behaviors in a discrete self-loop, and ensure that we cannot
have infinitely fast switching along φ when the guards are
separable. This will be proved in the next section.

Definition 5.1 (STORMED Hybrid Systems): A STORMED
hybrid system is a tuple (H, A, φ, b−, b+, dmin, ε,
ζ), where H = (Loc, Edge, Cont, Cont0, q0, Inv, Flow,
Guard,Reset) is a hybrid automaton, A is an o-minimal
structure, b−, b+, dmin, ε, ζ ∈ R, and φ ∈ Cont is a vector
such that the following conditions are satisfied:

• (S) All guards of H are dmin-Separable.
• (T) All flows of H satisfy the Time-Independent Semi-

Group property mentioned earlier (TISG).
• (O) H is definable in the O-minimal structure A.
• (RM) Resets and flows are Monotonic: Resets are

(ε, ζ, φ)-monotonic and flows are (ε, φ)-monotonic re-
spectively.

• (ED) Ends are Delimited: for all (p, q) ∈ Edge we have
{φ · x : x ∈ Guard(p,q) ∈ (b−, b+), meaning that the
projection of each of the guard sets on φ is bounded
below by (or is greater than) b− and bounded above by
(or is less than) b+.

Remark 5.3: Consider a hybrid automaton system with a
1-dimensional continuous state space and N discrete states.
If the guards are defined as ∀1 < i, j < N Guard(i,j) =
[3i, 3i+1] then they are separable by unit distance. In addition,
since N <∞ for hybrid automata, we have ends are delimited
by [0, 3N+3]. On the other hand, if the guards were defined as
∀1 < i, j < N Guard(i,j) = [3i, 3i+ 3) then they would not
be separable. Now let us consider another hybrid automaton
with a 2-dimensional continuous state space An example of
o-minimally definable monotonic flows could be

Flow1(

[
x1

x2

]
, t) =

[
x1 + 3t
x2 + 2t

]
,

Flow2(

[
x1

x2

]
, t) =


[
x1 + t
x2 + 3t

]
when x1 > 0[

x1 + t
x2 exp(2t)

]
otherwise

which is monotonic along φ =

[
1
1

]
. However, if, for example

Flow1(

[
x1

x2

]
, t) =

[
x1 + t
x2

]
,Flow2(

[
x1

x2

]
, t) =

[
x1

x2 + 3t

]
,

Flow3(

[
x1

x2

]
, t) =

[
x1

x2 − 2t

]
,Flow4(

[
x1

x2

]
, t) =

[
x1 exp(t)

x2

]
, then there is no monotonic direction for the system. In the
latter case, it is even possible to increment and decrement
the continuous variables independently, although this is not
required to break monotonicity.

Lemma 5.1: Any STORMED hybrid system (H, A, φ, b−,
b+, dmin, ε, ζ), has a ν-bounded discrete horizon, where ν =
d b+−b−

min{ζ,εdmin}e
Proof: We can prove this by showing that there is a

minimum distance the continuous part of the state travels along
φ between two consecutive discrete transitions. Let the state be
(q1, x1) from which a discrete transition is taken to (q2, x2).
Then a continuous transition is taken to (q3, x3) from which a
discrete transition is taken. Assume all the discrete transitions
are non-trivial. We will show that φ·(x3−x1) ≥ min(ζ, εdmin).
φ · (x2−x1) ≥ min(ζ, ε‖x2−x1‖) by monotonicity of resets.
Further, φ · (x3−x2) ≥ ε‖x3−x2‖ by monotonicity of flows.
Hence φ·(x3−x1) = φ·(x2−x1)+φ·(x3−x2) ≥ min(ζ, ε‖x2−
x1‖) + ε‖x3 − x2‖ ≥ min(ζ, ε(‖x2 − x1‖ + ‖x3 − x2‖)).
By triangle inequality, we have ‖x2 − x1‖ + ‖x3 − x2‖ ≥
‖x3−x1‖. Hence φ·(x3−x1) ≥ min(ζ, ε‖x3−x1‖). Therefore,
the minimum distance traveled along φ between two discrete
jumps is at least η := min{ζ, εdmin}. Since, by the ends-
delimited property, we can only have discrete transitions from
{(q, x) : φ · x ∈ (b−, b+)}, we can conclude that we can have
at most ν = d b+−b−η e = d b+−b−

min{ζ,εdmin}e discrete transitions in
any execution.

Theorem 5.2: Verification of a CTL? property φ on the
semantics of a hybrid automaton H with STORMED specifi-
cations is decidable.

Proof: Given STORMED parameters (H, A, φ, b−, b+,
dmin, ε, ζ), sinceH has at a discrete horizon bound of δmax :=
d b+−b−

min{ζ,εdmin}e we form a finite bisimulation Wδmax
(P) where
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P is a partition of Loc×Cont based on the atomic propositions
of the formula. By the decidability of A, this is constructable.
Standard finite transition system methods [12], [20] verify the
property on a bisimilar finite automaton.

Remark 5.4: Linear differential equations (LDEs) are the
most common model for autonomous dynamical systems used
in control theory and similar fields. Although there are only
a few subclasses of such systems that give rise to o-minimal
trajectories, two main facts indicate that our specifications can
be theoretically appropriate for such systems:

1) trajectories generated by LDEs become o-minimal when
time-restricted [14]

2) successive approximations can be used to generate o-
minimal trajectories from general LDE solutions with
reachability still verifiable for over-approximate dynam-
ics.

C. Undecidable relaxations

We justify the tightness of the geometric STORMED con-
straints by showing that relaxing any of them renders the
reachability problem undecidable. The semi-group property of
the flows and o-minimal definability of the system are assumed
to be intrinsic to the model.

We will incorporate the methods from [3] to show our
undecidability result, so we first outline the proof of the
undecidability of the reachability problem of multirate timed
automata. That proof will be then modified for our purposes.
We prove undecidability of the properties of STORMED h.s.
with relaxed constraints by reducing the equivalent problem
on a two counter-machines to one on a multirate automata
which satisfy the all STORMED specifications except the
relaxed one. From basic automata theory [21] we know that
any property of a language accepted by a two counter machine,
i.e. any property of its executions, is undecidable.

Consider a two counter-machine M with counters C and D.
The multirate automaton A simulating it, has two variables x
and y storing the values corresponding to the values of the
counters. For a counter value of n the corresponding variable
value is 1/2n. A counter increment therefore will halve the
value of the variable and similarly a decrement will double
the value. M will have an i-th configuration at location p
with counter values m and n whenever A at time 2i is in
state p with with counter values 1/2m and 1/2n. In figure
1 we depict the increment, decrement, and test-for-0 for the
automaton. Variable g keeps track of the global time. The
values of the variable flows not shown are by default assumed
to be 0.

In the following, STOED hybrid systems is the class of
hybrid systems whose definition is similar to the definition of
STORMED hybrid systems, except that it does not contain
the constraint corresponding to RM, and similarly, STORM
is the class of hybrid systems which excludes the constraint
ED from the definition of STORMED. Note that the system in
Fig. 1 is missing the monotonicity property since the variables
x and g are reset to zero at various locations, and therefore
there is no monotonic progress along any direction in those
two dimensions.

q

r

Fig. 1. The parts of the multirate automaton A corresponding to the
operations increment, decrement and test for zero of the two-counter machine
M .

Theorem 5.3: The reachability problem for STORMED hy-
brid systems becomes undecidable when monotonicity is re-
moved, that is, the reachability problem is undecidable for the
class of STOED hybrid systems.

Proof: From automaton A, which satisfies all the
STORMED constraints except monotonicity and separable
guards, we will obtain automaton As which has separable
guards, in order to prove this theorem. Note that when an
automaton is not guaranteed to be monotonic in any direction,
there is no use of delimiting its guards or invariants. However,
the rest of the STORMED specifications will remain, and our
reduction, as in the case of A, proves undecidability. For this
we associate an even number hq with each state q. We add
a new variable v, and a constraint v ∈ (hp, hp + 1] in the
transition going out of p. When there is only a single transition
out of p′, we add the constraint v ∈ (hp′ , hp′+1] to its guard;
otherwise, we add the constraint v = hp′ + 1 to p′ → q ,
and the constraint v ∈ (hp′ , hp′ + 1/2] to p′ → r. We add
3 more variables g′, x′ and y′ whose values equal those of
g, x and y, respectively, when entering any state. However,
the values of x′ and y′ do not change while in state p and
the value of g′ does not change in state p′. It is easy to
see that this can be ensured by treating the variables x′, y′

and g′ similar to x, y and g respectively everywhere, except
that in state p, ẋ′ = 0 and ẏ′ = 0 and in state p′, ġ′ = 0.
Finally we set v̇ = hp/(2 − x′) + x′/(2 − x′) in state p
corresponding to an operation on counter C. In state p′ we set
v̇ = hp′/(2 − g′) + g′/(2 − g′). The value of v upon exiting
p would therefore be hp + x0 and upon exiting p′ would be
hp′ + x0, where x0 is the value of x when entering p. This is
depicted in figure 2. The transitions that are enabled in As are
always the same as in A, therefore the undecidability proof
for A is applicable here, which completes our proof.
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Fig. 2. The automaton As state transitions with most important assignments
guards and invariants shown. Separability of guards is on v. Variable v
becomes equal to hp + x0 upon leaving the state, where x0 is the value
of x when entering.

Theorem 5.4: The reachability problem for STORMED hy-
brid systems becomes undecidable when the “ends limited”
constraint is removed, that is, the reachability problem is
undecidable for the class of STORM hybrid systems.

Proof: Starting from automaton As we construct now
an automaton Au which establishes the monotonicity of resets
by adding a new variable n which increases monotonically at
rate 1. However, its “ends” will no longer be ”delimited”. The
monotonicity is now along the flow of n.

Relaxing combinations of the STORMED constraints causes
undecidability at very low dimensions. Without separability
of guards and ends-delimited, we have undecidability in four
dimensions. This follows from the results of [6] where piece-
wise constant derivative systems (PCDs) with delimited ends
in three dimensions are shown undecidable. PCD flows are not
monotonic, but they can be made monotonic by introducing
a fourth dimension along which the flows are monotonic.
The results in [6] also imply that the reachability problem
for STORMED hybrid systems without guard separability or
monotonicity is undecidable in three dimensions. With just
the relaxation on separability of guards, it follows from the
results in [22] that finite bisimulation does not exist even in
two dimensions.

VI. EXTENSIONS

Even though the above relaxations cause undecidability, the
conditions in the STORMED specification are not necessary
for the existence of finite bisimulation. Relaxations of the
conditions that force the number of discrete transitions in any
execution to be bounded suffice for our proof of existence of
finite bisimulation to go through. For example, assume that
we have all guards bounded above by b+, that is,

∃b+ ∈ R . ∀(p, q) ∈ Edge ∀x ∈ Guard(p,q) xi < b+.

Then instead of the guard separability and monotonicity condi-
tions, all we require is that between any two consecutive edges
the continuous state moves by a minimum distance towards
b+.

Also, the guard separability condition in the STORMED
specification can be relaxed as follows: Instead of requiring

the guards on any two edges to be separable, it is enough to
have separability between the guards of edges which belong
to the same maximal strongly connected component4 of the
underlying graph of the STORMED system. This is because
the number of occurrences of the transitions between locations
belonging to different strongly connected components in any
path of the hybrid system can be bounded by the number
of such transitions in the system. Hence we only need to
bound the number of discrete transitions between the same
component.

A. Realizations of STORMED specifications in physical sys-
tems

STORMED hybrid systems can describe many system mod-
els, and the constraints imposed by STORMED hybrid systems
are realized in many physical systems as explained below.

Monotonicity can be associated with energy or time de-
pletion, or with non-decreasing trajectories in vehicle control
problems. The ends-delimited property can be present as
the actual deadline on the monotonic direction or a spatial
confinement. Separability of guards represents infrequency in
making control decisions, also based on location or time, and
therefore it is an intrinsic feature of a system with constant
sampling time decision making.

Time-independent vector field flows that satisfy the semi-
group property arise naturally, as they appear whenever the
continuous states are described as vector fields. Though o-
minimality is not necessarily a common property, one can often
find approximations of a system which are o-minimal [23].
Linearization and other model reductions may also result in
o-minimal realizations. In general, the solutions of Ordinary
Differential Equations, used to describe many systems, are not
o-minimal trajectories. When a feedback law is used to force
an open system to track a polynomial or exponential trajectory
o-minimal flows arise on the closed system. Uncertainty in
the model or in the initial condition can be represented by
nondeterminism in a reset.

VII. EXAMPLE

A. Description

This example examines a tracking controller for a tool-path
on a 2D (x-y) robot. The motion of the tool-tip of a two-axis
robot arm along a given path on a plane is controlled by motor
drivers connected to a micro-controller. The micro-controller is
given a path consisting of N 2D reference points X1, · · · , XN

to track. For the sake of simplicity we assume that the distance
between any two consecutive points is equal (See Figure 3).
The tool-tip is initially at X1. The micro-controller calculates
an acceleration for the tool-tip to track X2. The tool-tip then
accelerates to a value depending on the acceleration computed
by the micro-controller and a disturbance term. Further, a new
acceleration is computed every T seconds after consulting a
noisy reading of the current position of the tool-tip and its last

4A strongly-connected component of a graph is a subgraph in which any
two vertices are connected to each other by paths (here this includes self-loops
on vertices).
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2 positions. When the tool-tip is within distance εx from X2,
the micro-controller switches to tracking X3.

We would like to verify if the control law is good enough
to follow the path closely within a time interval Ttotal. We will
instead verify a sufficient condition for tracking5. Instead of
checking the entire path explicitly, we will try to show that
whenever the tool-tip is currently somewhere in the proximity
of reference point Xi with velocity at most εv and acceleration
at most εa, it will be within the same proximity of the next
reference point Xi+1 within time TP = Ttotal/(N − 1), again
with velocity at most εv and acceleration at most εa. Then by
induction, all the reference points will be tracked in time less
than Ttotal.

N-1

X
2

X

NXX
3

X
4

X
1

x

x

x

x

x

x . . .

Fig. 3. N tracking points and ε balls around them.

B. Specification

We will model the above problem as a STROMED system.
The continuous statespace is given by R17, where the compo-
nents of a state can be represented as a tuple of 9 elements
(x, v, a, x̂0, x̂−1, x̂−2, â, v̂, τ), where:
• x ∈ R2 is the current position of the tool-tip on the plane,
• v ∈ R2 is the current velocity of the tool-tip,
• a ∈ R2 is the current acceleration of the tool-tip,
• x̂0, x̂−1, x̂−2 ∈ R2 are the last three sampled positions

of the tool-tip,
• â ∈ R2 is the last acceleration computed by the controller,
• v̂ ∈ R2 is the last velocity estimate,
• τ ∈ R≥0 is the time-component.
We will use the time-component τ as our monotonic direc-

tion since it always increases and it is bounded by the deadline
TP . Since the acceleration is computed by the micro-controller
every T seconds, there are at most P discrete transitions
between two tracking points, where P is the largest integer
less than or equal to TP /T .

Now we will give a STORMED model capturing the be-
havior of the system between two consecutive points Xi and
Xi+1. It consists of two states, namely, q1 and q2. There
is a self-loop on q1 corresponding to the micro-controller’s
acceleration computations every T seconds. Also there is
transition from q1 to q2 when the tool-tip is within εx distance
from the current tracking point.

Formally, the set of locations Loc = {q1, q2}, and the set of
edges Edge = {(q1, q1), (q1, q2)}. The continuous state space
is Cont = R17, and the initial location is q1. Let Bcε(X) and
Boε (X) denote a closed and an open ball of radius ε around X

5We will be checking what is often called an invariant condition.

respectively. The initial continuous state space Cont0 is given
by the constraint x̂ ∈ Bcεx(Xi)∧ v̂ ∈ Bcεv (0)∧ â ∈ Bcεa(0). The
invariants are given as follows:
• Inv(q1) := τ ∈ [0, TP ]∧¬(x̂ ∈ Boεx(Xi+1)∧ v̂ ∈ Boεv (0)∧
â ∈ Boεa(0)), and

• Inv(q2) := >.

Fig. 4. The hybrid automaton of 2 discrete states, indexed by i, used to
track reference point Xi. If the system is verified to be able to approach
point Xi+1 given that it has approached point Xi, then inductively it will
track all points.

The guards are given by:

Guard(q1,q1) := τ ∈ {T, 2T, 3T, . . . , PT},
Guard(q1,q2) := x̂ ∈ Bcεx(Xi+1) ∧ v̂ ∈ Bcεv (0) ∧

â ∈ Bcεa(0) ∧
τ ∈ {T, 2T, 3T, . . . , PT}.

In order to force transitions at certain points, the guards and
invariants are defined in such a way that they complement each
other.

The flow in state q1 will depend on the tracking control
law. As an example, let us consider the proportional derivative
feedback which gives a constant acceleration between samples,
as in,

accel(x̂,v̂,X) := −Kp(x̂−X)−Kv v̂.

Then the flow in state q1 is:

Flow(q1,(x,v,a,x̂0,x̂−1,x̂−2,â,v̂,τ))(t) :=

(x+ vt+
1

2
at2, v + at, a, x̂0, x̂−1, x̂−2, â, v̂, τ + t).

For j = 1, 2, the resets are given by:

Reset(q1,qj) :=

x′=x ∧ v′=v ∧ a′ = Bcχ1
(â′) ∧

x̂′0 ∈ Boχ2
(x) ∧ x̂′−1 = x̂0 ∧ x̂′−2 = x̂−1 ∧

v̂′=
3

4
(x̂0 − x̂−1)− 1

4
(x̂−1 − x̂−2) ∧

â′ = accel(x̂0,v̂,Xi+j) ∧ τ ′ = τ.

The primed variables correspond to the value of the vari-
ables after the discrete transition and the unprimed variables
are the values of the variables before the discrete transition.

We want to verify that starting in X1 we can track the points
X1, · · · , XN in order in time Ttotal. As said before, we only
verify that starting in a point close to Xi, we can reach a point
close to Xi+1 in time TP . This can be expressed formally
using the LTL formula

�(x ∈ Boεx(Xi+1) ∧ v ∈ Boεv (0) ∧ a ∈ Boεa(0) ∧ τ ≤ TP ).
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This formula should be true in all the initial states of the
automaton for the desired property to hold.

C. Verification

The system described above satisfies the extended
STORMED specifications: (see Section VI):
• (S) Guards are T -Separable along τ because only the

edges of the guards belonging to a strongly connected
component need to be separable. See section VI.

• (T) The flows satisfy the Time-independent/semi-group
property (double integrators).

• (O) Everything is algebraically definable – therefore O-
minimally definable

• (RM) Resets and flows are monotonic along τ since τ
increases by at least T between every any two discrete
transitions.

• (ED) The invariants and guards are bounded along the
monotonic direction τ by 0 and TP ,

Note that essentially the points which satisfy τ ≥ (P −n)T
with a non-negative integer n < P are in the nth neighbor-
hood, i.e. executions from these points can only possibly have
at most n more discrete transitions. As a result we can also
say that these points cannot be, for example, in the n + 1
neighborhood, by the definition of the system. Since the sys-
tem above is STORMED we can use Lemma 4.2 and Theorem
4.3 to construct a finite bisimulation and then check the LTL
formula on the bisimulation quotient. While constructing the
bisimulation the initial partition should respect all the atomic
formulas in the formula, namely, x ∈ Boεx(Xi+1), v ∈ Boεv (0),
a ∈ Boεa(0), and τ ≤ TP .

VIII. CONCLUSIONS AND OUTLOOK

A. Contribution

We proved the existence of a finite bisimulation for o-
minimally definable hybrid systems with bounded discrete
horizon and showed that STORMED hybrid systems satisfy
these specifications. Furthermore, we have shown that the
STORMED specifications and various extensions are appar-
ent in modern day digital-control and real-time systems, by
example. We have also shown that the STORMED constraints
are tight, in that relaxation of even one constraint leads to
undecidability. We have therefore presented a subclass of
hybrid automata which:

1) has decidable properties,
2) is at the boundary of decidability,
3) and at the same time is rich enough to express properties

of real-time systems.

B. On algorithms and applications

An alternating bisimulation refinement algorithm [9] will
produce the bisimulation whose existence we proved in this
paper. This bisimulation can be used to model check any
formula in µ-calculus. After the bisimulation quotient is com-
puted, software such as SPIN [24] can be used to model check
a given property. However, in practice, for model-checking
various simple properties such as safety, a bisimulation is

not required, and as a matter of fact, it can be incredibly
computationally costly. In our example, we produced a formula
in the first order logic on the real closed field which can
be verified by quantifier elimination. This example is for
illustration purposes on the range of the problems that are
decidable. For a numerically solved example, the reader is
referred to [25].

Regarding the bounded discrete horizon verification, and
referring to the example we have presented, it is evident that
desirable properties of dynamical systems are based on con-
tractions (Lyapunov functions), convergence rates and other
invariant properties which can also be expressed on a finite
horizon. Automated invariant generation has been presented in
[26], [27] where quantifier elimination techniques and guided
theorem provers are used. On a more theoretical basis, in [9]
a monotonically better-approximating abstraction algorithm is
identified. Finally, in [25] we have studied when approxi-
mation techniques are guaranteed to terminate. It would be
interesting to further study the structure of invariant properties
relevant to digital control systems and their bounded discrete
horizon verification in terms of numerical algorithms and their
robustness.
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