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ABSTRACT
Pre-orders on systems are the basis for abstraction based
verification of systems. In this paper, we investigate pre-
orders for reasoning about stability with respect to inputs
of hybrid systems. First, we present a superposition type
theorem which gives a characterization of the classical in-
cremental input-to-state stability of continuous systems in
terms of the traditional ε-δ definition of stability. We use
this as the basis for defining a notion of incremental input-
to-state stability of hybrid systems. Next, we present a pre-
order on hybrid systems which preserves incremental input-
to-state stability, by extending the classical definitions of
bisimulation relations on systems with input, with uniform
continuity constraints. We show that the uniform continuity
is a necessary requirement by exhibiting counter-examples
to show that weaker notions of input bisimulation with just
continuity requirements do not suffice to preserve stability.
Finally, we demonstrate that the definitions are useful, by
exhibiting concrete abstraction functions which satisfy the
definitions of pre-orders.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods

General Terms
Design, Verification

Keywords
Stability, (Bi)-Simulations, Abstraction, Verification

1. INTRODUCTION
The ubiquitous use of embedded processors to control

safety critical systems such as aeronautics, automotive and
medical devices, has pressurized the need for scalable meth-
ods for reliable development of embedded control systems.
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A unique feature of such systems is the interaction between
the discrete components - a network of embedded proces-
sors, and the continuous components - the physical system
that the processors control. Such systems with mixed dis-
crete continuous behaviors have been popularly termed hy-
brid systems.

In this paper, we develop the foundations for scalable ver-
ification of a robustness property of hybrid systems, namely,
stability with respect to inputs. Intuitively, we expect small
perturbations in the system input to lead to only small
changes in the behavior of the system. The small pertur-
bations in input capture disturbances such as quantization
errors in actuators and sensors, which are often ignored dur-
ing control design, but are, nevertheless, present in any dig-
ital implementation of the control law. Hence, stability of
systems with respect to input is an important property re-
quired of any control design.

Input-to-state stability [22, 21] is the classical notion of
stability with respect to inputs for purely continuous sys-
tems. Incremental input-to-state stability [2] generalizes
input-to-state stability with respect to equilibrium points
to that with respect to reference trajectories. The notion
of input-to-state stability has been defined for hybrid sys-
tems and has been well-investigated [4, 18, 13]. More re-
cently, input-to-output stability notions have been explored
for discrete systems [23]. However, the notion of incremen-
tal input-to-state stability has not been investigated in the
literature for hybrid systems. We present a characteriza-
tion of the classical definition of incremental input-to-state
stability for continuous systems as a super-position theorem
“separating” the stability with respect to states and with re-
spect to inputs. The characterization gives an ε-δ definition
similar to that for Lyapunov and asymptotic stability. We
generalize this definition to the setting of hybrid systems.

Current methods for verifying stability are deductive. They
rely on exhibiting a certificate of stability in the form of a
Lyapunov function (see, for example, [16])- a continuously
differentiable function which is positive definite and whose
value decreases along any trajectory of the system. Automa-
tion of the search for a Lyapunov function essentially relies
on searching for the coefficients of a template, say, a polyno-
mial, such that the requirements of the Lyapunov function
are satisfied [19]. However, there is little support for system-
atically iterating over templates so as to prune the search
space.

The work in the paper is motivated by an alternate ap-
proach, namely, algorithmic verification [6]. It is a com-
pletely automatic approach in which an exhaustive state



space exploration is performed to deduce the property. How-
ever, it suffers from the state space explosion problem, and
the crucial element in achieving algorithmic verification meth-
ods is to devise efficient abstraction mechanisms [1, 24]. An
abstraction reduces the state space of the system such that
the satisfaction of the property by the original system can be
deduced by the property about the reduced system. How-
ever, if the reduced system does not satisfy the property,
one cannot infer useful information about the original sys-
tem. Hence, abstraction techniques are often accompanied
by an abstraction refinement loop [7, 1], where a refinement
is an abstraction of the system which is more precise than
the current abstraction.

The basis for developing an abstraction refinement tech-
nique lies in understanding the relations between systems
(the concrete and the abstract) which preserve the proper-
ties of interest. In this paper, we investigate such relations
which preserve stability properties of hybrid systems with
respect to input. More precisely, we define a pre-order - a
reflexive, transitive relation - on the class of hybrid systems,
such that if a system is stable with respect to inputs, then
all system below it in the order are stable as well.

Simulations and bisimulations [17] are the canonical no-
tions of pre-order and equivalence on systems with respect
to several discrete-time properties such as LTL, CTL and µ-
calculus. Alternate weaker notions such as approximate sim-
ulations and bisimulations have been investigated to achieve
state-space reduction [10, 11]. It has been shown in [8,
20] that simulations and bisimulations do not preserve Lya-
punov and asymptotic stability and hence, additional con-
straints such as continuity and uniform continuity are im-
posed on the simulation and bisimulation relations to force
stability preservation. In this paper, we investigate incre-
mental input-to-state stability. We show that the classi-
cal definitions of input simulations and bisimulations do not
preserve incremental input-to-state stability, even with con-
tinuity constraints imposed on the input and state spaces.
Hence, uniform continuity constraints are added to the re-
lations corresponding to both the state space and the input
space. Finally, we demonstrate that the definitions are rea-
sonable, by exhibiting concrete abstraction functions which
satisfy the definition of the pre-order. To this end, we cast
the well-known Lyapunov function based analysis as a con-
crete abstraction function which reduces a system to a sim-
ple one-dimensional system, for which incremental input-to-
state stability can be easily inferred. The future work will
focus on developing new abstraction-refinement mechanism.

To summarize, the main contributions of the paper are:

1. A superposition type theorem for incremental input-
to-state stability of continuous dynamical systems.

2. Using the alternate characterization of incremental input-
to-state stability of continuous dynamical systems given
by the superposition theorem to define a notion of in-
cremental input-to-state stability for hybrid systems.

3. A definition of pre-order on the class of hybrid systems
which respects input-to-state stability and thus defines
the basis for an abstraction refinement framework.

4. Examples demonstrating concrete abstraction functions
which fall under the definition of the pre-order.

Organization of the paper.
In Section 2, we define the necessary definitions. In Sec-

tion 3, we define hybrid input transition systems and re-
lated concepts. In Section 4, we present a superposition
type characterization of the notion of incremental input-
to-state stability of continuous dynamical systems, which
we use in Section 5 to present a definition of incremental
input-to-state stability for hybrid systems. In Section 6, we
define the pre-orders on hybrid systems, namely, uniformly
continuous input simulations and bisimulations, and show
the inadequacy of weaker notions for incremental input-to-
state stability preservation. In Section 7, we show that the
new pre-order introduced in Section 6 preserves incremen-
tal input-to-state stability. Finally, in Section 8, we present
concrete abstraction techniques based on Lyapunov function
based incremental input-to-state stability analysis, and con-
clude with Section 9.

2. PRELIMINARIES

Notation.
Let R and R+ denote the set of reals and non-negative

reals, respectively. Let R∞ denote the set R+ ∪ {∞}, where
∞ denotes the largest element of R∞, that is, x <∞ for all
x ∈ R+. Also, for all x ∈ R∞, x+∞ =∞. Let N denote the
set of all natural numbers {0, 1, 2, · · · }, and let [n] denote the
first n natural numbers, that is, [n] = {0, 1, 2, · · · , n − 1}.
Let PreInt denote the set consisting of all closed intervals
of the form [0, T ], where T ∈ R+, and the infinite interval
[0,∞). Given an x ∈ Rn, we use |x| to denote the Euclidean
norm of x. And, given a function f : A→ Rm, we use ||f ||∞
to denote supa∈A |f(a)|.

Functions and Relations.
Given a function F , let Dom(F ) denote the domain of

F . Given a function F : A → B and a set A′ ⊆ A, F (A′)
denotes the set {F (a) | a ∈ A′}. Given a binary relation
R ⊆ A× B, R−1 denotes the set {(x, y) | (y, x) ∈ R}. For a
binary relation R, we will interchangeably use “(x, y) ∈ R”
and “R(x, y)” to denote that (x, y) ∈ R.

Sequences.
A sequence σ is a function whose domain is either [n] for

some n ∈ N or the set of natural numbers N. We denote
the set of all domains of sequences as SeqDom. Length of a
sequence σ, denoted |σ|, is n if Dom(σ) = [n] or ∞ other-
wise. Given a sequence σ : N → R and an element r of R∞
we use

∑∞
i=0 σ(i) = r to denote the standard limit condition

limN→∞
∑N
i=0 σ(i) = r.

Extended Metric Space.
An extended metric space is a pair (M,d) where M is

a set and d : M × M → R∞ is a distance function such
that for all m1, m2 and m3, the following hold: (Identity
of indiscernibles) d(m1,m2) = 0 if and only if m1 = m2,
(Symmetry) d(m1,m2) = d(m2,m1), and (Triangle inequal-
ity) d(m1,m3) ≤ d(m1,m2) + d(m2,m3). When the metric
on M is clear we will simply refer to M as a metric space.

We define an open ball of radius ε around a point x to
be the set of all points which are within a distance ε from
x. Formally, an open ball is a set of the form Bε(x) = {y ∈
M | d(x, y) < ε}. An open set is a subset of M which is a



union of open balls. Given a set X ⊆M , a neighborhood of
X is an open set inM which containsX. Given a subsetX of
M , an ε-neighborhood of X is the set Bε(X) =

⋃
x∈X Bε(x).

A subset X of M is compact if for every collection of open
sets {Uα}α∈A such that X ⊆

⋃
α∈A Uα, there is a finite

subset J of A such that X ⊆
⋃
i∈J Ui.

Set Valued Functions.
We consider set valued functions and define continuity of

these functions. We choose not to treat set valued functions
as single valued functions whose co-domain is a power set,
since as argued in [3], it leads to strong notions of continuity,
which are not satisfied by many functions. A set valued
function F : A; B is a function which maps every element
of A to a set of elements in B. Given a set A′ ⊆ A, F (A′)
will denote the set

⋃
a∈A′ F (a). Given a binary relation

R ⊆ A×B, we use R also to denote the set valued function
R : A ; B given by R(x) = {y | (x, y) ∈ R}. Further,
F−1 : B ; A will denote the set valued function which
maps b ∈ B to the set {a ∈ A | b ∈ F (a)}.

Continuity of Set Valued Functions.
Let F : A ; B be a set valued function, where A and B

are extended metric spaces. We define upper semi-continuity
of F which is a generalization of the “ε, δ - definition” of
continuity for single valued functions [3]. The function F :
A; B is said to be upper semi-continuous at a ∈ Dom(F )
if and only if

∀ε > 0, ∃δ > 0 such thatF (Bδ(a)) ⊆ Bε(F (a)).

If F is upper semi-continuous at every a ∈ Dom(F ) we sim-
ply say that F is upper semi-continuous. Next we define a
“uniform” version of the above definition, where, analogous
to the case of single valued functions, corresponding to an ε,
there exists a δ which works for every point in the domain.

Definition. A function F : A; B is said to be uniformly
continuous if and only if

∀ε > 0, ∃δ > 0 such that

∀a ∈ Dom(A), F (Bδ(a)) ⊆ Bε(F (a)).

Given an ε > 0, we call a δ > 0 satisfying the above con-
dition, a uniformity constant of F corresponding to ε. We
refer to uniform upper semi-continuity as just uniform con-
tinuity, because it turns out that the two notions of up-
per and lower semi-continuity coincide with the addition of
uniformity condition, i.e., uniform upper semi-continuity is
equivalent to uniform lower semi-continuity.

Class K, L, K∞ and KL functions.
A continuous function α : [0, a)→ [0,∞) is said to belong

to class K if it is strictly increasing and α(0) = 0. A contin-
uous function α : [0,∞) → [0,∞) is said to belong to class
K∞ if α is a class K function and α(r) → ∞ as r → ∞. A
continuous function ϕ : [0,∞)→ [0,∞) is said to be of class
L if it is monotonically decreasing and lims→∞ ϕ(s) = 0. A
continuous function β : [0, a)× [0,∞)→ [0,∞) is a class KL
function if it is a class K function with respect to the first
argument and class L with respect to the second argument,
that is, for a fixed s, β(r, s) is a class K function and for a
fixed r, β(r, s) is a class L function.

3. HYBRID SYSTEMS WITH INPUT

In this section, we present a general formalism for rep-
resenting hybrid systems with inputs, called hybrid input
transition systems. Hybrid systems are systems exhibiting
mixed discrete-continuous behaviors. We represent the con-
tinuous behavior using a pair of input and state trajectories
which capture the values of input and state over an interval
of time; and represent the discrete behavior using transitions
which capture instantaneous changes to the state due to im-
pulse inputs. We will not concern ourselves with the exact
representation of the models, see, for example, the hybrid
automaton model [14]. However, our abstract model cap-
tures the behaviors arising from a hybrid automaton model.

3.1 Trajectories
A trajectory τ over a set A is a function τ : I → A, where

I ∈ PreInt. We denote the set of all trajectories over A
as Traj(A). Let us define a function Size : Traj(A) → R∞
which assigns a size to the trajectories. For τ ∈ Traj(A),
Size(τ) = T if Dom(τ) = [0, T ] and Size(τ) =∞ if Dom(τ) =
[0,∞).

Relating trajectories.
Given a relation R ⊆ A1 × A2 and trajectories a1 ∈

Traj(A1) and a2 ∈ Traj(A2), we say that a1 and a2 are
related by R, denoted R(a1,a2) if Dom(a1) = Dom(a2) and
for every t ∈ Dom(a1), R(a1(t),a2(t)). We use R(a1) to
denote the set {a2 |R(a1,a2)}.

Input-State Trajectories.
An input-state trajectory specifies the state evolution on

an input signal. Let us fix an input space U and a state
space S. An input-state trajectory over a pair (U, S) is a
pair of trajectories (u, s) from Traj(U) × Traj(S) such that
Dom(u) = Dom(s). We call u an input trajectory and s a
state trajectory. We will use ISTraj(U, S) to denote the set
of all input-state trajectories over (U, S).

Size, First, Last, States, Inputs of Input-State Trajecto-
ries.

We extend Size to input-state trajectories in the natu-
ral way, namely, Size(u, s) = Size(u) = Size(s). We use
First((u, s)) to denote the initial state, that is, s(0), and
Last((u, s)) to denote the last state, that is, s(Size(s)), if
Size(s) is not∞, and is not defined otherwise. Given a state
trajectory s, we use States(s) to denote the set of states oc-
curring in s, namely, {s(t) | t ∈ Dom(s)}. Also, for a input-
state trajectory we use States((u, s)) to denote States(s).
Similarly, for an input trajectory u, we use Inputs(u) to de-
note the set of inputs occurring in u, namely, {u(t) | t ∈
Dom(u)}.

3.2 Transitions
A transition specifies the instantaneous change in a state

resulting from an impulse input. A transition over a pair
(U, S) is an element of U× (S×S). A transition (u, (s1, s2))
denotes the fact that if an input impulse u is applied to
the system in state s1, then the system state changes to
s2. We will represent a transition (u, (s1, s2)) as s1

u−→ s2.
We denote the set of all transition over a pair (U, S) as
Trans(U, S).



Size, First, Last, States, Inputs of Transitions.
We define Size of a transition (u, (s1, s2)) to be 0. As

before, given τ = (u, (s1, s2)), we use First(τ) and Last(τ)
to denote the state of the system before and after the transi-
tion, namely, First(τ) = s1 and Last(τ) = s2. Also, First((s1,
s2)) = s1 and Last((s1, s2)) = s2. Similarly, States((s1, s2)) =
States((u, (s1, s2))) = {s1, s2}. And, Inputs(u) = {u}, for an
input u.

3.3 Hybrid Input Transition Systems
We can now define a hybrid input transition system as

consisting of sets of input-state trajectories and transitions.
Definition. A hybrid input transition system (HITS) H

is a tuple (S,U,Σ,∆), where S is a set of states, U is a
set of inputs, Σ ⊆ Trans(U, S) is a set of transitions and
∆ ⊆ ISTraj(U, S) is a set of input-state trajectories.

We will just use hybrid system or hybrid transition system
to refer to the above entity. Next, we define an execution of a
hybrid transition system, which is a behavior of the system.
An execution is a finite or infinite sequence of trajectories
and transitions which have matching end-points.

Definition. An execution of a hybrid input transition sys-
tem H is a sequence σ : M → Σ ∪∆, where M ∈ SeqDom,
such that for each 0 ≤ i < |σ| − 1, Last(σ(i)) = First(σ(i+
1)). Let Exec(H) denote the set of all executions of H.

We can view an execution as a pair consisting of an input
signal and state signal. Let σ ∈ Exec(H). Then for each
i ∈ Dom(σ), σ(i) = (ui, si), where either (ui, si) is an input-
state trajectory or a transition. Let σu and σs be sequences
whose domain is the same as σ such that σu(i) = ui and
σs(i) = si. Then we also use (σu, σs) to denote the execution
σ.

Given a set of executions T and an input signal σu, we
use T |σu to denote the set of all state signals of executions
in T which result from application of the input signal σu.
Formally, T |σu = {σs | (σu, σs) ∈ T }.

First, Last, States, Inputs of Executions.
We extend first and last to executions and state signals

in the natural way, that is, the first of the first element
in the sequence and the last of the last element if the se-
quence is finite. Formally, for an execution or a state sig-
nal σ, First(σ) = First(σ(0)) and Last(σ) is defined only if
Dom(σ) = [n] for some n ∈ N and is equal to Last(σ(n)).
Similarly, States(σ) =

⋃
i∈Dom(σ) States(σ(i)). Also, for an

input signal σu, Inputs(σu) =
⋃
i∈Dom(σu) Inputs(σu(i)). The

functions are extended to sets of trajectories, state signals
and executions in a natural manner. Let States(H) denote
States(Σ) ∪ States(∆) and Inputs(H) denote Inputs(Σ) ∪
Inputs(∆).

Graph of an execution.
In order to define distance between executions, we inter-

pret the input and state signals as sets called the graphs
which have information about the linear ordering between
the states and inputs at various times. The set correspond-
ing to a state signal σs consists of triples (t, i, s) such that
s is a state that is reached after time t has elapsed along
the execution, and i is the number of discrete transitions
that have taken place before time t. Similarly, the set cor-
responding to an input signal σu consists of triples (t, i, u)
such that the input u was applied at time t, and the number
of impulse inputs applied before time t is i.

Definition. For an input or state signal σa and j ∈ Dom(σa),

let Tj =
∑j−1
k=0 Size(σa(k)) and Kj = |{k | k < j, σa(k) is

not a trajectory}|. The graph of the signal σa, denoted
gr(σa), is the set of all triples (t, i, x) such that there exists
j ∈ Dom(σa) satisfying the following:

• t ∈ [Tj , Tj + Size(σa(j))]].

• If σa(j) is a trajectory, then i = Kj and x = σa(j)(t−
Tj).

• If σa(j) is not a trajectory, then

– if σa is a state signal and σa(j) = (s1, s2), then
either i = Kj and x = s1, or i = Kj + 1 and
x = s2.

– if σa is an input signal and σa(i) = u, then i = Kj

and x = u.

3.4 Metric Hybrid Input Transition System
In order to reason about stability of a system, one needs a

notion of distance between behaviors of the system. Hence,
we extend the definition of the hybrid system with a metric
on the states and inputs which can then be extended to
distance between signals and executions.

A metric hybrid input transition system is a hybrid input
transition system whose state and input spaces are equipped
with a metric. A metric hybrid input transition system
(MHS) is a pair (H, ds, du) where H = (S,U,Σ,∆) is a
hybrid input transition system, and (S, ds) and (U, du) are
extended metric spaces. The metric ds on the state space
can be lifted to state signals and du to input signals, which
will then be used to define input-to-state stability notions.
Before defining this extension, recall that given an extended
metric space (M,d), the Hausdorff distance between A,B ⊆
M , also denoted d(A,B), is given by the maximum of

{sup
p∈A

inf
q∈B

d(p, q), sup
p∈B

inf
q∈A

d(p, q)}.

We extend d to triples used in the definition of graphs.
Definition. For (t1, i1, x1), (t2, i2, x2) ∈ R+ × N×M , let

d((t1, i1, x1), (t2, i2, x2)) = max{|t1− t2|, |i1− i2|, d(x1, x2)}.

Now we can define the distance between state signals and
input signals.

Definition. Let (H, ds, du) be a metric hybrid input tran-
sition system with H = (S,U,Σ,∆). The distance between
state signals σs1, σ

s
2, denoted as ds(σs1, σ

s
2), is defined to be

the distance between their graphs, that is, ds(gr(σs1), gr(σs2)),
and the distance between input signals σu1 , σ

u
2 , denoted du(σu1 ,

σu2 ), is defined as du(gr(σu1 ), gr(σu2 )).
Distance between executions as defined above, called graph-

ical distance, captures the notion that two executions are
close if their states are close at approximately same times.
The notion of graphical distance is borrowed from [12], where
it has been argued that allowing a wiggle time is necessary
when one considers hybrid executions. Graphical distance
between two executions is illustrated in Figure 1. Note that
the two executions σ and σ′ are not close at all times t, for
example, at a time t ∈ (t1, t2), the states are very far. How-
ever, for every time t and corresponding state s of σ, there
exists a time t′ ∈ [t− ε, t+ ε] such that s is close to the state
of σ′ at time t′. For example, s2 is close to s′2 and times t1
and t2 are close.
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Figure 1: Graphical Distance between Executions.

In order to define convergence, we need the distance be-
tween suffixes of signals starting from some time T . Given a
subset G of R+×N×A and a T ∈ R+, let us denote by G|T
the set {(t, i, x) ∈ G | t ≥ T}. Given two signals σ1, σ2 and a
T ∈ R+, we define d(σ1|T , σ2|T ) to be d(gr(σ1)|T , gr(σ2)|T ).

4. AN ALTERNATE CHARACTERIZATION
OF INCREMENTAL INPUT-TO-STATE STA-
BILITY OF CONTINUOUS DYNAMICAL
SYSTEMS

Our definition of input-to-state stability is motivated by
the following definition of incremental input-to-state stabil-
ity of [2]. Let T be a set of input-state trajectories over
(Rm,Rn) such that for each ζ ∈ Rn and input trajectory u,
there exists a unique element (u, s) ∈ T with First(s) = ζ.
Given ζ and u, let us denote the unique trajectory s by
x(ζ,u). Then the definition of incremental input-to-state
stability from [2] is as follows:

Definition.(δISS for input-state trajectories) The set of
input-state trajectories T is said to be incrementally input-
to-state stable if there exists a KL function β and a K∞
function γ such that for any t ≥ 0, any ζ1, ζ2 and any pair
of input trajectories u1, u2, the following is true:

|x(ζ1,u1)(t)−x(ζ2,u2)(t)| ≤ β(|ζ1− ζ2|, t)+γ(||u1−u2||∞).
(1)

The above definition forces the following properties of the
system T :

(C1) The system is Lyapunov stable “uniformly” in the in-
put. For every ε > 0, there exists a δ > 0, such that
for every input trajectory u, and for all initial states
ζ1, ζ2, the following holds for every t ≥ 0.

|ζ1 − ζ2| < δ ⇒ |x(ζ1,u)(t)− x(ζ2,u)(t)| < ε.

Note that δ depends only on ε, in particular, it is in-
dependent of the input trajectory u.

(C2) The system converges “uniformly” in the input. For
any ε > 0 and initial states ζ1, ζ2, there exists a T ≥ 0,
such that for every input signal u,

|x(ζ1,u)(t)− x(ζ2,u)(t)| < ε, ∀t > T.

Note that T depends only on ε and is independent of
u.

(C3) The system is input-to-state stable “uniformly” in the
initial state. For any ε > 0 and input signals u1,u2,
there exists a δ > 0 such that for every initial state ζ,
the following holds for every t ≥ 0:

||u1 − u2||∞ < δ ⇒ |x(ζ,u1)(t)− x(ζ,u2)(t)| < ε.

Note the independence of δ with respect to ζ.

4.1 Super-position type theorem for incremen-
tal input-to-state stability

We show that the conditions (C1)− (C3) characterize in-
cremental input-to-state stability as given in Definition 4.
This is summarized in the following theorem:

Theorem 1. A set of input-state trajectories T is δISS
iff it satisfies Conditions (C1)− (C3).

Proof. δISS⇒ (C1)− (C3): It is straightforward to check

that δISS implies conditions (C1)− (C3). In fact, choosing
u1 = u2 = u and δ such that β(δ, 0) < ε in (1) implies

|x(ζ1,u)(t)− x(ζ2,u)(t)| ≤ β(|ζ1 − ζ2|, t) < β(δ, 0) < ε,

provided that |ζ1 − ζ2| < δ. This shows (C1) is true. More-
over, since

|x(ζ1,u)(t)− x(ζ2,u)(t)| ≤ β(|ζ1 − ζ2|, t)→ 0

as t → ∞, for any given ε and ζ1, ζ2, we can choose T
independent of u such that

|x(ζ1,u)(t)− x(ζ2,u)(t)| < ε

for all t > T . This shows (C2) is true. Finally, choosing
ζ1 = ζ2 = ζ and δ such that γ(δ) < ε in (1) implies

|x(ζ,u)(t)− x(ζ,u)(t)| ≤ γ(|u1 − u2|∞) < γ(δ) < ε,

provided that ||u1 − u2||∞ < δ. This shows (C3) is true.
(C1)− (C3)⇒ δISS: The proof for the opposite implica-

tion essentially follows from the proof of Lemma 4.5 in [16].
Therefore, the detailed argument is omitted and the follow-
ing is an outline of the proof. First, by (C3), we can prove
there exists a K∞ function γ such that

|x(ζ,u1)(t)− x(ζ,u2)(t)| ≤ γ(||u1 − u2||∞), t ≥ 0, (2)

holds for all initial states ζ1, ζ2. Second, conditions (C1)
and (C2) imply that there exist a KL function β such that

|x(ζ1,u)(t)− x(ζ2,u)(t)| ≤ β(|ζ1 − ζ2|, t), t ≥ 0, (3)

holds for all input trajectory u. Now given any pair of initial
states ζ1, ζ2 and any pair of input trajectories u1, u2, it
follows from (2) and (3) that

|x(ζ1,u1)(t)− x(ζ2,u2)(t)|
≤ |x(ζ1,u1)(t)− x(ζ2,u1)(t) + x(ζ2,u1)(t)− x(ζ2,u2)(t)|
≤ β(|ζ1 − ζ2|, t) + γ(||u1 − u2||∞), t ≥ 0.

This completes the proof.

5. INCREMENTAL INPUT-TO-STATE STA-
BILITY OF HYBRID INPUT TRANSITION
SYSTEMS

In this section, we define a notion of incremental input-
to-state stability of hybrid input transition systems by gen-
eralizing the characterization of incremental input-to-state



stability for continuous dynamical systems given by Theo-
rem 1. To define distances between executions, we borrow
the notion of graphical distance introduced in [12] for hy-
brid trajectories. However, the results in the paper are not
sensitive to the particular definition of distance.

We need a few definitions. We denote by Valid(T ), the set
of all pairs of input signals and initial states such that there
exists a state signal corresponding to it in T . More precisely,
Valid(T ) = {(σu, ζ) | ∃σs,First(σs) = ζ, (σu, σs) ∈ T }. We
denote by InSig(T ), the set of all input signals such that
there exists a state signal corresponding to it in T . That is,
InSig(T ) = {σu | ∃σs, (σu, σs) ∈ T }.

Next, we define incremental input-to-state stability (δISS)
for hybrid input transition systems.

Definition.(δISS for Hybrid Systems) Given a hybrid in-
put transition systemH and a set of executions T ⊆ Exec(H),
we say that H is incrementally input-to-state stable (δISS)
with respect to the set of executions T , if the following hold:

(D1) for every ε > 0, there exists a δ > 0, such that the
following holds for every input signal σu:

∀(σu, σs) ∈ Exec(H), ds(First(σs),First(T |σu)) < δ

⇒ ∃(σu, σ̂s) ∈ T , ds(σs, σ̂s) < ε

(D2) there exists a δ > 0 and a function T : R>0 → R>0

such that the following holds for every input signal σu:

∀(σu, σs) ∈ Exec(H), ds(First(σs),First(T |σu)) < δ ⇒

∃(σu, σ̂s) ∈ T , ∀ε > 0, ∀t ≥ T (ε), ds(σs|t, σ̂s|t) < ε.

(D3) for every ε > 0, there exists a δ > 0 such that for every
input signal σu and state ζ with (σu, ζ) ∈ Valid(T ),
the following holds:

∀σ̂u, [du(σu, σ̂u) < δ ⇒ ∀(σ̂u, σ̂s) ∈ Exec(H),

[First(σ̂s) = ζ ⇒ ∃(σu, σs) ∈ T ,

First(σs) = ζ, ds(σs, σ̂s) < ε]]

Remark There have been several proposals for defining
metrics on the set of executions, including the Skorokhod
metric (see [9, 5] for more details), wherein, two executions
are considered close if there exists a bijective, strictly order-
preserving function between the time domains of the exe-
cutions, such that the distance between a time point and
its image under the function is small and the values of the
corresponding states are small. However, the results in the
paper are not sensitive to the particular choice of the dis-
tance metric.

6. PRE-ORDERS
In this section, we define a pre-order - a reflexive, tran-

sitive relation - on the class of hybrid input transition sys-
tems, such that if a system is incrementally input-to-state
stable, then all systems below it in the ordering are incre-
mentally input-to-state stable. Defining such an ordering is

the first step towards developing an abstraction refinement
framework for verifying incremental input-to-state stability.
We begin by defining the canonical notion of equivalence be-
tween systems with input, namely, input bisimulations. We
show that this canonical notion does not suffice to preserve
δISS and hence strengthen it with additional conditions. In
the next section, we show that the new notion preserves
δISS.

6.1 Input (Bi)-Simulations
The notion of input (bi)-simulation is an extension of the

classical notion of (bi)-simulation with inputs for hybrid in-
put transition systems. Our definition is closely related to
the definition of (bi)-simulation defined in [15].

Definition. Given two hybrid input transition systems
H1 = (S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), a pair
of binary relations (R1, R2), where R1 ⊆ S1 × S2 and R2 ⊆
U1 × U2, is called an input simulation relation from H1 to
H2 if, for every (s1, s2) ∈ R1, the following hold:

• For every state s′1 and input u1 such that (u1, (s1, s
′
1)) ∈

Σ1, there exist a state s′2 and an input u2 such that
R1(s′1, s

′
2), R2(u1, u2) and (u2, (s2, s

′
2)) ∈ Σ2.

• For every input-state trajectory (u1, s1) ∈ ∆1 such
that First(s1) = s1, there exists an input-state tra-
jectory (u2, s2) ∈ ∆2 such that First(s2) = s2, s2 ∈
R1(s1) and u2 ∈ R2(u1).

We denote the fact that (R1, R2) is an input simulation re-
lation from H1 to H2 by H1 �(R1,R2) H2. Further, (R1, R2)
is an input bisimulation relation between H1 and H2 if both
(R1, R2) and (R−1

1 , R−1
2 ) are input simulation relations, that

is, H1 �(R1,R2) H2 and H2 �(R−1
1 ,R−1

2 )
H1.

Image of H under (R1, R2).
We define the image of a hybrid input transition system on

a pair of relations . Given a hybrid input transition system
H = (S,U,Σ,∆), and a pair (R1, R2), where R1 ⊆ S×S′ and
R2 ⊆ U × U ′, for some S′ and U ′, we define (R1, R2)(H) to
be the hybrid input transition system (S′, U ′,Σ′,∆′), where:

• Σ′ = {(u′, (s′1, s′2)) | ∃(u, (s1, s2)) ∈ Σ, u′ ∈ R2(u), s′1 ∈
R1(s1), s′2 ∈ R1(s2)}.

• ∆′ = {(u′, s′) | ∃(u, s) ∈ ∆,u′ ∈ R2(u), s′ ∈ R1(s)}.

Proposition 1. Let H = (S,U,Σ,∆) be a hybrid input
transition system, and R1 ⊆ S × S′ and R2 ⊆ U × U ′, for
some S′ and U ′ such that R1(s) and R2(u) is not empty for
any s ∈ S and u ∈ U . Then (R1, R2) is an input simulation
from H to (R1, R2)(H).

6.2 Uniformly Continuous Input (Bi)-Simulation
The notion of input bisimulation does not preserve incre-

mental input-to-state stability. Hence, we strengthen it with
uniformity conditions.

Let (H1, d
s
1, d

u
1 ) and (H2, d

s
2, d

u
2 ) be two metric input hy-

brid transition systems.
Definition. A pair (R1, R2) is a uniformly continuous in-

put simulation from H1 to H2 if (R1, R2) is an input simula-
tion from H1 to H2 and R1, R

−1
1 , R2 and R−1

2 are uniformly
continuous.

We denote the fact that (R1, R2) is a uniformly continuous
input simulation from H1 to H2 by H1 �C(R1,R2)

H2, and



H1 �C H2 to denote that there exists (R1, R2) such that
H1 �C(R1,R2)

H2.
Definition. A pair (R1, R2) is a uniformly continuous in-

put bisimulation from H1 to H2 if (R1, R2) is a uniformly
continuous input simulation from H1 to H2, and (R−1

1 , R−1
2 )

is a uniformly continuous input simulation from H2 to H1.
Next, we show that uniformly continuous input simula-

tions define a pre-order on hybrid input transitions systems.

Theorem 2. Let (Hi, dsi , dui ), for 1 ≤ i ≤ 3, where Hi =
(Si, Ui,Σi,∆i), be three metric hybrid transition systems.
Then we have the following properties about �C :

• (Reflexivity) H1 �C H1.

• (Transitivity) If H1 �C H2 and H2 �C H3, then
H1 �C H3,

Proof. (Reflexivity) Reflexivity follows from the fact that
H1 �(Id1,Id2) H2, where Id1 = {(s, s) | s ∈ S} and Id2 =
{(u, u) |u ∈ U}.

(Transitivity) Transitivity follows from the fact that H1

�C(R1,R2)
H2 and H2 �C(R′1,R′2) H3, then H1 �C(R′1◦R1,R

′
2◦R2)

H3, where A ◦ B = {(x, z) | ∃(x, y) ∈ A, (y, z) ∈ B}, since
composition of input bisimulations is an input bisimulation,
and composition of uniformly continuous relations is a uni-
formly continuous relation.

6.3 Inadequacy of Weaker Notions of Input
Bisimulations

We show that weaker extensions to the definition of input
bisimulation which require only continuity instead of uni-
form continuity on either the input space or the state space,
do not suffice to preserve incremental input-to-state stabil-
ity.

6.3.1 Necessity of Uniform Continuity on the Input
Space

We consider two systems H1 and H2 consisting only of
trajectories such that H1 is δISS, whereas H2 is not. We
then show that there exists a input bisimulation, which is
uniformly continuous on the state space, but is only contin-
uous on the input space.

The state-space of both the systems is R2, and the input
space is R. All the input trajectories are constant signals
with values in R. The set of initial states is {0} × [−1, 1].
We will use variable x and y to denote the two dimensions.
Hence, Φ((x0, y0), t, u) denotes the values of the trajectory
starting from (x0, y0) with input u at time t. The reference
trajectories, T1 and T2, are those corresponding to the initial
state (0, 0). Since our input signals are constant signals, we
abuse notation and just use the constant value instead of
the signal in Φ.

The dynamics of the first system H1 is given as follows:

Φ((x0, y0), t, u) = (t, e−ty0 + ut̄),

where t̄ = t if t ≤ 1, and 1 otherwise.
The dynamics of the second system H2 is similar to H1,

except that the affect of the input at time t = 1 is eu instead
of u as in the previous system.

Φ((x0, y0), t, u) = (t, e−ty0 + eut̄),

where t̄ = t if t ≤ 1, and 1 otherwise.

Note that both the systems satisfy Conditions C1 and
C2, where as, only the first system satisfies C3. Hence, the
system H1 is δISS, where as H2 is not.

We can define an input bisimulation between the two sys-
tems given by:

R1 = {((x, y), (x, y))}, R2 = {(eu, u)}.

This is an input bisimulation, since the trajectories starting
from the initial state (x0, y0) and input signal eu in H1 is
related by R1 to the trajectory starting from the initial state
(x0, y0) and the input signal u in H2. Further, R1 and R−1

1

are uniformly continuous, where as, R−1
2 is only continuous.

6.3.2 Necessity of Uniform Continuity on the State
Space

We extend the counter-example in [20], which shows the
necessity of uniform continuity on the state space for asymp-
totic stability preservation (without inputs), for showing the
necessity of uniform continuity on the state-space for δISS
preservation.

The first system H3 is the same as H1 above, except that
the input space is restricted to be {0}. We defineH4 which is
the same as H1 except that the trajectories do not converge
to the reference trajectory. The dynamics of the system H4

is given as follows:

Φ((x0, y0), t, u) = (t, y0).

Note that both H3 and H4 satisfy Conditions C1 and C3,
where as, only H3 satisfies C2. Hence, H3 is δISS, where as,
H4 is not.

We can define an input bisimulation between the two sys-
tems given by:

R1 = {((x1, y1), (x2, y2)) |x1 = x2, y1 = e−x1y2}, R2 = {(u, u)}.

This is an input bisimulation, since the trajectories starting
from the initial state (x0, y0) and input signal u in H2 is
related by R1 to the trajectory starting from the initial state
(x0, y0) and the input signal u in H2. Further, R2 and R−1

2

are uniformly continuous, where as, R1 is only continuous.

7. INCREMENTAL INPUT-TO-STATE STA-
BILITY PRESERVATION

In this section, we present the main result of the paper,
namely, that incremental input-to-state stability is invariant
under uniformly continuous input bisimulations.

We need a technical consistency condition between the
input bisimulation relations and the reference executions.

Definition. A pair of relations (R1, R2), where R1 ⊆ S1×
S2 and R2 ⊆ U1 × U2, is said to be semi-consistent with
respect to the sets of executions T1 and T2 over (S1, U1) and
(S2, U2), respectively, if the following hold:

(A1) For every (σu1 , ζ1) ∈ Valid(T1), there exists (σu2 , ζ2) ∈
Valid(T2) such that R2(σu1 , σ

u
2 ) and R1(ζ1, ζ2).

(A2) For every (σu2 , σ
s
2) ∈ T2, for every σu1 ∈ R−1

2 (σu2 ) and
ζ1 ∈ R−1

2 (First(σs2)) such that (σu1 , ζ1) ∈ Valid(T1),
there exists σs1 with First(σs1) = ζ1, R1(σs1, σ

s
2) and

(σu1 , σ
s
1) ∈ T1.

(A3) R2(u) is a singleton for every u ∈ Inputs(T1).

(A4) R−1
1 (s) is singleton for every s ∈ States(T2).



(A5) For every σu1 , R1(First(T1|σu
1

)) = First(T2|R2(σ
u
1 )).

(A6) There exists δ > 0 such that for every x ∈ Bδ(First(T1)),
there exists a y such that R1(x, y).

(R1, R2) is said to be consistent with respect to T1 and
T2 if both (R1, R2) and (R−1

1 , R−2
2 ) are semi-consistent with

respect to T1 and T2.

Theorem 3. Let (H1, d
s
1, d

u
1 ) and (H2, d

s
2, d

u
2 ), where H1 =

(S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be two metric
hybrid input transition systems, and let T1 ⊆ Exec(H1) and
T2 ⊆ Exec(H2) be two sets of executions. Let (R1, R2) be a
uniformly continuous input simulation from H1 to H2, and
let (R1, R2) be semi-consistent with respect to T1 and T2.
Then the following holds:

If H2 is δISS with respect to T2, then H1 is δISS with
respect to T1.

Proof. Let us assume H2 is δISS with respect to T2. We
need to show that H1 is δISS with respect to T1. We will
show that H1 satisfies conditions (D1)− (D3).

Proof of satisfaction of Condition (D1) Let us fix an ε1 >
0. We need to find a δ1 > 0 such that Condition (D1)
holds in H1 and T1. Let ε2 be the uniformity constant of
R−1

1 corresponding to ε1. Let δ2 be the constant satisfying
Condition (D1) for H2 corresponding to ε2. Set δ1 to be the
uniformity constant of R2 corresponding to δ2.

A. Uniformly Continuous Input (Bi)-Simulation

Let (H1, d
s
1, d

u
1 ) and (H2, d

s
2, d

u
2 ) be two metric input

hybrid transition systems.
Definition. A pair (R1, R2) is a uniformly continuous input

simulation from H1 to H2 if (R1, R2) is an input simulation
from H1 to H2 and R1, R

−1
1 , R2 and R−1

2 are uniformly
continuous.

We denote the fact that (R1, R2) is a uniformly continuous
input simulation from H1 to H2 by H1 �C

(R1,R2)
H2, and

H1 �C H2 to denote that there exists (R1, R2) such that
H1 �C

(R1,R2)
H2. Next, we show that uniformly continuous

input simulations define a pre-order on systems.
Theorem 1: Let (Hi, d

s
i , d

u
i ), for 1 ≤ i ≤ 3, where Hi =

(Si, Ui,Σi,∆i), be three metric hybrid transition systems.
Then we have the following properties about �C :

• (Reflexivity) H1 �C H1.
• (Transitivity) If H1 �C H2 and H2 �C H3, then

H1 �C H3,
Proof: (Sketch.) Reflexivity forllows from the fact that

H1 �(Id1,Id2) H2, where Id1 = {(s, s) | s ∈ S} and
Id1 = {(u, u) | u ∈ U}. Transitivity follows from the
fact that H1 �C

(R1,R2)
H2 and H2 �C

(R�
1,R�

2)
H3, then

H1 �C
(R�

1◦R1,R�
2◦R2)

H3, where A ◦ B = {(x, z) | ∃(x, y) ∈
A, (y, z) ∈ B} (since composition of continuous relations is
continuous).

VI. INCREMENTAL INPUT-TO-STATE STABILITY
PRESERVATION

In this section, we present the main result of the paper,
namely, that incremental input-to-state stability is invariant
under uniformly continuous input bisimulations.

We need a technical consistency condition between the
input bisimulation relations and the reference executions.

Definition. A pair of relations (R1, R2), where R1 ⊆ S1×
S2 and R2 ⊆ U1 × U2, is said to be semi-consistent with
respect to the sets of executions T1 and T2 over (S1, U1)
and (S2, U2), respectively, if the following hold:
(A1) For every (σu

1 , ζ1) ∈ Valid(T1), there exists (σu
2 , ζ2) ∈

Valid(T2) such that R2(σ
u
1 ,σu

2 ) and R1(ζ1, ζ2).
(A2) For every (σu

2 ,σs
2) ∈ T2, for every σu

1 ∈ R−1
2 (σu

2 ) and
ζ1 ∈ R−1

2 (First(σs
2)) such that (σu

1 , ζ1) ∈ Valid(T1),
there exists σs

1 with First(σs
1) = ζ1, R1(σ

s
1,σ

s
2) and

(σu
1 ,σs

1) ∈ T1.
(A3) R2(u) is a singleton for every u ∈ Inputs(T1).
(A4) R−1

1 (s) is singleton for every s ∈ States(T2).
(A5) For every σu

1 , R1(First(T1|σu
1
)) = First(T2|R2(σu

1 )).
(A6) There exists δ > 0 such that for every x ∈

Bδ(First(T1)), there exists a y such that R1(x, y).
(R1, R2) is said to be consistent with respect to T1 and T2

if both (R1, R2) and (R−1
1 , R−2

2 ) are semi-consistent with
respect to T1 and T2.

Theorem 2: Let (H1, d
s
1, d

u
1 ) and (H2, d

s
2, d

u
2 ), where

H1 = (S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be
two metric hybrid input transition systems, and let T1 ⊆
Exec(H1) and T2 ⊆ Exec(H2) be two sets of executions. Let
(R1, R2) be a uniformly continuous input simulation from

σu
2

δ2

σs
2

σ̂s
2

�2

σu
1T1

σs
1

R1(σ
s
1,σ

s
2)

R1(σ̂
s
1, σ̂

s
2)δ1

σ̂s
1

�1

R2(σ
u
1 ,σu

2 )

T2
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H1 to H2, and let (R1, R2) be semi-consistent with respect
to T1 and T2. Then the following holds:

If H2 is δISS with respect to T2, then H1 is δISS with
respect to T1.

Proof: Let us assume H2 is δISS with respect to T2.
We need to show that H1 is δISS with respect to T1. We will
show that H1 satisfies conditions (D1) − (D3).

Proof of satisfaction of Condition (D1) Let us fix an
�1 > 0. We need to find a δ1 > 0 such that Condition (D1)
holds in H1 and T1. Let �2 be the uniformity constant of
R−1

1 corresponding to �1. Let δ2 be the constant satisfying
Condition (D1) for H2 corresponding to �2. Set δ1 to be the
uniformity constant of R2 corresponding to δ2.

Let us fix an input signal σu
1 . Let (σu

1 ,σs
1) ∈ Exec(H1)

such that ds
1(First(σs

1), First(T1|σu
1
) < δ1 (see Figure 2). We

need to show that there exists a σ̂s
1, such that (σu

1 , σ̂s
1) ∈ T1

and ds
1(σ

s
1, σ̂

s
1) < �1.

Note that Condition (A1) also implies that there ex-
ists σu

2 ∈ InSig(T2) such that R2(σ
u
1 ,σu

2 ). Further, σu
2 is

unique because of Condition (A3) on R2. From Condi-
tion (A6), there exists a ζ2 such that (First(σs

1), ζ2) ∈
R1. Therefore, from input simulation relation, there ex-
ists σs

2 such that (σu
2 ,σs

2) ∈ Exec(H2) and R1(σ
s
1,σ

s
2)

(note that σu
2 is the same as before, this follows from the

uniqueness of σu
2 ). Since ds

1(First(σs
1), First(T1)σ

u
1 ) < δ1,

ds
2(R1(First(σs

1)), R1(First(T1)|σu
1
)) < δ1. From Condition

(A5), ds
2(R1(First(σs

1)), First(T2|R2(σu
1 ))) < δ1, or equiv-

alently ds
2(R1(First(σs

1)), First(T2|σu
2
)) < δ1. In particular,

ds
2(First(σs

2), First(T2|σu
2
)) < δ1. From the δISS of H2

with respect to T2, we have that there exists σ̂s
2 such

that (σu
2 , σ̂s

2) ∈ T2 and ds
2(σ

s
2, σ̂

s
2) < �2. Then from

Condition (A2), there exists σ̂s
1, such that (σu

1 , σ̂s
1) ∈ T1,

and R1(σ̂
s
1, σ̂

s
2). Now, ds

1(σ
s
1, σ̂

s
1) < �1 since R−1

1 (s) is a
singleton for every s ∈ States(T2) (from Condition (A4)).

Proof of satisfaction of Condition (D2) Let δ2 > 0 and
T2 : R+ → R+ be such that they satisfy Condition (D2)
for system H2 with respect to T2. Choose δ1 > 0 to be

A. Uniformly Continuous Input (Bi)-Simulation

Let (H1, d
s
1, d

u
1 ) and (H2, d

s
2, d

u
2 ) be two metric input

hybrid transition systems.
Definition. A pair (R1, R2) is a uniformly continuous input

simulation from H1 to H2 if (R1, R2) is an input simulation
from H1 to H2 and R1, R

−1
1 , R2 and R−1

2 are uniformly
continuous.

We denote the fact that (R1, R2) is a uniformly continuous
input simulation from H1 to H2 by H1 �C

(R1,R2)
H2, and

H1 �C H2 to denote that there exists (R1, R2) such that
H1 �C

(R1,R2)
H2. Next, we show that uniformly continuous

input simulations define a pre-order on systems.
Theorem 1: Let (Hi, d

s
i , d

u
i ), for 1 ≤ i ≤ 3, where Hi =

(Si, Ui,Σi,∆i), be three metric hybrid transition systems.
Then we have the following properties about �C :

• (Reflexivity) H1 �C H1.
• (Transitivity) If H1 �C H2 and H2 �C H3, then

H1 �C H3,
Proof: (Sketch.) Reflexivity forllows from the fact that

H1 �(Id1,Id2) H2, where Id1 = {(s, s) | s ∈ S} and
Id1 = {(u, u) | u ∈ U}. Transitivity follows from the
fact that H1 �C

(R1,R2)
H2 and H2 �C

(R�
1,R�

2)
H3, then

H1 �C
(R�

1◦R1,R�
2◦R2)

H3, where A ◦ B = {(x, z) | ∃(x, y) ∈
A, (y, z) ∈ B} (since composition of continuous relations is
continuous).

VI. INCREMENTAL INPUT-TO-STATE STABILITY
PRESERVATION

In this section, we present the main result of the paper,
namely, that incremental input-to-state stability is invariant
under uniformly continuous input bisimulations.

We need a technical consistency condition between the
input bisimulation relations and the reference executions.

Definition. A pair of relations (R1, R2), where R1 ⊆ S1×
S2 and R2 ⊆ U1 × U2, is said to be semi-consistent with
respect to the sets of executions T1 and T2 over (S1, U1)
and (S2, U2), respectively, if the following hold:
(A1) For every (σu
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u
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s
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s
2) and

(σu
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1 , R1(First(T1|σu
1
)) = First(T2|R2(σu

1 )).
(A6) There exists δ > 0 such that for every x ∈

Bδ(First(T1)), there exists a y such that R1(x, y).
(R1, R2) is said to be consistent with respect to T1 and T2

if both (R1, R2) and (R−1
1 , R−2

2 ) are semi-consistent with
respect to T1 and T2.
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u
1 ) and (H2, d
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u
2 ), where

H1 = (S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be
two metric hybrid input transition systems, and let T1 ⊆
Exec(H1) and T2 ⊆ Exec(H2) be two sets of executions. Let
(R1, R2) be a uniformly continuous input simulation from
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H1 to H2, and let (R1, R2) be semi-consistent with respect
to T1 and T2. Then the following holds:

If H2 is δISS with respect to T2, then H1 is δISS with
respect to T1.

Proof: Let us assume H2 is δISS with respect to T2.
We need to show that H1 is δISS with respect to T1. We will
show that H1 satisfies conditions (D1) − (D3).

Proof of satisfaction of Condition (D1) Let us fix an
�1 > 0. We need to find a δ1 > 0 such that Condition (D1)
holds in H1 and T1. Let �2 be the uniformity constant of
R−1

1 corresponding to �1. Let δ2 be the constant satisfying
Condition (D1) for H2 corresponding to �2. Set δ1 to be the
uniformity constant of R2 corresponding to δ2.

Let us fix an input signal σu
1 . Let (σu

1 ,σs
1) ∈ Exec(H1)

such that ds
1(First(σs

1), First(T1|σu
1
) < δ1 (see Figure 2). We

need to show that there exists a σ̂s
1, such that (σu

1 , σ̂s
1) ∈ T1

and ds
1(σ

s
1, σ̂

s
1) < �1.

Note that Condition (A1) also implies that there ex-
ists σu

2 ∈ InSig(T2) such that R2(σ
u
1 ,σu

2 ). Further, σu
2 is

unique because of Condition (A3) on R2. From Condi-
tion (A6), there exists a ζ2 such that (First(σs

1), ζ2) ∈
R1. Therefore, from input simulation relation, there ex-
ists σs

2 such that (σu
2 ,σs

2) ∈ Exec(H2) and R1(σ
s
1,σ

s
2)

(note that σu
2 is the same as before, this follows from the

uniqueness of σu
2 ). Since ds

1(First(σs
1), First(T1)σ

u
1 ) < δ1,

ds
2(R1(First(σs

1)), R1(First(T1)|σu
1
)) < δ1. From Condition

(A5), ds
2(R1(First(σs

1)), First(T2|R2(σu
1 ))) < δ1, or equiv-

alently ds
2(R1(First(σs

1)), First(T2|σu
2
)) < δ1. In particular,

ds
2(First(σs

2), First(T2|σu
2
)) < δ1. From the δISS of H2

with respect to T2, we have that there exists σ̂s
2 such

that (σu
2 , σ̂s

2) ∈ T2 and ds
2(σ

s
2, σ̂

s
2) < �2. Then from

Condition (A2), there exists σ̂s
1, such that (σu

1 , σ̂s
1) ∈ T1,

and R1(σ̂
s
1, σ̂

s
2). Now, ds

1(σ
s
1, σ̂

s
1) < �1 since R−1

1 (s) is a
singleton for every s ∈ States(T2) (from Condition (A4)).

Proof of satisfaction of Condition (D2) Let δ2 > 0 and
T2 : R+ → R+ be such that they satisfy Condition (D2)
for system H2 with respect to T2. Choose δ1 > 0 to be
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Let us fix an input signal σu1 . Let (σu1 , σ
s
1) ∈ Exec(H1)

such that ds1(First(σs1),First(T1|σu
1

) < δ1 (see Figure 2). We
need to show that there exists a σ̂s1, such that (σu1 , σ̂

s
1) ∈ T1

and ds1(σs1, σ̂
s
1) < ε1.

Note that Condition (A1) also implies that there exists
σu2 ∈ InSig(T2) such that R2(σu1 , σ

u
2 ). Further, σu2 is unique

because of Condition (A3) on R2. From Condition (A6),
there exists a ζ2 such that (First(σs1), ζ2) ∈ R1. There-
fore, from input simulation relation, there exists σs2 such
that (σu2 , σ

s
2) ∈ Exec(H2) and R1(σs1, σ

s
2) (note that σu2 is

the same as before, this follows from the uniqueness of σu2 ).

Since ds1(First(σs1),First(T1)σu1 ) < δ1, ds2(R1(First(σs1)), R1(
First(T1)|σu

1
)) < δ1. From Condition (A5), we have ds2(R1

(First(σs1)), First(T2|R2(σ
u
1 ))) < δ1, or equivalently ds2(R1

(First(σs1)), First( T2|σu
2

)) < δ1. In particular, ds2(First(σs2),
First(T2|σu

2
)) < δ1. From the δISS of H2 with respect to

T2, we have that there exists σ̂s2 such that (σu2 , σ̂
s
2) ∈ T2 and

ds2(σs2, σ̂
s
2) < ε2. Then from Condition (A2), there exists σ̂s1,

such that (σu1 , σ̂
s
1) ∈ T1, and R1(σ̂s1, σ̂

s
2). Now, ds1(σs1, σ̂

s
1) <

ε1 since R−1
1 (s) is a singleton for every s ∈ States(T2) (from

Condition (A4)).
Proof of satisfaction of Condition (D2) Let δ2 > 0 and

T2 : R+ → R+ be such that they satisfy Condition (D2)
for system H2 with respect to T2. Choose δ1 > 0 to be
the uniformity constant of R2 with respect to δ2. Similarly,
define T1 : R+ → R+ as follows: Given any ε1 > 0, set T1(ε1)
to be equal to T2(ε2), where ε2 is the uniformity constant of
R−1

1 with respect to ε1.
The proof essentially is the same as before, except that we

need to show that ∀ε1 > 0, ∀t ≥ T1(ε1), ds1(σs1|t, σ̂s1|t) < ε1.
Note that the above condition follows from the fact that
now we have ∀ε2 > 0, ∀t ≥ T2(ε2), ds2(σs2|t, σ̂s2|t) < ε2. The
required result follows from the definition of T1.

Proof of satisfaction of Condition (D3) Let us fix an ε1 >
0, we need to find a δ1 > 0 such that Condition (D3) holds.
Let ε2 be the uniformity constant of R−1

1 corresponding to
ε1. Let δ2 be the constant satisfying Condition (D3) for H2

corresponding to ε2. Set δ1 to be the uniformity constant of
R2 corresponding to δ2.
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the uniformity constant of R2 with respect to δ2. Similarly,
define T1 : R+ → R+ as follows: Given any �1 > 0, set
T1(�1) to be equal to T2(�2), where �2 is the uniformity
constant of R−1

1 with respect to �1.
The proof essentially is the same as before, except that we

need to show that ∀�1 > 0, ∀t ≥ T1(�1), d
s
1(σ

s
1|t, σ̂s

1|t) < �1.
Note that the above condition follows from the fact that now
we have ∀�2 > 0, ∀t ≥ T2(�2), d

s
2(σ

s
2|t, σ̂s

2|t) < �2. The
required result follows from the definition of T1.

Proof of satisfaction of Condition (D3) Let us fix an �1 >
0, we need to find a δ1 > 0 such that Condition (D3) holds.
Let �2 be the uniformity constant of R−1

1 corresponding to
�1. Let δ2 be the constant satisfying Condition (D3) for H2

corresponding to �2. Set δ1 to be the uniformity constant of
R2 corresponding to δ2.

Let us fix an input signal σu
1 and state ζ1 such that

(σu
1 , ζ1) ∈ Valid(T1) (see Figure 3). Let σ̂u

1 be such
that du

1 (σu
1 , σ̂u

1 ) < δ1 and let (σ̂u
1 , σ̂s

1) ∈ Exec(H1) with
First(σ̂s

1) = ζ1. We need to show that there exists σs
1 such

that First(σs
1) = ζ1, (σu

1 ,σs
1) ∈ T1 and ds

1(σ̂
s
1,σ

s
1) < �1.

From Condition (A1) of semi-consistency, we have that
there exists (σu

2 , ζ2) ∈ Valid(T2) such that R2(σ
u
1 ,σu

2 ) and
R1(ζ1, ζ2). From the fact that (R1, R2) is an input simula-
tion, and R1(ζ1, ζ2), we know that there exists (σ̂u

2 , σ̂s
2) ∈

Exec(H2) with First(σ̂s
2) = ζ2, R2(σ̂

u
1 , σ̂u

2 ) and R1(σ̂
s
1, σ̂

s
2).

Now, du
1 (σu

1 , σ̂u
1 ) < δ1 and R2(u) is a singleton for

every u ∈ Inputs(T1) (from Condition (A3)) implies that
du
2 (σu

2 , σ̂u
2 ) < δ2. From the definition of δISS for H2, we

know that there exists σs
2 such that (σu

2 ,σs
2) ∈ T2 and

ds
2(σ

s
2, σ̂

s
2) < �2.

From Condition (A2) of semi-consistency, there exists σs
1

with First(σs
1) = ζ1, R1(σ

s
1,σ

s
2) and (σu

1 ,σs
1) ∈ T1. Note

that ds
1(σ

s
1, σ̂

s
1) < �1 since ds

2(σ
s
2, σ̂

s
2) < �2, and R−1

1 (s) is
a singleton for every s ∈ States(T2) (from Condition (A4)).

Theorem 3: Let (H1, d
s
1, d

u
2 ) and (H2, d

s
2, d

u
2 ), where

H1 = (S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be two
metric hybrid input transition systems, and T1 ⊆ Exec(H1)
and T2 ⊆ Exec(H2) be two sets of executions. Let (R1, R2)
be a uniformly continuous input simulation from H1 to H2,
and let (R1, R2) be consistent with respect to T1 and T2.
Then the following holds:

H2 is δISS with respect to T2 if and only if H1 is δISS
with respect to T1.

A. Modelling Input-to-State Stability of Continuous Dynam-
ical Systems

We define input-to-state stability of dynamical systems
and formulate it in our framework: Consider a continuous
dynamical system

ẋ = f(x, u), (1)

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, x0 ∈ X0 ⊆ X,

where f : Rn × Rm → Rn is locally Lipschitz in x and u,
and X0 and U are compact sets. We will assume that the
input signal space Du consists of functions u : [0,∞) → U
that are piecewise continuous, bounded functions of t for all
t ≥ 0.

We define the hybrid system corresponding to the System
(1) to be the following: Hf,X0,X,U = (X, U, ∅,∆), where
∆ is the set of pairs (u,x), where u is in Du, x(0) ∈ X0

and x is the solution of System (1) starting from x(0), that
is, u,x satisfy ẋ(t) = f(x(t),u(t)) for every t ≥ 0. Let
ds and du be the standard Euclidean norms on Rn and Rm,
respectively.

The notion of input-to-state stability captures the notion
of “bounded input-bounded state”.

Definition. The System (1) is said to be input-to-state
stable (ISS) if there exists a KL function β, a class K
function γ such that

||x(t)|| ≤ β(||x0||, t) + γ(||u||∞), (2)

for all t ≥ 0, x0 ∈ X0 and u ∈ Du.
Let T0,0 be the set of trajectories with 0 input and 0

initial state, that is, T0,0 = {(0,0)}. It is easy to see that
input-to-state stability of System (1) is equivalent to δISS of
Hf,X0,X,U with respect to T0,0.

Proposition 4: System (1) is input-to-state stable if and
only if the system Hf,X0,X,U is δISS with respect to T0,0.

Hence, we can use Theorem 2 and Theorem 3 to also
reason about input-to-state stability of systems.

VII. APPLICATIONS OF THEOREM 2

First, we illustrate through an example of a linear system
with inputs, how we can prove input-to-stability using our
results.
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the uniformity constant of R2 with respect to δ2. Similarly,
define T1 : R+ → R+ as follows: Given any �1 > 0, set
T1(�1) to be equal to T2(�2), where �2 is the uniformity
constant of R−1

1 with respect to �1.
The proof essentially is the same as before, except that we

need to show that ∀�1 > 0, ∀t ≥ T1(�1), d
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Note that the above condition follows from the fact that now
we have ∀�2 > 0, ∀t ≥ T2(�2), d
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s
2|t, σ̂s

2|t) < �2. The
required result follows from the definition of T1.

Proof of satisfaction of Condition (D3) Let us fix an �1 >
0, we need to find a δ1 > 0 such that Condition (D3) holds.
Let �2 be the uniformity constant of R−1

1 corresponding to
�1. Let δ2 be the constant satisfying Condition (D3) for H2

corresponding to �2. Set δ1 to be the uniformity constant of
R2 corresponding to δ2.

Let us fix an input signal σu
1 and state ζ1 such that

(σu
1 , ζ1) ∈ Valid(T1) (see Figure 3). Let σ̂u

1 be such
that du
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1 ) < δ1 and let (σ̂u
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1) ∈ Exec(H1) with
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1) = ζ1, (σu

1 ,σs
1) ∈ T1 and ds
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From Condition (A1) of semi-consistency, we have that
there exists (σu

2 , ζ2) ∈ Valid(T2) such that R2(σ
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2 ) and
R1(ζ1, ζ2). From the fact that (R1, R2) is an input simula-
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2 , σ̂s
2) ∈

Exec(H2) with First(σ̂s
2) = ζ2, R2(σ̂

u
1 , σ̂u

2 ) and R1(σ̂
s
1, σ̂

s
2).

Now, du
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1 ) < δ1 and R2(u) is a singleton for

every u ∈ Inputs(T1) (from Condition (A3)) implies that
du
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2 ) < δ2. From the definition of δISS for H2, we

know that there exists σs
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a singleton for every s ∈ States(T2) (from Condition (A4)).
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2 ), where

H1 = (S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be two
metric hybrid input transition systems, and T1 ⊆ Exec(H1)
and T2 ⊆ Exec(H2) be two sets of executions. Let (R1, R2)
be a uniformly continuous input simulation from H1 to H2,
and let (R1, R2) be consistent with respect to T1 and T2.
Then the following holds:

H2 is δISS with respect to T2 if and only if H1 is δISS
with respect to T1.

A. Modelling Input-to-State Stability of Continuous Dynam-
ical Systems

We define input-to-state stability of dynamical systems
and formulate it in our framework: Consider a continuous
dynamical system

ẋ = f(x, u), (1)

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, x0 ∈ X0 ⊆ X,

where f : Rn × Rm → Rn is locally Lipschitz in x and u,
and X0 and U are compact sets. We will assume that the
input signal space Du consists of functions u : [0,∞) → U
that are piecewise continuous, bounded functions of t for all
t ≥ 0.

We define the hybrid system corresponding to the System
(1) to be the following: Hf,X0,X,U = (X, U, ∅,∆), where
∆ is the set of pairs (u,x), where u is in Du, x(0) ∈ X0

and x is the solution of System (1) starting from x(0), that
is, u,x satisfy ẋ(t) = f(x(t),u(t)) for every t ≥ 0. Let
ds and du be the standard Euclidean norms on Rn and Rm,
respectively.

The notion of input-to-state stability captures the notion
of “bounded input-bounded state”.

Definition. The System (1) is said to be input-to-state
stable (ISS) if there exists a KL function β, a class K
function γ such that

||x(t)|| ≤ β(||x0||, t) + γ(||u||∞), (2)

for all t ≥ 0, x0 ∈ X0 and u ∈ Du.
Let T0,0 be the set of trajectories with 0 input and 0

initial state, that is, T0,0 = {(0,0)}. It is easy to see that
input-to-state stability of System (1) is equivalent to δISS of
Hf,X0,X,U with respect to T0,0.

Proposition 4: System (1) is input-to-state stable if and
only if the system Hf,X0,X,U is δISS with respect to T0,0.

Hence, we can use Theorem 2 and Theorem 3 to also
reason about input-to-state stability of systems.

VII. APPLICATIONS OF THEOREM 2

First, we illustrate through an example of a linear system
with inputs, how we can prove input-to-stability using our
results.
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Let us fix an input signal σu1 and state ζ1 such that (σu1 , ζ1)
∈ Valid(T1) (see Figure 3). Let σ̂u1 be such that du1 (σu1 , σ̂

u
1 ) <

δ1 and let (σ̂u1 , σ̂
s
1) ∈ Exec(H1) with First(σ̂s1) = ζ1. We

need to show that there exists σs1 such that First(σs1) = ζ1,
(σu1 , σ

s
1) ∈ T1 and ds1(σ̂s1, σ

s
1) < ε1.

From Condition (A1) of semi-consistency, we have that
there exists (σu2 , ζ2) ∈ Valid(T2) such that R2(σu1 , σ

u
2 ) and

R1(ζ1, ζ2). From the fact that (R1, R2) is an input simula-
tion, and R1(ζ1, ζ2), we know that there exists (σ̂u2 , σ̂

s
2) ∈

Exec(H2) with First(σ̂s2) = ζ2, R2(σ̂u1 , σ̂
u
2 ) and R1(σ̂s1, σ̂

s
2).

Now, du1 (σu1 , σ̂
u
1 ) < δ1 and R2(u) is a singleton for every

u ∈ Inputs(T1) (from Condition (A3)) implies that du2 (σu2 , σ̂
u
2 )

< δ2. From the definition of δISS forH2, we know that there
exists σs2 such that (σu2 , σ

s
2) ∈ T2 and ds2(σs2, σ̂

s
2) < ε2.

From Condition (A2) of semi-consistency, there exists σs1
with First(σs1) = ζ1, R1(σs1, σ

s
2) and (σu1 , σ

s
1) ∈ T1. Note that

ds1(σs1, σ̂
s
1) < ε1 since ds2(σs2, σ̂

s
2) < ε2, and R−1

1 (s) is a sin-
gleton for every s ∈ States(T2) (from Condition (A4)).

Theorem 4. Let (H1, d
s
1, d

u
2 ) and (H2, d

s
2, d

u
2 ), where H1 =

(S1, U1,Σ1,∆1) and H2 = (S2, U2,Σ2,∆2), be two metric



hybrid input transition systems, and T1 ⊆ Exec(H1) and
T2 ⊆ Exec(H2) be two sets of executions. Let (R1, R2) be a
uniformly continuous input bisimulation from H1 to H2, and
let (R1, R2) be consistent with respect to T1 and T2. Then
the following holds:
H2 is δISS with respect to T2 if and only if H1 is δISS

with respect to T1.

Theorem 3 states that uniformly continuous input sim-
ulations serve as a notion of abstraction with respect to
δISS and Theorem 4 states that uniformly continuous input
bisimulations are a notion of equivalence between systems
with respect to incremental input-to-state stability.

8. EXAMPLES OF CONCRETE ABSTRAC-
TION FUNCTIONS

In this section, we argue that the notion of abstraction
introduced in the paper is not too stringent by exhibit-
ing concrete abstraction functions which satisfy the con-
straints imposed by the uniformly continuous input simu-
lations/bisimulations. We show that the proofs of stabil-
ity based on Lyapunov functions can be interpreted as con-
structing simpler hybrid input transition systems where the
Lyapunov function serves as a uniformly continuous input
simulation relation. We further illustrate this through a con-
crete example of a linear system with inputs. The main pur-
pose of this section is to demonstrate that the definitions of
uniformly continuous input simulations and bisimulations
are reasonable.

8.1 Lyapunov Functions for Input-to-State Sta-
bility

In this section, we focus on systems in which the reference
executions consist of the unique trajectory which always re-
mains at the equilibrium point 0̄. In this case, the definition
of incremental input-to-state stability coincides with the no-
tion of input-to-state stability. First, we define a Lyapunov’s
theorem for analyzing input-to-state stability.

Consider a continuous dynamical system

ẋ = f(x, u), (4)

x ∈ X = Rn, u ∈ U ⊆ Rm, x0 ∈ X0 ⊆ X,
where f : Rn × Rm → Rn is locally Lipschitz in x and u,
and X0 and U are compact sets. We will assume that the
input signal space Du consists of functions u : [0,∞) → U
that are piecewise continuous, bounded functions of t for all
t ≥ 0.

We define the hybrid system corresponding to the System
(4) to be the following: Hf,X0,X,U = (X,U, ∅,∆), where ∆
is the set of pairs (u,x), where u is in Du, x(0) ∈ X0 and x
is the solution of System (4) starting from x(0), that is, u,x
satisfy ẋ(t) = f(x(t),u(t)) for every t ≥ 0. Let ds and du be
the standard Euclidean norms on Rn and Rm, respectively.

For System (4), assume that the system ẏ = f(y, 0) has
a uniformly asymptotically stable equilibrium point at the
origin.

Definition. A continuously differentiable function V :
X → R+ is said to be an ISS Lyapunov function for the
System (4) if there exist class K∞ functions α1, α2, α3 and
X such that:

α1(||x||) ≤ V (x(t)) ≤ α2(||x||),∀x ∈ X, t > 0 (5)

∂V (x)

∂x
f(x, u) ≤ α3(||x||),∀u ∈ Du : ||x|| ≥ X (||u||). (6)

Theorem 5. [22] (ISS Theorem) Let V : X → R+ be an
ISS Lyapunov function for the System (4). Then System (4)
is input-to-state stable.

Next, we show that an ISS Lyapunov function is essen-
tially a uniformly continuous input simulation from System
4 to a one dimensional system obtained by the application
of the Lyapunov function to System 4, such that the one-
dimensional system is δISS. Hence, Theorem 3 gives an
alternate proof of δISS of System 4.

Let us say that a function F : Rn → R has non-zero
differential if there exists a neighborhood Y containing 0̄
such that the gradient of F at any point y ∈ Y other than
0̄, ∇F (y), is non-zero. Following theorem formulates Lya-
punov analysis in our framework:

Theorem 6. Let V be an ISS Lyapunov function for Sys-
tem (4), and let N : Rn → R+ be the function u 7→ |u|. Let
V have non-zero differential. Then:

1. (V,N)(Hf,X0,X,U ) input simulates Hf,X0,X,U .

2. V, V −1, N and N−1 are uniformly continuous over
States(H) and Inputs(H) in a compact space contain-
ing an open ball around the origin.

3. (V,N) is consistent with T0,0 and (V,N)(T0,0).

4. (V,N)(Hf,X0,X,U ) is δISS with respect to (V,N)(T0,0).

Hence Hf,X0,X,U is δISS with respect to T0,0.

Proof. (Sketch.) The first property follows from Propo-
sition 1. The uniform continuity of V and N follows from
the fact that the state and input spaces are restricted to a
compact space around the origin. The uniform continuity of
V −1 and N−1 uses the non-zero differentiability. Note that
to prove input-to-state stability, it suffice to prove the same
in a small neighborhood around the origin in the state space
and the input space. It is trivial to check the consistency of
(V,N). The fourth property follows from Equations 5 and
6. The conclusion follows from the four properties using
Theorem 3.

8.2 Illustration on linear system
We illustrate Lyapunov function based analysis as an ab-

straction based analysis on a linear system example. Con-
sider a linear system with inputs, that is,

ẋ = f(x, u) = Ax+Bu,A ∈ Rn×n, B ∈ Rn×m, (7)

x ∈ X = Rn, u ∈ U ⊆ Rm, x0 ∈ X0 ⊆ X,

where, A is a Hurwitz matrix, and X0 and U are compact
sets.

Let P be a positive definite symmetric matrix satisfying
ATP +PA = −Q for some positive definite matrix Q. Con-
sider a function R1 : Rn → R+ given by R1(x) = xTPx
and a function R2 : Rm → R+ given by R2(u) = |u|. Then,

Ṙ1(x) = ẋTPx + xTP ẋ = xT (ATP + PA)x + uTBTPx +
xTPBu ≤ −λR1(x) + µ||u||∞, where λ and µ are positive
constants depending on P , Q and B.



Consider the one-dimensional system:

ẏ ≤ −λy + µ||v||∞, y ≥ 0. (8)

Note that the solutions to the system satisfy y(t) ≤ e−λty(0)+
µ/λ||v||∞. It is easy to check from the solutions of this sys-
tem, that it is trivially incrementally input-to-state stable.

We will show that (R1, R2) is a uniformly continuous input
simulation from System (7) to System (8). Input simulation
follows from the fact that if (x,u) satisfies ẋ(t) = Ax(t) +
Bu(t) for all t ≥ 0, then by construction, (R1(x), R2(u)) sat-

isfies Ṙ1(x) ≤ −λR1(x) + µ||R2(u)||∞. Also, when R1 and
R2 are interpreted as relations or set valued functions, then
R1, R−1

1 , R2 and R−1
2 are continuous. Further, since X0

and U are compact, these functions are uniformly contin-
uous over States(Hf,X0,X,U ) and Inputs(Hf,X0,X,U ). Note
that the set of reference executions in both the systems is
{(0,0)}, where 0 is of appropriate dimension. It is easy to
see that semi-consistency is trivially satisfied. Hence, from
Theorem 3 System (7) is incremental input-to-state stable.

9. CONCLUSIONS
In this paper, we investigated pre-orders for reasoning

about incremental input-to-state stability properties. We
introduced the notion of uniformly continuous input simula-
tions and bisimulations as pre-orders which preserve incre-
mental input-to-state stability of systems. We showed that
the notion is a reasonable pre-order to consider by establish-
ing Lyapunov function based analysis of incremental input-
to-state stability as a special case of our analysis framework.

In the future, we intend to develop concrete techniques for
constructing abstractions based on uniformly continuous in-
put simulations and bisimulations. The notion of refinement
as given by the pre-order is a new concept which does not
arise in the Lyapunov function based analysis. The notion
of refinements (an abstraction ordered between the concrete
and the abstract system) will be the guiding principle for de-
veloping concrete refinement techniques. Our broad goal is
to develop an abstraction refinement technique for analysis
of stability properties.
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