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Juan Manuel Crespo1

César Kunz1,4

Santiago Zanella-Béguelin3

1 IMDEA Software Institute, Spain
2 INRIA Sophia Antipolis, France
3 Microsoft Research, United Kingdom
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Foreword

This is the manual for the EasyCrypt framework for computer-aided cryptographic proofs. EasyCrypt is
an automated tool that supports the machine-checked construction and verification of security proofs of
cryptographic systems, and that can be used to verify public-key encryption schemes, digital signature
schemes, hash function designs, and block cipher modes of operation.

Availability

EasyCrypt web page can be found at http://http://easycrypt.gforge.inria.fr/. Instructions for
accessing the source code, documentation, and examples can be found there, together with contact
information and recent publications.

See the file README for installation instructions.

Contact

There is a public mailing list for users’ discussions:

http://lists.gforge.inria.fr/mailman/listinfo/easycrypt-club.

Report any bug to the EasyCrypt Bug Tracking System:

https://gforge.inria.fr/tracker/?atid=8938&group_id=2622&func=browse
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Chapter 1

EasyCrypt language

1.1 Basic declarations

Types, constants, operators. EasyCrypt provides native basic types such as unit, bool, int, real,
bitstring as well as polymorphic lists list, polymorphic maps map, product types * (infix notation),
and option types. Abstract types can be declared with statements of the form type type ident, as in
the following example:

type secret_key.

type group.

Parametric type declarations are also supported. Type variables start with a ’ symbol:

type ’a list.

Types synonyms can be declared with declaration of the form type type ident = type exp, where type exp
is built from basic types, type instantiation, and other user-declared types, as in the following example:

type secret_key = int.

type pkey = group.

type ciphertext = group * group.

Constants are introduced with declarations of the form cnst ident: type exp [exp], where exp is an
optional expression defining the constant. For example, the following declarations introduce constants
with identifiers g and empty map of types group and (’a, ’b) map, respectively:

cnst g : group.

cnst empty_map : (’a, ’b) map.

Operators are introduced with declarations of the form op op ident : fun type [as id ] where the
operator op ident can be either an alpha-numerical identifier or a binary operator —which may include
extra symbols such as =, <, ~, +, %, and ^ for example— enclosed in square backets. The identifier gt int
is required when defining a binary operator enclosed in brackets, and is used as an internal identifier
following the syntactic conventions of the tools in which EasyCrypt relies. The signature fun type is
defined with the syntax type exp -> type exp, or (type exp1,...,type expk) -> type exp, where type -
exp stands for type expressions and type exp1,...,type expk is a possibly empty list of type expressions.
For example:

op exp : real -> real

The first operator is declared as infix and denoted by the symbol >. The operator exp is a prefix operator.
The definition of polymorphic operators is also allowed by the use of type variables, e.g., the hd operator
defined in the EasyCrypt prelude:

op hd : ’a list -> ’a.

As well as constants, operators can be defined by an expression using the following syntax:
op op ident(params) = exp [as id ]
notice that the result type is not required in this case. The following are examples of operators defined
in the EasyCrypt prelude:

op fst(c : ’a * ’b) = let a,b = c in a.

op [>] (x,y:int) = y < x as gt_int.

9



10 CHAPTER 1. EASYCRYPT LANGUAGE

Probabilistic operators. Probability distributions (see random samplings in the definition of proba-
bilistic statements) can be defined by declaring operators with the syntax pop ident : fun type where,
as well as in the definition of deterministic operators, the function signature fun type is defined with the
syntax type exp -> type exp, or (type exp1,...,type expk) -> type exp, where type exp stands for type
expressions and type exp1,...,type expk is a possibly empty list of type expressions. For example:

pop gen_secret_key : int -> secret_key.

Logical formulae. Formulae are built from boolean expressions, standard logical connectives, defined
predicates, and logical variable quantification. Boolean expressions are built by the application of native
or user-defined operators.

Logical formulae must be closed with respect to logical variables. The syntax for universal quantifi-
cation is of the form:

forall (x,y:int,z:real), p(x,y,z)

where p is a first-order formula and x,y,z are logical variables, and similarly with existential quantification
(exists).

In addition to logical variables, in some contexts, predicates may contain program variables tagged
with a {1} or {2} flag. A formula defining an axiom must contain only logical variables, whereas
formulae describing pre and postconditions on a relational judgment (discussed below) usually refers to
tagged program variables.

The special notation to specify that the states on the left and right are equal over a subset of variables.
For example, one can write ={x,y,z} to denote the equivalent relational predicate

x{1}=x{2} && y{1}=y{2} && z{1}=z{2}

Predicates. Predicates are introduced with the syntax pred ident(params)= p where params is a list
of formal argument declarations and p is a first-order non-relational formula. For example:

pred injective(T:(’a, ’b) map) =

forall (x,y:’a), in_dom(x,T) => in_dom(y,T) => T[x] = T[y] => x = y.

Axioms and Lemmas. Axioms are used to describe properties of abstract operators and types, or
to introduce hypotheses over declared constants. Axioms are defined by a declaration of the form
lemma ident : p, where ident is a valid identifier and p is a first-order non-relational formula. For
example:

axiom head_def : forall (a: ’a, l: ’a list), hd(a::l) = a.

axiom empty_in_dom : forall (a:’a), !in_dom(a, empty_map).

The axiom head_def defines the list operator hd. The axiom empty_in_dom characterizes empty_map as
a map with an empty domain.

Lemmas can also be introduced to facilitate the verification of later goals. The syntax is similar to the
one of axioms: lemma ident : p, where p is a first-order non-relational formula. When a lemma statement
is found, EasyCrypt proves it by calling the available provers/SMT provers through the Why3 tool.

1.2 Game declarations

Games are defined by three components: variables describing the global state, defined procedures and
abstract adversary declarations.

1.2.1 Probabilistic statements.

Statements are defined as a list, possible empty, of basic instructions (assignments and function calls)
ending on a semicolon, or composed instructions (conditional and while loops). No semicolon is accepted
after a conditional or loop statement. Conditional statements follow the syntax if (b) { stmt } where
stmt is a probabilistic statement and b is a boolean guard. While loop statements follow the syntax
while (b) { stmt }. Curly brackets are not required when stmt contains a single instruction.

Probabilistic assignments are of the form ident = d exp where d exp is a probability expres-
sion, such as uniform distributions over booleans ({0,1}), integer intervals [i..j], and bitstrings
of arbitrary length ({0,1}^k), or distributions defined in terms of probabilistic operators. Assume
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gen_secret_key : int -> secret_key is a defined probabilistic operator, the following are valid prob-
abilistic assignments:

x = {0,1}

x = [0..q-1]

x = {0,1}^k

x = gen_secret_key(0)

1.2.2 Function Definition.

Functions are defined either by a function body containing variable declarations and probabilistic state-
ments or as synonyms of functions of already defined games.

• fun fun ident (typed args) : ret type = { fun body }

fun ident is a valid function identifier, a list of typed formal parameters typed args, the return type
ret type and its body fun body. The function body is defined as a list of local variable declarations
of the form var ident : type;, a probabilistic statement, and a return instruction of the form return

exp, where exp is a deterministic expression.

• fun fun ident = game ident.fun ident

The resulting function has the same formal parameters and function body than the function on the
right.

1.2.3 Adversary Signature and Declaration.

Adversary signatures are defined outside a game declaration with a syntax of the form:
adversary adv sign ident(typed args) : res type {o sign1,...,o signk}.

where res type is a type expression specifying the return type and o sign1,...,o signk is a list (possibly
empty), of oracle signatures. In the following example

adversary A1_sign(pk:pkey) : message * message { group -> message}.

adversary A2_sign(c:cipher) : bool { group -> message}.

the type expressions message*message and bool indicate the return type. A list of signatures in square
brackets indicates the signature of the oracles that can be invoked by adversaries with these signatures.
In this particular example both signatures belong to adversaries that can invoke a single oracle with type
group -> message.

As well as function definition, adversaries are either declared abstractly or as adversary synonyms.
Abstract declarations follow the syntax:
abs adv ident = adv sign ident { ident1,...,identk}
For the adversary signature above we can write for example:

abs A1 = A1_sign {H_A}

abs A2 = A2_sign {H_A}

where H_A is a defined function representing an oracle. Clearly, EasyCrypt requires the function H_A to
have the signature group -> message.

Adversary synonyms follow a similar syntax to function synonyms:
fun adv ident = game ident.adv ident

The result of this declaration is, however, not necessarily an abstract adversary.

1.2.4 Game definition

• A game can be defined by the following syntax:

Syntax game ident = {game body} The body of a game game body is composed of a global
variable declaration, function definitions and abstract adversary declarations. The declaration of
global variables consists of a list of statements of the form var ident : type as in the definition of
function local variables, except that they are not separated by a semicolon.

• Alternatively, one can redefine a game by removing or adding variables, and redefining functions
from an already defined game.
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Syntax game ident = g ident var modifs
where ident1 = { fun body } and ... and identk = { fun body }.

The g ident identifier refers to an existing game, var modifs consists of an optional statement of
the form remove ident1,..,identk and a possible empty list of new variable declarations. Finally, a
list of function redefinitions is given separated by the and keyword.



Chapter 2

Probabilistic Relational Hoare Logic

2.1 Foundations

Probabilistic Relational Hoare Logic (pRHL) judgments are quadruples of the form:

|= c1 ∼ c2 : Ψ =⇒ Φ

where c1, c2 are programs and Ψ,Φ are first-order relational formulae. Relational formulae are first-order
formulae over logical variables and program variables tagged with either {1} or {2} to denote their
interpretation in the left or right-hand side program. The special keyword res denotes the return value
of a procedure and can be used in the place of a program variable. One can also write e{i} for the
expression —e— in which all program variables are tagged with {i}. A relational formula is interpreted
as a relation on program memories. See the related articles [?] for more information on this logic.

2.2 Judgements

In EasyCrypt, pRHL judgments are introduced with judgments of the form

equiv Fact : Game1.f1 ~ Game2.f2 : Pre ==> Post.

where Fact is a judgment identifier, Game1 and Game2 are games, f1 and f2 are identifiers for procedures
in Game1 and Game2 respectively. The procedures f1 and f2 may be abstract or concrete; however,
judgments between two abstract procedures can only be defined only if the two abstract procedures
correspond to the same adversary.

The pre-condition Pre and post-condition Post are relational formulae, and define relations between
the parameters and the global variables of the two procedures, the post-condition is a relation between the
global variables and a special variable named res, representing the return value of the procedures. More
precisely res{1} stands for return value of the left procedure and res{2} stands for the return value of
the right procedure. For convenience, EasyCrypt also allows pre-conditions and post-conditions to include
sub-formulae of the form ={x1, ..., xn} stating that the values of x1 ... xn coincide in the left and
right memories. That is, ={x1, ..., xn} is a shorthand for x1{1}=x1{2} && ... && xn{1}=xn{2}.

EasyCrypt also supports judgments of the form:

equiv Fact : Game1.f1 ~ Game2.f2 : (Inv).

as a shorthand for

equiv Fact : Game1.f1 ~ Game2.f2 : ={params} && Inv ==> ={res} && Inv.

where params is the list of parameters of f1 and f2. Note that in order for the judgment to be meaningful,
the procedures must have the same return type and the same signature type.

2.3 Proof process

A statement of the form

equiv Fact : G1.f1 ~ G2.f2 : Pre ==> Post.

13
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opens a verification process, provided f1 and f2 are both abstract procedures, or both concrete proce-
dures.

In case f1 and f2 are both abstract procedures, the only available tactic is auto. Note that, since
abstract procedures are allowed to call concrete procedures, it is sometimes useful to prove invariants on
the latter prior to proving equivalence properties on f1 and f2.

In case both procedures f1 and f2 are concrete, EasyCrypt automatically transforms the judgment into
a judgment on their bodies. The pre-condition remains unchanged, but the post-condition is modified by
replacing the variables res{1} and res{2} by the return expressions of f1 and f2 respectively.

For example, in the file examples/elgamal.ec after the definition of the game DDH0 we can start a
new judgment, stating that the two procedures INDCPA.Main and DDH0.Main are equivalent if we observe
their results (={res} stands for res{1} = res{2}):

equiv CPA_DDH0 : INDCPA.Main ~ DDH0.Main : true ==> ={res}.

The judgment is automatically transformed into the following goal:

pre = true

stmt1 = 1 : (sk, pk) = KG ();

2 : (m0, m1) = A1 (pk);

3 : b = {0,1};

4 : mb = if b then m0 else m1;

5 : c = Enc (pk, mb);

6 : b’ = A2 (pk, c);

stmt2 = 1 : x = [0..q - 1];

2 : y = [0..q - 1];

3 : d = B (g ^ x, g ^ y, g ^ (x * y));

post = (b{1} = b’{1}) = d{2}

At this point, the EasyCrypt interpreter expects the user to provide tactics to guide the verification of
the judgment. Each tactic may generate both logical verification goals (first-order formulae) that are
sent to SMT solvers and new verification subgoals that are stacked for later verification by the user. The
interactive verification task concludes when there are no more goals in the stack and the result is saved
(by typing save) or when the verification goal is aborted.

Note that we have not implemented support to reason about the case where one procedure is abstract,
and another concrete. One possible workaround is to wrap the abstract procedure, say f1, into a concrete
procedure f1c that simply calls f1.

2.4 Tactics

2.4.1 Basic Tactics

2.4.1.1 The app tactic

Syntax app num num relational-formula

Description Applies the RHL rule for sequential composition:

|= c1 ∼ c2 : Φ =⇒ Φ′ |= c′1 ∼ c′2 : Φ′ =⇒ Φ′′

|= c1; c′1 ∼ c2; c′2 : Φ =⇒ Φ′′
[R-Seq]

The application of tactic app m n p defines c1 as the first m instructions of the program on the left-hand
side and c2 as the first n instructions of the program on the right-hand side and Φ′ as p.

Example The application of the tactic app 1 1 ={x} on the left goal, yields the two goals on the right.
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pre = true

stmt1 = 1: x = [0..10];

2: if (x = 10) x = 0;

else x = x - 1;

stmt2 = 1: x = [0..10];

2: if (x = 10) x = 0;

else x = x - 1;

post = x{1} + 22 + 1 = x{2} + 23

pre = true

stmt1 = 1: x = [0..10];

stmt2 = 1: x = [0..10];

post = ={x}

pre = ={x}

stmt1 = 1: if (x = 10) x = 0;

else x = x - 1;

stmt2 = 1: if (x = 10) x = 0;

else x = x - 1;

post = x{1} + 22 + 1 = x{2} + 23

2.4.1.2 The rnd tactic

Syntax rnd [side] [dir ] [ (fct) | (fct) (fct)]

where side is {1} or {2} and dir is << or >> and fct is relational-expr or ident -> relational-expr

Description The application of this tactic supports several variants depending on its optional argu-
ments:

• the optional argument side may be used to indicate the application of the one-sided logical rule for
random sampling. If missing, then the two-sided rule for random assignment is considered

• the optional argument dir indicates whether the random samplings appear at the bottom (<<) or
at the top (>>) of the instructions in the current goal. When this argument is missing, the default
option (<<) is considered.

• Additionally, for the two-sided case, the rnd tactic takes as parameter a representation of a bijective
function. If a single function f is given then it is required to be an involution. If a pair of functions
f and g are given then g is required to be the inverse of f . When no function is given the identity
function is considered.

Two syntactic forms are currently supported for the representation of the optional function argu-
ments. The recommended form is v->e, where e is a relational expression (an expression with {1}

and {2} tags) and v is a valid variable identifier. Alternatively (and for the time being), and only
in case the first or last instruction of the right program is an assignment, one can simply give an
expression e, in which case the bound variable v is set to the lhs of the assignment.

The application of the rnd tactic always expects the expressions at right of and assignment to be
a simple random expression, even though the programming syntax allows more complex expressions
like x = [0..10] + 3, or even multiple samplings of the form (x,y) = ({0,1},{0,1}^k). To deal with
random expressions occurring in mode complex constructions one must first make use of the derandomize
tactic.

One-sided application. The following table describes the result of one-sided application of the rnd

tactic. In the following, we denote A as the support of sampled distribution. In the particular case of
the uniform distribution over the integer interval [k1..k2], the expression a ∈ A corresponds to the
condition k1<=a && a<=k2.
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Syntax Rule

rnd{1} or rnd{1}<<
|= c1 ∼ c2 : Ψ =⇒ ∀a, (a ∈ A⇒ Φ

[
a/x〈1〉

]
)

|= c1;x $← d ∼ c2 : Ψ =⇒ Φ

rnd{2} or rnd{2}<<
|= c1 ∼ c2 : Ψ =⇒ ∀a, (a ∈ A⇒ Φ

[
a/x〈2〉

]
)

|= c1 ∼ c2;x $← d : Ψ =⇒ Φ

rnd>>{1}
|= c1 ∼ c2 : ∃z, (x〈1〉 ∈ A ∧Ψ

[
z/x〈1〉

]
) =⇒ Φ

|= x $← d; c1 ∼ c2 : Ψ =⇒ Φ

rnd>>{2}
|= c1 ∼ c2 : ∃z, (x〈2〉 ∈ A ∧Ψ

[
z/x〈2〉

]
) =⇒ Φ

|= c1 ∼ x $← d; c2 : Ψ =⇒ Φ

Example In this simple example, the application of the tactic rnd{1} (or equivalently rnd{1}<<),
yields the goal on the right at the top. An application of the rnd{e}>> over the latter returns the right
goal at the bottom, which can be easily discharged by the trivial tactic:

pre = 0 <= x{1}

stmt1 = 1 : z = [x * x..y];

stmt2 = 1 : z = [y..y];

post = 0 <= z{1} && z{2} = y{2}

pre = 0 <= x{1}

stmt1 =

stmt2 = 1 : z = [y..y];

post = forall (z : int),

x{1} * x{1} <= z => z <= y{1} =>

0 <= z && z{2} = y{2}

pre = y{2} <= z{2} && z{2} <= y{2} && 0<=x{1}

stmt1 =

stmt2 =

post = forall (z : int),

x{1} * x{1} <= z => z <= y{1} =>

0 <= z && z{2} = y{2}

Two-sided application. The following table describes the two-sided applications of the rnd tactic.
The expression bij(f, g, a) stand for the condition g(f(a)) = a∧ f(g(a)) = a and the invol(f, a) stands for
f(f(a)) = a.
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Syntax Rule

rnd or rnd<<
|= c1 ∼ c2 : Ψ =⇒ d = d′ ∧ ∀a, (a ∈ A⇒ Φ

[
a/x〈1〉

] [
a/y〈2〉

]
)

|= c1;x $← d ∼ c2; y $← d′ : Ψ =⇒ Φ

rnd>>
|= c1 ∼ c2 : d = d′ ⇒ x〈1〉 ∈ A ∧ x〈1〉 = x〈2〉 ∧ ∃x,yΨ

[
x/x〈1〉

] [
y/y〈2〉

]
=⇒ Φ

|= x $← d; c1 ∼ y $← d′; c2 : Ψ =⇒ Φ

rnd (f),(g)
|= c1 ∼ c2 : Ψ =⇒ d = d′ ∧ ∀a, (a ∈ A⇒ bij(f, g, a) ∧ Φ

[
a/x〈1〉

] [
fa/y〈2〉

]
)

|= c1;x $← d ∼ c2; y $← d′ : Ψ =⇒ Φ

rnd (f)
|= c1 ∼ c2 : Ψ =⇒ d = d′ ∧ ∀a, (a ∈ A⇒ invol(f, a) ∧ Φ

[
a/x〈1〉

] [
fa/y〈2〉

]
)

|= c1;x $← d ∼ c2; y $← d′ : Ψ =⇒ Φ

rnd>> (f,g)

|= c1 ∼ c2 :
d = d′ ⇒ bij(f, g, a)⇒
x〈1〉 ∈ A ∧ x〈1〉 = x〈2〉 ∧ ∃x,yΨ

[
x/x〈1〉

] [
y/y〈2〉

] =⇒ Φ

|= x $← d; c1 ∼ y $← d′; c2 : Ψ =⇒ Φ

rnd>> (f)

|= c1 ∼ c2 :
d = d′ ⇒ invol(f, g, a)⇒
x〈1〉 ∈ A ∧ x〈1〉 = x〈2〉 ∧ ∃x,yΨ

[
x/x〈1〉

] [
y/y〈2〉

] =⇒ Φ

|= x $← d; c1 ∼ y $← d′; c2 : Ψ =⇒ Φ

The rnd tactic also accepts (in all its forms) random samplings assigning a tuple of variables or
updating a map. The application of the rnd tactic in the assignment of multiple variable assignments
and map updates requires using the syntax v->e for the function parameters.

Example The example below shows the effect of the application of the tactic rnd (c ^^ m{2}), the
original left goal and the final right goal.

pre = true

stmt1 = 1 : m = M ();

2 : k_0 = {0,1}^l;

stmt2 = 1 : m = M ();

2 : c = {0,1}^l;

post = (k_0{1} ^^ m{1},m{1})

= (c{2},m{2})

pre = true

stmt1 = 1 : m = M ();

stmt2 = 1 : m = M ();

post = forall (r : bitstring{l}),

r ^^ m{2} ^^ m{2} = r

&& (r ^^ m{2} ^^ m{2} = r =>

(r ^^ m{1},m{1}) = (r ^^ m{2},m{2}))

Notice the verification condition for the function (c->c^^m{2}) (written simply c^^m{2} since c is the
assigned variable at the right side): r ^^ m{2} ^^ m{2} = r, requiring the function to be an involution.

2.4.1.3 The case tactic

Syntax case [side] : prog-expr

Description The case tactic allows to split the proof in two branches, depending of the initial value
of an expression. The side argument may be used to to indicate the application of the one-sided logical
rule. If no argument is provided, then the two-sided rule is used. In this case, the rule requires that the
precondition implies the equality of prog-expr on the two sides. The tactic corresponds to the following
pRHL rules:
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Syntax Rule

case{1} e
|= c1 ∼ c2 : Ψ ∧ e〈1〉 =⇒ Φ |= c1 ∼ c2 : Ψ ∧ ¬e〈1〉 =⇒ Φ

|= c1 ∼ c2 : Ψ =⇒ Φ

case{2} e
|= c1 ∼ c2 : Ψ ∧ e〈2〉 =⇒ Φ |= c1 ∼ c2 : Ψ ∧ ¬e〈2〉 =⇒ Φ

|= c1 ∼ c2 : Ψ =⇒ Φ

case e

|= c1 ∼ c2 : Ψ ∧ e〈1〉 ∧ e〈2〉 =⇒ Φ
|= c1 ∼ c2 : Ψ ∧ ¬(e〈1〉 ∧ e〈2〉) =⇒ Φ

|= c1 ∼ c2 : Ψ =⇒ Φ

Example The application of case{1} : x <= y transforms the goal on the left into the two goals on
the right:

pre = ={x,y}

stmt1 = 1: z = (y <= x) ? x : y;

stmt2 = 1: if (x <= y) z = y;

else z = x;

post = z{1} = z{2}

pre = ={x,y} && x{1} <= y{1}

stmt1 = 1: z = (y <= x) ? x : y;

stmt2 = 1: if (x <= y) z = y;

else z = x;

post = z{1} = z{2}

pre = ={x,y} && !(x{1} <= y{1})

stmt1 = 1: z = (y <= x) ? x : y;

stmt2 = 1: if (x <= y) z = y;

else z = x;

post = z{1} = z{2}

2.4.1.4 The if tactic

Syntax if [side]

Description Applies the pRHL rule for conditional. If the side argument is given then the correspond-
ing one side rule is used, else the two side rule is used. The if tactic expects an conditional as first
instruction, if it is not the case, the ifsync tactic 2.4.1.5 or cond tactic 2.4.2.7 can be used.

Syntax Rule

if{1}
|= c1; c ∼ c′ : Ψ ∧ e〈1〉 =⇒ Φ |= c2; c ∼ c′ : Ψ ∧ ¬e〈1〉 =⇒ Φ

|= if e then c1 else c2; c ∼ c′ : Ψ =⇒ Φ

if{2}
|= c′ ∼ c1; c : Ψ ∧ e〈2〉 =⇒ Φ |= c′ ∼ c2; c : Ψ ∧ ¬e〈2〉 =⇒ Φ

|= c′ ∼ if e then c1 else c2; c : Ψ =⇒ Φ

if

` Ψ⇒ e〈1〉 = e′〈2〉
|= c1; c ∼ c′1; c′ : Ψ ∧ e〈1〉 ∧ e′〈2〉 =⇒ Φ
|= c2; c ∼ c′2; c′ : Ψ ∧ ¬e〈1〉 ∧ ¬e′〈2〉 =⇒ Φ

|= if e then c1 else c2; c ∼ if e′ then c′1 else c′2; c′ : Ψ =⇒ Φ

Example The application of the tactic if on the goal of the left, yields the two goals on the right.
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pre = ={x}

stmt1 = 1: if (x = 10) x = 0;

else x = x - 1;

2: x = x + 22;

3: x = x + 1;

stmt2 = 1: if (x = 10) x = 0;

else x = x - 1;

2: x = x + 23;

post = ={x}

pre = ={x} && x{1} = 10 && x{2} = 10

stmt1 = 1: x = 0;

2: x = x + 22;

3: x = x + 1;

stmt2 = 1: x = 0;

2: x = x + 23;

post = ={x}

pre = ={x} && && x{1} <> 10 && x{2} <> 10

stmt1 = 1: x = x - 1;

2: x = x + 22;

3: x = x + 1;

stmt2 = 1: x = x - 1;

2: x = x + 23;

post = ={x}

2.4.1.5 The ifsync tactic

Syntax

Description

Example

2.4.1.6 The while tactic

Syntax while [side] [dir ] : relational-formula [: relational-expr, relational-expr ]

Description This tactic applies the pRHL verification rules for loops:

• the optional argument side can be either {1} or {2} to indicate the application of one-sided versions
of the rule. If missing, the two-sided rule for loops is considered.

• the argument relational-formula is mandatory and is used as loop invariant. It can refer to variables
in both the left and right programs.

• the pair of relational expressions are required (and accepted only) in the one-sided application of
the rule. They are used to prove termination of the while loop; the first one corresponds to a
decreasing variant expression and the second one to a lower bound. If no expressions are given in
the one-sided case, EasyCrypt tries to infer them.

In the forward version (>>) the information that is provided by the precondition about variables that
are not modified in the loop body is used as invariant and propagated after the loop. Similarly with the
postcondition in the backwards case (<<).

Two-sided version.

Syntax while [dir ] : relational-formula

Description Applies the two-sided RHL rule for while loops, using the relational-formula as loop
invariant. The dir is used to indicate if the backward rule (<<) or the forward rule (>>) should be used.
If no dir argument is given then the backward rule is used. The backward rule require that the last
instruction of the each statements are loop instruction (the first for the forward rule).
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Syntax Rule

while >> : I

` Ψ⇒ I ∧ e〈1〉 = e′〈2〉
|= c1 ∼ c′1 : I ∧ e〈1〉 ∧ e′〈2〉 ∧ ∃M,Ψ =⇒ I ∧ e〈1〉 = e′〈2〉

|= c2 ∼ c′2 : I ∧ ¬e〈1〉 ∧ ¬e′〈2〉 ∧ ∃M,Ψ =⇒ Φ

|= while e do c1; c2 ∼ while e′ do c′1; c′2 : Ψ =⇒ Φ

while [<<] : I

|= c2 ∼ c′2 : I ∧ e〈1〉 ∧ e′〈2〉 =⇒ I ∧ e〈1〉 = e′〈2〉
|= c1 ∼ c′1 : Ψ =⇒ I ∧ e〈1〉 = e′〈2〉 ∧ ∀M, (I ∧ ¬e〈1〉 ∧ ¬e′〈2〉 ⇒ Φ)

|= c1;while e do c2 ∼ c′1;while e′ do c′1 : Ψ =⇒ Φ

Example The application of the tactic while : ={x} && x{1} <= 10 to the left goal, yields the two
goals on the right.

pre = ={y}

stmt1 = 1 : x = 0;

2 : while (x < 10)

x = x + 1;

stmt2 = 1 : x = 0;

2 : while (x < 10)

x = x + 1;

post = ={x,y} && x{1} = 10

pre = (x{1} < 10 = (x{2} < 10) &&

={x} && x{1} <= 10) && x{1} < 10

stmt1 = 1 : x = x + 1;

stmt2 = 1 : x = x + 1;

post = x{1} < 10 = (x{2} < 10) &&

={x} && x{1} <= 10

pre = ={y}

stmt1 = 1 : x = 0;

stmt2 = 1 : x = 0;

post = (={x} && x{1} <= 10) &&

x{1} < 10 = (x{2} < 10) &&

(forall (x_L, x_R : int),

x_L < 10 = (x_R < 10) =>

x_L = x_R => x_L <= 10 =>

!x_L < 10 =>

(x_L = x_R && ={y}) && x_L = 10)

Example The application of the tactic while >> : ={x} && x{1} <= 10 to the left goal, yields the
two goals on the right, plus a logical verification condition (not shown) that is sent to the available SMT
solvers.

pre = x{2}=0 && x{1}=0 && ={y}

stmt1 = 1 : while (x < 10)

x = x + 1;

2 : y = y + 1;

stmt2 = 1 : while (x < 10)

x = x + 1;

2 : y = y + 1;

post = ={x,y} && x{1} = 10

pre = (exists (x_L, x_R : int),

x_R = 0 && x_L = 0 && ={y}) &&

(x{1} < 10 = (x{2} < 10) &&

={x} && x{1} <= 10) && x{1} < 10

stmt1 = 1 : x = x + 1;

stmt2 = 1 : x = x + 1;

post = x{1} < 10 = (x{2} < 10) &&

={x} && x{1} <= 10

pre = (exists (x_L, x_R : int),

x_R = 0 && x_L = 0 && ={y}) &&

(x{1} < 10 = (x{2} < 10) &&

={x} && x{1} <= 10) && !x{1} < 10

stmt1 = 1 : y = y + 1;

stmt2 = 1 : y = y + 1;

post = ={x,y} && x{1} = 10

One-sided version.

Syntax while side [dir ] : relational-formula [: variant, bound ]
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Description Applies the one-sided pRHL rule for while loops, using relational-formula as loop invari-
ant, variant as the decreasing variant (a relational-term) and bound as the lower bound (a relational-
term). The variant and the bound are used to check for termination. If no variant and bound are given,
EasyCrypt tries to infer them automatically. The forward and backward one-sided rules are described in
the table below; only the left ({1}) variants are shown; the right ({2}) variants are symmetric. In the
table, the expressions ∀X, ϕ and ∃X, ϕ denote, respectively, universal and existential quantification over
the set of variables X modified in the loop body c.

Syntax Rule

while{1} : I : v, b

` I ∧ v ≤ b⇒ ¬e
|= c ∼ skip : b = B ∧ v = C ∧ e ∧ I =⇒ b = B ∧ v < C ∧ I

|= c1 ∼ c2 : Ψ =⇒ I ∧ ∀X, (I ∧ ¬e⇒ Φ)

|= c1;while e do c ∼ c2 : Ψ =⇒ Φ

while{1}>> : I : v, b

` I ∧ v ≤ b⇒ ¬e
|= c ∼ skip : b = B ∧ v = C ∧ (∃X, Ψ) ∧ e ∧ I =⇒ b = B ∧ v < C ∧ I

|= c1 ∼ c2 : (∃X, Ψ) ∧ ¬e ∧ I =⇒ Φ

|= while e do c; c1 ∼ c2 : Ψ =⇒ Φ

Example Applying the one-sided tactic while{1} : x{1} <= 10 on the goal below on the left results
in the two goals on the right. The goal on the top corresponds to the verification of the loop body, and
requires proving that the invariant is preserved, the variant decreases, and the bound remains unchanged.
The goal on the bottom corresponds to the verification of the rest of the program, and requires proving
that the invariant is established before entering the loop, and that the post-condition holds upon exiting.

pre = ={y}

stmt1 = 1 : x = 0;

2 : while (x < 10)

x = x + 1;

stmt2 = 1 : x = 10;

post = ={x,y} && x{1} = 10

pre = (bnd{1} = 0 && 10 - x{1} = vrnt{1})

&& x{1} <= 10 && x{1} < 10

stmt1 = 1 : x = x + 1;

stmt2 =

post = (bnd{1} = 0 && 10 - x{1} < vrnt{1})

&& x{1} <= 10

pre = ={y}

stmt1 = 1 : x = 0;

stmt2 = 1 : x = 10;

post = x{1} <= 10 &&

(forall (x_L : int),

x_L <= 10 => !x_L < 10 =>

(x_L = x{2} && ={y}) && x_L = 10)

Example Similarly, one can invoke first the sp tactic to the original goal of the previous example, ob-
taining the left goal. The while{1} >> : x{1} <= 10 tactic returns the goals on the right, corresponding
to the verification of the loop body and the remaining program statements:

pre = x{2} = 10 && x{1} = 0

&& ={y}

stmt1 = 1 : while (x < 10)

x = x + 1;

stmt2 =

post = ={x,y} && x{1} = 10

pre = (bnd{1} = 0 && 10 - x{1} = vrnt{1}) &&

(exists (x_L : int), x{2} = 10

&& x_L = 0 && ={y}) &&

x{1} <= 10 && x{1} < 10

stmt1 = 1 : x = x + 1;

stmt2 =

post = (bnd{1} = 0 && 10 - x{1} < vrnt{1})

&& x{1} <= 10

pre = (exists (x_L : int), x{2} = 10

&& x_L = 0 && ={y}) &&

x{1} <= 10 && !x{1} < 10

stmt1 =

stmt2 =

post = ={x,y} && x{1} = 10
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2.4.1.7 The call tactic

Syntax call auto-info

Description The tactic call applies the two-sided Relational Hoare Logic rule for procedure calls.
The basic use of the call is the following

Syntax Rule

call using id

id : |= f ∼ g : Ψfg =⇒ Φfg

|= c1 ∼ c2 : Ψ =⇒ Ψfg

[
~a,~b/f.params,g.params

]
∧ ∀r1 r2 M, postfg ⇒ Φ

[
r1,r2/x〈1〉,y〈1〉

]
|= c1;x← f(~a) ∼ c2; y ← g(~b) : Ψ =⇒ Φ

The tactic checks that the specification named id exists and that the two functions used in the specifi-
cation correspond to the one used in the call instruction of each statements.

Example Assume that we have already proved the following specification

equiv f_12 : Gcall1.f ~ Gcall2.f : ={y} && x{2} = 1 ==> P(res{1},res{2})

Then the application of the tactic call using f_12 transform the left goal into the right goal
pre = ={z} && x{2} = 1

stmt1 = 1 : w = f (0);

stmt2 = 1 : w = f (0);

post = P(w{1} + 1,w{2} + 1)

pre = ={z} && x{2} = 1

stmt1 =

stmt2 =

post = x{2} = 1 &&

(forall (res_R, res_L : int),

P(res_L,res_R) => P(res_L + 1,res_R + 1))

Sometime EasyCrypt perform some simple automatic simplifications on the post-condition, leading to
an equivalent formula. For example the if we use the = predicate instead of P in the previous example
the post-condition become simply x{2} = 1.

In general, it is not needed to start by proving a specification for the pair of functions (here f_12). It
is possible give an invariant which will be used to prove the specification automatically (see section ??).
If the invariant is omitted, it is assumed that the invariant is equality over all common global variables
of the two games in the judgment. For example the application of the tactic call (x{2} = 1) declare a
new specification

equiv inferred_Gcall1_f_Gcall2_f_0 : Gcall1.f ~ Gcall2.f :

={y} && x{2} = 1 ==> ={res} && x{2} = 1

and transform the goal as following:
pre = ={z} && x{2} = 1

stmt1 = 1 : w = f (0);

stmt2 = 1 : w = f (0);

post = P(w{1} + 1,w{2} + 1)

pre = ={z} && x{2} = 1

stmt1 =

stmt2 =

post = x{2} = 1 &&

(forall (res_R : int),

x{2} = 1 => P(res_R + 1,res_R + 1))

2.4.1.8 The unfold tactic.

Syntax unfold [p1 , ... , pn]

Description unfolds the definition of provided predicates p1, ..., pn in the pre and postcondition. If
the list of predicates is empty, every defined predicate is unfolded.

Example Assume we have defined the predicates
pred eq(x,y:int) = x=y.

pred geq(x,y:int) = x<=y.

pred gt(x,y:int) = x<y.

A call of the tactics unfold eq and unfold to the goal on the left returns the goals on the right (at the
top and bottom respectively).
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pre = geq(z{1},z{2}) && !gt(z{1},z{2})

stmt1 =

stmt2 =

post = eq(z{1},z{2})

pre = geq(z{1},z{2}) && !gt(z{1},z{2})

stmt1 =

stmt2 =

post = ={z}

pre = z{1} <= z{2} && !z{1} < z{2}

stmt1 =

stmt2 =

post = ={z}

2.4.2 Program Tansformation Tactics

Some EasyCrypt tactics implement standard program transformations that are commonly used when doing
crypto proofs, like function inlining or code motion or when dealing with loops, like loop unrolling. These
are described next and examples are provided (pre and postconditions will be omitted when they do not
change).

2.4.2.1 The let tactic

Syntax let [side] [position] ident : type-expr = prog-expr

Description Add an assignment to a variable, which should be fresh at a given position. The default
position is 1. If no side argument is given then apply the transformation to both statements.

Example The application of the tactic let{1} at 2 w : int = x 1+ transforms the left goal into
the right goal:

pre = true

stmt1 = 1: x = 0;

2: y = 1;

stmt2 = 1: y = 1;

2: x = 0;

post = x{1} + y{1} = x{2} + y{2}

pre = true

stmt1 = 1: x = 0;

2: w = x + 1;

3: y = 1;

stmt2 = 1: y = 1;

2: x = 0;

post = x{1} + y{1} = x{2} + y{2}

2.4.2.2 The ifneg tactic

Syntax ifneg [side] [position]

Description Negate the value of conditional instruction and exchange its branches.

• the optional argument side can be either {1} or {2} and it indicates whether the transformation
must be applied in the left or right statement respectively. If missing, the transformation is applied
to both statements.

• The optional argument position determines which instruction is the target of the transformation.
It can be either

– at n applies the transformation on the if instruction at position n.

– at n1, .., np applies the transformation at positions n1, n2, . . . , np.

– last applies the transformation to the last if instruction.

– If no position argument is given the tactic applies the transformation to the first if instruction.

Example The tactic ifneg at 2 transforms the left goal into the right goal
pre = true

stmt1 = 1 : x = [0..10];

2 : if (x <> 10) x = x - 1;

else x = 0;

stmt2 = 1 : x = [0..10];

2 : if (x <> 10) x = x - 1;

else x = 0;

post = x{1} + 22 + 1 = x{2} + 23

pre = true

stmt1 = 1 : x = [0..10];

2 : if (x = 10) x = 0;

else x = x - 1;

stmt2 = 1 : x = [0..10];

2 : if (x = 10) x = 0;

else x = x - 1;

post = x{1} + 22 + 1 = x{2} + 23
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2.4.2.3 The inline tactic

Syntax inline [side] [P1,..,Pj | position ] where position is at n1,..,ni or last.

Description Inline the definition of concrete procedures. The side argument indicate if the transforma-
tion should be applied on the left statement ({1}) or on the right statement ({2}), if no side argument is
provided the transformation is applied on both statement. The second argument indicate which procedure
should be inlined.

• In the first variant, the procedure P1 is inlined first, then the procedure P2 and so on until the
procedure Pj. Notice that the order is important.

• In the second variant, the list of the procedure calls to be inlined is specified by giving the positions
where they appear in the game. This allows to inline just one call to a procedure.

• If no argument is provided then every concrete procedure is inlined.

Example The effect of the tactic inline applied to the left goal yields the right goal.
stmt1 = y = [0..100];

x = f (y);

stmt2 = y = [0..100];

x = f (y);

stmt1 = 1 : y = [0..100];

2 : k = y;

3 : aux = 1;

4 : res = 0;

5 : while (aux <> 0) {

aux = [0..k];

res = res + aux;

}

6 : x = res;

stmt2 = 1 : y = [0..100];

2 : k = y;

3 : aux = 1;

4 : res = 0;

5 : while (aux <> 0) {

aux = [0..k];

res = res + aux;

}

6 : x = res;

2.4.2.4 The swap tactic

Syntax swap [side] [num-num ] | num ] num

Description Moves intructions forwards or backwards whenever it is admissible, otherwise it fails.
In general, the transformation is admissible if the swapped instructions are independent. Additionally,
EasyCrypt tries to swap two instructions s1 and s2 if s1 is a sequence of assignments over variables that
are read by s2, by doing the appropriate substitutions. For example, althought the two first assignments
are not independent in the program on the left, the swap tactic allows the following transformation:

x = 2; y = 5; if 0 ≤ x then z = f(z + y) −→ if 0 ≤ 2 then z = f(z + 5); x = 2; y = 5

• The optional parameter side indicates whether the transformation must be applied to the left ({1})
or right ({2}) statement. If this argument is missing, both the left and right statement are affected.

• The second optional parameter indicates which block of instructions should be moved.

• The last num arguments indicate if the block of instruction should be moved down (if num is
positive), or up (if num is negative).

• swap [i-j] n pushes the block of instructions on lines between i and j of n positions down if n is
positive, and of n positions up if n is negative.

• swap i n is a shortcut for swap [i-i] n.

• swap n pushes the first instruction n positions down, if n is positive. Pushes the last instruction n

positions up if n is negative.
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Example The effect of the tactic swap{1} 1 applied to the left goal yields to the right goal.
stmt1 = 1: aux = {0,1};

2: res = {0,1};

stmt2 = 1: res = {0,1};

2: aux = {0,1};

stmt1 = 1: res = {0,1};

2: aux = {0,1};

stmt2 = 1: res = {0,1};

2: aux = {0,1};

2.4.2.5 The unroll tactic

Syntax unroll [side] [position]

Description Unrolls one iteration of the specified while loop. The loop unrolling is defined as a
transformation of the form

while b do c −→ if b then c;while b do c

In contrast to the condt tactic, the condition b is not required to hold before the loop entrance.

• the optional argument side can be either {1} or {2} and it indicates whether the transformation
must be applied on the left or right statement respectively. If missing, the transformation is applied
to both statements.

• The optional argument position determines which while loop is the target of the transformation. It
can be either

– at n unroll the loop at position n.

– at n1, .., np unroll the loop at positions n1, n2, . . . , np.

– last unroll the last loop.

– If no position argument is given the tactic unroll the first loop.

Example The tactic unroll last transforms the left goal into the right goal.
pre = ={x}

stmt1 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

3 : x = x + 3;

4 : while (x <= 20) x = x + 4;

5 : x = x + 5;

stmt2 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

3 : x = x + 3;

4 : while (x <= 20) x = x + 4;

5 : x = x + 5;

post = ={x}

pre = ={x}

stmt1 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

3 : x = x + 3;

4 : if (x <= 20) x = x + 4;

5 : while (x <= 20) x = x + 4;

6 : x = x + 5;

stmt2 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

3 : x = x + 3;

4 : if (x <= 20) x = x + 4;

5 : while (x <= 20) x = x + 4;

6 : x = x + 5;

post = ={x}

2.4.2.6 The splitw tactic

Syntax splitw [side] [position] : bool-exp

Description Splits a while loop into two loops. It replaces the instruction while (e) { c } by the
two instructions (while (e && bool-exp) { c }; while (e) { c }

• If side is {1} apply the transformation on the left statement. If side is {2} apply the transformation
on the right statement. If no side argument is provided apply the transformation on both statement.

• The optional argument position determines which while loop is the target of the transformation. It
can be either

– at n unroll the loop at position n.

– at n1, .., np unroll the loop at positions n1, n2, . . . , np.

– last unroll the last loop.

– If no position argument is given the tactic unroll the first loop.

• The last argument bool-exp is a deterministic program expression.



26 CHAPTER 2. PROBABILISTIC RELATIONAL HOARE LOGIC

Example the tactic splitw at 2: x < 10 transforms the left goal into the right one

pre = ={x}

stmt1 = 1 : x = x + 1;

2 : while (x <= 10)

x = x + 2;

3 : x = x + 3;

stmt2 = 1 : x = x + 1;

2 : while (x <= 10)

x = x + 2;

3 : x = x + 3;

post = ={x}

pre = ={x}

stmt1 = 1 : x = x + 1;

2 : while (x < 10 && x <= 10)

x = x + 2;

3 : while (x <= 10)

x = x + 2;

4 : x = x + 3;

stmt2 = 1 : x = x + 1;

2 : while (x < 10 && x <= 10)

x = x + 2;

3 : while (x <= 10)

x = x + 2;

4 : x = x + 3;

post = ={x}

2.4.2.7 The condt and condf tactic

Syntax (condt | condf) [side] [position] where position is at n or last.

Description Remove the conditional instruction (a if or a while) at position position to its true
branch (condt) or its false branch (condf). It require to show that the corresponding test is true for
condt or false of condf.

• If side is {1} apply the transformation on the left statement. If side is {2} apply the transformation
on the right statement. If no side argument is provided apply the transformation on both statement.

• The optional argument position determines in which instruction the the transformation should be
applied. It can be either

– at n applies the transformation to the conditional instruction at position n.

– at n1, .., np applies the transformation to the conditional instructions at positions n1, n2,
. . . , np.

– last applies the transformation to the last conditional instruction

– If no position argument is given the tactic applies the transformation to the first conditional
instruction

In the general case, the tactic generates two goals. The first one is used to prove that the value of the
test as the expected one (true for condt and false for condf). The second one correspond to the initial
statement where the conditional instruction is replaced by the corresponding branch. If the position
is 1 then the tactic directly try to prove the first goal. If the position is the last instruction and the
corresponding branch is empty (this appear frequently with condf if the last instruction is a loop) then
the tactic generate only one goal where the original post-condition is extended with the condition on the
test.

Example The tactic condt{1} last transforms the left goal into the two right goals

pre = ={x} && x{1} <= 9

stmt1 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

stmt2 =

post = x{2} <= x{1} + 3

pre = ={x} && x{1} <= 9

stmt1 = 1 : x = x + 1;

stmt2 =

post = x{1} <= 10

pre = ={x} && x{1} <= 9

stmt1 = 1 : x = x + 1;

2 : x = x + 2;

3 : while (x <= 10) x = x + 2;

stmt2 =

post = x{2} <= x{1} + 3
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Example The tactic condf{1} last transforms the left goal into the right goal
pre = ={x} && 10 < x{1}

stmt1 = 1 : x = x + 1;

2 : while (x <= 10) x = x + 2;

stmt2 =

post = x{1} + 3 = x{2}

pre = ={x} && 10 < x{1}

stmt1 = 1 : x = x + 1;

stmt2 =

post = !x{1} <= 10 && x{1} + 3 = x{2}

2.4.3 Combination of Tactics

EasyCrypt provides a simple combination mechanism that can be used to build more complex tactics
from basic tactics. The following is brief a description of the tactic language of EasyCrypt:

• idtac: this tactic always succeeds and has no effect on the current goal.

• tactic1;tactic2: this tactic applies first the tactic1 to the current goal and then tactic2 to every
subgoal generated by tactic1

• tactic; [ tactic1 | .. | tactick: Applies <tactic>, which must generate exactly k subgoals. Then it
applies tactici to the ith-subgoal. If a tactic is left unspecified the implicit tactic idtac is assumed.
For example condt at 2;[trivial | ] is equivalent to condt at 2;[trivial | idtac]

• *tactic Prefixing any tactic expression tactic with ’*’ results in the tactic being repeatedly applied
until it fails.

• !n tactic Repeats the tactic tactic given at most n times.

• try tactic Tries to apply the tactic given as argument, if it fails, it catches the error.

2.4.4 Automated Tactics

In order to simplify proves, EasyCrypt defines a set of heuristic tactics. In this subsection we provide a
description of each of this high level tactics and some examples ilustrating the effects on goals.

2.4.4.1 The wp tactic

Syntax wp [pos1 pos2 ]

Description Computes the relational weakest-precondition of deterministic, loop and procedure-call
free program fragments (i.e. deterministic assignments and conditionals). The tactic processes instruc-
tions from bottom to top until a random sampling, a loop or a function call is found. In particular, the
computation of the weakest precondition over a conditional instruction is only possible if its branches
contain only deterministic assignments or deterministic conditionals.

The optional position parameters pos1 and pos2 restricting the range of instructions affected by the
tactic application. When given two values k1 and k2, the weakest precondition computation stops on the
k1-th instruction of the left statement and on the k2-th instruction of the right statement.

The application of this tactic fails when no instruction can be processed, e.g., Calling the same tactic
wp over the last goal returns a failure message.

Example: Assume the predicate pos(m) is defined as forall (b:bool), in_dom(b,m) => 0<=m[b],
and k1 and k2 are positive constants. An invocation of the tactic wp over the left goal below returns the
goal on the right, i.e., stopping at the random assignments in line 4:

pre = 0 <= x{1} && pos(m{1})

stmt1 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

4 : m[b] = y;

stmt2 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

4 : m[b] = y;

post = pos(m{1}) && ={b}

pre = 0 <= x{1} && pos(m{1})

stmt1 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

stmt2 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

post = pos(m{1}[b{1} <- y{1}]) && ={b}
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Next, an invocation of rnd;rnd{1}. returns the goal on the left below, which can be further process
by wp returning the goal on the right, which can be discharged by simpl:

pre = 0 <= x{1} && pos(m{1})

stmt1 = 1 : (x, y) = (x + k1,x + k2);

stmt2 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

post = forall (z : int),

x{1} <= z => z <= y{1} =>

forall (r : bool),

pos(m{1}[r <- y{1}])

pre = 0 <= x{1} && pos(m{1})

stmt1 =

stmt2 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

post = (let y_L = x{1} + k2 in

forall (z : int),

x{1} + k1 <= z => z <= y_L =>

forall (r : bool),

pos(m{1}[r <- y_L]))

2.4.4.2 The sp tactic

Syntax sp [pos1 pos2 ]

Description Implements a strongest postcondition transformer over deterministic, loop free and procedure-
call free instructions. The invocation of this tactic processes, from top to bottom, the instructions at the
left and right of the goal until a random sampling, a loop, or a procedure call is found. If no instruction
can be processed, it returns a failure message.

The partial application of the sp tactic with optional arguments pos1 and pos2 process at most the
first pos1 instructions at the left and the pos2 instructions at the right of the current goal.

Example The example verified using wp can be dually verified with the sp tactic. Assume the predicate
pos(m) is defined as forall (b:bool), in_dom(b,m) => 0<=m[b], and k1 and k2 are positive constants.
An invocation of the tactic sp over the left goal below returns the goal on the right, i.e., stopping at the
random assignments in line 2:

pre = 0 <= x{1} && pos(m{1})

stmt1 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

4 : m[b] = y;

stmt2 = 1 : (x, y) = (x + k1,x + k2);

2 : z = [x..y];

3 : b = {0,1};

4 : m[b] = y;

post = pos(m{1}) && ={b}

pre = exists (x : int),

y{2} = x + k2 &&

x{2} = x + k1 &&

(exists (x_0 : int),

y{1} = x_0 + k2 &&

x{1} = x_0 + k1 &&

0 <= x_0 && pos(m{1}))

stmt1 = 1 : z = [x..y];

2 : b = {0,1};

3 : m[b] = y;

stmt2 = 1 : z = [x..y];

2 : b = {0,1};

3 : m[b] = y;

post = pos(m{1}) && ={b}

Notice the introduction of existential quantifiers due to the use of sp. The invocation of the forward rnd

tactic rnd{1}>>;rnd{2}>>;rnd>> to the last goal returns the goal below:

pre = ={b} && (x{2} <= z{2} && z{2} <= y{2}) &&

(x{1} <= z{1} && z{1} <= y{1}) &&

(exists (x : int),

y{2} = x + k2 &&

x{2} = x + k1 &&

(exists (x_0 : int),

y{1} = x_0 + k2 &&

x{1} = x_0 + k1 && 0 <= x_0 && pos(m{1})))

stmt1 = 1 : m[b] = y;

stmt2 = 1 : m[b] = y;

post = pos(m{1}) && ={b}

which can be further processed by sp returning following goal, dischargeable by trivial:

pre = exists (l : (bool,int)map),

l[b{2} <- y{2}] = m{2} &&

(exists (l_0 : (bool,int)map),
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l_0[b{1} <- y{1}] = m{1} &&

={b} && (x{2} <= z{2} && z{2} <= y{2}) &&

(x{1} <= z{1} && z{1} <= y{1}) &&

(exists (x : int),

y{2} = x + k2 &&

x{2} = x + k1 &&

(exists (x_0 : int),

y{1} = x_0 + k2 &&

x{1} = x_0 + k1 && 0 <= x_0 && pos(l_0))))

stmt1 =

stmt2 =

post = pos(m{1}) && ={b}

2.4.4.3 The simpl tactic

Computes the weakest precondition of the deterministic, loop-free suffix of the games in the judgment.
It then simplifies the resulting post-condition by eliminating absurd and trivial cases. If the resulting
post-condition is true and the resulting statement are lossless (terminate absolutely) then it resolve the
goal.

2.4.4.4 The trivial tactic

Combines wp and rnd to simplify the goal. It tries to match random assignments in both programs
applying the two-sided rule; if this fails it will apply the one-side rule. If the resulting goal contains two
empty statement it try to prove the post-condition using the pre-condition. As for the tactic simpl 2.4.4.3
the part of the post-condition which is proved are removed. If the resulting post-condition become simply
true, the goal is resolved.

2.4.4.5 The auto tactic

Computes the weakest precondition of the deterministic, loop-free suffix of the games in the judgment.
When encountering procedure calls, it looks for a matching proven ’equiv’ statement; if none is found
it tries to prove one using the optional “rel-exp” argument as invariant. It stops when it encounters a
random assignment.

2.4.4.6 The derandomize tactic

2.4.4.7 The eqobs in tactic

Syntax eqobs_in (g eqs) (invariant) (eqs)
where equalities are conjonction of equalities between variables of each side (i.e. of the form x{1} = y{2}

or ={u,v})

Description The eqobs_in tactic applies a fast but incomplete strategy to verify goals with a particular
pattern:

|= c′1 ∼ c′2 : Ψ =⇒ ϕ ∧={Y } |= c1 ∼ c2 : ϕ ∧={Y } =⇒ ϕ ∧={X}
` ϕ ∧={X} ⇒ Φ c1, c2 do not modify ϕ

|= c′1; c1 ∼ c′2; c2 : Ψ =⇒ Φ

where ={X} stands for the left-right equality of a set of variables X. In fact, eqobs_in returns only
the first subgoal |= c′1 ∼ c′2 : Ψ =⇒ ϕ ∧={Y } and computes the set Y such that the second subgoal
|= c1 ∼ c2 : ϕ ∧={Y } =⇒ ϕ ∧={X} holds trivially. The strategy implemented by eqobs_in consumes
the statements from bottom to top until it fails to proceed, for instance when it finds an assignment to
a variable in ϕ.

• The argument invariant is a relational formula that cannot be modified by the statements (it
corresponds to ϕ in the rule above).

• The argument eqs is a relational formula, defined as a conjunction of equalities between variables
of each side (i.e. of the form x{1} = y{2} or ={u,v}) (it corresponds to ={X} in the rule above).

• Similarly to eqs, the argument g eqs is a conjunction of variable equalities, restricted to global
variables, and required to hold as invariant of every call in the current goal.

The conjunction of invariant and eqs is required to imply the postcondition of the current goal.
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Example The following example shows the result of applying the tactic
eqobs_in (true) (0<=z{1}) (={y,l} && x{1}=w{2}) to the goal on the left:

pre = ={y} && x{1} = w{2}

stmt1 = 1 : z = 1;

2 : b = {0,1};

3 : if (b) x = y + z;

4 : while (x <= 10) x = x + 2;

5 : l = 2;

stmt2 = 1 : z = 1;

2 : b = {0,1};

3 : if (b) w = y + z;

4 : while (w <= 10) {

w = w + 2;

b = !b;

}

5 : l = 2;

post = x{1} = w{2} && ={l}

pre = ={y} && x{1} = w{2}

stmt1 = 1 : z = 1;

stmt2 = 1 : z = 1;

post = (={z,y} && x{1} = w{2}) && 0 <= z{1}

Notice that:

• the computation stopped until the assignments to z at position 1, since it was modifying a variable
occurring in the invariant 0<=z{1}

• the conjunction of the equalities ={y,l} && x{1}=w{2} and the invariant 0<=z{1} implies the
postcondition x{1} = w{2} && ={l}

• in order to establish the equality x{1}=w{2}, the tactic requires the equalities x{1}=w{2}, and
={y,z} after the assignment to z. More precisely, before the while loop it is enough to require
the equality x{1}=w{2}, but before the conditional statements both x{1}=w{2} and ={y,z} are
required, plus the equality on the guards (={b}) which is later removed by the two-sided random
assignment rule.

• replacing the redundant invariant 0<=z{1} by true returns a subgoal with empty statements that
does not require ={z} in the postcondition:

pre = ={y} && x{1} = w{2}

stmt1 =

stmt2 =

post = ={y} && x{1} = w{2}

2.4.5 by auto, by eager

• auto [<rel-exp>] Computes the weakest precondition of the deterministic, loop-free suffix of the
games in the judgment. When encountering procedure calls, it looks for a matching proven ’equiv’
statement; if none is found it tries to prove one using the optional “rel-exp” argument as invariant.
It stops when it encounters a random assignment.

2.4.6 Open equiv goal

equiv name : G1.f1 ~ G2.f2 : pre ==> post

equiv name : G1.f1 ~ G2.f2 : (inv)

2.5 Miscellaneous tool directives

• include filename: Loads and processes the contents of the EasyCrypt file filename.

• timeout secs: Sets the current timeout given to SMT solvers to the value secs. Used to increase
the default timeout value when no SMT solver manage to prove the required logical goals.

• prover prover1,..,proverk: Sets the list of provers (separated by ’,’) that are available to discharge
the logical verification conditions. By default, EasyCrypt tries with all provers recognized when
invoking why3config --detect. A prover name can be given either as an identifier or a string.

• check name/ print name Show information about the object associated to the name name.
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• checkproof: Enables and disables the verification of logical verification conditions.

• set name/unset name: Make the axiom or lemma with name name available/unavailable as
hypothesis for the verification of logical formulae.

• transparent name/ opaque name: Set the definition of the predicate with name name as trans-
parent or opaque. If a predicate is opaque then its definition is not unfolded during the verification
of logical formulae.
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Chapter 3

Probability Claims and Computation

Security properties are expressed in terms of probability of events, rather than as pRHL judgments.
Pleasingly, one can derive inequalities (resp. equality) about probability quantities from valid judgments.
In particular, assume that the postcondition Φ implies A〈1〉 ⇒ B〈2〉. Then for any programs c1, c2 and
precondition Ψ such that |= c1 ∼ c2 : Ψ =⇒ Φ is valid and for any initial memories m1, m2 satisfying the
precondition Ψ, we have

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]

Up to now, EasyCrypt assume that the two games start in the same initial memory (i.e. m1 = m2), thus
the equality of initial memories should imply the validity of the precondition.

3.1 Claims that follow from relational equivalences

The natural way to obtain new claims is to deduce it from a pRHL judgment. Assume we have proved a
pRHL judgment of the form:

equiv Fact1 : Game1.Main ~ Game2.Main : true ==> ={res}.

Then we can deduce:

claim c1 : Game1.Main[res] = Game2.Main[res] using Fact1.

EasyCrypt will check that the equality of the initial memories implies the validity of the precondi-
tion (here true) and that the postcondition implies the logical equivalence of the two events (here
={res} => (res{1} <=> res{2})).

pRHL judgments also allow proving inequality relations between probability expressions. Assume we
have proved a pRHL judgment of the form:

equiv Fact2 : Game1.Main ~ Game2.Main :

true ==> ={res} && (bad{1} => bad{2}).

Then we can deduce:

claim c2 : Game1.Main[res] = Game2.Main[res] using Fact2.

but also:

claim c3 : Game1.Main[res && bad] <= Game2.Main[bad] using Fact2.

For the last claim, EasyCrypt checks that the postcondition of the pRHL judgment (={res} && (bad{1} => bad{2}))
and the event associated to the first game (res{1} && bad{1}) imply the event associated to the second
game (bad{2}).

There is a third kind of claim which can be deduced from a pRHL judgment. This kind of judgment
is closely related to the fundamental lemma (also named difference lemma).

Fundamental lemma Let F1 and F2 be to distribution, and A1, A2, B1, B2 some events. Assume that

• Pr [F1 : B1] = Pr [F2 : B2]

• Pr [F1 : A1 ∧ ¬B1] = Pr [F2 : A2 ∧ ¬B2]

33
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then we have

|Pr [F1 : B1]− Pr [F2 : B2] | ≤ Pr [Fi : Bi]

Now assume we have proved a specification of the form:

equiv Fact3 : Game1.Main ~ Game2.Main :

true ==> B1{1} <=> B2{2} && (!B1{1} => A1{1} <=> A2{2}).

Then we can derive the following claims:

claim c4_1 : Game1.Main[B1] = Game2.Main[B2]

using Fact3.

claim c4_2 : Game1.Main[!B1 && A1] = Game2.Main[!B2 && A2]

using Fact3.

So the two hypotheses of the fundamental lemma are satisfied. EasyCrypt allows deriving directly the
conclusion of the fundamental lemma from Fact3:

claim c4 : |Game1.Main[A1] - Game2.Main[A2] | <= Game2.Main[B2]

using Fact3.

For this kind of claim, EasyCrypt checks that the postcondition of the pRHL judgment implies the
equivalence of the bad events (here B1 and B2) in the two games. Furthermore if the postcondition
is valid and the bad event (here B2) is not set then the two events (here A1{1} and A2{2}) should be
equivalent.

3.2 Claim using same and split

There is some particular case of claim which can be deduced automatically without using pRHL judg-
ments. More precisely, the judgment |= c ∼ c : = =⇒ = is always valid (where = means the equality of
the memories). Thus, we can derive some simple properties from it.

claim c_1 : G1.Main[res && (b || !b)] = G1.Main[res]

same.

claim c_2 : G1.Main[res && b ] <= G1.Main[res]

same.

Claim defined using same argument should relates the probability of two events A1 and A2 in the same
game. If the comparison operator is the equality then we should have A1 ⇔ A2 (as in the claim c_1).
If the comparison operator is the less or equal operator then we should have A1 ⇒ A2 (as in the claim
c_2).

Another way to simply derive claim is to use the split argument.

claim c_3 : G1.Main[res] = G1.Main[res && bad] + G1.Main[res && !bad]

split.

If the comparison operator is the equality the claim should match the generic form G.F[A] <= G.F[A&&B] + G.F[A&&!B].
If the comparison operator is the less or equal operator then the claim should have the generic form
G.F[A] <= G.F[B] + G.F[C]. Furthermore EasyCrypt check that A⇒ (B ∨ C).

An exemple of use of the split and same is the proof of the fundamental lemma, assume we have
proved the specification:

equiv Fact3 : Game1.Main ~ Game2.Main :

true ==> B1{1} <=> B2{2} && (!B1{1} => A1{1} <=> A2{2}).

Then we can derive the following claims:

claim c4_1 : Game1.Main[B1] = Game2.Main[B2]

using Fact3.

claim c4_2 : Game1.Main[!B1 && A1] = Game2.Main[!B2 && A2]

using Fact3.

but also:
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claim c4_split1 : Game1.Main[A1] = Game1.Main[B1 && A1] + Game1.Main[!B1 && A1]

split.

claim c4_split2 : Game2.Main[A2] = Game2.Main[B2 && A2] + Game2.Main[!B2 && A2]

split.

claim c4_same1 : Game1.Main[B1 && A1] <= Game1.Main[A1]

same.

claim c4_same2 : Game2.Main[B2 && A2] <= Game1.Main[A2]

same.

Using the claims c4_1, c4_2, c4_split1, c4_split2, c4_same1, c4_same2 the automatic provers (like
alt-ergo) are able to derive the following claim:

claim c4 : |Game1.Main[A1] - Game2.Main[A2] | <= Game2.Main[B2].

3.3 Deducing claim from other claims

Claim can be derived as a consequence of other claims. When no argument is given after the statement
of the claim EasyCrypt try to prove it using the previously proved claims.

Assume we have already proved the following claims:

claim c_1 : G1.Main[res] = G2.Main[res].

claim c_2 : | G2.Main[res] - G3.Main[res] | <= G3.Main[bad].

claim c_3 : G3.Main[res] = 1%r/2%r.

claim c_4 : G3.Main[bad] <= 1%r/(2^n)%r.

Then the following claim is automatically deduced from the previous one:

claim c_5 : | G1.Main[res] - 1%r/2%r | <= 1%r/(2^n)%r.

3.4 Claims by direct computation

During a reduction proof, we sometime need to compute or to bound the probability of an event in a
given game. This can be done using the compute argument. Assume we have the following game:

game G = {

...

fun Main() : bool = {

(pk,sk) = KG();

(m0,m1) = A_1(pk);

c = {0,1}^k;

b’ = A_2(c);

b = {0,1};

return b = b’;

}

}

Then EasyCrypt is able to compute the probability of res=true in the function G.Main:

claim c : G.Main[res] = 1%r/2%r

compute.

The compute argument is also able to prove the claim that can be derive using split and same, but
it is less efficient. On the other side it is also more powerful, for example we can prove:

claim c : G.Main[A || B || C] <= G.Main[A] + G.Main[B] + G.Main[C]

compute.

This claim can also be obtained using the split argument, using the following sequence:

claim c_1 : G.Main[A || B || C] <= G.Main[A || B] + G.Main[C]

split.

claim c_2 : G.Main[A || B] <= G.Main[A] + G.Main[B]

split.

claim c : G.Main[A || B || C] <= G.Main[A] + G.Main[B] + G.Main[C].
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The claim c is a direct consequence of the claims c_1 and c_2.
A last example of use for compute is the following, assume we have a game of the form:

game G = {

...

fun Main () : bool = {

x = init();

d = A(x);

z = {0,1}^k;

return d;

}

}

Then compute is able to prove the following claim:

claim c :

G.Main[res && mem(z,L) && length(L) <= q] <= q%r/(2^k)%r * G.Main[res]

compute.

3.5 Using the Failure Event Lemma to prove claims

It is often the case that the event whose probability one wants to bound is a failure event that can only
be triggered during an oracle call. Assume that this oracle can be called at most, say q, times, and
that one knows an upper bound u for the probability that failure is triggered during a single call. One
can then conclude that the probability that failure is triggered during the game is bounded by q · u. A
generalization of this kind of reasoning is automated as an extension to the compute mechanism. Consider
for instance the following game:

game G = {

var n : int

var bad : bool

fun O(x:bitstring{k}) : bitstring{k} = {

var y : bitstring{k} = {0,1}^k;

if (n < q) {

n = n + 1;

if (x = y) bad = true;

}

return y;

}

abs A = A {O}

fun Main() : unit = {

n = 0;

bad = false;

A();

}

}

The probability that bad is set during a single call to O is exactly 1/2k, and the number of calls made so
far is given by the value of the counter n. Thus, the probability that failure occurs, indicated by the bad

boolean flag, assuming at most q calls are made, can be bounded as follows:

claim pr_bad : G.Main[bad && n <= q] <= q%r * (1%r / (2^k)%r)

compute 2 bad, n.

The second argument bad to compute is a boolean expression that indicates the failure event, the third
argument n is an integer expression that acts as the counter. The first argument 2 indicates the number
of instructions in a prefix of the Main procedure; after this prefix is executed the value of the counter must
be set to 0, and the boolean expression indicating failure must be set to false. EasyCrypt then checks
that any call to a procedure that may trigger failure either strictly increases the value of the counter, or
does not decrease it but neither triggers failure. Moreover, whether the counter is increased or not must
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be fully determined upon entering the procedure and must not depend on its internal choices. Finally,
EasyCrypt tries to compute an upper bound u of the probability that a single call to any procedure in
the game triggers failure. If it succeeds, and the event considered is of the form bad && n <= q, then its
probability is proven to be bounded by q%r * u. One may typically then prove that the bound n <= q

is actually enforced by the game, and so the bound also holds for bad alone.

3.6 Claims by auto

One may automatically prove claims that follow from an equivalence that can be proved using equiv ... by auto:

claim G1_G2 : G1.Main[e1] <= G2.Main[e2]

auto.

is a shortcut for:

equiv G1_G2 : G1.Main ~ G2.Main : true ==> (e1{1} => e2{2}) by auto.

claim G1_G2 : G1.Main[e1] <= G2.Main[e2] using G1_G2.

3.7 Admitting claims

Claims may be also admitted without proof:

claim c : G.Main[res] = G’.Main[res]

admit.

However, be aware that admitting invalid claims can lead to inconsistencies.
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Chapter 4

Example: elgamal

(The syntax used in this section may be outdated.)

We illustrate the key ingredients presented in prevous chapters with a simple example: a game-based
proof of the IND-CPA-security of the ElGamal public-key encryption scheme.

The ElGamal encryption scheme is based on any cyclic group G of order q with generator g and is
defined by the following triple of algorithms

• The key generation algorithm KG() selects uniformly a random number x from {0, . . . , q − 1}; the
secret (private) key is x, the public key is gx.

• Given a public key pk and a plaintext m (an element of the group G), the encryption algorithm
E(pk,m) chooses uniformly a random element y from {0, . . . , q − 1} and returns the ciphertext
(gy, pky ∗m).

• Given a secret key sk and a ciphertext c, the decryption algorithm D(sk, c), parses c as (β, ζ) and
returns a plaintext computed as ζ ∗ β−x.

We start by declaring a type for elements of the group G, and defining type synonyms for the type of
public and secret keys, plaintexts and ciphertexts:

type group

type skey = int

type pkey = group

type plaintext = group

type ciphertext = group * group

The order of the group q and its generator g are declared as constants:

cnst q : int

cnst g : group

We then declare operators that will denote the group law in G, exponentiation and discrete logarithm
(in base g).

op (*) : group, group -> group = group_mult

op (^) : group, int -> group = group_pow

op log : group-> int = group_log

At this point the operators and constants that we declared above are completely abstract, nothing is
known about them besides their type. To specify

At that point nothing say that the type group is a cyclic group, we only known that the type come
with three operators *, ^ and log. We should specify the behavior of the operators this is done using
axioms:

axiom q_pos : {0 < q}

axiom group_pow_add :

forall (x:int, y:int). { g ^ (x + y) == g ^ x * g ^ y }

axiom group_pow_mult :

39
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forall (x:int, y:int). { (g ^ x) ^ y == g ^ (x * y) }

axiom log_pow :

forall (g’:group). { g ^ log(g’) == g’ }

axiom pow_mod :

forall (z:int). { g ^ (z%q) == g ^ z }

The first axiom q_pos expresses that the integer q representing the order of the group is positive. The next
group_pow_add and group_pow_mult specify the behavior of the multiplication and the exponentiation,
log_pow partially specify the behavior of the logarithm operator. The + operator used in group_pow_add

is the predefined additive operator over integer. Note that the * operator in the axiom group_pow_mult

represent the multiplication over integer and not the multiplication law of the group (EasyCrypt allows
to overloading of operator). The last axiom expresses the fact that the group is a cyclic group of order
q, % stand for the modulus operator over integer.

To be able to perform the proof we also add axioms on the modulus operator:

axiom mod_add :

forall (x:int, y:int). { (x%q + y)%q == (x + y)%q }

axiom mod_small :

forall (x:int). { 0 <= x } => { x < q } => { x%q == x}

axiom mod_sub :

forall (x:int, y:int). { (x%q - y)%q == (x - y)%q }

The IND-CPA semantic security is expressed as a game parameterized by an pair of adversaries, let
us declare this two adversaries:

adversary A1(pk:pkey) : plaintext * plaintext {}

adversary A2(pk:pkey, c:ciphertext) : bool {}

The first one A1 expect a public key pk and return a pair of plaintext, the second one expect a public
key and a cyphertext and return a boolean. The semi-bracket contains the declaration of the oracles that
can be used by the adversaries, here there is no oracles.

We can now define the game representing the IND-CPA semantic security of ElGamal:

game INDCPA = {

fun KG() : keys = {

var x : int = [0..q-1];

return (x, g^x);

}

fun Enc(pk:pkey, m:plaintext): ciphertext = {

var y : int = [0..q-1];

return (g^y, (pk^y) * m);

}

abs A1 = A1 {}

abs A2 = A2 {}

fun Main() : bool = {

var sk : skey;

var pk : pkey;

var m0, m1, mb : plaintext;

var c: ciphertext;

var b, b’ : bool;

(sk,pk) = KG();

(m0,m1) = A1(pk);

b = {0,1};

mb = b ? m0 : m1;

c = Enc(pk, mb);
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b’ = A2(pk, c);

return (b == b’);

}

}

The game start by the declaration of two functions the key generation algorithm KG and the encryption
algorithm Enc. Then come the definition of the two adversary A1 and A2, they are defined to be equal
to the abstract functions previously defined. The main function, at the end of the game, represent the
IND-CPA experiment. First the key generation algorithm is used to generate the secret and public keys,
then the public key is given to A1 which generate two plaintext m0 and m1. The instruction b = {0,1}

uniformly sample a boolean which is stored in b. Depending on this bit b either the plaintext m0 or m1

is encrypted with the public key pk, generating the ciphertext c. The public key and ciphertext are then
give back to the adversary A2. The goal of the adversary is to discover which plaintext as been encrypted.
It win if b is equal to b’.

The IND-CPA semantic security of ElGamal express that there exists a adversary B build on top of A1
and A2 which as a higher probability of breaking the Decisional Diffie Hellman problem (DDH) than A1

and A2 of winning the IND-CPA game. The first thing to do is to define the two games and the adversary
B involved in DDH problem:

game DDH0 = {

abs A1 = A1 {}

abs A2 = A2 {}

fun B(gx:group, gy:group, gz:group) : bool = {

var m0, m1, mb : plaintext;

var c : ciphertext;

var b, b’ : bool;

(m0, m1) = A1(gx);

b = {0,1};

mb = b ? m0 : m1;

c = (gy, gz * mb);

b’ = A2(gx,c);

return (b == b’);

}

fun Main() : bool = {

var x, y : int;

var d : bool;

x = [0..q-1];

y = [0..q-1];

d = B(g^x, g^y, g^(x*y));

return d;

}

}

game DDH1 = DDH0 where

Main = {

var x, y, z : int;

var d : bool;

x = [0..q-1];

y = [0..q-1];

z = [0..q-1];

d = B(g^x, g^y, g^z);

return d;

}

The main experiment in the game DDH0 start by uniformly sample two values x and y between 0 and
q − 1 and then send gx, gy, gxy to the adversary B. The game DDH1 is defined to be equal to the game
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DDH0 where only the main function changes: a new variable z is uniformly sample and gz is send to the
adversary instead of gxy. The goal of the adversary is to discover if its last argument correspond to gxy

or gz, i.e. if it play between DDH0 or DDH1.
We can know start our proof:

prover alt-ergo

equiv auto Fact1 : INDCPA.Main ~ DDH0.Main : {true} ==> ={res};;

claim Pr1 : INDCPA.Main[res] == DDH0.Main[res]

using Fact1;;

The first line select the prover to be used, here alt-ergo (the default one is simplify). The second
line is the main component of EasyCrypt. We demonstrate using the probabilistic Relational Hoare Logic
(pRHL) that the two functions INDCPA.Main and DDH0.Main are indistinguishable if we observe only
their results. This allows to proving the claim Pr1 which state that the probability that res is true after
running the two programs is equal.

game G1 = INDCPA where

Main = {

var x, y, z : int;

var gx, gy, gz : group;

var d, b, b’ : bool;

var m0, m1, mb : plaintext;

var c : ciphertext;

x = [0..(q - 1)];

y = [0..(q - 1)];

gx = g^x;

gy = g^y;

(m0, m1) = A1 (gx);

b = {0,1};

mb = b ? m0 : m1;

z = [0..(q - 1)];

gz = g^z;

c = (gy, gz * mb);

b’ = A2 (gx, c);

d = (b == b’);

return d;

}

equiv auto Fact2 : G1.Main ~ DDH1.Main : {true} ==> ={res};;

claim Pr2 : G1.Main[res] == DDH1.Main[res]

using Fact2;;

game G2 = G1 where

Main = {

var x, y, z : int;

var gx, gy, gz : group;

var d, b, b’ : bool;

var m0, m1, mb : plaintext;

var c : ciphertext;

x = [0..(q - 1)];

y = [0..(q - 1)];

gx = g^x;

gy = g^y;

(m0, m1) = A1(gx);

z = [0..(q - 1)];

gz = g^z;

c = (gy, gz);
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b’ = A2 (gx, c);

b = {0,1};

d = (b == b’);

return d;

}

equiv Fact3 : G1.Main ~ G2.Main : {true} ==> ={res}

swap{2} [10-10] -4; auto;

rnd (z + log(b?m0:m1)) % q, (z - log(b?m0:m1)) % q; wp; rnd;

auto; repeat rnd;

trivial;;

save;;

claim Pr3 : G1.Main[res] == G2.Main[res]

using Fact3;;

claim Pr4 : G2.Main[res] == 1%r / 2%r

compute;;

claim Conclusion :

| INDCPA.Main[res] - 1%r / 2%r | <= | DDH0.Main[res] - DDH1.Main[res] |
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Part II

Language Reference

45
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4.1 Lexical conventions

Comments.

Comments are enclosed by (∗ and ∗).

Strings.

Identifiers.

〈letter〉 := ‘a’ - ‘z’ | ‘A’ - ‘Z’ | ‘_’

〈digit〉 ::= ‘0’ - ‘9’

〈other letter〉 ::= 〈letter〉 | 〈digit〉 | ‘’’

〈ident〉 ::= 〈letter〉 〈other letter〉∗

〈ident list〉 ::= 〈ident〉 | 〈ident〉 ‘,’ 〈ident list〉

〈ident list0 〉 ::= 〈empty〉 | 〈ident list〉

〈prim ident〉 ::= ‘’’ 〈ident〉

〈prim ident list〉 ::= 〈prim ident〉 | 〈prim ident list〉 ‘,’ 〈prim ident list〉

〈number list〉 ::= 〈number〉 | 〈number〉 ‘,’ 〈number list〉

〈qualif fct name〉 ::= 〈ident〉‘.’〈ident〉

〈number〉 ::= 〈digit〉+

〈znumber〉 ::= 〈number〉 | ‘-’〈number〉

Keywords.

The following literals are reserved and must not be used as identifiers:

Operators.

〈op char〉 ::= ‘=’ | ‘<’ | ‘>’ | ‘~’ | ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| ‘!’ | ‘$’ | ‘&’ | ‘?’ | ‘@’ | ‘^’ | ‘.’ | ‘:’ | ‘|’ | ‘#’

〈bin op〉 ::= 〈op char〉+

〈u op〉 :: = ‘-’ | ‘!’

〈op ident〉 ::= 〈ident〉 | ‘(’ 〈bin op〉+ ‘)’

4.2 Type Expressions.

〈type〉 ::= 〈ident〉
| ’ 〈ident〉
| 〈type〉 〈ident〉
| ( 〈type〉 (‘,’ 〈type〉)+ ) 〈ident〉
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| ( 〈type〉 (‘*’ 〈type〉)+ )
| ‘bitstring’ ‘{’ 〈type〉 ‘}’
| ‘(’ 〈type〉 ‘)’

〈typed vars〉 ::= 〈ident list〉 ‘:’ 〈type〉

〈typed var list〉 ::= 〈typed vars〉 | 〈typed vars〉 ‘,’ 〈typed var list〉

〈param list〉 ::= 〈empty〉 | 〈typed var list〉

〈param decl〉 ::= ‘(’ 〈param list〉 ‘)’

〈type list〉 ::= 〈type〉 ‘,’ 〈type〉
| 〈type〉 ‘,’ 〈type list〉

〈type list0 〉 ::= 〈type〉
| ‘(’ 〈type list〉 ‘)’
| ‘()’

〈fun type〉 ::= 〈type list0 〉 ‘->’ 〈type〉

〈fun type list〉 ::= 〈fun type〉 | 〈fun type〉 ‘;’ 〈fun type list〉

〈fun type list0 〉 ::= 〈empty〉 | 〈fun type list〉

4.3 Expressions.

Simple expressions:

〈simpl exp〉 ::= 〈number〉
| 〈ident〉
| 〈simpl exp〉 ‘[’ 〈exp〉 ‘]’
| 〈simpl exp〉 ‘[’ 〈exp〉 ‘<-’ 〈exp〉 ‘]’
| 〈ident〉 ‘(’ 〈exp list0 〉 ‘)’
| 〈simpl exp〉 ‘{’ ‘{’〈number〉‘}’ ‘}’
| 〈simpl exp〉 ‘%r’
| 〈qualif fct name〉 ‘[’ 〈exp〉 ‘]’
| ‘(’ 〈exp〉 ‘,’ 〈exp list〉 ‘)’
| ‘(’ 〈exp〉 ‘)’
| ‘[’ 〈exp list〉 ‘]’
| ‘=’ ‘{’ 〈pos ident list〉 ‘}’
| ‘|’ 〈exp〉 ‘|’
| 〈simpl exp〉 ‘{’〈number〉‘}’

Random expressions:

〈rnd exp〉 ::= ‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’
| ‘{’ 〈number〉 ‘,’ 〈number〉 ‘}^’ 〈exp〉
| ‘[’ 〈exp〉 ‘..’ 〈exp〉 ‘]’
| ‘(’〈rnd exp〉 ‘\’ 〈exp〉 ‘)’

General expressions:
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〈exp〉 ::= 〈exp〉 〈bin op〉 〈exp〉
| 〈u op〉 〈exp〉
| 〈exp〉 ‘?’ 〈exp〉 ‘:’ 〈exp〉
| ‘if’ 〈exp〉 ‘then’ 〈exp〉 ‘else’ 〈exp〉
| ‘forall’ 〈param decl〉 [‘[’〈trigger list〉‘]’] ‘,’ 〈exp〉
| ‘exists’ 〈param decl〉 [‘[’〈trigger list〉‘]’] ‘,’ 〈exp〉
| ‘let’ 〈ident list〉 ‘=’ 〈exp〉 ‘in’ 〈exp〉
| 〈simpl exp〉
| 〈rnd exp〉

〈trigger list〉 ::= 〈trigger〉 | 〈trigger〉 ‘|’ 〈trigger list〉

〈trigger〉 ::= 〈exp〉 | 〈exp〉 ‘,’ 〈trigger〉

4.4 Declarations.

type

〈poly type〉 ::= ‘(’ 〈prim ident list〉 ‘)’ | 〈prim ident〉

〈type elem〉 ::= ‘type’ [〈poly type〉] 〈ident〉
| ‘type’ [〈poly type〉] 〈ident〉 ‘=’ 〈type〉

cnst

〈cnst elem〉 ::= ‘cnst’ 〈ident list〉 ‘:’ 〈type〉
| ‘cnst’ 〈ident list〉 ‘:’ 〈type〉 ‘=’ 〈exp〉

op

〈op body〉 ::= ‘:’ 〈fun type〉
| 〈param decl〉 ‘=’ 〈exp〉

〈op elem〉 ::= ‘op’ 〈op ident〉 〈op body〉
| ‘op’ 〈op ident〉 〈op body〉 ‘as’ 〈ident〉

pop

〈pop elem〉 ::= ‘pop’ 〈op ident〉 ‘:’ 〈fun type〉

pred

〈pred elem〉 ::= ‘pred’ 〈ident〉 〈param decl〉 ‘=’ 〈exp〉
| ‘pred’ 〈ident〉 ‘:’ 〈type ist〉

axiom
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〈axiom elem〉 ::= ‘axiom’ 〈ident〉 ‘:’ 〈exp〉
| ‘lemma’ 〈ident〉 ‘:’ 〈exp〉

adversary

〈adv elem〉 ::= ‘adversary’ 〈fun decl〉 ‘{’ 〈fun type list0 〉 ‘}’

Games.

〈base instr〉 ::= 〈ident〉 ‘(’〈exp list0 〉 ‘)’
| 〈ident〉 ‘=’ 〈exp〉
| ‘(’ 〈ident list〉 ‘)’ ‘=’ 〈exp〉
| 〈ident〉 ‘[’ 〈exp〉 ‘]’ ‘=’ 〈exp〉

〈instr〉 ::= 〈base instr〉 ;
| ‘if’ ‘(’ 〈exp〉 ‘)’ 〈block〉 ‘else’ 〈block〉
| ‘if’ ‘(’ 〈exp〉 ‘)’ 〈block〉
| ‘while’ ‘(’ 〈exp〉 ‘)’ 〈block〉

〈block〉 ::= 〈base instr〉 ‘;’
| ‘{’ 〈stmt〉 ‘}’

〈stmt〉 ::= 〈instr〉 〈stmt〉
| 〈empty〉

〈ret stmt〉 ::= ‘return’ 〈exp〉 ‘;’

〈loc decl〉 ::= ‘var’ 〈ident list〉 ‘:’ 〈type〉 [‘=’ 〈exp〉 ]‘;’

〈loc decl list〉 ::= 〈loc decl〉+

〈fun def body〉 ::= ‘{’ [〈loc decl list〉] 〈stmt〉 [〈ret stmt〉] ‘}’

〈fun decl〉 ::= 〈ident〉 〈param decl〉 ‘:’ 〈type〉

〈pg elem〉 ::= ‘var’ 〈ident list〉 ‘:’ 〈type〉
| ‘fun’ 〈fun decl〉 ‘=’ 〈fun def body〉
| ‘fun’ 〈ident〉 ‘=’ 〈qualif fct name〉
| ‘abs’ 〈ident〉 ‘=’ 〈ident〉 ‘{’ 〈ident list0 〉 ‘}’

〈game elem〉 ::= ‘game’ 〈ident〉 ‘=’ ‘{’ 〈pg elem〉∗ ‘}’
| ‘game’ 〈ident〉 ‘=’ 〈ident〉 〈var modifier〉 ‘where’ 〈redef list〉

4.5 pRHL judgments

equiv

〈inv info〉 ::= ‘(’ 〈exp〉 ‘)’
| ‘upto’ ‘(’ 〈exp〉 ‘)’ [‘and’ ‘(’ 〈exp〉 ‘)’ ] [‘with’ ‘(’ 〈exp〉 ‘)’]

〈auto info〉 ::= [〈inv info〉] [‘using’ 〈ident list〉]



4.6. TACTICS 51

〈equiv concl〉 ::= 〈exp〉 ‘==>’ 〈exp〉
| 〈exp〉 ‘=’ ‘(’ 〈exp〉 ‘:’ 〈exp〉 ‘)’ ‘=>’ 〈exp〉
| 〈inv info〉

〈equiv elem〉 ::= ‘equi’ 〈ident〉 ‘:’ 〈qualif fct name〉 ‘~’ 〈qualif fct name〉 ‘:’ 〈equiv concl〉
| ‘equi’ 〈ident〉 ‘:’ 〈qualif fct name〉 ‘~’ 〈qualif fct name〉 ‘:’ 〈equiv concl〉 ‘by’

‘auto’ 〈auto info〉
| ‘equi’ 〈ident〉 ‘:’ 〈qualif fct name〉 ‘~’ 〈qualif fct name〉 ‘:’ 〈equiv concl〉 ‘by’

‘eager’ 〈block〉

4.6 Tactics

〈interval〉 ::= ‘[’ 〈number〉 ‘-’ 〈number〉 ‘]’ | 〈number〉

〈rnd info〉 ::= ‘(’ 〈exp〉 ‘)’ ‘,’ ‘(’ 〈exp〉 ‘)’ | ‘(’ 〈exp〉 ‘)’ | ‘{’ 〈number〉‘}’

〈side at pos〉 ::= [‘{’〈number〉‘}’] [‘at’ 〈number list〉 | ‘last’]

〈inline info〉 ::= ‘at’ 〈number list〉 | ‘last’ | 〈ident list〉

〈tactic〉 ::= ‘idtac’
| ‘call’ 〈auto info〉
| ‘inline’ [‘{’〈number〉‘}’] [〈inline info〉]
| ‘asgn’
| ‘rnd’ [〈rnd info〉]
| ‘swap’ [‘{’〈number〉‘}’] 〈interval〉 〈znumber〉
| ‘swap’ [‘{’〈number〉‘}’] 〈znumber〉
| ‘simpl’
| ‘trivial’
| ‘auto’ 〈auto info〉
| ‘rauto’ 〈auto info〉
| ‘derandomize’ [‘{’〈number〉‘}’]
| ‘wp’
| ‘case’ [‘{’〈number〉‘}’] ‘:’ 〈exp〉
| ‘if’ [‘{’〈number〉‘}’]
| ‘condt’ 〈side at pos〉
| ‘condf’ 〈side at pos〉
| ‘while’ 〈side at pos〉 ‘:’ 〈exp〉
| ‘while’ 〈side at pos〉 ‘:’ 〈exp〉 ‘:’ 〈exp〉 ‘,’ 〈exp〉
| ‘while’ 〈exp〉 ‘,’ 〈exp〉 ‘,’ 〈exp〉 ‘,’ 〈exp〉 ‘,’ 〈exp〉 ‘:’ 〈exp〉
| ‘apply’ 〈ident〉 ‘(’ 〈exp list0 〉 ‘)’
| ‘pRHL’
| ‘apRHL’
| ‘unroll’ 〈side at pos〉
| ‘strengthen’ 〈side at pos〉 ‘:’ 〈exp〉
| ‘app’ 〈number〉 〈number〉 〈exp〉
| ‘app’ 〈number〉 〈number〉 〈exp〉 ‘:’ 〈exp〉 ‘,’ 〈exp〉 ‘:’ 〈exp〉 ‘,’ 〈exp〉
| ‘try’ 〈tactics paren〉
| ‘*’ 〈tactics paren〉
| ‘!’ 〈number〉 〈tactics paren〉
| ‘admit’
| ‘expand’ 〈ident list0 〉
| ‘let’ 〈side at pos〉 〈ident〉 ‘:’ 〈type〉 ‘=’ 〈exp〉

〈subgoal tactics〉 ::= [〈tactics〉] ‘|’ 〈subgoal tactics〉 | [〈tactics〉]
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〈tactic2 〉 ::= 〈tactic〉 | ‘[’ 〈subgoal tactics〉 ‘]’ | ‘(’〈tactics〉‘)’

〈tactic list〉 ::= 〈tactic2 〉 ‘;’ 〈tactic list〉 | 〈tactic2 〉

〈tactics〉 ::= 〈tactic〉 ‘;’ 〈tactic list〉 | 〈tactic〉

〈tactics paren〉 ::= 〈tactic〉 | ‘(’ 〈tactics〉 ‘)’

4.7 Probability claims

claim

〈claim elem〉 ::= ‘claim’ 〈ident〉 ‘:’ 〈exp〉
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘admit’
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘compute’
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘split’
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘same’
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘using’ 〈ident〉
| ‘claim’ 〈ident〉 ‘:’ 〈exp〉 ‘compute’ 〈number〉 〈exp〉 ‘,’ 〈exp〉

4.7.1 Program

〈global elem〉 ::= ‘include’ ‘"’ 〈string〉 ‘"’
| 〈type elem〉
| 〈cnst elem〉
| 〈op elem〉
| 〈pop elem〉
| 〈pred elem〉
| 〈axiom elem〉
| 〈adv elem〉
| 〈game elem〉
| 〈equiv elem〉
| 〈claim elem〉
| 〈tactics〉
| ‘save’
| ‘abort’
| ‘set’ 〈ident list〉
| ‘unset’ 〈ident list〉
| ‘prover’ 〈prover list〉
| ‘checkproof’
| ‘transparent’ 〈ident list〉
| ‘opaque’ 〈ident list〉
| ‘timeout’ 〈number〉
| ‘check’ 〈check〉
| ‘print’ 〈print〉

〈program〉 ::= 〈global elem〉 ‘.’
| 〈global elem〉 ‘.’ 〈program〉


