
Boogie Meets Regions: A Verification Experience Report

Anindya Banerjee1,�, Mike Barnett2, and David A. Naumann3,��

1 Kansas State University, Manhattan KS 66506, USA
2 Microsoft Research, Redmond WA 98052, USA

3 Stevens Institute of Technology, Hoboken NJ 07030, USA

Abstract. We use region logic specifications to verify several programs exhbit-
ing the classic hard problem for object-oriented systems: the framing of heap
updates. We use BoogiePL and its associated SMT solver, Z3, to prove both im-
plementations and client code.

1 Introduction

Many programs use dynamically allocated mutable storage, which poses challenges for
encapsulation and exacerbates the frame problem: how to specify that “everything else
is unchanged” for mutable state not directly named by program variables? Several lines
of work approach this problem in terms of footprints, i.e., the sets of locations that are
written or read by a phrase of a program or specification.

– In the Boogie methodology [5], “owned state” is represented by a mutable ghost
field that points to an object’s owner if it has one. An effect specification (“modifies”
clause) that licenses update of an object o implicitly licenses update of the objects
transitively owned by o.

– In Separation Logic [21], if P is the precondition of a procedure then the procedure
may be viewed as owning the state on which P depends. It has license to modify
that part of the heap but no other.

– Kassios [17] shows how to manipulate footprints explicitly, in ghost variables,
rather than implicitly (in formulas) or indirectly (via transitive ownership).

A key point is that if the read footprint of a formula or pure expression is disjoint from
the write footprint of a command, then the command preserves the value of the formula
or expression.

Kassios works in a higher order logic, which can directly express that a formula
depends on certain locations. He shows how reasoning idioms developed in Boogie or
separation logic can be elegantly and effectively articulated using explicit footprints.
His approach does require a single discipline to be imposed on all parts of all programs.
He develops a relational refinement calculus, following Hehner [15].

� Partially supported by US NSF awards CNS-0627748 and ITR-0326577 and by a sabbatical
visit at Microsoft Research, Redmond.

�� Support from NSF (CNS-0627338, CRI-0708330, CCF-0429894) and Microsoft Research.

N. Shankar and J. Woodcock (Eds.): VSTTE 2008, LNCS 5295, pp. 177–191, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

178 A. Banerjee, M. Barnett, and D.A. Naumann

Smans et al [24] explore Kassios’ approach in terms of conventional sequential spec-
ifications with distinct first order precondition, postcondition, and effect. They focus on
framing of pure methods used in specifications for data abstraction. They report on
encouraging case studies using a prototype verifier based on an SMT solver.

Banerjee et al [4] also explore the approach using first-order specifications, focusing
on foundational justification in terms of a Hoare logic that uses footprint expressions in
the effects clause. Their Region Logic features a frame rule inspired by that of separa-
tion logic (which in turn adapts Hoare’s rule of Invariance) to encompass interference
via mutable heap objects. In region logic, the frame rule involves a static analysis for
read effects of formulas. The effect rdG •f expresses that field f of some objects in G
may be read. A region expression G denotes a set of non-null object references and
footprints are of the form G •f . This treatment caters for notations like G •f ⊆G ′ which
says that the f -image of G is a subset of G ′.1 Region logic features the use of region
fields and variables to encode dynamic frames whereas Smans et al. use pure methods.
Banerjee et al. claim that: “A benefit of treating regions as ghost state is that it can be
done using first-order specification languages based on classical logic with modest use
of set theory. Thus it fits with mostly-automated tools based on verification condition
generation. . . .”

This paper reports on some case studies to investigate Banerjee et al.’s claim. We
demonstrate the utility of using region specifications for

– Local reasoning about data structures (Sect. 4),
– Encapsulation, even in the presence of callbacks (Sect. 5),
– Layered abstractions, using the examples from Smans et al. [24] but without the

need for conditional effects (Sect. 6).

In addition, our experience supports their suggestion that the region logic provides a
neutral framework in which disciplines such as ownership can be, but need not be im-
posed system-wide.

In ongoing work we are investigating decision procedures for region logic primitives
such as G •f ⊆ G ′. Here, we use the Z3 solver [12] which does not have a decision
procedure for set theory. This poses another research question: Is a first order axiomati-
zation of set theory effective for automating verification of programs and specifications
that encode footprints in ghost state? Our answer is yes (Sect. 9) and no (Sect. 7).

Rather than implement a verification condition generator from scratch for our as-
sertion language, we use the BoogiePL intermediate language advocated at VSTTE’05
by Barnett et al [6]. The BoogiePL tool [13] generates verification conditions suited
for SMT solvers such as Simplify [14], the CVC family [8], and Z3 [12]. These in-
tegrate multiple decision procedures with heuristic instantiation of quantifiers driven
by pragmas called triggers. They have been used with some success in verifiers like
ESC/Java and Spec#, where user interaction is limited to the insertion of assert and
assume statements and loop invariants. Our experiments consist entirely of manually
written encodings in BoogiePL of the example programs and specifications, with Z3 as
solver. We are therefore in a position to provide triggers on an ad hoc basis.

1 These features are useful for reasoning about simulations, as in the context of information
flow [1,2].

Boogie Meets Regions: A Verification Experience Report 179

2 Relevant Features of BoogiePL

A BoogiePL [13] program is a collection of procedure specifications and implementa-
tions, together with global variables, uninterpreted functions, and axioms. The Boogie
tool generates verification conditions for the procedure implementations with respect
to their specifications. These conditions, together with the axioms, are translated into
an input format for SMT solvers, in our case Z3. We do not explain that translation:
the verification conditions represent the weakest precondition of the program [7]. In-
stead we focus on the features provided in BoogiePL and their use for encoding region
specifications and programs. Aside from regions, our encodings are similar to those
automatically generated by Spec#, but we omit the treatment of source level data types.

Types. The type system of BoogiePL is coarser than that of a high-level object-oriented
language: objects are represented by the type ref (of which null is a distinguished ele-
ment). The other primitive types are bool, int, and name, all subtypes of any. We use
the type name for fields. Another subtype of any is a type constructor for maps, using
array-style notation. In particular, we encode regions as [ref]bool, denoting a boolean-
valued function on references.

Heaps. The heap is modeled as an infinite two-dimensional array, roughly of type
[ref,name]any, mapping pairs of object references and field names to values. Logically,
all objects “have” all fields, but of course, each object uses only those fields which are
defined in the corresponding high-level program. There is no built-in notion of an object
being allocated or not. We model it using an explicit boolean field, alloc, and assume
that the field is set appropriately in the necessary places (see below).

We declare a single global variable, “Heap”. All operations involving the heap are
explicit in our code and specifications: What would be written o.f in source code, and
in region logic specifications, is here written as Heap[o, f]. We write “Hp” for the type
of heaps. (It is not actually [ref,name]any but rather a refinement that uses a form
of type dependency to distinguish integer fields from reference fields but we elide the
details [13].) We write field for the type of fields, again hiding the dependency notation
for field names.

Source programs only compute heaps h that are self-contained in the sense that for
any allocated object o, and for any field f of o, if f ’s content is a reference, p, then p is
also allocated in h. We use an uninterpreted predicate, GH, read “is good heap”, and in
our initial experiments an axiom was used saying that GH(h) implies self-containment.
It was not a defining axiom, as we expected for some purposes one would want addi-
tional conditions such as typing. It turned out that our results do not even need self-
containment. There is also a predicate GO (“is good object”) with a defining axiom that
says GO(o,h) iff GH(h) and o is non-null and o is allocated (i.e., h[o,alloc] is true).

Procedures and functions. Procedures in BoogiePL model the specification of imper-
ative code (with optional implementations). Functions introduce arbitrary axiomatiza-
tions and model user-defined methods within specifications. All parameters are explicit,
including the receiver of an instance method and the return value.

Procedures have preconditions and postconditions for encoding the assertions they
demand of a caller and the guarantees that a caller can assume, respectively. Free pre-
conditions and postconditions are not checked (asserted) but instead assumed. Such

180 A. Banerjee, M. Barnett, and D.A. Naumann

assumptions model facts that are guaranteed by the high-level programming language.
Free preconditions represent facts that a callee can depend on, while free postconditions
facts that a caller can depend on. For example, we use a free precondition that the re-
ceiver of an instance method is non-null and allocated and a free postcondition that all
allocated objects remain so (predicate NoDeallocs). In this paper we elide most of the
free conditions.

Implementations are written using the usual high-level control structures of assign-
ment statements, conditional statements, and while loops. Loops are allowed to have
loop invariants. There are also assert statements, which introduce a proof obligation,
and assume statments which introduce unchecked facts. For example, every assignment
to the heap is followed by an assumption GH(Heap) which is justified because the
source language would make GH an all-states invariant. Finally, the statement havoc o
loses all information about the value of the variable o.

When calls of (source code) methods are allowed in specifications, those methods
must be pure, i.e., not modify any pre-existing state. All calls to a pure method, m, in
specifications are encoded by an uninterpreted function, #m. The axioms defining #m
are either derived from the specification for m [11] or else directly from the implemen-
tation of m [24].

Allocation. We encode the high-level source statement o := new T (. . .) as

havoc o; assume ¬Heap[o,alloc]; call T ..ctor(. . .);

where T ..ctor is the procedure that encodes the appropriate constructor for the type
T . For brevity we use the high-level statement in this paper. All constructors have a
free postcondition that the object is a good object, hence allocated. That is, there is no
explicit state change that updates the alloc field to allocate an object, but the effect of
calling the constructor provides the same functionality. Constructors also have a free
precondition that the object is allocated. The free precondition that o is allocated does
not lead to a contradiction with the assumption ¬Heap[o,alloc] because only checked
preconditions become proof obligations (assertions) at call sites to the constructor. The
result is that code within a constructor can use the object, e.g., as a parameter to a call.

The default write effect of any constructor is that only fields of the object under
construction can be updated.

Quantifiers. Quantifiers are written in BoogiePL as (Q v • body) where Q is the kind
of the quantifier, v is a list of bound variables and their types and body is a predicate
dependent on the variables in v . For axioms involving quantifiers, immediately follow-
ing the • and before the quantifier body a trigger might appear. Triggers are syntactic
patterns delimited by {...} and are used to provide hints to the SMT prover on how to
instantiate the quantified variable. Triggers are discussed in more detail in Sect. 7.

Modifies clauses. BoogiePL specifications include a modifies clause, but this merely
lists variables. Thus every mutator method lists Heap, and for brevity in this paper
we elide that. More important are the source level effect specifications. The high level
specification of a method might include effect wr〈o〉•f , for a parameter o and field f

Boogie Meets Regions: A Verification Experience Report 181

(this region logic notation corresponds to just o.f in the modifies clause of Spec# or
JML). As usual, this translates to a postcondition of the form

∀p :ref,g :field • GO(p,old(Heap)) =⇒
old(Heap)[p,g] = Heap[p,g] ∨ (p = o∧ g = f) ∨ . . .

(1)

where the elided part comes from other effect specifications. There is no restriction on
modifying any field of an object that is allocated during the method call.

3 Regions

Recall that regions, i.e., reference sets, are encoded by their characteristic functions of
type [ref]bool. Region logic features effects of the form wr this .O •f where O is a region
type field and f a fieldname. The effect wr this .O •f is translated exactly as Equation 1,
but replacing p = o with the test whether p is member of old(Heap)[this ,O]. Note that
write effects are interpreted in the initial state. In our experiments, the only form of
region expression used are field dereferences and variables. Region fields and variables
serve only for reasoning, but BoogiePL does not distinguish ghost state from program
state. (Ghosts would be marked as such in a source level notation like Spec#.)

Although sets are represented by the interpreted type [ref]bool, this BoogiePL type
comes equipped only with equality test and the select/update operations. Other set the-
oretic operations and predicates can be given straightforward defining axioms. Here are
some sample declarations.

function SingletonSet(ref) returns ([ref] bool);
axiom ∀r :ref,o :ref • {SingletonSet(r)[o]} SingletonSet(r)[o] ⇐⇒ r = o;

function DisjointSet([ref] bool, [ref] bool) returns (bool);
axiom ∀a : [ref] bool,b : [ref] bool • {DisjointSet(a,b)}

DisjointSet(a,b) ⇐⇒ ∀o :ref • {a[o]}{b[o]} ¬a[o] ∨ ¬b[o] ;

In the DisjointSet axiom, either a[o] or b[o] can be triggers for the inner quanti-
fier. In the sequel, we write ∅ for EmptySet , {o} for SingletonSet(o), A∪B for
UnionSet(A,B), A = B for EqualSet(A,B) to save space. To avoid clutter in this
paper, we omit triggers from most axioms.

Predicate GR(G,h) is defined to say that every object in region G is a good object
in h. As mentioned in Section 1, region logic features predicates involving the f -image
of a region. For example, region G is closed with respect to field f (of type ref) in heap
h provided that for every object o in G , the value of o.f is either null or in G:

function RegionClosed(G : [ref]bool,h :Hp, f :field) returns (bool);
axiom ∀G : [ref]bool,h :Hp, f :field •

RegionClosed(G,h, f) ⇐⇒ ∀o :ref • G[o] =⇒ h[o, f] = null ∨ G[h[o, f]]

Region G is fresh with respect to an initial heap provided its elements were unallo-
cated:

function fresh(h :Hp,k :Hp,G : [ref]bool) returns (bool);
axiom ∀h :Hp,k :Hp,G : [ref]bool •

fresh(h,k ,G) ⇐⇒ GH(h) ∧ GR(G,k) ∧ AllNewRegion(h,G)

182 A. Banerjee, M. Barnett, and D.A. Naumann

The predicate AllNewRegion(h,G) asserts that all objects in region G are unallocated
in heap h. The predicate DifferenceIsNew(h,G,G ′) holds provided G ′ is a newly
allocated region with respect to both G and h: in other words if o is any object allocated
in h, either o is null or o is an element of G or o is not an element of G ′.

4 Local Reasoning Example: List Copy

Fig. 1 shows the body of a ListCopy method that takes a linked list of nodes as input
and produces as output a new list which is a copy of the original list. Our goal is to
verify that if the original list is non-empty and resides in a region —say origRg— then
the copied list is also non-empty and resides in a region, say, newRg , that is fresh and
disjoint from origRg . (We stress that we are not verifying full functional correctness,
namely, that the new list is indeed a copy of the original.) For this purpose, origRg and
newRg would be auxiliary variables, scoped over both the requires and ensures clause.
Such variables are supported by JML and Region Logic but not the current version of
BoogiePL, so for illustration we make them local variables instead of parameters and
use assert and assume statements to encode the specification.

procedure ListCopy(root :ref) returns (result :ref)
var newRoot ,prev , tmp,oldListPtr :ref; newRg ,origRg : [ref]bool
{ assume root = null ∨ (origRg [root] ∧ RegionClosed(origRg ,Heap,nxt));

newRoot := null; tmp := null; oldListPtr := root ; newRg := ∅;
if (oldListPtr �= null){

newRoot := new Node(); newRg := newRg ∪{newRoot};
prev := newRoot ; oldListPtr := Heap[oldListPtr ,nxt];
while (oldListPtr �= null){

tmp := new Node(); newRg := newRg ∪{tmp};
Heap[prev ,nxt] := tmp; assume GH(Heap);
prev := tmp; oldListPtr := Heap[oldListPtr ,nxt];}}

result := newRoot ;
assert (root = null ∧ result = null) ∨ (root �= null ∧ RegionClosed(newRg ,Heap,nxt)
∧newRg [result] ∧ fresh(old(Heap),Heap,newRg) ∧ DisjointSet(newRg ,origRg));}

Fig. 1. List Copy implementation with embedded specifications (see text)

At the beginning of every loop iteration, the variable oldListPtr contains a pointer
to the remainder of the original list that is yet to be copied. The variable prev contains
a pointer to the current end node of the new list: the new list grows when a new node
pointed to by tmp is added at its end. All nodes in the copied list exist in newRg . This
region is fresh with respect to the heap at the entry to the method. Freshness of each
node in newRg is ensured by the allocation of a new object (Sect. 2). The constructor
call for Node ensures that tmp is a good object, i.e., non-null and allocated. Since tmp
is assumed to be unallocated before the constructor call, {tmp} is a fresh region.

The loop invariant below is obtained from the postconditions by standard heuristics,
except for the last conjunct which should be mechanically generated for every loop

Boogie Meets Regions: A Verification Experience Report 183

translated from a high-level source program; ghost variable loopPreHeap is the snap-
shot of the heap before the loop body is entered.

newRg[newRoot] ∧ RegionClosed(newRg,Heap,nxt)
∧ fresh(old(Heap),Heap,newRg) ∧ NoDeallocs(loopPreHeap,Heap)

This suffices to prove DisjointSet(newRg,origRg).

5 Encapsulation Example: Subject/Observer

Fig. 2 shows a more involved example, Subject/Observer. A subject, s , has an internal
state in field val and a pointer to a list of observers with typical element, o. The head
of the list is reached via s .obs and other observers in the list are reached following
the observers’ nxt fields. The entire list of observers resides in a region contained in
(ghost) field O of s . The observer o maintains a pointer to its subject in its sub field
and o.cache contains o’s current view of s’s internal state.

Method register adds an object o to the region O of a subject, s , and notifies o of
s’s current state. When the subject’s state is updated, it notifies all of its observers. The
purpose of method notify is to update an observer’s view of its subject’s internal state.
Note that notify is called on an observer from within the update method and this results
in a callback to the Subject ’s get method via this .sub.get().

For the specifications of the methods of Fig. 2, the predicates SubObs , Sub, Obs are
used (inspired by Parkinson [22]). The predicate Sub(s ,v) says that the current internal
state of subject s is v and all observers of s are in a list which lies in region s .O . The
predicate Obs(o,s ,v) says that o is an observer of subject s and that v is o’s view
of s’s internal state. Finally, SubObs is a predicate for the entire aggregate structure
comprising an instance of Subject together with its Observers. SubObs(s ,v) holds for
a subject s with internal state v when Sub(s ,v) holds and for each observer o in s’s list
of observers, Obs(o,s ,v) holds.

// Observer : fields sub,nxt :ref, cache : int
// methods: ctor (constructor), notify
procedure notify(this :ref){ procedure ctor(this :ref,s :ref){

var tmp : int; Heap[this,sub] := s;
tmp := call get(Heap[this,sub]); assume GH(Heap);
Heap[this,cache] := tmp; assume GH(Heap);} Heap[this,nxt] := null;

assume GH(Heap);
call register(s, this);}

// Subject : fields obs :ref, val : int, O : [ref]bool
// methods: ctor (constructor), register , add , update, get
procedure update(this :ref,n : int){

var o :ref; var r1: [ref]bool;
Heap[this,val] := n; assume GH(Heap); o := Heap[this,obs]; r1:= ∅;
while (o �= null){call notify(o); r1:= r1∪{o}; o := Heap[o,nxt];}

Fig. 2. Subject/Observer implementation excerpts

184 A. Banerjee, M. Barnett, and D.A. Naumann

function List(o :ref,h :Hp) returns ([ref]bool);
axiom ∀o :ref,h :Hp • o = null ⇐⇒ List(o,h) = ∅

axiom ∀o :ref,h :Hp,r : [ref]bool • o �= null =⇒ List(o,h) = {o}∪List(h[o,nxt],h)
axiom ∀h :Hp,k :Hp,o :ref • List(o,h) = List(o,k) ⇐=

(∀p :ref • p �= null ∧ List(o,h)[p] ∧ List(o,k)[p] =⇒ h[p,nxt] = k [p,nxt])

Fig. 3. List axioms

Unlike Parkinson’s formulation in separation logic, our version includes the heap
as explicit parameter, but that would be hidden in source level syntax. In Fig. 3 we
introduce a function List so that List(o,h) is a set containing all objects reachable
from o following nxt . Using List , the defining axioms for Sub, Obs and SubObs look
as follows:

Sub(s ,v ,h) ⇐⇒ GO(s ,h) ∧ h[s ,val] = v ∧ List(h[s ,obs],h) = h[s ,O]
Obs(o,s ,v ,h) ⇐⇒ GO(s ,h) ∧ GO(o,h) ∧ h[o,cache] = v ∧ h[o,sub] = s
SubObs(s ,v ,h) ⇐⇒

Sub(s ,v ,h) ∧ (∀o :ref • GO(o,h) ∧ h[s ,O][o] =⇒ Obs(o,s ,v ,h))

The specification of update, omitting effects wr〈this〉•val and wr this .O •cache, is

requires SubObs(this ,val ,Heap)∧GO(this ,Heap)
ensures SubObs(this ,n,Heap)

The implementation of update uses local variables o,r1. As observers in the subject’s
(i.e., this’s) list of observers get notified they are put in region r1. This leads to the loop
invariant that notified observers are up to date:

∀p :ref • GO(p,Heap) ∧ r1[p] =⇒ Obs(p, this ,n,Heap)

Another loop invariant says region this .O comprises r1 together with List(o,Heap)
which is the region containing objects yet to be notified.

List(o,Heap)∪ r1 = Heap[this ,O]

The verification goes through, provided we include the equality axiom listed third in
Fig. 3. It actually follows from the first two axioms using induction but here we work in
pure first order logic (in which reachability is not finitely axiomatizable, cf. [9]). Note
also the apparently superflous variable r in the second axiom. It is needed for triggering
(Sect. 7).

We consider a client that creates two Subjects and updates one:

sub0:= newSubject(); obs0:=newObserver(sub0); obs1:=newObserver(sub0);
sub := new Subject(); obs := new Observer(sub); call sub0.update(5);

We are able to verify the following postcondition for the client:

DisjointSet(Heap[sub0,O],Heap[sub,O])∧
SubObs(sub0,5,Heap) ∧ SubObs(sub,0,Heap)

Boogie Meets Regions: A Verification Experience Report 185

These assertions say that region sub0.O is disjoint from sub.O and updating the in-
ternal state of sub0 has no effect on the internal state of sub. The key links: condition
Obs(o,s ,v ,h) implies that o.sub = s and thus SubObs(s ,v ,h) implies that every o in
s .O has o.sub = s . This is much like an encoding of ownership (as pointed out in [4]
and used in VCC [23]) and it implies that if o.sub �= o′.sub then o.sub.O is disjoint
from o′.sub.O .

BoogiePL is modular in the sense that in verifying this client code, the verifier uses
only the specifications of the constructors and other methods. The next section considers
modularity in more depth.

6 Abstraction and Hiding Examples

A flaw of the preceding Subject/Observer specification is that it mixes conditions on
the internal data structures (the list) with those of interest to clients (including O which
could be a model field). In Sect. 6.1 we factor apart the specification so that one part can
be hidden from clients, in the manner of Hoare’s treatment of invariants [16]. Hiding
in this fashion introduces a potentially unsound mis-match between the specs used to
verify invocations of a method and those with respect to which its implementation is
verified. Such a mis-match can be justified by encapsulation, one technique for which
is ownership: roughly, the invariant depends only on owned objects and clients are pre-
vented from writing them.

A formal treatment of hiding, however, is beyond the scope of this paper. The inter-
ested reader is encouraged to consult [4] and [20] which address not only hiding but also
encapsulation at the granularity of object clusters, as is needed for the Subject/Observer
example. The use of regions for cluster encapsulation is similar to the use of regions for
ownership.

In Sect. 6.2 we explore the use of a field to hold owned objects. The alternative
to hiding is abstraction: Instead of a mis-match between the client specification of a
method and its verification conditions, the idea is for client specifications to mention
the invariant, but treated opaquely as a pure method —of which the owned objects are
the footprint.

6.1 Hiding

As suggested in [4], suppose we put classes Subject and Observer together in a mod-
ule, giving method register module scope while the other methods are public. Sect. 5
considered an invariant, SubObs , that pertains to a single Subject and its Observers.
Let us factor it into the externally visible part, SubObsX , and a hidden part, SubObsH ,
used only in verification of the implementations of the Subject and Observer methods.

SubX (s ,v ,h) ⇐⇒ GO(s ,h)∧h[s ,val] = v
SubObsX (s ,v ,h) ⇐⇒ SubX (s ,v ,h)∧∀o :ref ∈ h[s ,O] • Obs(o,s ,v ,h)

We verified client code, including the previous example, using SubX and SubObsX
in place of Sub and SubObs in the method specifications (excepting method register
which would be module scoped and not used by clients). The client verifications were

186 A. Banerjee, M. Barnett, and D.A. Naumann

successful —confirming that they rely on the disjointness reasoning focused on the O
field and not on properties of the list data structure.

The implementations of the methods of Subject and Observer are verified using
specifications that use not only SubObsX but also SubObsH where

SubObsH (s ,v ,h) ⇐⇒ SubH (s ,h)∧SubObsX (s ,v ,h)
SubH (s ,h) ⇐⇒ List(h[s ,obs],h) = h[s ,O]

These verifications go through; they merely repackage the earlier specifications.
To cater for a second order frame rule to justify hiding, Banerjee et al [4] propose

to hide a single “module invariant” that for this example could be the conjunction of
∀s :ref • SubObsH (s ,val) and

∀p :ref,s :ref • p ∈ Heap[s ,O]∧Heap[p,sub] �= null =⇒ Heap[p,sub] = s

We added these as pre- and post-condition for each method, which entails disjointness
reasoning with respect to arbitrary other Subjects. The verifications succeed.

6.2 Ownership and Abstraction

Although the clients considered above are well behaved, the proposed hiding is actually
unsound since client code like s .obs := s .obs .nxt could falsify SubH (s). Some form
of encapsulation is needed to preclude such clients. We now consider ownership, a
popular device for achieving heap encapsulation. However, we do not delve into the
justification of invariant hiding. Instead, we consider ownership for the alternative to
hiding: abstraction. Abstraction has been used for invariants by Müller [19] (model
fields), Parkinson [10] (existentially quantified predicates), and others. Smans et al.
[24] use a pure boolean method invariant() to abstract the invariant in specifications.

Like model fields, pure methods are also useful for properties other than invariants.
We explore pure methods and ownership in an example of Smans et al [24]. A stack
is implemented in terms of an ArrayList , a dynamically resizable array which imple-
ments its functionality with a primitive fixed-size array. The interface for ArrayList
allows elements to be added at the end of the array, to retrieve or delete the element
stored at a specific index, and to query the current size of the array. The interface for
Stack is push, pop, empty . In addition, Stack provides a pure method, size, that re-
turns the current number of elements in the stack. This is used in the postconditions of
the stack’s constructor, which says that its value is zero, and the method push, which
says #size() = old(#size())+ 1.

Now size is implemented using the internal representation of the stack. This inter-
nal representation consists of an owned object, the ArrayList , and its representation.
Field fp will hold references to these, and method size is specified to have read effect
rd this .fp•any. The write effect of methods push and pop is wr this .fp•f .

An interesting part of the example is the verification of the method switch that ex-
changes the representations of two stacks. The specifications for most mutators would
allow footprints to grow but only by fresh objects, but that is not the case for switch.
Their collective footprint, however, need not change at all. We choose a specification

Boogie Meets Regions: A Verification Experience Report 187

procedure switch(this :ref,other :ref)
free requires GO(this,Heap) ∧ (other = null ∨ GO(other ,Heap));
requires other �= null ∧ Inv(Heap, this) ∧ Inv(Heap,other);
requires DisjointSet(Heap[this, fp],Heap[other , fp]);
ensures Inv(Heap, this) ∧ Inv(Heap,other);
ensures DisjointSet(Heap[this, fp],Heap[other , fp]);
ensures #size(Heap, this) = #size(old(Heap),other);
ensures #size(Heap,other) = #size(old(Heap), this);
ensures DifferenceIsNew(old(Heap), old(Heap)[this, fp]∪old(Heap)[other , fp],

Heap[this, fp]∪Heap[other , fp]);
//write effect: wr fp•any,other .fp•any
ensures ∀p :ref, f :field • GO(p,old(Heap)) =⇒

old(Heap)[p, f] = Heap[p, f] ∨ old(Heap)[this, fp][p] ∨ old(Heap)[other , fp][p];

Fig. 4. Specification for Stack switch

procedure switch(this :ref,other :ref)
{ var tmp : ref;

tmp := Heap[this,contents];
Heap[this,contents] := Heap[other ,contents];
Heap[other ,contents] := tmp;
Heap[this, fp] := {this}∪ {Heap[this,contents]}

∪Heap[Heap[this,contents],ArrayList .footprint];
Heap[other , fp] := {other}∪ {Heap[other ,contents]}

∪Heap[Heap[other ,contents],ArrayList .footprint];
assume GH(Heap);

}

Fig. 5. Implementation for Stack switch

(Fig. 4) that allows the collective footprint to grow with fresh objects, to cater for benev-
olent side effects that the ArrayList might have. Note the free precondition guaranteed
by the language semantics: the receiver of an instance method is non-null and allocated,
while the parameter that would have been explicit in the source language is guaranteed
to be allocated only if it is not null. However, we chose to add the explicit precondition
that it be non-null. Requiring the two stacks to not be aliased is not enough: we need
that their footprints are disjoint. We found the verifier is able to track this for newly
allocated stacks.

The postcondition that encodes the write effect just says that all fields in the heap
retain their old values unless the field is in an object in the footprint of either of the
parameters.

We consider client reasoning using the following code:

var s1 : ref, s2 : ref; s1 := new Stack(); s2 := new Stack();
assert #size(Heap,s1) = 0∧#size(Heap,s2) = 0;
call push(s2,5);
assert #size(Heap,s1) = 0∧#size(Heap,s2) = 1;

188 A. Banerjee, M. Barnett, and D.A. Naumann

Consider the first assertion: the second conjunct, that #size is zero for s2 is directly
from the constructor’s postcondition (not shown). But for the first conjunct to hold it
must be the case that the execution of the constructor for s2 did not affect the state
that s1 depends on. This is done without revealing any of the details of the stack’s
implementation with the following axiom, which expresses that the effect of size is
rd this .fp•any.

∀h,k : Hp,o : ref •
h[o, fp] = k [o, fp] ∧ (∀p; ref, f : field • h[o, fp][p] =⇒ h[p, f] = k [p, f])
=⇒ #size(h,o) = #size(k ,o);

(Some GO conditions are elided.) Together with the default frame condition for con-
structors (Section 2), this is sufficient for the prover to be able to retain the knowledge
about the size of the stack s1. The same holds for the second assert statement: the sec-
ond conjunct is directly from the postcondition for push while the first conjunct relies
on knowing that calling push on s2 cannot change the state that s1 depends on.

The above axiom is sound as long as size does not depend on the field of any object
which is not contained in the stack’s footprint. Utility of the axiom depends on how
easy it is to determine that two states satisfy the antecedent, which in turn depends on
the encapsulation of the representation objects.

7 Experiences with Prover

Verification failure might be due to (a) weak program specifications (pre- and postcon-
ditions), (b) weak loop invariant, and (c) incompleteness of triggers. In the first two
cases one receives limited feedback from counterexamples.

A trigger of a universal quantifier is a set of expressions that determines how the SMT
solver instantiates the quantifier. In theory the SMT solver can instantiate a universal
quantifier with any ground term whatsoever. In practice it is better to limit the number
of instantiations in some way so that the solver considers only a finite set of ground
instantiations from its e-graph data structure (which is used to provide matching up to
equivalence [12]). For example, consider the second axiom in Fig. 3 with the trigger
restored:

∀o :ref,h :Hp,r : [ref]bool • {List(o,h) = r}
o �= null =⇒ List(o,h) = {o}∪List(h[o,nxt],h)

This trigger instructs Z3 to instantiate the quantifier only with those o,h,r for which
there is a term List(o,h) = r in its e-graph.

Choosing a proper trigger is a craft. Had we removed the apparently redundant bound
variable r and used List(o,h) as a trigger, a matching loop would have arisen because
the quantifier could be instantiated by any of List(o,h), List(o.nxt ,h), . . . We tried
experimenting with the trigger List(o.nxt ,h) instead but this still did not suffice to
verify the invariant (List(o,h)∪ r1 = Heap[this ,O]) (see Sect. 5). Finally after much
experimentation and with help from more experienced colleagues we arrived at the trig-
ger List(o,h) = r : the intuition was that we needed one instantiation of the quantified
variable r to be Heap[this ,O].

Boogie Meets Regions: A Verification Experience Report 189

At the end of Sect. 1 we posed the question: Is a first order axiomatization of set
theory effective for automating verification of programs and specifications that encode
footprints in ghost state? We have to answer no, unless one is an expert at triggering
quantifiers or has expert colleagues close by. The need for good triggers prevented us
from introducing an abstract data type for regions in our specifications.

It is sobering to find out how easy it is to unintentionally introduce inconsistencies
into the axiomatization. Boogie’s smoke option creates multiple verification conditions,
one per program path, then injects the statement assert false at the end of each path,
converts all existing assert statements into assume statements and passes the result to
the theorem prover. If the prover is able to establish the false assertion then the facts
along that path reveal inconsistencies. Our experience has been that this is the single
most valuable option in Boogie.

8 Related Work

The VCC project [23] is focused on the verification of low-level systems code writ-
ten in C. It uses regions (sets) to structure the flat address space that the C memory
model provides access to. Regions are disjoint sets of memory locations: pointers in C
are modeled as offsets into a region. Footprints (read/write effects) are specified using
(pure) functions, as opposed to our use of a designated field.

Smans et al [24] report on extensions of the Spec# tool to support dynamic frames
where pure methods are used to represent footprints. In this work (and in [17]), foot-
prints are sets of locations, where a location pairs an object reference with a field name.
The language includes a notation, &e.f , for the location (o, f) where o is the value
of expression e; this is needed not only in specifications but in the ghost assignments
that instrument code. This treatment offers more fine-grained expressiveness; in partic-
ular, it provides for abstraction over field names. Region logic needs a separate means
to abstract over field names (notation “any” or model fields), but its instrumentation
code can be written in Java and C# without need for the & operator (using classes like
Collection<Object> for reference sets). It would be interesting to see whether the
static analysis for framing in region logic [4] can be adapted to location sets. Besides
checking write effects (using two-state postconditions as in our work), Smans et al.
[24] check read effects in a small-step way: for each primitive expression that reads, a
verification condition is generated that says the state read is within the specified read
footprint. Our experiments did not check read effects. Modular reasoning is enforced
in [24] like in our Sect. 6.1: In reasoning about code inside a module, the verifier is given
an axiom that connects a pure method with its implementation. In reasoning about code
outside a module, the verifier is given axioms about the frame of a pure method as well
as its postcondition, but not its implementation.

Another difference between our work and [24] is our use of fields rather than pure
methods to represent footprints. Fields are interpreted within the theorem prover so that
reasoning is potentially more precise than for pure methods, though sometimes at the
cost of more ghost assignments (e.g., Fig. 5). Some of the pure methods in [24] are
recursively defined, which requires care [11]. Finally, they use conditional effects, for
which we did not find a need.

Related work on ownership is discussed in [4].

190 A. Banerjee, M. Barnett, and D.A. Naumann

9 Conclusion

We used BoogiePL to specify and verify several examples using effect specifications
in the style of Region Logic [4], inspired by the dynamic frames of Kassios [17]. The
standard theories of the underlying SMT solver, Z3, were augmented with some axioms
for set theory. Bertrand Russell famously said the advantages of postulation are those of
theft, but we found ample opportunity for honest toil in the instrumentation of axioms
with triggers. Our toil would have been far greater without help from Rustan Leino,
Peter Müller, and Michał Moskal. Nonetheless, we read our results as confirming the
efficacy of effect specifications using ghost fields and auxiliaries holding just sets of
references, lightweight machinery indeed.

The BoogiePL tool defines an axiomatic semantics for the BoogiePL programming
language, insofar as it generates first order verification conditions, and we augmented
that semantics with a few assumptions intended to express additional invariants of
source language like Java or C#. We are unaware of any formal connection between
BoogiePL and an actual language implementation. In his talk at VSTTE’05, J Moore
argued that “we should build a [verification] system in some programming language
for which we have a mechanically supported formal semantics and a mechanically sup-
ported reasoning engine – and [. . .] be able at least to state within the system what it
means for our system to be correct. If you are working on a smaller piece of the problem
– if you are building a system whose expressive power and implementation is beyond
the scope of your own work – then you should find somebody to deal with the prob-
lem you are creating!”. One use for a syntax-directed proof system like region logic is
as bridge between verification conditions and the underlying semantics. The logic has
been proved sound, on paper, with respect to a denotational semantics simplified from a
Java/JML model that has been encoded by deep embedding in PVS [18]. Region logic
has been extended with a second order frame rule which captures hiding of invariants
and has been proved admissible, on paper [20]. Given the promising experiences by
ourselves and others with dynamic framing, we see the remaining gaps as well worth
bridging.

All example programs have been verified in Boogie version 0.90. Complete listings
of these and a number of other verified programs are available online and in the accom-
panying technical report [3].

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. In: POPL, Extended version available as KSU CIS-TR-2005-1 (2006)

2. Amtoft, T., Hatcliff, J., Rodriguez, E., Robby, H.J., Greve, D.: Specification and checking of
software contracts for conditional information flow. In: Cuellar, J., Maibaum, T.S.E. (eds.)
FM 2008. LNCS, vol. 5014. Springer, Heidelberg (2008)

3. Banerjee, A., Barnett, M., Naumann, D.A.: Boogie meets regions: a verification experience
report (extended version). Technical Report MSR-TR-2008-79, Microsoft Research (2008)

4. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning about global
invariants. In: ECOOP (2008)

5. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)

Boogie Meets Regions: A Verification Experience Report 191

6. Barnett, M., De Line, R., Jacobs, B., Fähndrich, M., Leino, K.R.M., Schulte, W., Venter, H.:
The Spec# programming system: Challenges and directions. In: Verified Software: Theories,
Tools, and Experiments (VSTTE) (2005)

7. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE
(2005)

8. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity checker.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidel-
berg (2004)

9. Beckert, B., Trentelman, K.: Second-order principles in specification languages for object-
oriented programs. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 154–168. Springer, Heidelberg (2005)

10. Bierman, G., Parkinson, M.: Separation logic and abstraction. In: POPL, pp. 247–258 (2005)
11. Darvas, Á., Müller, P.: Reasoning about method calls in interface specifications. Journal of

Object Technology 5(5), 59–85 (2006)
12. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE

2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)
13. De Line, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking object-

oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research (March 2005)
14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.

ACM 52(3), 365–473 (2005)
15. Hehner, E.C.R.: Predicative programming part I. Commun. ACM 27, 134–143 (1984)
16. Hoare, C.A.R.: Proofs of correctness of data representations. Acta Inf 1, 271–281 (1972)
17. Kassios, I.T.: Dynamic framing: Support for framing, dependencies and sharing without re-

striction. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268–283. Springer, Heidelberg (2006)

18. Leavens, G.T., Naumann, D.A., Rosenberg, S.: Preliminary definition of core JML. Technical
Report CS Report 2006-07, Stevens Institute of Technology (2006)

19. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262. Springer, Heidelberg (2002)

20. Naumann, D.A.: An admissible second order frame rule in region logic. Technical Report
CS Report 2008-02, Stevens Institute of Technology (2008)

21. O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: POPL, pp. 268–
280 (2004)

22. Parkinson, M.: Class invariants: the end of the road. In: International Workshop on Aliasing,
Confinement and Ownership (2007)

23. Schulte, W.: Building a verifying compiler for C. Presentation at Dagstuhl Seminar 08061
for Types, Logics and Semantics of State (2008)

24. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for Java-like programs
based on dynamic frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961.
Springer, Heidelberg (2008)

	Introduction
	Relevant Features of BoogiePL
	Regions
	Local Reasoning Example: List Copy
	Encapsulation Example: Subject/Observer
	Abstraction and Hiding Examples
	Hiding
	Ownership and Abstraction

	Experiences with Prover
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

