
Dynamic Boundaries: Information Hiding by
Second Order Framing with First Order Assertions

17 Feb 2010 To appear in ESOP’10; this version fixes a bug and includes appendix.

David A. Naumann?1 and Anindya Banerjee??2

1 Stevens Institute of Technology, Hoboken NJ, USA
2 IMDEA Software, Madrid, Spain

Abstract. The hiding of internal invariants creates a mismatch between proce-
dure specifications in an interface and proof obligations on the implementations
of those procedures. The mismatch is sound if the invariants depend only on en-
capsulated state, but encapsulation is problematic in contemporary software due
to the many uses of shared mutable objects. The mismatch is formalized here
in a proof rule that achieves flexibility via explicit restrictions on client effects,
expressed using ghost state and ordinary first order assertions.

1 Introduction

From the simplest collection class to the most complex application framework, software
modules provide useful abstractions by hiding the complexity of efficient implementa-
tions. Many abstractions and most representations involve state, so the information to
be hidden includes invariants on internal data structures. Hoare described the hiding of
invariants as a mismatch between the procedure specifications in a module interface,
used for reasoning about client code, and the specifications with respect to which im-
plementations of those procedures are verified. The latter assume the invariant and are
obliged to maintain it [17]. The justification is simple: A hidden invariant should de-
pend only on encapsulated state, in which case it is necessarily maintained by client
code. Hoare’s formalization was set in a high level object-oriented language (Simula
67), which is remarkable because for such languages the encapsulation problem has far
too many recent published solutions to be considered definitively solved.

For reasoning about shared, dynamically allocated objects, the last decade has seen
major advances, especially the emergence of Separation Logic, which helped reduce
what O’Hearn et al. aptly called a “mismatch between the simple intuitions about the
way pointer operations work and the complexity of their axiomatic treatments” [30,
Sect. 1]. For encapsulation, there remains a gap between the simple idea of hiding an
invariant and the profusion of complex encapsulation techniques and methodologies.
The profusion is a result of tensions between

– The need to prevent violations of encapsulation due to misuse of shared references.
– The need to encompass useful designs including overlapping and non-regular data

structures, callbacks, and the deliberate use of shared references that cross encap-
sulation boundaries. Illustrative examples are the topic of Sect. 2.
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– The need for effective, modular reasoning on both sides of an interface: for clients
and for the module implementation.

– The hope to achieve high automation through mature techniques including types
and static analyses as well as theorem proving.

– The need to encompass language features such as parametric polymorphism and
code pointers for which semantics is difficult.

This paper seeks to reconcile all but the last of these and to bridge the gap using a simple
but flexible idea that complements scope-based encapsulation. The idea is to include in
an interface specification an explicit description of the key intuition, the internal state
or “heap footprint” on which an invariant rests. This set of locations, called the dynamic
boundary, is designated by expressions that may depend on ordinary and ghost state.

We formalize the idea using first order assertions in a Hoare logic for object based
programs called Region Logic (Sect. 3); it is adapted from a previous paper in which we
briefly sketched the idea and approach [2]. Our approach is based on correctness judge-
ments with hypotheses, to account for linking of client code to the modules used, and a
frame rule to capture hiding. These two ingredients date back to the 1970’s (e.g., [15])
but we build directly on their novel combination in the second order frame rule of sep-
aration logic [31]. Our version of the rule is the topic of Sect. 4.

Owing to the explicit expression of footprints, region logic for first order programs
and specifications has an elementary semantics and is amenable to automation with
SMT solvers [21]. One price to pay is verbosity, but the foundation explored in this
paper supports syntactic sugars for common cases while avoiding the need to hard-code
those cases. Another price is an additional proof obligation on clients, to respect the dy-
namic boundaries of modules used. In many cases this can be discharged by simple type
checking. But our main goal is to account for hiding in a way that is sufficiently flexible
to encompass ad hoc disciplines for encapsulation; even more, to let the formalization
of such a discipline be a matter of program annotation, with its adequacy checked by a
verification tool, rather than being fodder for research papers.

The main result is soundness of our second order frame and boundary introduction
rules, whose range of applicability is indicated by application, in Sect. 5, to the exam-
ples in Sect. 2. For lack of space, technical details are only skimmed, as is related work
(Sect. 6).

This paper is slightly revised from the version to appear in ESOP’10: It removes
from the second order frame rule an unsound “admissibility” condition. There is an
appendix with proofs, and a few copy edits were made.

2 The challenge of hiding invariants on shared mutable objects

2.1 A collection implemented by a list

We begin with a textbook example of encapsulation and information hiding, the toy
program in Fig. 1.3 Annotations include method postconditions that refer to a global

3 The programming notation is similar to sequential Java. A value of a class type like Node is
either null or a reference to an allocated object with the fields declared in its class. Methods
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ghost pool : rgn;

class Set { lst :Node; ghost rep : rgn;
model elements = elts(lst)

where elts(n :Node) = (if n = null then ∅ else {n.val}∪elts(n.nxt))

Set() ensures elements = ∅ ∧ pool = old(pool)∪{self}
{ lst := null; rep := ∅; pool := pool ∪{self}; }
add(i : int) ensures elements = old(elements)∪{i}
{ if ¬contains(i) then var n :Node := new Node; n.val := i ; n.nxt := lst ; lst := n;

n.own := self; rep := rep ∪{n}; endif }
contains(i : int) :boolean ensures result = (i ∈ elements) { “linear search for i” }
remove(i : int) ensures elements = old(elements)−{i} { “remove first i , if any” } }

class Node { val : int; nxt :Node; ghost own :Object; } //library code, not part of SET

Fig. 1. Module SET , together with class Node .

variable, pool , marked as ghost state. Ghost variables and fields are auxiliary state used
in reasoning, but not mentioned in branch conditions or expressions assigned to ordi-
nary state. Assignments to ghost state can be removed from a program without altering
its observable behavior, so ghosts support reasoning about that behavior. A region is
a set of object references (which may include the improper reference, null). Type rgn,
which denotes regions, is used only for ghost state.

The specifications are expressed in terms of an integer set, elements . Abstraction
of this sort is commonplace and plays a role in Hoare’s paper [17], but it is included
here only to flesh out the example. Our concern is with other aspects so we content
ourselves with a recursive definition (of elts) that may seem naı̈ve in not addressing the
possibility of cyclic references.

Suppose the implementation of remove only removes the first occurrence of i , if
any. That is, it relies on the invariant that no integer value is duplicated in the singly
linked list rooted at lst . To cater for effective automated verification, especially using
SMT solvers, we want to avoid using reachability or other recursively defined notions
in the invariant. The ghost field rep is intended to refer to the set of nodes reachable
from field lst via nxt . The invariant is expressed using elementary set theoretic notions
including the image of a region under a field. The expression s.rep‘nxt denotes the
region consisting of nxt values of objects in region s.rep. It is used in this definition:4

SetI (s :Set) : (∀n,m :Node ∈ s.rep | n = m ∨n.val 6= m.val)
∧ s.lst ∈ s.rep ∧ s.rep‘nxt ⊆ s.rep ∧ s.rep‘own ⊆ {s}

have an implicit parameter, self, which may be elided in field updates; e.g., the assignment
lst := null in the body of the Set constructor is short for self.lst := null. Variable result is the
returned result; there is no explicit ’return’ statement.

4 The range condition “n ∈ s.rep” is false in case s is null, because n ∈ s.rep is shorthand for
n ∈ {s}‘rep and {null}‘rep is empty. Our assertion logic is 2-valued and avoids undefined
expressions. We do not use sets of regions. The image operator flattens, for region fields: For
any region expression G , the image region G‘rep is the union of rep images whereas G‘nxt
is the set of nxt images, because rep has type rgn and nxt has class type.
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The first conjunct says there are no duplicates among elements of s.rep. The next says
that s.rep contains the first node, if any (or else null). The inclusion s.rep‘nxt ⊆ s.rep
says that s.rep is nxt-closed; this is equivalent to ∀o | o ∈ s.rep ⇒ o.nxt ∈ s.rep.5

One can show by induction that these conditions imply there are no duplicates; so the
invariant says what we want, though not itself using induction. However, s.rep could
be nxt-closed even if s.rep contained extraneous objects, in particular nodes reached
from other instances of Set . This is prevented by the inclusion s.rep‘own ⊆ {s}; or
rather, by requiring the inclusion for every instance of Set . So we adopt an invariant to
be associated with module SET :

Iset : null /∈ pool ∧∀s :Set ∈ pool | SetI (s)

The need for null /∈ pool is minor and discussed later. A bigger concern is the global
nature of Iset , which is addressed in Sect. 3.2. Quantification over pool , rather than
alloc, is an important idiom; as explored later, it prevents falsification by allocation.

Consider this client code, acting on boolean variable b, under precondition true:

var s :Set := new Set ; var n :Node := new Node;
s.add(1); s.add(2); n.val := 1; s.remove(1); b := s.contains(1); (1)

The implementation of remove relies on the invariant SetI (s), but this is not included
as a precondition in Fig. 1 and the client is thus not responsible to establish it before the
invocation of remove . As articulated by Hoare [17], the justification is that the invariant
appears as both pre- and post-condition for verification of the methods add , remove ,
contains , and should be established by the Set constructor. And the invariant should
depend only on state that is encapsulated. So it is not falsified by the initialization of
n and still holds following s.add(2); again by encapsulation it is not falsified by the
update n.val := 1 so it holds as assumed by s.remove .

We call this Hoare’s mismatch: the specifications used in reasoning about invoca-
tions in client code, i.e. code outside the encapsulation boundary, differ from those used
to verify the implementations of the invoked methods. By contrast, ordinary procedure
call rules in program logic use the same specification at the call site and to verify the
procedure implementation. Automated, modular verifiers are often based on an interme-
diate language using assert and assume statements: At a call site the method precondi-
tion is asserted and this same precondition is assumed for the method’s implementation;
so the assumption is justified by the semantics of assert and assume. Hoare’s mismatch
asserts the public precondition but assumes an added conjunct, the invariant.

The mismatch is unsound if encapsulation is faulty, which can easily happen due
to shared references, e.g., if in place of n.val := 1 the client code had s.lst .val := 1.
Lexical scope and typing can provide encapsulation, e.g., field lst should have module
scope. (We gloss over scope in the examples.) However, scope does not prevent that
references can be leaked to clients, e.g., via a global variable of type Object. Moreover,
code within the module, acting on one instance of Set , could violate the invariant of
another instance. Besides scope and typing, a popular technique to deal with encap-
sulation in the presence of pointers is “ownership” (e.g., [9, 11]). Ownership systems

5 Quantified variables range over non-null, allocated references.
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ghost freed : rgn;
var flist :Node; count : int;

alloc() :Node
ensures result 6= null∧ freed = old(freed)−{result}∧ (result ∈ old(freed)∨ fresh(result))

{ if count = 0 then result := new Node;
else result :=flist ; flist := flist .nxt ; count :=count−1; freed := freed −{result}; endif}

free(n :Node) requires n 6= null ∧ n /∈ freed ensures freed = old(freed)∪{n}
{ n.nxt := flist ; flist := n; count := count−1; freed := freed ∪{n}; }

Fig. 2. Module MM .

restrict the form of invariants and the use of references, to support modular reasoning
at the granularity of a single instance and its representation. Ownership works well for
SetI and indeed for invariants in many programs.

2.2 A toy memory manager

It is difficult to find a single notion of ownership that is sufficiently flexible yet sound
for invariant hiding. Fig. 2 presents a module that is static in the sense that there is
a single memory manager, not a class of them. Instances of class Node (from Fig. 1)
are treated as a resource. The instances currently “owned” by the module are tracked
using variable freed . The hidden invariant, Imm , is defined to be FC (flist , freed ,count)
where FC (f :Node,r : rgn,c : int) is defined, by induction on the size of r , as

(f = null⇒ r = ∅∧c = 0)∧ (f 6= null⇒ f ∈ r ∧c > 0∧FC (f .nxt ,r −{f },c−1))

The invariant says freed is the nodes reached from flist and count is the size. The
implementation of alloc relies on accuracy of count . It relies directly on count 6= 0 ⇒
flist 6= null, as otherwise the dereference flist .nxt could fault, but for this to hold on
subsequent calls the stronger condition Imm needs to be maintained as invariant.

Consider this strange client that both reads and writes data in the free list —but not
in a way that interferes with the module.

var x ,y :Node; x := new Node; y := alloc(); free(x ); free(y);
while y 6= null do y .val := 7; y := y .nxt ; od

The loop updates val fields of freed objects, but it does not write the nxt fields, on
which the invariant depends; the client neither falsifies Imm nor causes a fault. Suppose
we replaced the loop by the assignment y .nxt := null. This falsifies the invariant Imm ,
if initially count is sufficiently high, and then subsequent invocations of alloc break.

The strange client is rejected by most ownership systems. But there is an encapsu-
lation boundary here: clients must not write the nxt field of objects in freed (nor write
variables flist and count). The strange client respects this boundary.

Sharing of references across encapsulation boundaries is common in system code,
at the C level of abstraction. It also occurs with notional resources such as database
connections in programs at the level of abstraction we consider here, where references
are abstract values susceptible only to equality test and field dereference.
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class Subject { obs :Observer ; val : int; ghost O : rgn;

Subject() { obs := null; val := 0; O := ∅; }
update(n : int) ensures ∀b :Observer ∈O |Obs(b,self,n)
{ val := n; var b :Observer := obs; while b 6= null do b.notify(); b := b.nxto; od }
get() : int { result := val ; }
register(b :Observer) { b.nxto := obs;obs := b;O := O ∪{b};b.notify(); } }

class Observer { sub :Subject ; cache : int; nxto :Observer ;

Observer(s :Subject) requires ∀b :Observer ∈ s.O |Obs(b,s,s.val)
ensures self ∈ s.O ∧∀b :Observer ∈ s.O |Obs(b,s,s.val)

{ sub := s; s.register(self); }
notify() { cache := sub.get(); } }

Fig. 3. Module OB . We define Obs(b,s,v) as b.sub = s ∧b.cache = v .

2.3 Observer pattern: cluster invariants

Fig. 3 is a simple version of the Observer design pattern in which an observer only tracks
a single subject. Parkinson [32] used the example to argue against instance-oriented
notions of invariant. We address that issue using a single invariant predicate that in
effect quantifies over clusters of client-visible objects. Classes Subject and Observer
are together in a module, in which methods register and notify should have module
scope. The implementation maintains the elements of O in the nxto-linked list threaded
through the observers themselves, and it relies on the hidden invariant

Iob : (∀s :Subject | List(s.obs,s.O))∧(∀o :Observer | o.sub 6= null⇒ o ∈ o.sub.O)

where List(o,r) says the list beginning at o lies in region r (compare FC in Sect. 2.2).
The second conjunct of Iob says that any observer tracking a subject lies in that subject’s
O region. As with Iset , the instantiations of Iob are local in that they depend on nearby
objects, but here a subject and its observers form a cooperating cluster of objects not in
an ownership relation.

Clients may rely on separation between clusters. As an example, consider a state in
which there are two subjects s, t with s.val = 0 and t .val = 5. Consider this client: o :=
new Observer(s);p := new Observer(t);s.update(2). Owing to separation, t .val = 5
holds in the final state.

2.4 Overlapping data structures and nested modules

One feature of the preceding example is that there is an overlapping data structure be-
cause a list structure is threaded through observer objects that are client visible. We
now consider another example which further illustrates overlapping data structures and
also hiding in the presence of nested modules. The module in Fig. 4 consists of a class,
ObsSet , that extends Observer . Instances of ObsSet are in two overlapping data struc-
tures. First, these objects are arranged in a cyclic doubly-linked list, traversed using
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class ObsSet extends Observer { next :ObsSet ; prev :ObsSet ;

ObsSet(s :Subject ,os :ObsSet)
requires ∀b :Observer ∈ s.O |Obs(b,s,s.val)
ensures self ∈ s.O ∧∀b :Observer ∈ s.O |Obs(b,s,s.val)

{ super(s);
if os = null then prev := self; next := self;
else next := os; prev := os.prev ; os.prev .next := self; os.prev := self; endif } }

Fig. 4. Module OS .

T ::= int |K | rgn where K is in DeclaredClassName data types
E ::= x | c | null | E ⊕E where c is in Z, ⊕ in {=,+,>, . . .} ordinary expressions
G ::= x | {E} |∅ |G‘f |G⊗G where ⊗ is in {∪,∩,−} region expressions
F ::= E |G expressions
C ::= m(x ) | x := F | x := new K | x := x .f | x .f := F primitive commands

| let m(x :T ) be C in C | var x :T in C end | C ;C | . . . binding, control struct.

Fig. 5. Program syntax, where x ∈VarName , f ∈ FieldName , m ∈ ProcName .

next and prev pointers, whose elements may be observing the same or different sub-
jects. Second, each ObsSet is in the nxto-linked list of observers of its subject.

The constructor of ObsSet first calls the superclass constructor, Observer , with
subject s . This call adds the newly allocated object to the front of the list of observers
of s . The newly allocated object is then added to the cyclic doubly-linked list by ma-
nipulating next and prev pointers.

Module OS is defined in the context of module OB , because ObsSet is a sub-
class of Observer . The verification of the implementation of ObsSet will require its
module invariant, but not Iob . The invariant Ios expresses a simple property of cyclic
doubly-linked lists: os.prev .next = os ∧os.next .prev = os for all allocated os of type
ObsSet . Despite the overlapping structure, there is no interference between the code
and invariants of modules OB and OS because different locations are involved.

Interesting variations on the example include observers that track multiple subjects,
and observers that are also in the role of subject (cf. [19]). Of particular interest are
callbacks between modules (as opposed to the notify/get callback within module OB ),
which are within reach of our approach but not formalized in this paper.

3 Region logic background: effects and first order framing

3.1 Preliminaries: programming language, states, assertions

Our formal results are given for an idealized object-based language with syntax sketched
in Fig. 5. Programs are considered in the context of a fixed collection of class decla-
rations, of the form class K { f :T }, where field types may make mutually recursive
reference to other classes. We write Fields(K ) for f :T and for simplicity let names in
the list f have global scope. Ordinary expressions do not depend on the heap: y .f is not
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Set() wrpool

add(i : int) wralloc, self.any, self.rep‘any

remove(i : int) wrself.any, self.rep‘any

Fig. 6. Effect specifications for methods in Fig. 1. For contains the specification has no effects.

an expression but rather part of the command x := y .f for reading a field, as in separa-
tion logic. Instead of methods associated with classes, we formalize simple procedures
without an implicit self parameter. The typing judgement for commands is written as
Π `Γ C where Γ is a variable context and Π is a list of procedure signatures of the
form m(x :T ). The form “ let m(x :T ) be B in C ” is typable in context Π and Γ if
both Π ,m :(x :T ) `Γ ,x :T B and Π ,m :(x :T ) `Γ C . The generalization to multiple
parameters and mutually recursive procedures is straightforward and left to the reader.
Typing rules enforce that type int is separated from reference types: there is no pointer
arithmetic, but pointers can be tested for equality. The variable alloc, being of type rgn,
cannot occur in non-ghost code.

The semantics is based on conventional program states. We assume given a set Ref
of reference values including a distinguished value, null. A Γ -state has a global heap
and a store. The store assigns values to the variables in Γ and to the variable alloc : rgn
which is special in that its updates are built in to the semantics of the language: newly
allocated references are added and there are no other updates; in a well formed state
it holds the set of allocated references. The heap maps each allocated reference to its
type (which is immutable) and field values. The values of a class type K are null and
allocated references of type K . We assume the usual operations are available for a state
σ . For example, σ(x ) is the value of variable x , σ(F ) is the value of expression F ,
Type(o,σ) is the type of an allocated reference o, Update(σ ,o.f ,v) overrides σ to
map field f of o to v (for o ∈ σ(alloc)), Extend(σ ,x ,v) extends σ to map x to value
v (for x 6∈ Dom(σ)). Heaps have no dangling references; we do not model garbage
collection or deallocation.

In a given state the region expression G‘f (read “G’s image under f ”) denotes one
of two things. If f has class type then G‘f is the set of values o.f where o ranges over
(non-null) elements of G that have field f . If f has region type, like rep in our example,
then G‘f is the union of the values of f .

Assertions are interpreted with respect to a single state, e.g., the semantics of the
primitive x .f = E that reads a field is defined: σ |= x .f = E iff σ(x ) 6= null and
σ(x .f ) = σ(E ). The operator “old” used in specifications can be desugared using aux-
iliaries quantified over specifications (omitted from this version of the paper). We do not
use quantified variables of type rgn. Quantified variables of class type range over non-
null, currently allocated references: σ |=Γ (∀x :K | P) iff Extend(σ ,x ,o) |=Γ ,x :K P
for all o ∈ σ(alloc) such that Type(o,σ) = K . In a richer language with subclassing,
this would be ≤K .

3.2 Effect specifications and the framing of commands and formulas

Let us augment the specifications in Fig. 1 with the effect specifications in Fig. 6. Effects
are given by the grammar ε ::=wrx | rdx | wrG‘f | rdG‘f | frG . We omit tags wr and
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rd in lists of effects of the same kind. In this paper, read effects are used for formulas and
write effects as frame conditions for commands and methods; commands are allowed to
read anything. Freshness effect frG is used for commands; it says that the value of G in
the final state contains only (but not necessarily all) references that were not allocated
in the initial state.

The effect specification for the constructor method, Set(), says variable pool may
be updated. For add , the effect wralloc means that new objects may be allocated. The
effect wrself.any says that any fields of self may be written. The effect wrself.rep‘any
says that any field of any object in self.rep may be written; in fact none are written in our
implementation, but this caters for other implementations. The effect wrself.rep‘any is
state dependent, because rep is a mutable field.

In general, let G be a region expression and f be a field name. The effect wrG‘f
refers to l-values: the locations of the f fields of objects in G —where G is interpreted
in the initial state. A location is merely a reference paired with a field name.

An effect of the form wrx .f abbreviates wr{x}‘f . In case x is null, this is well de-
fined and designates the empty set of locations. We also allow f to be a data group [26],
e.g., the built-in data group “any” that stands for all fields of an object.

We say σ ′ succeeds σ , written σ ↪→ σ ′, iff σ(alloc)⊆ σ ′(alloc) and Type(o,σ) =
Type(o,σ ′) for all o ∈ σ(alloc). (And of course both states are well formed.) We say
effect list ε allows transition from σ to σ ′, written σ  σ ′ |= ε , if and only if σ ↪→ σ ′

and

(a) for every y in Dom(Γ )∪{alloc}, either σ(y) = σ ′(y) or wry is in ε

(b) for every o in σ(alloc) and every f in Fields(Type(o,σ)), either σ(o.f ) = σ ′(o.f )
or there is G such that wrG‘f is in ε and o is in σ(G)

(c) for each frG in ε , we have σ ′(G)⊆ σ ′(alloc)−σ(alloc).

Formulas are framed by read effects. We aim to make explicit the footprint of Iset ,
which will serve as a dynamic boundary expressing the state-dependent aspect of the
encapsulation that will allow Iset to be hidden from clients. First we frame the object
invariant SetI (s), which will be used for “local reasoning” [30] at the granularity of a
single instance of Set . We choose to frame6 it by

δ 0 : rd s, s.(rep, lst), s.rep‘(nxt ,val ,own) (abbreviating s.rep, s.lst , etc.)

A read effect designates l-values. Here, δ 0 allows to read variable s , fields rep and lst
of the object currently referenced by s if any, and the fields nxt , val , and own of any
objects in the current value of s.rep.

We use a judgement for framing of formulas, e.g., true ` δ 0 frames SetI (s) says
that if two states agree on the locations designated by δ 0 then they agree on the value
of SetI (s). The judgement involves a formula, here true, because framing by state-
dependent effects may hold only under some conditions on that state. For example we
have s ∈ pool ` rdpool‘(rep, lst) frames s.lst ∈ s.rep.

The semantics of judgement P ` δ frames P ′ is specified by the following: If σ |= P
and Agree(σ ,σ ′,δ ) then σ |= P ′ implies σ ′ |= P ′. Here Agree(σ ,σ ′,δ ) is defined to

6 The term “frame” traditionally refers to that which does not change, but frame conditions
specify what may change. To avoid confusion we refrain from using “frame” as a noun.
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mean: σ ↪→ σ ′, σ(x ) = σ ′(x ) for all rdx in δ , and σ(o.f ) = σ ′(o.f ) for all rdG‘f in
δ and all o ∈ σ(G) with f ∈ Fields(o,σ).

There are two ways to establish a framing judgement. One is to directly check the
semantics, which is straightforward but incomplete using an SMT prover, provided the
heap model admits quantification over field names (to express agreement). The other
way is to use inference rules for the judgement [2]. These include syntax-directed rules
together with first-order provability and subsumption. As an example, the rule for P `
η frames (∀x :K | x ∈G ⇒ P ′) has antecedent of the form P ∧ x ∈G ` η

′ frames P ′

and requires η to subsume the footprint of G . Our rules are proved to yield a stronger
property than the specification: σ |= P ′ iff σ ′ |= P ′ when σ |= P and Agree(σ ,σ ′,η).

For Iset , we can use the specific judgements above to derive true ` δ set frames Iset ,
where δ set is rd pool , pool‘(rep, lst), pool‘rep‘(nxt ,val ,own). This is subsumed by

θ set : rd pool , pool‘any, pool‘rep‘any

A frame rule. To verify the implementations in Fig. 1 we would like to reason in terms
of a single instance of Set . Let Badd be the body of method add . By ordinary means
we can verify that Badd satisfies the frame conditions wralloc,self.any and thus those
for add in Fig. 6. Moreover we can verify the following Hoare triple:

{SetI (self)} Badd {SetI (self)∧elements = old(elements)∪{i}} (2)

From this local property we aim to derive that Badd preserves the global invariant Iset . It
is for this reason that SetI (s) includes ownership conditions. These yield a confinement
property: Iset ⇒ (∀s, t :Set ∈ pool | s = t ∨ s.rep # t .rep), because if n 6= null, and
n is in s.rep∩t .rep then n.own = s and n.own = t . Here # denotes disjointness of
sets; more precisely, G #G ′ means G∩G ′ ⊆ {null}. Now Iset is logically equivalent to
SetI (self)∧ Iexcept , with δ x framing Iexcept , defined as

Iexcept : null /∈ pool ∧∀s ∈ pool −{self} | SetI (s)

δ x : rd self, pool , (pool −{self})‘(rep, lst), (pool −{self})‘rep‘(nxt ,val ,own)

We aim to conjoin Iexcept to the pre and post conditions of (2). To make this precise
we use an operator ?, called the separator. If δ is a set of read effects and ε is a set
of write effects then δ ? ε is a conjunction of disjointness formulas, describing states in
which writes allowed by ε cannot affect the value of a formula with footprint δ . The
formula δ ? ε can be defined by induction on the syntax of effects [2]. Its meaning is
specified by this property: If σ  σ ′ |= ε and σ |= δ ? ε then Agree(σ ,σ ′,δ ).

It happens that δ x ? (wrself.any,wralloc) is true. So, to complete the proof of
{Iset}Badd{elements = old(elements)∪ {i}∧ Iset}, the key step is to take Q to be
Iexcept and δ to be δ x in this rule which uses notations explained in Sect. 3.3:

FRAME
∆ ` {P } C {P ′ } [ε] P ` δ frames Q P ⇒ δ ? ε

∆ ` {P ∧Q } C {P ′∧Q } [ε]

Similar reasoning verifies the implementation of remove . Note that its effects in-
clude wrself.rep‘any. Moreover δ x ? wrself.rep‘any yields nontrivial disjointnesses:
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self.rep # (pool −{self})∧ self.rep # (pool −{self})‘rep. The first conjunct holds be-
cause elements of self.rep have type Node and those of pool −{self} have type Set
(details left to reader). The second conjunct is a consequence of the ownership con-
finement property mentioned earlier, which follows from Iset . For verifying remove ,
the precondition P in FRAME will be true ∧ Iset because true is the precondition of
remove in Fig. 1.

3.3 Correctness judgements and program semantics

A procedure context, ∆ , is a comma-separated list of specifications, each of the form
{Q}m(x :T ){Q ′}[ε]. For the specification to be well formed in a variable context Γ , all
of Q ,Q ′,ε should be well formed in Γ ,x :T . Moreover the frame condition ε must not
contain wrx , so the use of x in Q ′ and ε refers to its initial value. A correctness judge-
ment takes roughly the form ∆ `Γ {P } C {P ′ } [ε] and is well formed if ∆ ,P ,P ′,ε
are well formed in Γ and signatures(∆) `Γ C . In Sect. 4 we partition ∆ into modules
(see Def. 1). A correctness judgement is intended to mean that from any initial state that
satisfies P , C does not fault (due to null dereference) and if it terminates then the final
state satisfies P ′. Moreover, any transition from initial state to final is allowed by ε .

The hypothesis ∆ is taken into account as well. One semantics would quantify over
all implementations of ∆ . Instead, we use a mixed-step semantics in which a call m(z )
for m in ∆ takes a single step to an arbitrary outcome allowed by the specification of
m .7 A configuration has the form 〈C , σ , µ〉 where C is a command, σ is a state, and
the procedure environment µ is a partial function from procedure names to parameter-
ized commands of the form (λx :T .C ). By assuming that in a well formed program
no procedure names are shadowed, we can use this simple representation, together with
a special command end(m) to mark the end of the scope of a let-bound procedure m .
Renaming is used for a parameter or local variable x , together with end marker end(x ).

The transition relation ∆7−→ is defined in Fig. 7. The procedures in ∆ are to be distinct
from those in the procedure environment. A terminating computation ends in a configu-
ration of the form 〈skip, σ , µ〉, or else “fault” which results from null dereference. The
cases omitted from Fig. 7 are quite standard. We note only that the semantics of new K ,
which updates alloc, is parameterized on a function which, given a state, returns a non-
empty set of fresh references. Thus our results encompass deterministic allocators as
well as the maximally nondeterministic one on which some separation logics rely.

4 Dynamic boundaries and second order framing

Rule FRAME is useful for reasoning about preservation of a predicate by a command
that is explicitly responsible for it, like Iset and Badd in Sect. 3.2. For the client (1), we
want Iset to be preserved, and semantically the rationale amounts to framing —but rule
FRAME is not helpful because our goal is to hide Iset from clients. A client command
in a context ∆ is second order in that the behavior of the command is a function of
the procedures provided by ∆ , as is evident in the transition semantics (Fig. 7). Second

7 Such semantics is popular in work on program refinement; see also O’Hearn et al. [31].
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〈let m(x :T ) be B in C , σ , µ〉 7−→ 〈(C ;end(m)), σ , Extend(µ,m,(λx :T .B)〉

µ(m) = λx :T .B x ′ /∈ Dom(σ) x ′ /∈ params(∆) B ′ = Bx
x ′

〈m(z ), σ , µ〉 7−→ 〈(B ′;end(x ′)), Extend(σ ,x ′,σ(z )), µ〉

∆ contains {P}m(x :T ){P ′}[ε] σ |= Px
z σ

′ |= P ′x
z σ  σ

′ |= ε
x
z

〈m(z ), σ , µ〉 7−→ 〈skip, σ
′, µ〉

∆ contains {P}m(x :T ){P ′}[ε] σ 6|= Px
z σ ↪→ σ

′

〈m(z ), σ , µ〉 7−→ 〈skip, σ
′, µ〉 and also 〈m(z ), σ , µ〉 7−→ fault

Fig. 7. The transition relation ∆7−→. Here ∆ is the same throughout and omitted.

order framing is about a rely-guarantee relationship: the module relies on good behavior
by the client, such that the client unwittingly preserves the hidden invariant, and in
return the module guarantees the behavior specified in ∆ .

Our rely condition is list of read effects, called the dynamic boundary, that must be
respected by the client in the sense that it does not write the locations designated by
those effects. A dynamic boundary δ is associated with a list ∆ of procedure specifi-
cations using notation ∆〈δ 〉. The general form for correctness judgement would have
a sequence ∆1〈δ 1〉 ; . . . ; ∆n〈δn〉 of hypotheses, for n modules, n ≥ 0. In an attempt
to improve readability, we will state the rules for the special case of just two modules,
typically using name Θ for ∆n . So a correctness judgement has the form

∆〈δ 〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε] (3)

where δ and θ are lists of read effects that are well formed in Γ . The order of modules
is significant: the implementation of Θ may use procedures from ∆ and is obliged to
respect dynamic boundary δ . For a dynamic boundary to be useful it should frame the
invariant to be hidden, e.g., θ set frames Iset . That proof obligation is on the module.

The following derived rule embodies Hoare’s mismatch in the special case where
module Θ is a single procedure specification {Q}m(x :T ){Q ′}[η ].

MISMATCH

∆〈δ 〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε] I ` θ frames I
∆〈δ 〉 ; (Θ ? I )〈〉 ` {Q ∧ I } B {Q ′∧ I } [η ] Init ⇒ I

∆〈δ 〉 ` {P ∧ Init } let m be B in C {P ′ } [ε]

The client C is obliged to respect θ (and also δ ) but does not see the hidden invariant.
The implementation B is verified under additional precondition I and has additional
obligation to reestablish I . (In the general case there is a list of bodies Bi , each ver-
ified in the same context against the specification for mi .) The context ∆ is another
module that may be used both by C and by the implementation B of m . So B must
respect δ , but note that it is not required (or likely) to respect θ . The obligation on
B refers to context Θ ? I , not Θ ; this is only relevant if B recursively invokes m
(or, in general, other methods of the same module). The operation ?I conjoins a for-
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mula I to pre- and post-conditions of specifications: ({Q}m(x :T ){Q ′}[η ] ) ? I =
{Q ∧ I }m(x :T ){Q ′∧ I }[η ].

Typical formalizations of data abstraction include a command for initialization, so a
closed client program takes the form let m be B in (init ;C ). With dynamic allocation,
it is constructors that do much of the work to establish invariants. In order to avoid the
need to formalize constructors, we use an initial condition. For the Set example, take
Initset to be the condition pool = ∅ which is suitable to be declared in the module
interface. Note that Initset ⇒ Iset is valid.

Remarkably, there is a simple interpretation of judgement (3) that captures the idea
that C respects the boundaries δ and θ : No step of C ’s execution may write locations
designated by δ —interpreted in the pre-state of that step— unless it is a step of a
procedure of ∆ ; mutatis mutandis for θ and Θ . Before turning to the formal details, we
discuss this proof obligation.

Verifying a client of SET . Using the public specifications of the four methods of Set ,
it is straightforward to prove that the client (1) establishes b = false . But there is an
additional obligation, that every step respects the dynamic boundary θ set . Consider the
assignment n.val := 1 in (1), which is critical because Iset depends on field val . The
effect of n.val := 1 is wrn.val and it must be shown to be outside the boundary θ set .
By definition of ?, we have that θ set ? wrn.val is {n}#pool ∧{n}#pool‘rep, which
simplifies to n /∈ pool ∧n /∈ pool‘rep. We have n /∈ pool because n is fresh and variable
pool is not updated by the client (or one can argue using the evident type invariant about
pool ). The condition n /∈ pool‘rep is more interesting. Note that Iset implies

R : pool‘rep‘own ⊆ pool ∧null /∈ pool

Unlike Iset , this is suitable to appear in the module interface, as a public invariant [23] or
explicitly conjoined to the procedure specifications of SET . The client does not update
the default value, null, of n.own . Together, R and n.own = null imply n /∈ pool‘rep.

One point of this example is that “package confinement” [14] applies here: refer-
ences to the instances of Node used by the Set implementation are never made available
to client code. Thus a lightweight, type-based confinement analysis of the module could
be used together with simple syntactic checks on the client to verify that the boundary
is respected. The results of an analysis could be expressed in first order assertions like
R and thus be checked rather than trusted by a verifier.

As in rule FRAME, the separator can be used to express that a primitive command
respects a dynamic boundary, allowing precise reasoning in cases like module MM
(Sect. 5) that are not amenable to general purpose static analyses. A dynamic bound-
ary is expressed in terms of state potentially mutated by the module implementation,
e.g., the effect of add in Fig. 1 allows writing state on which θ set depends.8 So inter-
face specifications need to provide clients with sufficient information to reason about
the boundary. For MM , it is not an invariant like R but rather the individual method
specifications that facilitate such reasoning (see Sect. 5).

8 State-dependent effects may interfere, which is handled by the sequence rule [2].
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∆〈δ 〉;(Θ ? I )〈〉 ` {Q · I } B {Q ′ · I } [η ]

∆〈δ 〉;Θ〈θ〉 ` {P} C {P ′} [ε]

∆〈δ 〉;(Θ ? I )〈θ〉 ` {P · I } C {P ′ · I } [ε]
SOF

∆〈δ 〉 ` {P · I } let m be B in C {P ′ · I } [ε]

∆〈δ 〉 ` {P · Init} let m be B in C {P ′} [ε]

Fig. 8. Derivation of rule MISMATCH, where Θ is a single specification {Q}m(x :T ){Q ′}[η ]
and we write · for ∧ to save space. The side condition for SOF is I ` (θ , rdalloc) frames I . The
next step is by rule LINK, followed by CONSEQ with side condition Init ⇒ I .

Formalization. The beauty of the second order frame rule, the form of which is due to
O’Hearn et al. [30], is that it distills the essence of Hoare’s mismatch. Rule MISMATCH
is derived in Fig.8 from our rule SOF together with two unsurprising rules which are
among those given in Fig. 9. Before turning to the rules we define the semantics.

The current command in a configuration can always be written as a sequence of one
or more commands that are not themselves sequences; the first is the active command,
the one that is rewritten in the next step. We define Active(C1;C2) = Active(C1); and
Active(C ) = C if there are no C1,C2 such that C is C1;C2.

Definition 1. A correctness judgement ∆〈δ 〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε] is valid iff the
following holds. Let ∆ ′ be the catenated list (∆ ,Θ). Let C0 be C . Let µ0 be an arbitrary
environment that binds procedures disjoint from those bound within C or present in
∆ ,Θ . Then for all Γ -states σ0 such that σ0 |= P

(i) It is not the case that 〈C0, σ0, µ0〉
∆ ′
7−→∗ fault.

(ii) Every terminating computation 〈C0, σ0, µ0〉
∆ ′
7−→∗ 〈skip, σn , µn〉 satisfies σn |= P ′

and σ0 σn |= ε .

(iii) For any reachable computation step, i.e. 〈C0, σ0, µ0〉
∆ ′
7−→∗ 〈Ci−1, σi−1, µi−1〉

∆ ′
7−→

〈Ci , σi , µi〉, either Active(Ci−1) is a call to some m in ∆ (respectively, in Θ ) or
else Agree(σi−1,σi ,δ ) (respectively, Agree(σi−1,σi ,θ) ).

Let us paraphrase (iii) in a way that makes clear the generalization to contexts with more
modules: Every dynamic encapsulation boundary must be respected by every step of a
computation (terminating or not), with the exception that a call of a context procedure
is exempt from the bound of its module.

Selected proof rules are given in Fig. 9. An implicit side condition on all proof rules
is that both the consequent and the antecedents are well formed. We omit standard rules
for control structures, and structural rules like consequence, which do not manipulate
the procedure context. Rule FRAME also leaves its context unchanged. For the assign-
ment commands we can use “small axioms” inspired by [30]. The axioms have empty
context; rule CTXINTRO is used to add hypotheses.

Rule CTXINTRO is restricted to primitive commands (Fig. 5), because the side con-
dition P ⇒ θ ? ε only enforces the dynamic encapsulation boundary θ for the initial
and final states —there are no intermediate steps in the semantics of these commands.
Note that CTXINTRO introduces a dynamic boundary θ that will not be imposed on
the implementations of the procedures of the outer module ∆ . This works because, due
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SOF
∆〈δ 〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε] I ` θ frames I

∆〈δ 〉 ; (Θ ? I )〈θ〉 ` {P ∧ I } C {P ′∧ I } [ε]

CTXINTRO
∆〈δ 〉 ` {P } C {P ′ } [ε] C is primitive P ⇒ θ ? ε

∆〈δ 〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε]

CALL
{P}m(x :T ){P ′}[ε] is in Θ Px

z ⇒ δ ? ε
x
z

∆〈δ 〉 ; Θ〈θ〉 ` {Px
z } m(z ) {P ′x

z } [εx
z ]

LINK

Θ is {Q}m(x :T ){Q ′}[η ]
∆〈δ 〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε] ∆〈δ 〉 ; Θ〈〉 `Γ ,x :T {Q } B {Q ′ } [η ]

∆〈δ 〉 `Γ {P } let m(x :T ) be B in C {P ′ } [ε]

Fig. 9. Selected proof rules.

to nesting, those implementations cannot invoke procedures of Θ at all. On the other
hand, the implementation of a procedure m in Θ may invoke a procedure p of enclosing
module ∆ . The effect of that invocation might even violate the dynamic boundary θ ,
but there is no harm —indeed, the implementation of m is likely to temporarily falsify
the invariant for Θ but is explicitly obliged to restore it.

The implementation of an inner module is required (by rule LINK) to respect the
encapsulation boundaries of enclosing modules. That is why it is sound for procedure
m in rule CALL to be in the scope of the dynamic effect bound δ with only the obli-
gation that the end-to-end effect ε

x
z is separate from δ . The general form of CALL has

n contexts and the called procedure is in the innermost. Additional context can subse-
quently be introduced on the inside, e.g., CALL can be used for a procedure of Θ and
then the context extended to ∆〈δ 〉 ; Θ〈θ〉 ; ϒ 〈υ〉 using rule CTXINTRO. In case there is
only a single module, rule CALL can be used with ∆ and δ empty.

The general form of LINK binds a list B of bodies to a list m of procedure names,
the specifications of which comprise Θ .

Theorem 1. Each of the rules is sound. Hence any derivable correctness judgement is
valid.

5 Specification and verification of the examples

For the toy memory manager of Sect. 2.2, we specify the effects for procedure alloc
to be wrresult, freed ,flist ,count ,alloc, freed‘nxt . For free(n :Node) the effects are
wr freed ,flist ,count , freed‘nxt . Ordinary scoping could be used to hide effects on the
module variables flist and count , and the ghost freed could be “spec-public”, i.e.
not writeable outside module MM . To frame Imm we choose as dynamic boundary
rd freed ,flist ,count , freed‘nxt . The interesting part is freed‘nxt , as flist and count
should be scoped within the module and freed should be spec-public. Using the spec-
ifications in Sect. 2.2 together with these effect specifications, it is straightforward to
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verify the client given there. The client writes freed‘val but it does not write freed‘nxt ,
nor variable freed itself, and thus it respects the dynamic boundary. So it can be linked
with alloc and free using rule MISMATCH (i.e. the general form that links multiple pro-
cedures). By contrast with the use of an invariant, R, to verify that client (1) respects the
dynamic boundary θ set , here it is the procedure specifications themselves that support
reasoning about the dynamic boundary. Suppose we add the assignment y .nxt := null
just after y := alloc(); although this writes a nxt field, the object is outside freed ac-
cording to the specification of alloc.

Recall the example of Sect. 2.3. For method update we choose effects
wrself.val ,self.O‘cache . The effects for Observer(u) are wru.O‘nxto,u.(O ,dg).
Here dg is a data group that abstracts the private field obs . These suffice to verify
the client in Sect. 2.3 which relies on separation between subjects. For the invari-
ant Iob , as written the quantified variables s and o range over allocated objects of
their type, so the footprint includes variable alloc.9 For dynamic boundary we might
choose rdalloc, alloc‘(O ,dg), alloc‘O‘nxto. Region alloc is very coarse, but fields
O ,dg ,nxto could be protected from clients by scoping (and nxto should be abstracted
by a data group). There is a problem with this choice, however. Client code like
p := new Observer(t) writes not only the effects specified for Observer but also p
and alloc —which would not respect a dynamic boundary that includes alloc. Invariants
that quantify over allocated objects are at risk of violation by mere allocation [34, 29].
For our purposes, the desired effect can be achieved by introducing a ghost variable to
serve as the range of quantification, like pool in the SET example in Sect. 4. For module
OB , one variation uses a single pool containing both the subjects and the observers, in
the dynamic boundary rdpool , pool‘(O ,dg), pool‘O‘nxto. The constructors need to
update pool just like the Set constructor (and this is an idiom worthy of syntax sugar).
For verification of the implementations in Sect. 2.3, we use rule FRAME to exploit per-
subject separation, similar to the Set example. Then rule MISMATCH links the client.

Finally, recall the example of nested modules and overlapping data structures in
Sect. 2.4. Again we maintain variable pool so the dynamic boundary for Ios can be
rdpool ,pool‘(next ,prev). Consider a client that constructs a new ObsSet . The imple-
mentation of the ObsSet constructor can be verified, assuming and maintaining Ios ,
including the obligation to respect the dynamic boundary of module OB . The client
can be linked to OS using rule MISMATCH and then that rule is used again to link with
module OB .

6 Related work

It is notoriously difficult to achieve encapsulation in the presence of shared, dynamically
allocated mutable objects [22, 31]. Current tools for automated software verification
either do not support hiding of invariants (e.g., Jahob [40], jStar [10], Krakatoa [12]),
do not treat object invariants soundly (e.g., ESC/Java [13]) or at best offer soundness
for restricted situations where a hierarchical structure can be imposed on the heap (e.g.

9 A variation on our logic uses for each class K a distinct variable allocK to hold the allocated
objects of type K , but that does not eliminate the issue discussed here.
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Spec# [3]). Some of these tools do achieve significant automation, especially by using
SMT solvers [21].

The use of ghost state to encode inductive properties without induction has been
fruitful in verifications using SMT solvers (e.g., [8, 16, 40]). Our use of ghost state for
frame conditions and separation reasoning was directly inspired by the state-dependent
effects of Kassios [18] (who calls them dynamic frames, whence our term “dynamic
boundary”). Variations on state-dependent effects have been explored in SMT-based
verifiers, e.g., Smans et al. implemented a verifier that abstracts footprints using location
sets and pure method calls in assertions and in frame conditions [38]. Another verifier
uses novel assertions for an implicit encoding (inspired by separation logic) of frame
conditions by preconditions [37]. Leino’s Dafny tool [24] features effects in the form
we write as G‘any. The Boogie tool [3] has been used for experiments with region logic
specifications of the Observer [1] and Composite [35] patterns.

Hiding is easy to encode in an axiomatic semantics —it is just Hoare’s mismatch,
phrased in terms of assert and assume statements. The verifiers above that provide hid-
ing enforce specific encapsulation disciplines through some combination of type check-
ing and extra verification conditions. For example, the Boogie methodology [25] used
by Spec# stipulates intermediate assertions (in all code) that guarantees an all-states
ownership invariant. Another version of Spec# [38] generates verification conditions at
intermediate steps to approximate read footprints, in addition to the usual end-to-end
check that a method body satisfies its modifies specification. One way to enforce our
requirement for respecting dynamic boundaries would be to generate verification con-
ditions for writes at intermediate steps, which could be optimized away in cases where
their validity is ensured by a static analysis.

A number of methodologies have been proposed for ownership-based hiding of in-
variants (e.g., [28]). Drossopoulou et al. [11] introduce a general framework to describe
verification techniques for invariants. A number of ownership disciplines from the liter-
ature are studied as instances of the framework. The framework encompasses variations
on the idea that invariants hold exactly when control crosses module boundaries, e.g.,
visible state semantics requires all invariants to hold on all public method call/return
boundaries; other proposals require invariants to hold more often [25] or less [39]. The
difficulty of generalizing ownership to fit important design patterns led Parkinson and
Bierman [5, 32] to pursue abstraction instead of hiding, via second order assertions in
separation logic; this has been implemented [10].

Separation logic (SL) is a major influence on our work. Our SOF rule is adapted
from [31], as is the example in Sect. 2.2. The SOF rule of SL relies on two critical
features: the separating conjunction and the tight interpretation of a correctness judge-
ment {P}C{Q} which requires that C neither reads nor writes outside the footprint
of P . These features yield great economy of expression, but conflating read and write
has consequences. To get shared reads, the semantics of separating conjunction can
embody some notion of permissions [7] which adds complication but is useful for con-
current programs (and to our knowledge has not been combined with SOF). The SOF
rule of SL also hides effects on encapsulated state whereas our SOF rule hides only
the invariant. By disentangling the footprint from the state condition we enable shared
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reads (retaining a simple semantics), but that means we cannot hide effects within the
dynamic encapsulation boundary —the effects can be visible to clients.

Both our FRAME rule and our SOF rule use ordinary conjunction to introduce an
invariant, together with side conditions that designate a footprint of the invariant which
is separated from the write effect of a command. In SL these rules use the separating
conjunction which expresses the existence of such footprints for the command’s precon-
dition and for the invariant. Reynolds gave a derivation using the rule of conjunction10

that shows the SOF rule of SL is not sound without restriction to predicates that are
“precise” in the sense of determining a unique footprint [31].11 The semantic analy-
sis in [31] shows that the need for a unique footprint applies to region logic as well.
However, region logic separates the footprint from the formula, allowing the invariant
formula to denote an imprecise predicate while framing the formula by effects that in a
given state determines a unique set of locations.

The restriction to precise predicates for SOF in SL can be dropped using a seman-
tics that does not validate the rule of conjunction [6]. This was eschewed by the authors
of [31] because the rule is patently sound in ordinary readings of Hoare triples. Drop-
ping the rule facilitates the modeling of higher order framing rules that capture some-
thing like visible state semantics for invariants even in programs using code pointers
(e.g., [36]). The metatheory underlying the Ynot tool for interactive verification [27]
uses a model that does not validate the conjunction rule [33]. Higher order separation
logics offer elegant means to achieve data abstraction and strong functional specifica-
tions of interesting design patterns [20, 19, 27]. The ability to explicitly quantify over
invariants would seem to lessen the importance of hiding, but it requires considerable
sophistication on the part of the user and her reasoning tools.

7 Conclusion

In this paper we explore a novel interface specification feature: the dynamic boundary
which must be respected by clients. The dynamic boundary is designated by read ef-
fects that approximate, in a way suitable to appear in the interface, the footprint of an
invariant which is hidden, i.e. does not appear in the interface specifications. Explicit de-
scription of footprints is complementary to syntactic mechanisms that encapsulate state
named by identifiers. The expressions whose l-values constitute the dynamic boundary
are state-dependent and thus denote different sets of locations over time.

Hiding is formalized in a second order frame rule that is proved sound for a sim-
ple operational semantics of sequential programs. We show by examples that our SOF
rule handles not only invariants that pertain to several objects with a single owner but
also design patterns in which several client-reachable peers cooperate and in which
data structures may be overlapping or irregular. These are incompatible with ownership
and remain as challenge problems in the current literature [4, 22, 27]. A program may
link together multiple modules, each with its own hidden invariant and dynamic bound-
ary. Our approach encompasses alias confinement disciplines that are enforceable by

10 From {P}C{P ′} and {Q}C{Q ′} infer {P ∧Q}C{P ′∧Q ′}.
11 A predicate I is precise iff (I ∗ ) distributes over ∧. In this paper our example invariants are

all precise, but not all useful ones are, e.g., “there exists a non-full queue”.
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static analysis [9] as well as less restrictive disciplines that impose proof obligations on
clients, e.g., ownership transfers that are “in the eye of the asserter” [31].

One of our aims is to provide a logical foundation that can justify the axiomatic se-
mantics used in automated verifiers. Even more, we want a framework in which encap-
sulation disciplines, both specialized and general-purpose, can be specified in program
annotations and perhaps “specification schemas” or aspects —so that soundness for hid-
ing becomes a verification condition rather than a meta-theorem. This could improve
usability and applicability of verifiers, e.g., by deploying disciplines on a per-module
basis. It could also facilitate foundational program proofs, by factoring methodolog-
ical considerations apart from the underlying program model embodied in axiomatic
semantics. Our approach does not rely on inductive predicates, much less higher order
ones, but on the other hand it does not preclude the use of more expressive assertions
(such as the inductive FC in the example in Sect. 2.2).

It remains to be seen how the approach explored here extends to more advanced
programming features such as code pointers and concurrency. There are a number of
more immediate issues such as integration with a proper module system, inference of
ghost annotations based on static analysis, and full encapsulation for representation
independence and for hiding of effects.
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Appendix

〈x := F , σ , µ〉 7−→ 〈skip, Update(σ ,x ,σ(F )), µ〉
σ(x ) = null

〈x .f := F , σ , µ〉 7−→ fault

σ(x ) = o o 6= null

〈x .f := F , σ , µ〉 7−→ 〈skip, Update(σ ,o.f ,σ(F )), µ〉

o ∈ Fresh(σ) Fields(K ) = f :T Default(T ) = v σ
′ = New(σ ,o,K ,v)

〈x := new K , σ , µ〉 7−→ 〈skip, Update(σ ′,x ,o), µ〉

〈(skip;C ), σ , µ〉 7−→ 〈C , σ , µ〉
〈C0, σ , µ〉 7−→ 〈C ′

0, σ
′, µ

′〉
〈(C0;C1), σ , µ〉 7−→ 〈(C ′

0;C1), σ
′, µ

′〉

σ(E ) 6= 0
〈if E then C0 else C1, σ , µ〉 7−→ 〈C0, σ , µ〉

σ(E ) = 0
〈if E then C0 else C1, σ , µ〉 7−→ 〈C1, σ , µ〉

σ(E ) = 0
〈while E do C , σ , µ〉 7−→ 〈skip, σ , µ〉

σ(E ) 6= 0
〈while E do C , σ , µ〉 7−→ 〈C ;while E do C , σ , µ〉

〈end(x ), σ , µ〉 7−→ 〈skip, Retract(σ ,x ), µ〉 〈end(m), σ , µ〉 7−→ 〈skip, σ , Retract(µ,m)〉

Fig. 10. The transition relation ∆7−→, cases omitted from Fig. 7.

Fig. 10 gives the transition semantics in full. It uses the following: Assuming that o
is fresh in σ (i.e. o /∈ σ(alloc)), we write New(σ ,o,K ,v) for the state that extends σ

by mapping o to a K -record with field values v and type K .
For ease of reference we re-state two properties mentioned in the text. The following

is proved in [2] where the definition of ? is given.
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Lemma 1. Consider any effect sets δ and ε . Suppose σ  σ ′ |= ε and σ |= δ ? ε .
Then Agree(σ ,σ ′,δ ).

The following is a consequence of a slightly stronger result in [2].

Lemma 2. For any states, σ ,σ ′, any predicates P , P ′, and any set of effects δ : Suppose
P ` δ frames P ′ and σ |= P and Agree(σ ,σ ′,δ ). Then σ |= P ′ implies σ ′ |= P ′.

Lemma 3. For all C ,C ′,σ ,σ ′,µ,µ ′,∆ ,∆ ′ such that Active(C ) is not a call to a pro-

cedure in ∆ or ∆ ′, we have: 〈C , σ , µ〉 ∆7−→ 〈C ′, σ ′, µ ′〉 if and only if 〈C , σ , µ〉 ∆ ′
7−→

〈C ′, σ ′, µ ′〉.

Proof sketch: When Active(C ) is not a method call and also when Active(C ) is a call
to a method m ∈ Dom(µ), the semantics does not depend on ∆ or ∆ ′.

We write ∆〈δ 〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε] to express that the judgement is valid
as per Def. 1.

Lemma 4 (rule soundness). Every rule derives valid conclusions from valid antecedents
(if it has antecedents), when its side conditions hold.

The proof goes by cases on the axioms and rules.

Case FRAME. Suppose ∆〈δ 〉 ; Θ〈θ〉 |= {P } C {P ′ } [ε] and moreover the side condi-
tions P ` δ frames Q and P ⇒ δ ? ε hold. To prove ∆〈δ 〉 ; Θ〈θ〉 |= {P ∧Q } C {P ′∧
Q } [ε] we just need to show that Q is a valid postcondition. So consider any state σ such
that σ |= P ∧Q and suppose σ ′ is a final state of C from σ . By the antecedent we have
σ  σ ′ |= ε . So by side condition P ⇒ δ ? ε and Lemma 1 we have Agree(σ ,σ ′,δ ).
Thus by side condition P ` δ frames Q and Lemma 2 we get σ ′ |= Q .

Case SOF. Assume the antecedent is valid, ∆〈δ 〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε]. To
prove validity of the conclusion, i.e.

∆〈δ 〉 ; (Θ ? I )〈θ〉 |= {P ∧ I } C {P ′∧ I } [ε] (4)

let ∆c be the hypotheses (∆ ,Θ ? I ), for the conclusion of the rule, and let ∆a be the
hypotheses (∆ ,Θ) for the antecedent. Consider any σ0 with σ0 |= P ∧ I , let µ0 be any
procedure environment disjoint from ∆ ,Θ , and let C0 be C .

Claim A: Consider any computation from 〈C0, σ0, µ0〉 under transition relation
∆c7−→. Then (a) that sequence of configurations is also a computation of ∆a7−→ and more-

over (b) I holds in every configuration.

Claim A implies (4) as follows. It is not the case that 〈C0, σ0, µ0〉
∆c7−→∗ fault, because

that would imply 〈C0, σ0, µ0〉
∆a7−→∗ fault by (a), and this contradicts validity of the

antecedent. Furthermore, if the computation terminates in n steps then by validity of
the antecedent we get σn |= P ′ and σ0  σn |= ε . We get σn |= I from (b). What
remains is to show that for all 0 < i , either Active(Ci−1) is a call to some procedure m
in (Θ ? I ) or else Agree(σi−1,σi ,θ), and mutatis mutandis for ∆ and δ . This follows
immediately from the corresponding condition in validity of the antecedent.
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It remains to prove Claim A, which is by induction on the length of the computation

sequence for 〈C0, σ0, µ0〉
∆c7−→∗ 〈Cn , σn , µn〉. The induction step is a direct consequence

of Claim B: For any D ,D ′,σ ,σ ′,µ,µ ′, suppose that 〈D , σ , µ〉 is reachable under
∆a7−→ from an initial configuration 〈C0, µ0, σ0〉. Suppose σ |= I and 〈D , σ , µ〉 ∆c7−→
〈D ′, σ ′, µ ′〉. Then 〈D , σ , µ〉 ∆a7−→ 〈D ′, σ ′, µ ′〉 and σ ′ |= I .

To prove Claim B there are 3 cases: (a) If Active(D) is not a call to a context
procedure (noting that ∆a and ∆c declare the same procedures) then by Lemma 3,

〈D , σ , µ〉 ∆a7−→ 〈D ′, σ ′, µ ′〉. By validity of the correctness judgement in the an-
tecedent of SOF we have Agree(σ ,σ ′,θ), and we also have the rule’s side condition
I ` θ frames I . So from σ |= I we get σ ′ |= I by Lemma 2.

For the second and third cases, i.e. (b) and (c) to follow, suppose that Active(D) is
a call m(z ) to a procedure m with specification {V }m(x :T ){V ′}[η ].

Case (b) m ∈ ∆ : It must be that σ |= V x
z . For, if not, then by context call semantics

(Fig. 7) we would have 〈D , σ , µ〉 ∆a7−→ fault —and because 〈D , σ , µ〉 is reachable that
would contradict the antecedent ∆〈δ 〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε]. So by the third rule

in Fig. 7 for both ∆a and ∆c we get 〈D , σ , µ〉 ∆a7−→ 〈D ′, σ ′, µ ′〉. By validity of the
antecedent correctness judgement we have Agree(σ ,σ ′,θ); so from σ |= I and side
condition I ` θ frames I we get σ ′ |= I by Lemma 2.

Case (c) m ∈Θ ? I . Then V is Q ? I and V ′ is Q ′ ? I for some Q ,Q ′ such that
{Q}m(x :T ){Q ′}[η ] is in Θ . It must be that σ |=Qx

z . For, if not, then by procedure call

semantics (Fig. 7) we would have 〈D , σ , µ〉 ∆a7−→ fault, contradicting ∆〈δ 〉 ; Θ〈θ〉 |=Γ

{P } C {P ′ } [ε]. Observe that I x
z is I because x is local to the specification of m .

So σ |= (Q ∧ I )xz iff σ |= Qx
z and σ |= I . Having established both conjuncts of the

precondition for m , we appeal to the specification of m in Θ ? I to get σ ′ |= (Q ′∧ I )xz .
Which implies σ ′ |= I .

Case CtxIntro. For CTXINTRO, suppose C is a primitive command and the side con-
dition P ⇒ θ ? ε holds. Suppose the antecedent is valid: ∆〈δ 〉 |= {P } C {P ′ } [ε].
To show validity of the conclusion, ∆〈δ 〉 ; Θ〈θ〉 |= {P } C {P ′ } [ε], consider any µ

and any σ with σ |= P . Let ∆ ′ be ∆ ,Θ . If C is skip then there is no transition and the
only thing to prove is σ |= P ′ — which we have by validity of the antecedent. If C
is an assignment, field update, or call of a procedure (which must be in ∆ ), the possi-

ble transitions have the form 〈C , σ , µ〉 ∆ ′
7−→ 〈skip, σ ′, µ ′〉 and 〈C , σ , µ〉 ∆ ′

7−→ fault. By
Lemma 3 and well-formedness of C in ∆ , these are also transitions for ∆ . So by the
antecedent the fault case does not happen. And by the antecedent we have σ ′ |= P ′. To
show Agree(σ ,σ ′,θ), we can use Lemma 1 owing to side condition P ⇒ θ ? ε . The
fact that δ is respected follows from the antecedent.

Case LINK. The point of SOF is to disentangle Hoare’s mismatch; rule LINK involves
matching specifications. However, the interpretation of a specification in a hypothesized
procedure spec is different from the interpretation of the procedure body, so this rule
isn’t trivial.

Suppose Θ is {Q}m(x :T ){Q ′}[η ]. Suppose both antecedents of the rule are valid,
i.e. ∆〈δ 〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε] and ∆〈δ 〉 ; Θ〈〉 |=Γ ,x :T {Q } B {Q ′ } [η ]. To
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show
∆〈δ 〉 |=Γ {P } let m(x :T ) be B in C {P ′ } [ε]

suppose σ0 |= P and µ0 be any environment. Let C0 be let m(x :T ) be B in C . We must

show that (i) it is not the case that 〈C0, σ0, µ0〉
∆7−→∗ fault; and (ii) If 〈C0, σ0, µ0〉

∆7−→∗

〈skip, σn , µn〉 then σn |= P ′ and σ0 σn |= ε , and (iii) Agree(σi−1,σi ,δ ) for all steps

σi−1 7−→ σi (i > 0). Validity of the antecedents tells us about ∆ ′
7−→, where ∆ ′ is ∆ ,Θ .

We must therefore relate ∆ ′
7−→ to ∆7−→. By semantics, the first step is 〈C0, σ0, µ0〉

∆7−→
〈C1, σ1, µ1〉 where C1 is C , σ1 = σ0, and µ1 extends µ0 to map m to λx :T .B . It
respects δ because the state is unchanged. Subsequent steps are matched exactly by

steps via ∆ ′
7−→ —which respect δ by validity of the antecedent for C— until we reach a

configuration 〈Ci , σi , µi〉 where the active command in Ci is a call of m , i.e. Ci is a
sequence m(z );D , for some D and z . (Without loss of generality, since we can always

add skips.) In this case, ∆ ′
7−→ does not fault (as otherwise the antecedent for C would not

be valid). Thus by definition of ∆ ′
7−→ it must be that σi |= Q (as otherwise m(z ) could

fault). Instead, it goes in one step to 〈skip;D , σ ′, µi〉 for all σ ′ such that σ ′ |= Q ′ and
σi  σ ′ |= η . The next step goes to 〈D , σ ′, µi〉, which we will show is matched.

As for ∆7−→, from 〈C0, σ0, µ0〉 it steps first to 〈(B ′;end(x ′);D), σ ′′, µi〉 where
µi(m) = λx :T .B and B ′ has x renamed to fresh identifier x ′ that is initialized in
σ ′′ to σi(z ). From there, by validity of the antecedent for B and using σ |= P , there
is no fault and if the overall computation terminates then it first reaches the end of
the B ′-computation, i.e. a configuration 〈(skip;end(x ′);D), σ ′, µ ′〉, and moreover here
σ ′ |= P ′ and σi  σ ′ |= η . Also, by hypothesis for B , δ is respected at each step. After
a couple more steps we reach 〈D , σ ′′, µ ′〉 where σ ′′ = Retract(x ′,σ ′). This is one of

the possible configurations 〈D , σ ′, µi〉 reached by ∆ ′
7−→ so we are at a matching point in

the computations and can proceed by induction on the rest of the computation of ∆7−→.
Note that no use is made of θ .

Case CALL. For clarity we consider the special case where the argument and param-
eter are the same, i.e. x ≡ z in the rule. So we are given the antecedents: Θ con-
tains {P}m(x :T ){P ′}[ε] and P ⇒ δ ? ε is valid. We must prove ∆〈δ 〉 ; Θ〈θ〉 |=
{Q } m(z ) {Q ′ } [ε ′], to which end suppose σ |= P . Let ∆ ′ = ∆ ,Θ . By semantics,

we have 〈m(x ), σ , µ〉 ∆ ′
7−→∗ 〈skip, σ ′, µ〉 for all σ ′ such that σ  σ ′ |= ε and σ ′ |= P ′.

As m is exempt from the obligations on θ , it remains to show Agree(σ ,σ ′,δ ) and this
follows by Lemma 1 using P ⇒ δ ? ε .
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