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Abstract. We present a lightweight approach to Hoare-style specifications for
fine-grained concurrency, based on a notion of time-stamped histories that ab-
stractly capture atomic changes in the program state. Our key observation is that
histories form a partial commutative monoid, a structure fundamental for repre-
sentation of concurrent resources. This insight provides us with a unifying mech-
anism that allows us to treat histories just like heaps in separation logic. For exam-
ple, both are subject to the same assertion logic and inference rules (e.g., the frame
rule). Moreover, the notion of ownership transfer, which usually applies to heaps,
has an equivalent in histories. It can be used to formally represent helping—an
important design pattern for concurrent algorithms whereby one thread can exe-
cute code on behalf of another. Specifications in terms of histories naturally ab-
stract away the internal interference, so that sophisticated fine-grained algorithms
can be given the same specifications as their simplified coarse-grained counter-
parts, making them equally convenient for client-side reasoning. We illustrate our
approach on a number of examples and validate all of them in Coq.

1 Introduction
For sequential programs and data structures, Hoare-style specifications (or specs) in the
form of pre- and postconditions are a declarative way to express a program’s behavior.
For example, an abstract specification of stack operations can be given as follows:

{ s 7→ xs } push(x) { s 7→ x :: xs }

{ s 7→ xs } pop()
{
res = None ∧ xs = nil ∧ s 7→ nil ∨
res = Some x ∧ ∃xs′, xs = x :: xs′ ∧ s 7→ xs′

} (1)

where s is an “abstract pointer” to the data structure’s logical contents, and the logical
variable xs is universally quantified over the spec. The result res of pop is either Some x,
if x was on the top of the stack, or None if the stack was empty. The spec (1) is usually
accepted as canonical for stacks: it hides the details of method implementation, but
exposes what is important about the method behavior, so that a verification of a stack
client does not need to explore the implementations of push and pop.

The situation is much more complicated in the case of concurrent data structures.
In the concurrent setting, the spec (1) is of little use for implementations with server-
side locking, as the interference of the threads executing concurrently may invalidate
the assertions about the stack. For example, a call to pop may encounter an empty
stack, and decide to return None, but by the time it returns, the stack may be filled by
the other threads, thus invalidating the postcondition of pop in (1). To soundly reason
about concurrent data structures, one has to devise specs that are stable (i.e., invariant
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under interference), but this may require trade-offs with respect to the specifications’
expressivity and precision for the client’s needs.

Reasoning about concurrent data structures is further complicated by the fact that
their implementations are often fine-grained. Striving for better performance, they avoid
explicit locking, and implement sophisticated synchronization patterns that deliberately
rely on interference. For reasoning purposes, however, it is desirable that the clients can
perceive such fine-grained implementations as if they were coarse-grained; that is, as
if the effects of their methods take place atomically, at singular points in time. The
standard correctness criteria of linearizability [16] establishes that a fine-grained data
structure implementation contextually refines a coarse-grained one [10]. One can make
use of a refined, fine-grained, implementation for efficiency in programming, but then
soundly replace it with a more abstract coarse-grained implementation to simplify the
reasoning about clients.

Semantically, one program linearizes to another if the histories of the first program
(i.e., the sequence of actions it executed) can be transformed, in a suitable sense, into
the histories of the second. Thus, histories are an essential ingredient in specifying fine-
grained concurrent data structures. However, while a number of logical methods exist
for establishing the linearizability relation between two programs, for a class of data
structures [7, 20, 24, 33], in general, it is a non-trivial property to prove and use. First,
in a setting that employs Hoare-style reasoning, showing that a fine-grained structure
refines a coarse-grained one is not an end in itself. One still needs to ascribe a stable
spec to the coarse-grained version [20, 31]. Second, the standard notion of lineariz-
ability does not directly account for modern programming features, such as ownership
transfer of state between threads, pointer aliasing, and higher-order procedures. The-
oretical extensions required to support these features are a subject of active ongoing
research [4, 13]. Finally, being a relation on two programs, deriving linearizability by
means of logical inference inherently requires a relational program logic [20,31], even
though the spec one is ultimately interested in may be expressed using a Hoare triple
that operates over a single program.

In this paper, we propose a novel method to specify and verify fine-grained programs
by directly reasoning about histories in the specs of an elementary Hoare logic. We
propose using timestamped histories, which carry information about the atomic changes
in the abstract state of the program, indexed by discrete timestamps, and tracking the
history of a program as a form of auxiliary state.

While using histories in Hoare-style specs is a simple and natural idea, and has been
used before [1, 11, 12], in our paper it comes with two additional novel observations.

First, timestamped histories are technically very similar to heaps, as both satisfy the
algebraic properties of a partial commutative monoid (PCM). A PCM is a set U with
an associative and commutative join operation • and unit element 1. Both heaps and
histories (considered as sets of actions with distinct timestamps, correspondingly) form
a PCM with disjoint union and empty heap/history as the unit. Also, a singleton history
t 7→ a is similar to the singleton heap x 7→ v containing only the pointer x with value
v. We emphasize the connection by using the same notation for both. The common
PCM structure makes it possible to reuse for histories the ideas and results developed
for heaps in the work on separation logic [3]. In particular, in this paper, we make both
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heaps and histories subject to the same assertion logic, the same rules of inference (e.g.,
the frame rule), and thus the same style of local reasoning. Moreover, concepts such
as ownership transfer, well-studied for heaps, apply to histories as well. For example,
in Section 5, we use ownership transfer on histories to formalize the important design
pattern of helping [14], whereby a concurrent thread may execute a task on behalf of
other threads. That helping corresponds to a kind of ownership transfer (though not
on histories, but on auxiliary commands) has been noticed before [20, 32]. However,
commands do not form a PCM, while histories do—a fact that makes our development
simple and uniform.

Second, we argue that precise history-based specs have to differentiate between the
actions that have been performed by the specified thread, from the actions that have
been performed by the thread’s concurrent environment. Thus, our specs will range over
two different history-typed variables, capturing the timestamped actions of the specified
thread (self ) and its environment (other), respectively. This split between self and other
will provide us with a novel and very direct way of relating the functional behavior of
a program to the interference of its environment, leading to specs that have a similar
canonical “feel” in the concurrent setting, as the specs (1) have in the sequential one.

The self/other dichotomy required of histories is a special case of the more general
specification pattern of subjectivity, observed in the recent related work on Subjective
and Fine-grained Concurrent Separation Logic (FCSL) [19,22]. That work generalized
Concurrent Separation Logic (CSL) [23] to apply not only to heaps, but to any ab-
stract notion of state (real or auxiliary) satisfying the PCM properties. We thus reuse
FCSL [22] off-the-shelf, and instantiate it with histories, without any additions to the
logic or its meta-theory. Surprisingly, the FCSL style of auxiliary state is sufficient to
enable expressive history-based proofs of realistic fine-grained algorithms, including
those with helping.

Specifications with histories also allow the clients of a fine-grained data structure to
pretend, for the sake of simplifying their own reasoning, that they are using a coarse-
grained version of the data structure. In this sense, we consider a program logically
atomic (irrespective of the physical granularity of its implementation), if its specifica-
tion is a singleton history t 7→ a, containing only an abstract action a time-stamped
with t. This spec provides an abstraction that the effect a of the program takes place at a
singular point in time t, as if the program were coarse-grained, thus providing a uniform
way to reason about coarse- and fine-grained programs.1

We show how a number of well-known algorithms can be proved logically atomic,
and illustrate how the specs with histories facilitate client-side reasoning. We con-
sider an atomic pair snapshot data structure [20, 26] (Section 2), a Treiber stack [30]
along with its clients (Section 4), and Hendler et al.’s flat combining algorithm [14],
a non-trivial example employing first-class functions and helping (Section 5). All our
proofs, including the theory of histories, have been checked mechanically in Coq, and
the sources are available online [27].

1 An orthogonal aspect of granularity abstraction is the ability of a logical framework to express
synchronized changes to auxiliary state that is spread across several shared data structures. We
do not consider such abstraction in this paper, but elaborate in Section 6 on how to extend
FCSL to support it, as well as on related approaches [5, 17, 28, 29].
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2 Overview: specifying snapshots with histories
In this section, we illustrate history-based specifications by applying them to the fine-
grained atomic pair snapshot data structure [20, 26]. This data structure contains a pair
of pointers, x and y, pointing to tuples (cx, vx) and (cy, vy), respectively. The components
cx and cy of type A represent the accessible contents of x and y, that may be read and
updated by the client. The components vx and vy are nts, encoding “version numbers”
for x and y. They are internal to the structure and not directly accessible by the client.

Fig.1 Atomic pair snapshot
1 readPair(): A × A {
2 (cx, vx) <- readX();
3 (cy, _) <- readY();
4 (_, tx) <- readX();
5 if vx == tx
6 then return (cx, cy);
7 else readPair();}

The data structure interface exports three meth-
ods: readPair, writeX, and writeY. readPair is
the main method, and the focus of the section. It
returns the snapshot of the data structure, i.e., the
accessible contents of x and y as they appear to-
gether at the moment of the call. However, while
x and y are being read by readPair, other threads
may change them, by invoking writeX or writeY.
Thus, a naïve implementation of readPair which
first reads x, then y, and returns the pair (cx, cy) does not guarantee that cx and cy ever
appeared together in the structure. One may have readPair first lock x and y to ensure
exclusive access, but here we consider a fine-grained implementation which relies on
the version numbers to ensure that readPair returns a valid snapshot.

The idea is that writeX(cx) (and symmetrically, writeY(cy)), changes the logical
contents of x to cx, while incrementing the internal version number, simultaneously.
Since the operation involves changes to the contents of a single pointer, in this paper we
assume that it can be performed atomically (e.g., by some kind of read-modify-write
operation [15, §5.6]). We also assume atomic operations readX and readY for reading
from x and y respectively. Then the implementation of readPair (Figure 1) reads from
x and y in succession, but makes a check (line 5) to compare the version numbers for x
obtained before and after the read of y. If x’s version has changed, the procedure restarts.

We want to specify and prove that such an implementation of readPair is correct;
that is, if it returns a pair (cx, cy), then cx and cy occurred simultaneously in the structure.
To do so, we use histories as auxiliary state of every method of the structure. Histories,
ranged over by τ, are finite maps from the natural numbers to pairs of elements of some
type S ; i.e., hist S =̂ nt ⇀ S × S .2 The natural numbers represent the moments in
time, and the pairs represent the change of state. Thus, a singleton history t 7→ (s1, s2)
encodes an atomic change from abstract state s1 to abstract state s2 at the time moment
t. We will only consider continuous histories, for which t 7→ (s1, s2) and t + 1 7→ (s3, s4)
implies s2 = s3. We use the following abbreviations to work with histories:

τ[t] =̂ s, such that ∃s′, τ(t) = (s′, s)
τ ≤ t =̂ ∀t′ ∈ dom(τ), t′ ≤ t
τ v τ′ =̂ τ is a subset of τ′

(2)

Similarly to heaps, histories form a PCM under the operation ·∪ of disjoint union, with
the empty history as the unit. The type S can be chosen arbitrarily, depending on the

2 Other sets for time-stamping are possible besides nt, as will be mentioned in Section 6.
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application, to capture whichever logical aspects of the actual physical state are of in-
terest. For the snapshot structure, we take S = A × A × nt. That is, the entries in the
histories for pair snapshot will be of the form

t 7→ (〈cx, cy, vx〉, 〈c′x, c′y, v′x〉). (3)

The entry encodes that at time moment t, the contents of x, y, and the version of x
have changed from (cx, cy, vx) to (c′x, c

′
y, v
′
x). We ignore vy, as it does not factor in the

implementation of readPair (even though it is present for the sake of symmetry).
All the threads working over the pair snapshot structure respect a protocol on his-

tories consisting of the following three properties. We explain in Section 3 how these
are formally specified and enforced, but for now simply assume them. They will be
important in the proof outline for readPair.
(i) Whenever a thread modifies x or y (e.g., by calling writeX or writeY), its history

gets augmented by an entry such as (3), where the timestamp t is chosen afresh.
Thus, histories only grow, and only by adding valid snapshots (i.e., snapshots cor-
responding to values of x and y, simultaneously present in the data structure).

(ii) Whenever the contents of x is changed in a history, its version number changes too.
In contrapositive form, if τ[t1] = 〈c1,−, v〉 and τ[t2] = 〈c2,−, v〉, then c1 = c2.

(iii) Version numbers in a history grow monotonically. That is, if τ[t1] = 〈−,−, v1〉 and
τ[t2] = 〈−,−, v2〉 and t1 ≤ t2, then v1 ≤ v2.

Specification. We now describe an FCSL spec for readPair and explain how it captures
that its result is a valid snapshot of x and y.{∃τO. ` s7→ empty ∧ ` o7→ τO ∧ τ v τO}

readPair(){
∃τO t. ` s7→ empty ∧ ` o7→ τO ∧ τ v τO ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉

} (4)

First, note the label `, which serves as an “abstract pointer” that differentiates the in-
stance of the pair snapshot structure from any other structure that may exist in the pro-
gram. In particular, ` identifies the histories of concern to readPair. Each thread keeps
track of two such histories: the self-history, describing the operations that the thread
itself has executed, and the other-history for the operations executed by all the other
threads combined. They are captured by the assertions ` s7→ τ and ` o7→ τ, respectively.

Thus, the precondition in (4) requires that readPair starts with the empty self-history,
i.e., the calling thread has not performed any updates to x or y. We show in Section 3 that
the frame rule can be used to relax the requirement, so that readPair can be invoked
by threads with an arbitrary self history. The precondition allows an arbitrary initial
other-history τO. As τO is bound locally in the precondition, we use the logical variable
τ and a conjunct τ v τO to propagate the information about τO into the postcondition.
Because τ and τO are related by inclusion, the precondition is stable under growth of τO
due to interfering threads, according to (i).

The postcondition states that readPair does not perform any changes to x and y; it is
a pure method, thus its self-history remains empty. The main novelty of the specifica-
tion is that the postcondition directly relates the result of readPair to the interference of
the environment, i.e., to the value of τO. This is in contrast to the extant logics, which do
not keep track of the other component, and hence cannot specify readPair as directly.
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In particular, the postcondition says that τO[t] = 〈res.1, res.2,−〉, i.e., that the compo-
nents of the returned pair res appear in the environment history. Since according to the
property (i) above, the histories only store valid snapshots, the resulting pair must be a
valid snapshot too. In other words, readPair behaves as if it read x and y atomically, at
time t. Moreover, τ ≤ t, i.e., the read occurred after readPair was invoked.

The specification pattern whereby a logical variable τ names the initial history of the
environment is very common, so we streamline it by introducing the following notation.

` ↪→ (τS, τO, τ) =̂ ` s7→ τS ∧ ` o7→ τO ∧ τ v τS ·∪ τO (5)

Proof outline. Figure 2 contains the proof outline for readPair, which we discuss next.
The relation τ v τO is folded into the definition of ` ↪→ (empty, τO, τ). Lines 1 and 3
abbreviate the precondition in (4). The readX method has the following spec:{
` ↪→ (empty,−, τ)

}
readX()

{
∃τO t. ` ↪→ (empty, τO, τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1,−, res.2〉

}
Since the “initial” other-history is bounded by τ in the precondition, and the “final” τO
may only grow, we require τ ≤ t in the postcondition to ensure that we will not get a
value from the history, which has “expired” before the call to readX. Thus in line 5 of
the proof, we infer the existence of the history τ1 and time stamp t1 ≥ τ, such that the
cx and vx appear in τ1 at the time t1. Similarly, readY has the spec:{

` ↪→ (empty,−, τ)
}
readY()

{
∃τO t. ` ↪→ (empty, τO, τ) ∧ τ ≤ t ∧ τO[t] = 〈−, res.1,−〉

}
Fig.2 Proof outline for readPair.

1 { ` ↪→ (empty,−, τ) }
2 readPair(): A × A {
3 { ` ↪→ (empty,−, τ) }
4 (cx, vx) <- readX();
5

{
` ↪→ (empty, τ1, τ) ∧ τ ≤ t1 ∧ τ1[t1] = 〈cx,−, vx〉

}
6 (cy, _) <- readY();

7

 ` ↪→ (empty, τ2, τ) ∧ τ ≤ t1 ≤ t2 ∧ vx ≤ v ∧
τ2[t1] = 〈cx,−, vx〉 ∧ τ2[t2] = 〈c, cy, v〉


8 (_, tx) <- readX();

9

 ` ↪→ (empty, τ3, τ) ∧ τ ≤ t1 ≤ t2 ≤ t3 ∧ vx ≤ v ≤ tx ∧
τ3[t1] = 〈cx,−, vx〉 ∧ τ3[t2] = 〈c, cy, v〉 ∧ τ3[t3] = 〈−,−, tx〉


10 if vx == tx
11

{
` ↪→ (empty, τ3, τ) ∧ τ ≤ t2 ∧ cx = c ∧ τ3[t2] = 〈cx, cy, v〉

}
12 then return (cx, cy);
13 { ∃τO t. ` ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉 }
14 else readPair();}
15 { ∃τO t. ` ↪→ (empty, τO , τ) ∧ τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉 }

To obtain line 7, instantiate τ
with τ1 in the spec of readY.
This derives the existence of τ2,
t2, c and v, such that ` ↪→
(empty, τ2, τ1), τ1 ≤ t2, and
τ2[t2] = 〈c, cy, v〉. Because t1 ∈
dom(τ1), it must be that t1 ≤ t2.
Moreover, because τ v τ1 v
τ2, we further obtain ` ↪→
(empty, τ2, τ), and τ ≤ t2, and
lifting from line 5, τ2[t1] =

〈cx,−, vx〉. Because t1, t2 appear
in the same history τ2, with ver-
sions vx and v, respectively, by
property (iii), vx ≤ v. Similarly,
instantiating τ in the spec of readX
with τ2, and invoking (iii), derives
line 9 of the proof outline, and in
particular vx ≤ v ≤ tx.

From this property, if vx = tx in the conditional on line 10, it must be that vx = v,
and thus by (ii), cx = c. Substituting c by cx in line 9 gives us τ3[t2] = 〈cx, cy, v〉,
which, after (cx, cy) are returned in res, obtains the postcondition of readPair. Other-
wise, if vx , tx in the conditional 10, we perform the recursive call to readPair. The
precondition for the call is ` ↪→ (empty,−, τ), which is clearly met in line 9, so the
postcondition immediately follows.
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Monolithic histories. We compare the spec (4) with an alternative spec where the history
is not split into self/other portions, but is kept monolithically as a joint (or shared) state.
We use the predicate ` j7→ τ to specify such state:

{∃τO. ` j7→ τO ∧ τ v τO} readPair() { ∃τO t. ` j7→ τO ∧ τ v τO ∧
τ ≤ t ∧ τO[t] = 〈res.1, res.2,−〉

}
(6)

Note that the spec (6) imposes no restrictions on the growth of τO (unlike (4) which
keeps the self history empty). Thus, (6) is weaker than (4), as it allows more behaviors.
In particular, it can be ascribed to any program which, in addition to calling readPair,
also modifies x and y. This substantiates our claim from Section 1 that the self/other
dichotomy is required to prevent history-based specs from losing precision. We provide
further evidence for this claim in Section 4, where we show that subjective specs for
stacks generalize the sequential canonical ones (1). The latter can be derived from the
former by restricting τO to be the empty history. Such a restriction is not possible if the
history is kept monolithic.

3 Background: a review of FCSL
In this section we review the relevant aspects of the previous work on Fine-grained
Concurrent Separation Logic (FCSL) [22]. We explain FCSL by showing how it can be
specialized to our novel contribution of specifying concurrent objects by means of his-
tories. FCSL has been previously implemented as a shallow embedding in Coq; thus our
assertions will freely use Coq’s higher-order logic and datatype definition mechanism.

FCSL is a Hoare logic, generalizing CSL, hence its assertions are predicates on state.
But unlike in CSL where state is a heap, in FCSL state may consist of a number of
labeled components (sometimes dubbed as “regions” or “islands” in the literature [6,
28,31]), each of which may represent state by a different type. If the type used by some
label is non-heap, then that label encodes auxiliary state, used for logical specification,
but erased at run time. For example, histories are an auxiliary state identified by the
label ` in the atomic snapshot example. If we had a program which used two different
atomic snapshot structures, we may label these by `1 and `2, etc.

3.1 Subjectivity
The state recorded in labels is further divided across another orthogonal axis – owner-
ship. Each label identifies three different chunks of state: self, joint and other portion.
The self portion is private to the specified thread, and cannot be accessed by the other
threads. Dually, other is private to the environment threads, and cannot be accessed by
the one being specified. Finally, the joint section is shared and can be accessed by ev-
eryone. The self and other portions of any given label have to belong to a common PCM
(the joint portion, though, is not required to be a PCM element, as it is not a subject of a
split between threads, as we will see below), and are often combined together by means
of the • operation of that PCM. Of course, different labels can use different PCMs, and,
therefore, the points-to assertions are implicitly parametrized with a PCM type.

The FCSL assertions reflect the division across these axes. We have already illus-
trated the assertions ` s7→ v, ` j7→ v and ` o7→ v, which identify the self/joint/other compo-
nent stored in the label ` of the state. These three basic assertions, constraining only
one state component correspondingly (and leaving the two other unconstrained), can
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be, therefore, combined by the usual propositional connectives, such as ∧ and ∨, as we
have already shown in Section 2. FCSL further provides two connectives that generalize
the separating conjunction ∗ from separation logic, along the two axes of state splitting.
We next illustrate the subjective separating conjunction ~, and defer the discussion of
the resource separating conjunction ∗ until additional technical material has been intro-
duced. The formal definitions of all the connectives can be found in [27, Appendix A].
The subjective conjunction ~ models the division of state between concurrent threads
upon forking and joining. In particular, the parallel composition rule of FCSL is:

{p1} c1 {q1}@U {p2} c2 {q2}@U
{p1 ~ p2} c1 ‖ c2 {q1 ~ q2}@U (7)

IgnoringU and the result types of c1 and c2 for now, we describe how ~ works. In this
rule, it splits the pre-state of c1 ‖ c2 into two parts, satisfying p1 and p2 respectively. The
parts contain the same labels, and equal joint portions, but the self and other portions
are recombined to match the thread-relative views of c1 and c2. Concretely, in the case
of one label `, with a PCM U and values a, b, c ∈ U, we have the following implication.

` s7→ a • b ∧ ` o7→ c =⇒ (` s7→ a ∧ ` o7→ b • c) ~ (` s7→ b ∧ ` o7→ a • c) (8)

Thus, if before the fork, the self-state of the parent thread contained a•b, and the other-
state contained c, then after the fork, the children will have self-states a and b, and the
other-states b • c and a • c, respectively. In the opposite direction:

(` s7→ a ∧ ` o7→ c1) ~ (` s7→ b ∧ ` o7→ c2) =⇒
∃c. c1 = b • c ∧ c2 = a • c ∧ ` s7→ a • b ∧ ` o7→ c (9)

That is, if the state can be subjectively split between two child threads so that their
other-views are c1, c2 (with self-views a, b), then there exists a common c—the other-
view of the parent thread—such that c1 = b • c and c2 = a • c. In this sense, the rule
for parallel composition models the important effect that upon a split, c1 becomes an
environment thread for c2, and vice-versa.

There are a few further equations that illustrate the interaction between the different
assertions. First, every label contains all three of the self/joint/other components. Thus:

`
s7→ a ⇐⇒ `

s7→ a ∧ ` j7→ − ∧ ` o7→ − (10)

and similarly for ` j7→ a and ` o7→ a. Also:

`
s7→ a • b ⇐⇒ `

s7→ a ~ ` s7→ b (11)

which is provable from (8), (9) and (10).
FCSL also provides a frame rule, obtained as a special case of parallel composition

when c2 is the idle thread, and p2 = q2 = r is a stable predicate, as usual in fine-grained
logics [6, 8, 33].

{p} c {q}@U
{p ~ r} c {q ~ r}@U r stable underU (12)
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We illustrate the frame rule by deriving from the readPair spec (4) a relaxed spec
which allows readPair to apply when the calling thread has non-trivial self history τS:

{ ` ↪→ (τS,−, τ) } readPair()
{∃τO t. ` ↪→ (τS, τO, τ) ∧ τ ≤ t ∧

(τS ·∪ τO)[t] = 〈res.1, res.2,−〉
}

(13)

Note that (13), when compared to (4), changes the self component from empty to τS,
but also τO[t] changes into (τS ·∪ τO)[t]. The latter accounts for the possibility that the
returned snapshot may have been recorded in τS as a consequence of the thread itself
changing x or y, immediately before invoking readPair.

The spec (13) derives from (4) by framing with the predicate r = ` s7→ τS. r is trivially
stable, as it describes self-state, which is inaccessible to the interfering threads. We only
show how to weaken the framed postcondition of (4) to the postcondition in (13); the
preconditions can be strengthened similarly. Abbreviating τ v τO ∧ τ ≤ t ∧ τO[t] =

〈res.1, res.2,−〉 by P(τO), which is a label-free (i.e., pure) assertion, and thus commutes
with ~, we get:

(` s7→ empty ∧ ` o7→ τO ∧ P(τO)) ~ (` s7→ τS) =⇒ by (10) and P-pure
(` s7→ empty ∧ ` o7→ τO) ~ (` s7→ τS ∧ ` o7→ −) ∧ P(τO) =⇒ by (9)
∃τ′O. τO = τS ·∪ τ′O ∧ ` s7→ τS ∧ ` o7→ τ′O ∧ P(τO) =⇒ by substituting τO
∃τ′O. ` ↪→ (τS, τ′O, τ) ∧ τ ≤ t ∧ (τS ·∪ τ′O)[t] = 〈res.1, res.2,−〉.

Intuitively, in (13) the frame history τS is “subtracted” from the other-history τO of (4),
and moved to the self-history, illustrating one important difference between the frame
rule of FCSL and that of CSL. In FCSL, the frame is always subtracted from the other
component, whereas in CSL it simply materializes out of nowhere. On the flip side, CSL
does not consider the other component, and cannot easily express a spec such as (4).

3.2 Concurroids
We now turn to the componentU of the FCSL specs, which is called concurroid. Con-
curroids are responsible for enforcing the invariants on the evolution of the state. For
example, the properties (i)–(iii) in Section 2 will be enforced by defining an appropriate
concurroid to govern the pair-snapshot structure. Thus, concurroids formally represent
concurrent data structures, over which the programs operate.

A concurroid is (a form of) a state transition system (STS). It is a quadruple U =

(L,W, I, E) where: (1) L is a set of labels, identifying different data structures; (2) W is
a set of admissible states (alternatively, an FCSL assertion); (3) I is the set of internal
transitions on W; (4) E is a set of pairs (α, ρ), where α is a heap-acquiring and ρ is
a heap-releasing transition, collectively called external transitions. The internal transi-
tions are relations on states, describing how a state of the STS evolves in one atomic
step. The external transitions serve for transfer of state ownership. The concurroids
thus bound the moves of the concurrent programs that operate on a data structure, and
therefore represent a structured form of rely/guarantee transitions from Rely/Guarantee
logics [8, 9, 18, 33, 34]. We next illustrate concurroids by example.
Pair-snapshot concurroid. Given a label `, pointers x, y, and the type A of the ac-
cessible contents of x and y, the concurroid for the pair-snapshot structure is S =

({`},WS, {wrx,wry, id}, ∅). The set of states WS is described below. We assume that
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τS, τO are histories, cx, cy : A and vx, vy : nt, and are implicitly existentially quantified.

WS =̂ ` s7→ τS ∧ ` j7→ (x 7→ (cx, vx) ·∪ y 7→ (cy, vy)) ∧ ` o7→ τO ∧
τS, τO satisfy (ii) − (iii), τS ·∪ τO is continuous, and
if t = lst(τS ·∪ τO), then (τS ·∪ τO)[t] = (cx, cy, vx)

A state in WS consists of the auxiliary part, which are histories in the self and other
components, and concrete part, which is a joint heap, storing pointers x and y, with
accessible contents cx, cy, and version numbers vx, vy, respectively.3 It requires several
additional properties of the auxiliary histories. First, the combined history τS ·∪ τO is
continuous; that is, adjacent timestamps have matching states. Second, the last time-
stamp in τS ·∪ τO correctly reflects what is stored in x and y. Finally, WS also bakes
in the properties (ii) − (iii) required in the proof outline of readPair, so the specifica-
tion (4) and its proof were, in fact, carried out in the concurroid context @S, which was
omitted.

The internal transitions wrx and wry synchronize the changes to x and y with histories.
The transitions operate only on self and joint portions of the state, and the other-portion,
τO, is fixed (cf. notation (10)). That is, the transitions essentially define the concurroid’s
Guarantee. In both transitions, tτS ·∪τOfresh is the smallest timestamp unused by τS and τO.

wrx =̂ `
j7→ (x 7→ (cx, vx) ·∪ y 7→ (cy, vy)) ∧ ` s7→ τS  

`
j7→ (x 7→ (c′x, vx + 1) ·∪ y 7→ (cy, vy) ∧ ` s7→ τS ·∪ tτS ·∪τOfresh 7→ (〈cx, cy, vx〉, 〈c′x, cy, vx + 1〉)

wry =̂ `
j7→ (x 7→ (cx, vx) ·∪ y 7→ (cy, vy)) ∧ ` s7→ τS  

`
j7→ (x 7→ (cx, vx) ·∪ y 7→ (c′y, vy + 1) ∧ ` s7→ τS ·∪ tτS ·∪τOfresh 7→ (〈cx, cy, vx〉, 〈cx, c′y, vx〉)

The first conjunct after in wrx (and wry is similar) allows that the version number
of x can only increase by 1 in an atomic step. The second conjunct shows that simul-
taneously with the change of x, the snapshot of the changed state is committed to the
self-history of the invoking thread. Together, wrx and wry ensure that histories only
grow, and only by adding valid snapshots; i.e., precisely the property (i) from Section 2.
U also contains the identity transition id, whose presence enables programs that

do not modify the state at all. In the pair-snapshot example, these are the readX and
readY actions, and the readPair method. The pair-snapshot example does not involve
ownership transfer, so S has no external transitions, but these will be important in the
forthcoming examples.
Entanglement and private heaps. Larger concurroids may be constructed out of smaller
ones. A particularly common construction is entanglement [22]. Given concurroids U
andV, the entanglementUoV is a concurroid whose state space is the Cartesian prod-
uct WU ×WV, and the transitions allow theU portion to perform aU transition, while
the V portion remains idle, and vice-versa. Additionally, U and V portions can com-
municate to transfer a heap between themselves, by having one take a heap-acquiring,
and the other simultaneously taking a heap-releasing transition.

The most common is the entanglement with the concurroid P of private heaps [27,
Appendix B]. Entangling with P lets the concurroids temporarily move heaps to a
private section, via the communication discussed above, where threads may then per-
form the customary operations of reading, writing, allocating, and deallocating pointers,

3 Notice the overloading of the 7→ notation for singleton heaps and histories.
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without interference.4 P comes with a dedicated label pv. As an illustration, the follow-
ing assertion may describe one possible state in the state space of the entanglement
P o S with the snapshot concurroid.

pv
s7→ (z 7→ 0) ∗ ` j7→ (x 7→ (cx, vx) ·∪ y 7→ (cy, vy))

The ` j7→ − portion describes the part of the state coming from S, which is joint, con-
taining pointers x and y, as explained before. The pv s7→ (z 7→ 0) describes the part of the
state coming from P. In this case, it contains a heap with a single pointer z. The heap is
private, i.e., owned by the self thread, so z cannot be modified by other threads. Notice
that the assertions about pv and ` are separated by the resource separating conjunction
∗, which splits the state into portions with disjoint labels and heaps. In this particular
case, it signifies that the labels pv and ` are distinct, as are the pointers z, x and y.

3.3 Extending and hiding concurroids
Concurroids represent concurrent data structures; thus it is important to be able to intro-
duce and eliminate them. FCSL provides two programming constructors (both no-ops
operationally), and corresponding inference rules for that purpose. For completeness,
we introduce them here, but postpone the illustration until Section 4.

The injection rule shows that if a program is proved correct with respect to a smaller
concurroidU, then it can be extended toU oV, without invalidating the proof.

{p} c {q}@U
{p ∗ r} [c] {q ∗ r}@U oV r ⊆ WV stable underV (14)

This is a form of framing rule, along the axis of adding new resources. The operator
∗ splits the state into portions with disjoint labels, and the side-condition that r ⊆ WV
forces r to remove the labels of the concurroidV, so that c is verified wrt. the labels of
U. The program constructor [−] is a coercion fromU toU oV.

Hiding is the ability to introduce a concurroidV, i.e., install it in a private heap, for
the scope of a thread c. The children forked by c can interfere on V’s state, respecting
V’s transitions, but V is hidden from the environment of c, To the environment, V’s
state changes look like changes of the private heap of c. Upon termination of c, V is
deinstalled.

{pv s7→ h ∗ p} c {pv s7→ h′ ∗ q}@(P oU) oV
{Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c {∃g′.Ψ g′ h′ ∗ (Φ (g′)−−∗ q)}@P oU

where Ψ g h = ∃k:hep. pv s7→ h ·∪ k ∧Φ (g) erases to k (15)

Since installing V consumes a chunk of private heap, the rule requires the overall
concurroid to support private heaps, i.e., to be an entanglement of P with an arbitrary
U. In programs, we use the coercion hide c to indicate the change from (P oU) oV
to P oU. IfU is of no interest, one can take it to be the empty concurroid E, which is
a right unit for o [27, Appendix B.4].

4 Our Coq proofs actually use two different concurroids, one for reading/writing, another for
allocation/deallocation, which we entangle to provide all four operations. For simplicity, here
we assume a monolithic implementation.
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The annotation Φ is a predicate; it describes an invariant that holds within the scope
of hide, parametrized by an argument. It is subject to a number of conditions [27, Ap-
pendix D.3]. g is the initial argument, so Φ(g) holds in the initial state into which
V is placed upon installation. The rule guarantees that the ending state of c satisfies
∃g′. Φ(g′). The surrounding connectives ∗ and −−∗ merely mediate between U, V, and
the erasure ofV to heaps. We explain the precondition, and the postcondition is similar.

In the precondition, ∗ separates private heaps from U, and Ψ requires that every
state in Φ(g) obtains the same private heap when the auxiliary fields are erased. −−∗ is
inherited from separation logic. Φ(g)−−∗ p says that if the initial state (which is in WU)
is extended with a state from Φ(g) (which is in WV), then the result is a state satisfying
p. In other words, if a state satisfying Φ(g) is installed in the initial state of c, while its
heap footprint is removed from the private heaps, then c’s precondition is satisfied.

4 Treiber stack and its client
In this section we illustrate how histories can be used to specify and verify the fine-
grained data structure of Treiber stack [30]. We also show how the specs can be used
by clients, where they provide an abstraction that facilitates client reasoning as if the
structure were coarse-grained.

Fig.3 Treiber stack methods.
1 push(e : A): Unit {
2 p <- alloc();
3 fix loop() {
4 p1 <- readSentinel();
5 write(p, (e, p1));
6 ok <- tryPush(p1, p);
7 if ok then return ();
8 else loop();}();
9 }

1 pop(): option A {
2 p <- readSentinel();
3 if p == null
4 then return None;
5 else {
6 (e,p1) <- readNode(p);
7 ok <- tryPop(p,p1);
8 if ok then return Some e;
9 else pop();}}

The Treiber stack works as follows. Physically,
the stack is kept as a singly-linked list in the heap,
with a sentinel pointer snt pointing to the stack top
p1. The call to push(e) allocates a node p that is sup-
posed to go to the top of stack, and attempts to link
the node into the stack, by changing the sentinel to
p. Clearly, this operation should not succeed if some
interfering thread has in the meantime changed the
top by pushing or popping elements. Thus push ap-
plies a CAS read-modify-write operation [15], which
atomically reads snt, compares its contents with p1,
and if the two are equal (i.e., if the stack’s top has not
changed), writes p into snt, thus en-linking the new
top. Otherwise, push is restarted. pop() behaves sim-
ilarly. It reads the first node p, pointed to by snt, and
obtains its value e and pointer p1 to the next node.
Then it tries to de-link p, by changing the sentinel to p1 using a CAS to identify inter-
ference. Note that pop does not deallocate the de-linked node p (this is enforced by the
design of the appropriate concurroid as we will soon see), which thus remains in the
data structure as garbage. This is by design, to prevent the ABA problem [15, §10]: if
p is deallocated, then some other push may allocate it again, and place it back on top
of the stack. A procedure that observed p on top of the stack, but has not performed its
CAS yet may thus be fooled as follows. Its CAS may encounter p on top of the stack,
and proceed as if the stack had not changed, producing invalid results.

The described code of the Treiber stack operations is given in Figure 3, where we
used descriptive names for the atomic operations. Instead of CAS, we used tryPush and
tryPop, and instead of pointer read, we used readSentinel and readNode. The reason for
the descriptive names is that the atomic operations in FCSL operate not only on concrete
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heap pointers, but on auxiliary state as well. In the particular case of Treiber, the aux-
iliary state will be histories, which tryPush and tryPop change in different ways, even
though they both operationally perform a CAS. Similarly, readSentinel and readNode
deduce different facts about the histories, even though they both simply read from a
pointer. We elide here any further discussion on how the atomic operations are spec-
ified and verified in FCSL (it can be found in [22] and [27, Appendix C]). Instead,
whenever needed, we simply state the Hoare specs for the atomics and proceed to use
them in proof outlines, as if the atomics were ordinary procedures. Of course, our Coq
files contain proofs that all such Hoare triples are valid.
Treiber concurroid. Given a label tb, the sentinel pointer snt, and the type A of the stack
elements, the state space of the Treiber concurroid T is described as follows. Its aux-
iliary self/other components are histories τS and τO that store mathematical sequences
l corresponding to the logical contents of the stack at various timestamps. The joint
component contains a heap hs storing a sentinel snt pointing to a linked list, a heap h
implementing the list, and a garbage section grb of de-linked nodes.

WT =̂ ∃τS τO hs. tb
s7→ τS ∧ tb o7→ τO ∧ tb j7→ hs ∧ I (τS ·∪ τO) hs

I τ hs =̂ ∃p h grb l. hs = (snt 7→ p) ·∪ h ·∪ grb ∧ list(p, l, h) ∧
complete(τ) ∧ continos(τ) ∧ stcklike(τ) ∧ τ[lst(τ)] = l

(16)

The auxiliary predicates are:

list(p, l, h) =̂ p = null ∧ l = nil ∧ h = empty ∨
∃e p′ l′ h′. l = e :: l′ ∧ h = p 7→ (e, p′) ·∪ h′ ∧ list(p′, l′, h′)

complete(τ) =̂ ∃l0. τ(0) = (l0, l0) ∧ ∀t. t < |dom(τ)| ⇒ t ∈ dom(τ)
stcklike(τ) =̂ ∀t ∈ dom(τ). t > 0 ⇒ ∃l e. τ(t) = (l, e :: l) ∨ τ(t) = (e :: l, e)

In particular: (1) the overall history τS ·∪ τO is complete, i.e. no gaps exist between
timestamps (this property was irrelevant for the pair snapshot structure, but essential
for stacks to ensure the absence of the ABA-problem); (2) aside from the initialization
in timestamp 0, the history only stores events corresponding to pushing or popping,
and (3) the last recorded state in the history captures the current contents of the stack.
For simplicity, we disable reasoning about the structure’s inherent memory leak by not
relating histories to grb in (16).

The transitions of T allow for popping and pushing only.

pop =̂ tb
j7→ snt 7→ p ·∪ h ·∪ grb ∧ tb s7→ τS ∧ h = (p 7→ (e, p′) ·∪ h′) ∧ list(p, (e :: l), h)  

tb
j7→ snt 7→ p′ ·∪ h′ ·∪ (p 7→ (e, p′) ·∪ grb) ∧ tb s7→ τS ·∪ tτS ·∪τOfresh 7→ (e :: l, l)

pushp′ ,e,p =̂ tb
j7→ snt 7→ p ·∪ h ·∪ grb ∧ tb s7→ τS ∧ list(p, l, h)  

tb
j7→ snt 7→ p′ ·∪ (p′ 7→ (e, p) ·∪ h) ·∪ grb ∧ tb s7→ τS ·∪ tτS ·∪τOfresh 7→ (l, e :: l)

In pop, the sentinel pointer is swapped from used-to-be head p to its next one, p′,
whereas (p 7→ −) logically joins the garbage. The transition push describes how a heap
of the shape p′ 7→ (e, p), describing the node to be pushed, is acquired and placed at the
top of the stack. It is an external transition, which means it only fires when entangled
with a concurroid from which the heap p′ 7→ (e, p) can be taken away. In our case,
that will be the concurroid P for private state. Indeed, both transitions preserve the state
invariant I (16). Importantly,T does not have a release transition; once a memory chunk
is in the joint state, it never leaves, capturing that T does not allow deallocation.
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Method specs. We give the following history-based specs.{
pv

s7→ empty ∗
tb ↪→ (empty,−, τ)

}
push(e)

{ ∃t l. pv s7→ empty ∗
tb ↪→ (t 7→ (l, e :: l),−, τ) ∧ τ < t

}
@P o T

{
tb ↪→ (empty,−, τ)

}
pop(){∃e t l. res = Some e ∧ tb ↪→ (t 7→ (e :: l, l),−, τ) ∧ τ < t ∨

∃τO t. res = None ∧ tb ↪→ (empty, τO, τ) ∧ τO[t] = nil

}
@T

(17)

Fig.4 A proof outline of Treiber’s push method.

1 { pv s7→ empty ∗ tb ↪→ (empty,−, τ) }
2 p <- [alloc()];
3 { pv s7→ p 7→ − ∗ tb ↪→ (empty,−, τ) }
4 fix loop() {
5 { pv s7→ p 7→ − ∗ tb ↪→ (empty,−, τ) }
6 p1 <- [readSentinel()];
7 { pv s7→ p 7→ − ∗ tb ↪→ (empty,−, τ) }
8 [write(p, (e, p1))];
9 { pv s7→ p 7→ (e, p1) ∗ tb ↪→ (empty,−, τ) }

10 ok <- tryPush(p1, p);

11
{
ok ∧ ∃t l. pv s7→ empty ∗ tb ↪→ (t 7→ (l, e :: l),−, τ) ∧ τ < t ∨
¬ok ∧ pv s7→ p 7→ (e, p1) ∗ tb ↪→ (empty,−, τ)

}
12 if ok then return ();
13 { ∃t l. pv s7→ empty ∗ tb ↪→ (t 7→ (l, e :: l),−, τ) ∧ τ < t }
14 else
15 { pv s7→ p 7→ − ∗ tb ↪→ (empty,−, τ) }
16 loop();}();
17 { ∃t l. pv s7→ empty ∗ tb ↪→ (t 7→ (l, e :: l),−, τ) ∧ τ < t }

A call to push runs with empty pri-
vate heap and history, thus by fram-
ing, it can run with any private heap
and history. After termination, the
self history is incremented by a sin-
gleton exposing that a push event
has been executed at a time stamp t;
τ < t indicates that the push event
appeared strictly after the events
preceding the call. The spec for pop
is slightly more complicated as pop
checks for stack emptiness, but ulti-
mately proceeds in the similar man-
ner. push works over the entangled
concurroid P o T , as it needs to al-
locate memory; pop works over T
only, as it does not deallocate.

Verification of push and pop implementations relies on the specifications of the
atomic actions alloc and write, which are specific to the P concurroid.

{ pv s7→ empty } alloc() { pv s7→ res 7→ − }@P
{ pv s7→ x 7→ − } write(x, e) { pv s7→ x 7→ e }@P (18)

In Figure 4, we present the proof outline for push (the proof for pop can be found in
the Coq files). It is mostly self-explanatory, so we only point out a few technicalities.
The actions alloc and write have to be explicitly injected into P o T , by means of the
coercion [−], introduced in Section 3. Similarly for readSentinel, whose concurroid is
T . Somewhat surprisingly, the call to readSentinel in line 6 is irrelevant for the (partial)
correctness of tryPush; thus, line 7 does not say anything about p1.5 The proof rule for
fix allows assuming the spec of a procedure in the proof of the body, and is presented
in [27, Appendix D]. The tryPush action appears in the proof outline with its precise
specification; that is, line 9 contains its precondition, and 11 contains the postcondition,
describing that a successful outcome of tryPush removed a heap from P, moved it to
the joint heap of T , and updated the history, following the push transition.

5 Though, taking a random p1 here will affect liveness, as push will keep looping until it finds
the chosen p1 at the top of the stack.
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Recovering sequential specifications. We next show that the subjective spec (17) is a
generalization of the canonical sequential spec (1). In particular, if there is no inter-
ference from other threads, (17) can be reduced to (1). The mechanism for achieving
the reduction relies on the self/other dichotomy, thus substantiating our point that the
dichotomy is important for precise reasoning with histories.

Fig.5 Proof of sequential spec for push.

1 {∃p h. pv s7→ (snt 7→ p ·∪ h) ∧ list(p, l, h)}
2 {Ψ empty empty ∗ (Φ(empty)−−∗ tb ↪→ (0 7→ (l, l),−,−))}
3 hideΦ,empty {
4 { pv s7→ empty ∗ tb ↪→ (0 7→ (l, l),−,−) }
5 push(e);

6
{ ∃t l′. pv s7→ empty ∗
tb ↪→ (0 7→ (l, l) ·∪ t 7→ (l′, e :: l′),−,−)

}
}

7
{ ∃τ. Ψ τ empty ∗

(Φ(τ)−−∗∃t l′. tb ↪→ (0 7→ (l, l) ·∪ t 7→ (l′, e :: l′),−,−))

}
8

{ ∃t l′ τ. τ = 0 7→ (l, l) ·∪ t 7→ (l′, e :: l′) ∧
complete(τ) ∧ continos(τ) ∧ Ψ τ empty

}
9 { ∃τ. τ = 0 7→ (l, l) ·∪ 1 7→ (l, e :: l) ∧ Ψ τ empty}

10 { ∃p′ h. pv s7→ (snt 7→ p′ ·∪ h ·∪ −) ∧ list(p′, e :: l, h) }

To this end, we use the hide constructor
from Section 3. It introduces a concurroid
in a delimited scope, and prohibits the en-
vironment threads from interfering on it.
The heap for the introduced concurroid is
appropriated from the private heap. In the
case of push, we will appropriate a heap
storing the sentinel and the linked list of
the stack, install the T concurroid over
this heap, perform push with interference
disabled, then return the heap back to pri-
vate heaps. We will derive the following
specification, which is essentially an elab-
orated version of (1), modulo the memory
leak inherent to Treiber stack (hence grb in the postcondition).

{ ∃p h. pv s7→ (snt 7→ p ·∪ h) ∧ list(p, l, h) }
hideΦ,empty { push(e); }

{ ∃p h grb. pv s7→ (snt 7→ p ·∪ h ·∪ grb) ∧ list(p, e :: l, h) }@P
(19)

The self/other dichotomy affords explicit access to other-owned histories, so that we
can define the following predicate Φ stating that other-histories remain empty within
the scope of hide.

Φ(τ) =̂ ∃l. tb s7→ ((0 7→ (l, l)) ·∪ τ) ∧ tb o7→ empty ∧WT (20)

Inside hide, the stack is initialized (the history contains the singleton 0 7→ (l, l)), there
is no interference (tb o7→ empty), and the state is a valid one for T (i.e., it is captured
by the definition (16)).

One can prove that if the histories are erased from any state in Φ(τ), the remaining
concrete heap consists of snt and the stack. Moreover, the contents of the stack is the
last entry of τ (or l if τ is empty). In other words, using Ψ (15), defined in Section 3:

Ψ τ empty ⇐⇒ ∃p h. pv s7→ (snt 7→ p ·∪ h ·∪ −) ∧ list(p, l′, h) (21)

where l′ = τ[lst(τ)] (or l′ = l if τ is empty).
The derivation is in Figure 5, and we comment on the main points. In line 2, the right

conjunct uses the property inherent in Ψ , that Φ(empty) erases to the heap storing l.
Thus, this is the l that appears in the consequent of −−∗. In line 7, the second conjunct
implies that the history τ, whose existence obtains from the rule for hiding (15), must
be the self-history returned by push. Hence, it is equal to 0 7→ (l, l) ·∪ t 7→ (l′, e :: l′) for
some t and l′. But, we also know that τmust be complete (no gaps between timestamps)
and continuous. Hence t = 1 and l′ = l in line 9, which derives the postcondition by (21).
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Fig.6 A parallel stack-based producer/consumer program.
1 produce(n: nt, i: nt) {
2 if i == n
3 then return ();
4 else {
5 e <- ap[i];
6 pushtb(e);
7 produce(i + 1);
8 }
9 }

1 consume(n: nt, i: nt) {
2 if i == n
3 then return ();
4 else {
5 r <- poptb();
6 if r == Some e
7 then {
8 ac[i] := e;
9 consume(i + 1);}
10 else consume(i);}}

1 exchange(n: nt): Unit {
2 hideΦ,empty {
3 produce(n, 0); || consume(n, 0);
4 }
5 }

A stack client. We next illustrate how the specs (17) are exploited by the concurrent
clients of Treiber stack to abstract from the fine-grained nature of Treiber’s implemen-
tation. The example code in Figure 6 presents two procedures, produce and consume,
that communicate via a common Treiber stack tb. produce pushes onto the stack the
elements of its array ap in order, whereas consume pops from the stack, to fill its array
ac. Both arrays are of equal size n. The procedure exchange runs produce and consume
concurrently. We will prove that after exchange terminates, ap has been copied to ac,
modulo element permutation. The inference will only use the specs (17) but not the code
of stack methods, thus obtaining a coarse-grained view of effects provided by histories.

We use several auxiliary predicates. First, Arrn(a, l, h) defines an array of size n as
a sequence of consecutive pointers in the heap h, starting from pointer a, and storing
elements of the list l:

Arrn(a, l, h) =̂ | l | = n ∧ h = ·⋃i<n(a + i) 7→ l(i) (22)

Next, the predicates Pshed and Popped extract the lists of pushed and popped elements
from a stack history τ.

Pshed(τ, l) =̂ l =/mset {{e | ∃t l. t 7→ (l, e :: l) ∈ τ ∨ 0 7→ (l, l) ∈ τ ∧ e ∈ l}}
Popped(τ, l) =̂ l =/mset {{e | ∃t l. t 7→ (e :: l, l) ∈ τ}} (23)

The notation {{−}} stands for multisets, and =/mset is multiset equality, which we con-
flate with list equality modulo permutation. We can now ascribe the following specs to
produce and consume:{

Pr(hp, l<i) ∧ Arrn(ap, l, hp)
}
produce(n, i)

{
Pr(hp, l) ∧ Arrn(ap, l, hp)

}
{
∃hc l. Cn(hc, l<i) ∧ Arrn(ac, l, hc)

}
consume(n, i)

{
∃hc l. Cn(hc, l) ∧ Arrn(ac, l, hc)

} (24)

both over the P o T concurroid. Pr and Cn are defined as follows:

Pr(hp, l) =̂ pv
s7→ hp ∗ tb s7→ τS ∧ Pshed(τS, l) ∧ Popped(τS, nil)

Cn(hc, l) =̂ pv
s7→ hc ∗ tb s7→ τS ∧ Pshed(τS, nil) ∧ Popped(τS, l),

so they essentially describe the producer/consumer loop invariants; l<i is a prefix of l
for elements with indices less than i. The specs (24) show that produce pushes all the
elements from ap, and consume fills ac with elements of some sequence of the length n.
The proofs of both specs (available in our Coq development) derive easily from (17)
after these are framed to allow running in arbitrary initial self heap and history.
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The interesting part of the example is proving exchange, where we compose produce
and consume in parallel, and then use hiding to infer that the ap and ac arrays in the end
contain the same elements, modulo permutation. The proof outline is in Figure 7, and
it relies on the following important lemmas about histories.

Lemma 1. Pshed(τ1, l1) ∧ Popped(τ1, nil) ∧ Popped(τ2, l2) ∧ Pshed(τ2, nil) =⇒
Pshed(τ1 ·∪ τ2, l1) ∧ Popped(τ1 ·∪ τ2, l2).

Lemma 2. If complete(τ) and stcklike(τ) then Pshed(τ, l1) ∧ Popped(τ, l2) ∧
|l1| = |l2| =⇒ l1 =/mset l2.

Fig.7 Proof outline for producer/consumer.

{
pv

s7→ hp ·∪ hc ·∪ snt 7→ null ∧ Arrn(ap, l, hp) ∧ Arrn(ac,−, hc)
}

hideΦ,empty {{
pv

s7→ hp ·∪ hc ∧ Arrn(ap, l, hp) ∧ Arrn(ac,−, hc) ∗
tb

s7→ 0 7→ (nil, nil) ∧ tb o7→ empty

}
{(
pv

s7→ hp ∧ Arrn(ap, l, hp)
∗ tb s7→ 0 7→ (nil, nil)

)
~

(
pv

s7→ hc ∧ Arrn(ac,−, hc)
∗ tb s7→ empty

)}
{
Pr(hp, l<0) ∧ Arrn(ap, l, hp)

} {
∃l′. Cn(hc, l′<0) ∧ Arrn(ac, l′, hc)

}
produce(n, 0); consume(n, 0);{

Pr(hp, l) ∧ Arrn(ap, l, hp)
} {∃h′c l′. Cn(hc, l′) ∧ Arrn(ac, l′, h′c)

}{(
Pr(hp, l) ∧ Arrn(ap, l, hp)

)
~

(
∃h′c l′. Cn(hc, l′) ∧ Arrn(ac, l′, h′c)

)}
{ ∃h′c l′. pv s7→ hp ·∪ hc ∧ Arrn(ap, l, hp) ∧ Arrn(ac, l′, h′c)
∗ ∃τS , tb s7→ τS ∧ Pshed(τS , l) ∧ Popped(τS , l′) ∧ tb o7→ empty

}
}{ ∃h′c l′. pv s7→ hp ·∪ h′c ·∪ (snt 7→ −) ·∪ − ∧

Arrn(ap, l, hp) ∧ Arrn(ac, l′, h′c) ∧ l =/mset l′

}

The proof outline in Figure 7
starts in the concurroid P, which
extends to P o T in the scope
of hide. The invariant Φ of hide
is the one we already used, de-
fined in (20). It introduces a Treiber
stack structure with an initial his-
tory 0 7→ (nil, nil). Also, the heaplet
snt 7→ null with the sentinel
pointer has been donated to the
state space of the Treiber stack, so
it is removed from the private heap.
Next, the self-heap and history are
split via ~; the parts are given to
produce and consume, respectively,
according to the parallel composi-
tion rule (7). Next, we reason out of
specifications (24) for producer/consumer and combine the subjective views back via ~
upon joining of the parallel threads: we thus derive that the contents of ap and ac, are l
and l′ respectively. By unfolding the definitions of Pr and Cn, and using Lemma 1, we
derive Pshed(τS, l) ∧ Popped(τS, l′), where τS is the combined history of produce and
consume. Finally, τS is complete and stack-like (since other-history is provably empty
thanks to hiding). Moreover, both l and l′ have size n, as ensured by the assertion Arrn
constraining both of them. Thus, in the last assertion, we can use Lemma 2 to obtain the
desired equality of l and l′ modulo permutation. Note also that the sentinel pointer is
returned back to the private heap, along with the garbage heap (existentially abstracted
by the − placeholder).

5 Flat combining
This section shows how PCMs in general, and histories in particular, can formalize the
concurrent algorithm design pattern of helping, whereby one concurrent thread may
execute code on behalf of another. We use Hendler et al.’s flat combining algorithm as
an example [14]. Unlike other proofs of this algorithm [4, 31], we do not require any
additional logical infrastructure aside from ordinary auxiliary state, represented by a
PCM [19, 22]. We verify the algorithm wrt. a generic PCM, and then instantiate with
the PCM of histories. Thus, our proof is usable even in examples where the specs do
not rely on histories.
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The flat combiner structure (FC) generalizes a coarse-grained lock [22,23,25]. In the
case of a lock, threads acquire exclusive access to the shared resource protected by the
lock, in succession. With the flat combiner, threads register the work that they want to
perform over the shared resource. The lock-acquiring thread (aka. the combiner) then
executes all the registered work, so the other threads do not need to compete for the
lock anymore. This reduces the contention on the lock, and improves performance.

Fig.8 Flat combining algorithm.
1 flatCombine(f: A→ B, x: A): B {
2 reqHelp(tid, f, x);
3 fix loop() {
4 locked <- tryLock();
5 if locked then {
6 for i∈{0, . . . , n − 1} {
7 req <- readReq(i);
8 if req == Req fi xi then {
9 w <- fi(xi);
10 doHelp(i, w);
11 }}
12 unlock();}
13 rc <- tryCollect(tid);
14 if rc == Some w
15 then return w;
16 else loop();}();}

The higher-order flatCombine procedure (Fig-
ure 8) works as follows.6 It takes as input a sequen-
tial function f and argument x, and registers the in-
voking thread for help with executing f x over the
shared resource. It does so by storing Req f x into
the shared publication array, at index tid (line 2),
where tid is the id of the invoking thread. It next
enters the main loop (line 3) and tries to acquire
the lock to the shared heap (line 4). The acquir-
ing thread becomes a combiner (line 5); it traverses
the publication array, where the global variable n
bounds the number of threads, checking for help re-
quests (lines 6–11). For each request found (which
can arrive even while the combiner holds the lock), the combiner executes the appropri-
ate function with the provided arguments (line 9) over the shared heap. It informs the
requesting thread i of the result w, by writing Resp w into the slot i of the publication
array (line 10). After the traversal, the combiner releases the lock (line 12). Finally, the
thread (combiner or otherwise), checks the publication array to see if it has been helped
(line 13). If so, it extracts the result w from its slot in the publication array, and fills the
slot with nit (all line 13). The result of the help, if one exists, is returned in line 15.
Otherwise, the thread loops for help again.

To supply the intuition behind the spec for FC, we first review how ordinary locks
work with auxiliary state, in the subjective setting of FCSL [22]. In CSL [23], and the
Owicki-Gries method [25], a lock comes with a resource invariant I that restricts the
heap of the shared resource. Such restriction implicitly assumes a presence of “hard-
coded” auxiliary state, describing the contents of the corresponding shared heap (the
explicit parametrization over the auxiliary state, which we make use of here, is ex-
plained in the introduction of [19]). When the lock is not taken, the shared heap satisfies
I. When the lock is taken, the heap is in the exclusive possession of the acquiring thread,
which can invalidate I, but has to restore it before releasing the lock. The subjective set-
ting is similar, except the values of the auxiliary state are drawn from a PCM U, and
specs keep track of two values gS and gO, describing how much the thread (self ) and
its environment (other) have contributed to the resource, respectively. When the lock is
free, the heap of the shared resource satisfies I(gS • gO). When the lock is released by
a thread, the thread may update its gS by some value g∆, reflecting that its contribution

6 For simplicity, we consider a modified version of the original algorithm. In particular, (a) we
use an array rather than a priority queue for registration of help requests, and (b) we do not
expunge help requests that have not been served for sufficiently long time.
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to the resource changed. Thus, if before locking, the resource satisfied I(gS • gO), after
unlocking it will satisfy I(gS • g∆ • gO), as shown by examples in Section 3 of [22].

The setup of the flat combiner is similar, but in addition to gS and gO, FC also keeps
an array gp storing a U-value for each thread. The entry gp[i] signifies how much the
thread i has been helped by the combiner. If gp[i] = g∆ is non-unit, i can collect the help
by joining g∆ to its own gS, and setting gp[i] to the unit 1 of U, after which it can ask
for help again. Thus, the overall relation between the auxiliary state and the resource
heap, when the lock is free, is captured by the invariant I (

⊙n
i=1 gp[i] • gS • gO).

5.1 Flat combiner state and transitions
The states of the FC concurroid F are described by the assertion:

WF =̂ fc
s7→ (tS,mS, gS) ∧ fc o7→ (tO,mO, gO) ∧ fc j7→ 〈lk 7→ b ·∪ hp ·∪ hr, gp〉 ∧ ∃lp. Arrn(ap, lp, hp)

The auxiliary state in the self/other components consists of the following. tS and tO are
sets of thread ids, which form a PCM under disjoint union.7 mS and mO are elements
of the mutual exclusion set O = {���Own,Own} [19, 22] and record whether the lock lk is
owned by the thread, or the environment. O is a PCM under the operation defined as
x •���Own =���Own • x = x, with Own • Own undefined. The unit element is���Own, and the
undefinedness of Own • Own means that two threads cannot simultaneously own the
lock. gS and gO are elements of a generic PCM U, as described above. The self/other
triples form a PCM with component-wise lifted joins and units.

The joint component of F contains a concrete heap, and the auxiliary array gp. The
concrete heap keeps the pointer lk 7→ b, which stands for the lock, with the boolean b
representing the lock status. It also stores the publication array with the origin pointer
ap into the heaplet hp (see notation (22)). The array stores elements of type Stt =̂

nit | Req f x | Resp w, as already apparent from Figure 8. We abuse the notation and
refer to the array represented by hp as ap. The heap hr is the resource protected by the
FC lock. Upon locking it moves to the exclusive ownership of the combiner.

We further assume the following properties of WF :
(i) for any tid, if gp[tid] , 1, then ap[tid] = Resp w for some w;

(ii) if b is tre then hr = empty and mS • mO = Own; otherwise mS • mO = ���Own and
I (

⊙n
i=1 gp[i] • gS • gO) hr.

Property (i) ensures that the auxiliary array gp holds a pending contribution in a cell
tid only if the corresponding entry in the publication array ap points to the response
with some (uncollected) result. Property (ii) formally relates the auxiliary state to the
resource heap hr, as already described.

Flat combiner concurroid’s external transitions intuitively correspond to locking and
unlocking the heap hr, thus moving it from the joint to private state, and vice-versa. We
do not present them formally, as they are similar to the transitions in CSL [22]. The
internal transitions req, help and coll synchronously change the contents of ap and gp

for a particular thread id i (one at a time) as the following diagram illustrates.

7 One thread may hold many thread id’s, which it distributes between its children upon forking.
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coll help
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The transition req can be taken only by a thread holding the thread id i; it changes
the value of ap[i] from nit to Req f x for some f and x. The transition help can be
performed by any thread that owns the lock (not necessarily the one with the id i); it
replaces the contents of ap[i] and gp[i] with an appropriate result w and an auxiliary
delta g∆, respectively. The two are valid wrt. the input x and the cumulative auxiliary
gall, as ensured by the constraint f ]. Finally, coll is invoked by the thread with id i; it
flushes the contents of gp[i], into the self-contribution gS and puts nit into ap[i].
5.2 Flat combiner specification
We now provide a spec for flatCombine in terms of the concurroid F . We assume
f : A→ B, x : A, and f comes with the following spec.8

{ ∃h. pv s7→ h ∧ I g h } f (x) { ∃h′ g∆. pv
s7→ h′ ∧ I (g • g∆) h′ ∧ f ] x res g g∆ }@P (25)

The spec allows the input heap h to change to h′. The resource invariant I has to be
preserved, up to a change of the auxiliary state, from g to g • g∆. f ] is a client-supplied
predicate which specifies f . We call it validity predicate; it is functional with respect
to g∆, and relates the input value v, the result value res, the initial auxiliary state g and
the “auxiliary delta” g∆ resulting from the invocation of f . For instance, if f were a
sequential push operation on stacks, with g and g∆ being set to histories τ and τ∆, we
might choose the following validity predicate:

push] x res τ τ∆ =̂ res = () ∧ τ∆ = tτfresh 7→ (l, x :: l), (26)

where l = τ[lst(τ)]. That is, push] fixes the result of push to be unit and its effect to be
the singleton history describing the action of pushing.

For the flatCombine spec, we need two auxiliary predicates. NoReq indicates that
the thread tid does not request help. · ↪→ (·), generalizes (5) from histories to PCM U.

NoReq(tid) =̂ fc
s7→ ({tid},��Own,−) ∧ ap[tid] = nit

fc ↪→ (gS, gO, g) =̂ fc
s7→ (−,−, gS) ∧ fc o7→ (−,−, gO) ∧ g v⊙n

i=1 gp[i] • gS • gO
(27)

Here, the partial order v on PCM elements is defined as g1 v g2 =̂ ∃g, g2 = g1 • g. It
generalizes the relation v from histories to the PCM U, and in the specs captures that
the value g1 was “current” before g2.

The spec for flatCombine is given wrt. a specific thread id tid.{
pv

s7→ empty ∗ fc ↪→ (1,−, g) ∧ NoReq(tid)
}

flatCombine( f , x) : B{
∃g′ g∆. pv s7→ empty ∗ fc ↪→ (g∆,−, g′) ∧ NoReq(tid) ∧ g v g′ ∧ f ] x res g′ g∆

}
@P o F

(28)

8 Thus, we do not require f to be sequential (i.e., in addition to just manipulating the privately-
owned state, f can also allocate new concurroids via hiding, and fork children threads), but
every sequential function can be given a spec in P.
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A call to flatCombine starts and ends in a state in which the thread tid does not request
the help (NoReq), and in which g names the sum total of the contributions. It does
not change the privately-owned heap, but increases self-contribution by amount of an
auxiliary delta g∆. The mediating value g′ is a sum-total of the contributions at the
moment when the thread received help; thus, f ] x res g′ g∆. As g′ is current sometime
after the initial g, the spec postulates g v g′. Due to space limitations, we omit a
detailed discussion on verification of the spec (28) of the flat combiner (it can be found
in [27, Appendix E] or in the accompanying Coq files).

To strengthen the analogy with coarse-grained CSL-style locks, let us note that if one
were to implement a procedure coarseGrainedCombine( f , x) = {lock(); f (x); unlock()},
its specification would be the same as (28), modulo the NoReq conjunct and the join
with all gp[i] components in (27), which would not be present in the coarse-grained
case, as they are artefacts of the helping machinery.9

5.3 Instantiating the flat combiner for stacks
To illustrate that the abstract spec for the flat combiner follows the expected intuition,
we consider an instance where gS, gO, gp are histories, and f is the sequential push
method for stacks, satisfying the generic sequential spec (25) with the validity predicate
push] defined by (26) and the stack invariant (16). So by instantiating (28), after some
simplification, we obtain:{

pv
s7→ empty ∗ fc ↪→ (empty,−, τ) ∧ NoReq(tid)

}
flatCombine(push, e) : Unit{

∃t l. pv s7→ empty ∗ fc ↪→ (t 7→ (l, e :: l),−, τ) ∧ τ < t ∧ NoReq(tid)
} (29)

Note that (29) is very similar to the spec (17) for Treiber push; the only difference,
again, is in the FC-specific components such as thread id’s, the NoReq predicate, and
the lock status views used in the definition of NoReq. Thus, the spec (28) is adequate.
A similar derivation can be done for an FC-specification of pop.

6 Related and future work
Histories are a recurring idea in the semantics of shared-memory concurrency, in one
form or another. For example, the classical Brookes’ semantics [2] uses traces to give a
model for CSL. Traces are similar to histories, but do not contain time stamps. The ex-
plicit time-stamping makes it straightforward to define a merge (i.e., join) for histories,
and endows them with PCM structure. While Brookes uses traces in the semantics, we
use histories in the specs.

Temporal reasoning about shared-memory concurrent programs has also been em-
ployed before. For example, O’Hearn et al. [24] advocate hindsight lemmas to directly
and elegantly capture the intuition about linearizability of a class of concurrent data
structures. In this paper, we put histories to use in ordinary Hoare-style specs. This
avoids the relational reasoning about permuting traces of two programs, as required by
linearizability, but is strong enough to provide Hoare logic specs that are expressive, and
capable of abstracting granularity. In our experience, deriving history-based specs very
much resembles reasoning by hindsight (e.g., verifying locate [24] and readPair).

9 To provide truly the same specs, we need abstract predicates to hide these artefacts. As abstract
predicates are easily available in Coq, we omit the further discussion.
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HLRG by Fu et al. is a Hoare logic for concurrency that admits history-based as-
sertions [11]. However, their histories are hard-coded into the logic. In contrast, our
histories are just a specific PCM, that one can use to instantiate the general framework
of FCSL. This affords greater flexibility: if history-based specifications are not needed
(e.g., the incrementation example [22]), they do not have to be used. HLRG defines
separating conjunction ∗ over histories as follows: conjoined histories must have equal
length, and their corresponding entry heaps are merged via disjoint union. In contrast,
our histories are not required to have heaps in the codomain. One can choose an arbi-
trary datatype to capture what is important for an example at hand.

Bell et al. use a variant of concurrent separation logic augmented with a monoid of
sets of histories to reason about programs with asynchronous communication via chan-
nels [1]. Their logic is tailored for producer/consumer pattern (similar to the example
we have considered in Section 4), and it features dedicated produce/consume predicates
PHist and CHist defined for a particular channel and a set of histories. However, with-
out time-stamping, Bell et al.’s sets of histories do not enjoy the unifomity with heaps,
hence, they are a subject of a series of dedicated inference rules.

Gotsman et al. use temporal reasoning to verify several concurrent memory reclama-
tion algorithms using the notion of grace period [12]. Their logic extends RGSep [34]
with a very specific notion of histories, which live in the shared state. In contrast, we use
histories not as shared, but as private auxiliary state, following the self/other dichotomy.
This enables us to directly reuse the frame rule and other logical infrastructure from the
separation logic FCSL, without any extensions.

Several recent approaches, such as Turon et al.’s CaReSL [31] (which also verifies
the flat combiner), and the logic of Liang and Feng (L&F) [20] support granularity
abstraction by unifying Hoare-style reasoning with linearizability and contextual re-
finement. In contrast, in this paper, we argue that a form of granularity abstraction
achieved by these works can already be obtained without relying on linearizability. In-
stead, by using histories, one obtains Hoare-style specs which hide the fine-grained
nature of the underlying programs. This can be done in a simple Hoare logic (and we
reuse FCSL off-the-shelf), whereas CaReSL and L&F require significant additional log-
ical infrastructure [21, 32], as linearizability is a stronger property than our specs. One
example of the additional infrastructure has to do with helping (e.g., in the flat com-
biner), where these logics consider the refined effectful commands as resources, and
make them subject to ownership transfer [31]. While on the surface there is a similarity
between commands-as-resources and histories-as-resources, there are also significant
differences. Commands-as-resources are about executing specification-level programs
(and an effectful abstract program, once executed, cannot be “re-executed”, since it has
reached a value), while histories are about what has transpired. Unlike commands-as-
resources, histories also contain information about the order in which something hap-
pened in the form of timestamps, thus enabling temporal reasoning by hindsight [24].
Histories have a PCM structure, whereas commands-as-resources do not. Hence, his-
tories in FCSL are subject to the same set of inference rules as heaps, in contrast to
commands-as-resources which requires a number of dedicated inference rules.

Many of our history-based proofs are very close in spirit to proofs of linearizability
(e.g., the proofs of Treiber stack in Section 4 compared to the proofs in L&F [20]), since
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adding an entry to a self-history can be seen as linearizing an effectful operation. How-
ever, we obtain some simplification in the proofs of pure methods such as readPair.
In particular, L&F and related logics require prophecy variables [26] (or, equivalently,
speculations [20, 32]) in their proofs of readPair, but we do not. We do expect, how-
ever, that prophecy variables will be required in examples where the shape of the event
to be inserted into the history cannot be fully determined at the moment when it logi-
cally takes place (e.g., Harris et al.’s MCAS [33]). We plan to address such examples
in the future work, by choosing another history-based PCM; that of branching-time
histories, in contrast to the linear-time ones used here.

In this work, we argued for the abstraction of granularity via the singleton histories of
the form t 7→ (s1, s2), which describe the atomic changes in the abstract state, although
other ways are possible to express what it means for a program to behave “like an atomic
one” in a setting of a Hoare-style logic.

In particular, a different approach to express atomicity abstraction is suggested by da
Rocha Pinto et al.’s logic TaDA [5] (a successor of the Concurrent Abstract Predicates
framework (CAP) [6]) using the notion of an “atomic Hoare triple” of the form 〈p〉 c 〈q〉,
where the precondition p is required to be stable, whereas q is not. TaDA proposes a
make_atomic command and a number of related inference rules, which allow one to
specify synchronized changes of auxiliary resources across several shared regions. The
changes themselves do not have to be physically atomic; it is sufficient that they appear
atomic from the point of view of specs. TaDA’s assertions range over atomic track-
ing resources, similar to the operations-as-resources [20, 31]. Unlike histories, these
resources do not have the PCM structure, and thus require special treatment in TaDA’s
metatheory. The atomic tracking resources are not subject of ownership transfer, which
is why TaDA currently does not support reasoning about helping.

Yet another view of atomicity abstraction and canonical concurrent specifications,
which also bypasses linearizability, is advocated by Svendsen et al. in a series of papers
on Higher-Order and Impredicative Concurrent Abstract Predicates [28, 29]. Both HO-
CAP and iCAP leverage the idea, originated by Jacobs and Piessens [17], of parametriz-
ing specs of concurrent data types by a user-provided auxiliary code. Such auxiliary
code can be seen as a callback, which, when invoked at some point during the execu-
tion of a specified method, changes the values of auxiliary resources in several regions
simultaneously. Thus, when proving a parametrized spec, one should locate a right mo-
ment to invoke the provided auxiliary code, so its precondition would be ensured and
the postcondition handled properly, a reasoning similar to locating a linearization point.
The use of the first-class auxiliary code can introduce circularity in the domain underly-
ing the logic—the issue tackled in HOCAP by means of indirection via “region types”
and resolved in iCAP by providing a (non-elementary) model in the topos of trees. One
difference between iCAP and TaDA is that make_atomic in TaDA presents a more lo-
calized view of atomicity, whereas the specs in iCAP have to predict the uses of the data
structure, and provide hooks for callbacks. The hooks lead to somewhat indirect specs,
and propagate client-side information into the reasoning about the structure.

We have not considered either of these two ways of exploiting abstract atomicity
in the current paper, but plan to add make_atomic to FCSL in the future work. The
challenge will be to generalize make_atomic to work with different notions of histories
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(e.g., branching-time histories may be useful, as mentioned above). We believe that the
PCM approach (together with subjectivity), neither of which is exploited by TaDA and
iCAP, will be beneficial in that respect. In particular, we plan to use PCMs to generalize
the notion of logical atomicity afforded by histories, that we explored in this paper.
Given a PCMU, the element x ∈ U is prime if it cannot be represented as x = x1•x2, for
non-unit x1, x2. For example, in the PCM of heaps, the prime elements are the singleton
heaps. In the PCM of natural numbers with multiplication, the prime elements are the
prime numbers. In the PCM of histories, the prime elements are the singleton histories
t 7→ a. A program can be considered logically atomic if it augments the self-owned
portion of its state by a prime element, or by a unit. According to this definition, all the
examples presented in this paper are atomic. We expect it should be possible to soundly
apply make_atomic to programs that are atomic in this logical sense.

7 Conclusion
In this work we proposed using specifications over auxiliary state in the form of histo-
ries as means of providing general and expressive specifications for fine-grained con-
current data structures in a separation style logic.

Histories satisfy the algebraic properties of PCMs, and thus can directly reuse the
underlying infrastructure from an employed separation logic, such as its assertion logic
and frame rule, enabling a separation logic style of local reasoning about histories that
has usually been reserved for heaps. Moreover, as we illustrated with the formalization
of the flat combiner Section 5, the concept of ownership transfer from separation logic,
when specialized to the PCM of histories, captures the design pattern of helping.

In addition to the flat combiner, we have verified a number of benchmark fine-grained
structures, such as the pair snapshot structure, and the Treiber stack. The novelty of the
specs and the proofs is that they all rely in an essential way on the subjective dichotomy
between self and other auxiliary state, in order to directly relate the result of a program
execution with the interference of other threads. Such explicit dichotomy provides for
what we consider very concise proofs, as demonstrated by our implementation in Coq.
Acknowledgements. We thank the anonymous ESOP 2015 reviewers for their feedback.
This research was partially supported by Ramon y Cajal grant RYC-2010-0743.

References
1. C. J. Bell, A. W. Appel, and D. Walker. Concurrent separation logic for pipelined paralleliza-

tion. In SAS, volume 6337 of LNCS. Springer, 2010.
2. S. Brookes. A semantics for concurrent separation logic. Th. Comp. Sci., 375(1-3), 2007.
3. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In

LICS, 2007.
4. A. Cerone, A. Gotsman, and H. Yang. Parameterised Linearisability. In ICALP, volume

8573 of LNCS, 2014.
5. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A Logic for Time and Data

Abstraction. In ECOOP, volume 8586 of LNCS, 2014.
6. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent

Abstract Predicates. In ECOOP, volume 6183 of LNCS, 2010.
7. T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying linearizability proofs

with reduction and abstraction. In TACAS, volume 6015 of LNCS, 2010.
8. X. Feng. Local rely-guarantee reasoning. In POPL, 2009.



Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity 25

9. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. In ESOP, volume 4421 of LNCS, 2007.

10. I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theor. Comput. Sci., 411(51-52), 2010.

11. M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic concurrency using
a program logic for history. In CONCUR, volume 6269 of LNCS, 2010.

12. A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory reclamation algo-
rithms with grace. In ESOP, volume 7792 of LNCS, 2013.

13. A. Gotsman and H. Yang. Linearizability with Ownership Transfer. In CONCUR, volume
7454 of LNCS, 2012.

14. D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In SPAA, 2010.

15. M. Herlihy and N. Shavit. The art of multiprocessor programming. M. Kaufmann, 2008.
16. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Prog. Lang. Syst., 12(3), 1990.
17. B. Jacobs and F. Piessens. Expressive modular fine-grained concurrency specification. In

POPL, 2011.
18. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.
19. R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-grained concurrency. In

POPL, 2013.
20. H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization

points. In PLDI, 2013.
21. H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying concurrent

program transformations. In POPL, 2012.
22. A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In ESOP, volume 8410 of LNCS, 2014.
23. P. W. O’Hearn. Resources, concurrency, and local reasoning. Th. Comp. Sci., 375(1-3), 2007.
24. P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizability

with hindsight. In PODC, 2010.
25. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach.

Commun. ACM, 19(5), 1976.
26. S. Qadeer, A. Sezgin, and S. Tasiran. Back and forth: Prophecy variables for static verifica-

tion of concurrent programs. Technical Report MSR-TR-2009-142, 2009.
27. I. Sergey, A. Nanevski, and A. Banerjee. Specifying and verifying concurrent algorithms

with histories and subjectivity. Extended Version and Supporting Material. Available from
http://ilyasergey.net/projects/histories.

28. K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract Predicates. In ESOP,
volume 8410 of LNCS, 2014.

29. K. Svendsen, L. Birkedal, and M. J. Parkinson. Modular reasoning about separation of
concurrent data structures. In ESOP, volume 7792 of LNCS, 2013.

30. R. K. Treiber. Systems programming: coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center, 1986.

31. A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-style reasoning in a
logic for higher-order concurrency. In ICFP, 2013.

32. A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for
fine-grained concurrency. In POPL, 2013.

33. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-
bridge, 2007.

34. V. Vafeiadis and M. J. Parkinson. A Marriage of Rely/Guarantee and Separation Logic. In
CONCUR, volume 4703 of LNCS, 2007.

http://ilyasergey.net/projects/histories

	Specifying and Verifying Concurrent Algorithms  with Histories and Subjectivity

