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Abstract. We present a theory for slicing probabilistic imperative pro-
grams —containing random assignment and “observe” statements— rep-
resented as control flow graphs whose nodes transform probability dis-
tributions. We show that such a representation allows direct adaptation
of standard machinery such as data and control dependence, postdomi-
nators, relevant variables, etc. to the probabilistic setting. We separate
the specification of slicing from its implementation: first we develop syn-
tactic conditions that a slice must satisfy; next we prove that any such
slice is semantically correct; finally we give an algorithm to compute the
least slice. A key feature of our syntactic conditions is that they involve
two disjoint slices such that the variables of one slice are probabilistically
independent of the variables of the other. This leads directly to a proof
of correctness of probabilistic slicing.

1 Introduction

The task of program slicing [14,12] is to remove the parts of a program that are
irrelevant in a given context. This paper addresses slicing of probabilistic impera-
tive programs which, in addition to the usual control structures, contain “random
assignment” and “observe” statements. The former assign random values from
a given distribution to variables. The latter remove undesirable combinations of
values, a feature which can be used to bias the variables according to real world
observations. The excellent survey by Gordon et al. [6] depicts many applications
of probabilistic programs.

Program slicing of deterministic imperative programs is increasingly well un-
derstood [10,3,11,1,5]. A basic notion is that if the slice contains a program point
which depends on some other program points then these also should be included
in the slice; here “depends” typically encompasses data dependence and control
dependence. However, Hur et al. [7] recently demonstrated that in the presence
of random assignments and observations, standard notions of data and control
dependence no longer suffice for semantically correct (backward) slicing. They
develop a denotational framework in which they prove correct an algorithm for
program slicing. In contrast, this paper shows how classical notions of depen-
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dence can be extended to give a semantic foundation for the (backward) slicing

of probabilistic programs. The paper’s key contributions are:

— A formulation of probabilistic slicing in terms of probabilistic control flow
graphs (Sect. 3) that allows direct adaptation of standard machinery such
as data and control dependence, postdominators, relevant variables, etc. to
the probabilistic setting. We also provide a novel operational semantics of
probabilistic control flow graphs (Sect. 4): written (v, D) = (v’, D’), the se-
mantics states that as “control” moves from node v to node v’ in the CFG,
the probability distribution D transforms to distribution D’.

— Syntactic conditions for correctness (Sect. 5) that in a non-trivial way extend
classical work on program slicing [5], and whose key feature is that they in-
volve two disjoint slices; in order for the first to be a correct final result of
slicing, the other must contain any “observe” nodes sliced away and all nodes
on which they depend. We show that the variables of one slice are probabilis-
tically independent of the variables of the other, and this leads directly to the
correctness of probabilistic slicing (Sect. 6).

— An algorithm, with running time at most cubic in the size of the program,
that computes the best possible slice (Sect. 7) in that it is contained in any
other (syntactic) slice of the program.

Our approach separates the specification of slicing from algorithms to compute
the best possible slice. The former is concerned with defining what is a correct
syntactic slice, such that the behavior of the sliced program is equivalent to
that of the original. The latter is concerned with how to compute the best
possible syntactic slice; this slice is automatically a semantically correct slice
—mno separate proof is necessary.

A program’s behavior is its final probability distribution; we demand equality
modulo a constant factor so as to allow the removal of “observe” statements
that do not introduce any bias in the final distribution. This will be the case
if the variables tested by “observe” statements are independent, in the sense of
probability theory, of the variables relevant for the final value.

Full proofs of all results appear in the accompanying technical report [2].

2 DMotivating Examples

Probabilistic programs. Whereas in deterministic languages, a variable has only
one value at a given time, we consider a language where a variable may have many
different values at a given time, each with a certain probability. (Determinism is
a special case where one value has probability one, and all others have probability
zero.) We assume, to keep our development simple, that each possible value is
an integer. A more general development, somewhat orthogonal to the aims of
this paper, would allow real numbers and would require us to employ measure
theory (as explained in [9]); we conjecture that much will extend naturally (with
summations becoming integrals).

Similarly to [6], probabilities are introduced by the construct x := Random(v))
which assigns to variable z a value with probability given by the random dis-
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tribution ¢ which in our setting is a mapping from Z (the set of integers) to
[0,1] such that Zw(z) = 1. A program phrase transforms a distribution into

Z€EL
another distribution, where a distribution assigns a probability to each possible

store. This was first formalized by Kozen [8] in a denotational setting. As also
in [6], we shall use the construct Observe(B) to “filter out” values which do not
satisfy the boolean expression B. That is, the resulting distribution assigns zero
probability to all stores not satisfying B, while stores satisfying B keep their
probability.

The examples. Slicing amounts to picking a set @ of “program points” (satisfying
certain conditions as we shall soon discuss) and then removing nodes not in @ (as
we shall formalize in Sect. 4.6). The examples all use a random distribution 14
over {0,1,2,3} where 14(0) = t4(1) = ¢4(2) = ¥4(3) = 1 whereas 1h4(i) = 0 for
i ¢ {0,1,2,3}. The examples all consider whether it is correct to let Q contain
exactly © := Random(¢)4) and Return(z), and thus slice into a program P, with
straightforward semantics: after execution, the probability of each possible store
is given by the distribution A’ defined as A’'({z — i}) = % if i € {0,1,2,3};
otherwise A'({z — i}) = 0.

Example 1 Consider the program Py Wopr = Random(t)4); 2: y := Random(t)4);
3: Observe(y > 2); 4: Return(x). The distribution produced by the first two as-

signments will assign probability 11°16 to each possible store {x — i, y — j}
with 1,5 € {0,1,2,3}. In the final distribution D1, a store {x — i, y — j} with
Jj < 2 is impossible, and for each i € {0,1,2,3} there are thus only two pos-
sible stores that associate x with i: the store {x — i, y — 2}, and the store
{z — i, y— 3}. Restricting to the variable x that is ultimately returned,

> 11 1
D1({$'—>i})=jz;D1({x’—>i7 y—j}) = 6716 8
if i € {0,1,2,3} (otherwise, D1({x — i}) = 0). We see that the probabilities in
Dy do not add up to 1 which reflects that the purpose of an Observe statement
is to cause undesired parts of the “local” distribution to “disappear” (which may
give certain branches more relative weight than other branches). We also see
that D1 equals A’ except for a constant factor: Dy = 0.5+ A’. That is, A’ gives
the same relative distribution over the values of x as Dy does. (An alternative
way of phrasing this is that “normalizing” the “global” distribution, as done in
[6], gives the same result for P, as for Py.) We shall therefore say that P, is a
correct slice of Py.

Thus the Observe statement is irrelevant to the final relative distribution of x.
This is because y and x are independent in Dy, as formalized in Def. 3.

Example 2 Consider the program Ps e 1:x := Random(t)4); 2: y := Random(¢)4);
3: Observe(x +y > 5); 4: Return(z). Here the final distribution Do allows only
3 stores: {x — 2, y— 3}), {x = 3, y — 2}) and {z — 3, y — 3}), all with

1 1 1
probability 6’ and hence Dy({x — 2}) = 6 and Dy({x — 3}) = 3 Thus the
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program is biased towards high values of x; in particular we cannot write Dy in
the form cA’. Hence it is incorrect to slice Py into P,.
In this example, z and y are not independent in Ds; this is as expected since the
Observe statement in P, depends on something (the assignment to x) on which
the returned variable z also depends.
Example 3 Consider the program Pj o = Random(¢p4); (if « > 2 2z :=
Random(t)4); Observe(z > 3)); Return(z). P3 is biased towards returning low
values of x, with the final distribution D3 given by Ds({z + i}) = 1 when
i €{0,1} and D3({z + i}) = D3({z i, 2+ 3}) = 1% when i € {2,3}. Hence
it is incorrect to slice P3 into P,.
The Observe statement cannot be removed: it is control dependent on the as-
signment to z, on which the returned x also depends.
The discussion so far suggests the following tentative correctness condition for
the set @ picked by slicing:
— @ is “closed under dependency”, i.e., if a program point in ) depends on
another program point then that program point also belongs to Q;
— (@ is part of a “slicing pair”: any Observe statement that is sliced away belongs
to a set Qo that is also closed under dependency and is disjoint from Q.
The above condition will be made precise in Def. 9 (Sect. 5) which contains a
further requirement, necessary since an Observe statement may be encoded as
a potentially non-terminating loop, as the next example illustrates.

Example 4 Consider the program P, ©oy = Random(v)4); y := Random(t)y);
(if x > 2 (while y < 5 do y := E)); Return(z) where E is an arithmetic
expression. If E is “y+ 17 then the loop terminates and y’s final value is 6. In
the resulting distribution D', fori € {0,1,2,3} we have D'({x — i}) = D'({z —
i, y— 6}) = 2 = A'({z > i}). Thus it is correct to slice Py into P,.

But if E is “y — 17 then the program will not terminate when x > 2 (and
hence the conditional encodes Observe(z < 2)). Thus the resulting distribution
Dy is given by Dy({z — i}) = & when i € {0,1} and Ds({z — i}) = 0 when
i ¢ {0,1}. Thus it is incorrect to slice Py into P,. Indeed, Def. 9 rules out such
a slicing.

3 Control Flow Graphs

This section precisely defines the kind of CFGs we consider, as well as some key
concepts that are mostly standard (see, e.g., [10,3]). However, we also introduce
a notion (Def. 1) specific to our approach.

Figure 1 depicts, with the nodes numbered, the CFGs corresponding to the
programs P3 and P, from Examples 3 and 4. We see that a node can be la-
beled with an assignment = := E (x a program variable and E an arithmetic
expression), with a random assignment x := Random(¢)) (we shall assume that
the probability distribution v contains no program variables though it would
be straightforward to allow it as in [7]), with Observe(B) (B is a boolean ex-
pression), or (though not part of these examples) with Skip. Also, there are
branching nodes with two outgoing edges. Finally, there is a unique End node
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Return(z) to which there must be a path from all other nodes but which has
no outgoing edges, and a special node Start (which may have any label and is
numbered 1 in the examples) from which there is a path to all other nodes.

We let Def (v) be the variable occurring on the left hand side if v is a (random)
assignment, and let Use(v) be the variables occurring in the right hand side of an
assignment, in a boolean expression used in an Observe node or in a branching
node, or as the sole variable in a End node. We demand that all variables be
defined before they are used.

1: x := Random(t)4)

2:x>2
e 0 3: z := Random()4)

4: Observe(z > 3)

e 5: Return(zx)

Fig.1. The CFGs for Ps (left) and P4 (right) from Examples 3 and 4.

1: x := Random(¢)4)
2: y := Random(t)4)
3rx>2

4:y <5

5:y:=F

6: Return(x)

We say that v, postdominates v if v; occurs on all paths from v to End; if
also v1 # v, v1 is a proper postdominator of v. And we say that v; is the first
proper postdominator of v if whenever vy is another proper postdominator of
v then all paths from v to vy contain vy. It is easily shown that for any v with
v # End, there is a unique first proper postdominator of v, called 1PPD(v). In
Fig. 1(right), 1PPD(1) = 2, while also nodes 3 and 6 are proper postdominators.

We say that vy is data dependent on vy, written v; 44 vg, if there exists
x € Use(vz) N Def (v1), and there exists a non-trivial path = from vy to vy such

that « ¢ Def (v) for all nodes v that are interior in 7. In Fig. 1(left), 1 2 9. A set

of nodes @ is closed under data dependence if whenever vs € @ and vy % Vg
then also v; € Q. We say that z is (Q-)relevant in v, written z € rvg(v),
if there exists v’ € @ such that € Use(v'), and a path 7 from v to v’ such
that @ ¢ Def(vy) for all vy € 7\ {v'}. In Fig. 1(left), rvy45y(4) = {z, 2} but
T0{45)(3) = {7}

Next, a concept we have discovered useful for the subsequent development:

Definition 1 With v’ a postdominator of v, and Q a set of nodes, we say that v
stays outside Q) until v’ iff whenever 7 is a path from v to v' where v’ occurs
only at the end, m will contain no node in Q except possibly v'.
In Fig. 1(right), node 4 stays outside {1,6} until 6 but does not stay outside
{1,5,6} until 6. It turns out that if v stays outside @ until v' and @ is closed
under data dependence then v has the same Q-relevant variables as v’. Moreover,
if ) satisfies certain additional properties, the distribution at v’ (of the relevant
variables) will equal the distribution at wv.
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4 Semantics

In this section we shall define the meaning of the CFGs introduced in the previ-
ous section, in terms of an operational semantics that manipulates distributions
which assign probabilities to stores (Sect. 4.1). Sect. 4.2 defines what it means
for sets of variables to be independent wrt. a given distribution. To prepare for
the full semantics (Sect. 4.5) we define a one-step reduction (Sect. 4.3) from
which we construct a reduction which allows multiple steps but only a bounded
number of iterations (Sect. 4.4). The semantics also applies to sliced programs
and hence (Sect. 4.6) provides the meaning of slicing.

4.1 Stores and Distributions

Let U be the universe of variables. A store s is a partial mapping from U to
Z. We write s[xz — z] for the store s’ that is like s except s'(z) = z, and write
dom(s) for the domain of s. We write S(R) for the set of stores with domain R,
and also write F for S(U). If s; € S(R1) and s5 € S(Ry) with Ry N Ry = 0, we
may define s; P so with domain R; U Ry the natural way. With R a subset of U,
we say that s; agrees with so on R, written s; £ s9, iff R C dom(s1) N dom(s2)
and for all € R, s1(x) = s2(x). We assume that there is a function [ ] such
that [E]s is the integer result of evaluating F in store s and [B]s is the boolean
result of evaluating B in store s (the free variables of E, B must be in dom(s)).

A distribution D (we shall later also use the letter A) is a mapping from F
to non-negative reals with ) D < oo where ) D is a shorthand for ) _» D(s).
Thanks to our assumption that values are integers, and since U can be assumed
finite, F is a countable set and thus Y D is well-defined even without measure
theory. If >~ D < 1, implying D(s) < 1 for all s, we say that D is a probability
distribution. We define D; + Dy by stipulating (Dy + D3)(s) = D1(s) + Da(s),
and for ¢ > 0 we define ¢D by stipulating (¢D)(s) = ¢D(s). We write Dy < Do
iff D1(s) < Ds(s) for all s, and say that D = 0 iff D(s) = 0 for all s. We assume
there is a designated initial distribution, Dz, such that > Dz = 1 (Dz may be
arbitrary as all variables must be defined before they are used).

As suggested by the calculation in Example 1, we have

Definition 2 For partial store s with domain R, let D(s) = Zsoef o, D(so).

Observe that D(0)) = >  D. Say that D; agrees with Dy on R, written D £ Do,
if Dy (s) = Dao(s) for all s € S(R). If D; & Dy and R C R’ then Dy £ Ds.

4.2 Probabilistic Independence

Some variables of a distribution D may be independent of others. Formally:
Definition 3 (independence) Let R; and Ry be disjoint sets of variables. We
say that Ry and Ry are independent in D iff for all s; € S(R;) and s € S(Rz2),
we have D(s1 @ s2) >, D = D(s1)D(s2).
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To motivate the definition, first observe that if >° D = 1 it amounts to the well-
known definition of probabilistic independence; next observe that if >~ D > 0, it
is equivalent to the well-known definition for “normalized” probabilities:

D(81 @82) _ D(Sl) ' D(SQ)
>.D XD D
Trivially, R; and R are independent in D if D =0 or Ry = () or Ry = (.
Example 5 In FEzample 1, {z} and {y} are independent in Dy. This is since

1
fori € {0,1,2,3} and j € {2,3} we have D1({x — i, y — j}) = 16 5° that

1 1 1
Di({x —1i}) = 3’ Di{y—j}) = T and ZDl =5 we thus have the desired

equality Dy({r i, y = 1) 3 Dy = 55 = Di({ =+ i) - Di({y - ).

And the equality holds trivially if i ¢ {0,1,2,3} or j ¢ {2,3} since then
Di({z =i, y— j}) =0 and either Dy({z — i}) =0 or D1({y — j}) =0.
Example 6 In Ezample 2, {x} and {y} are not independent in Dy. This is

since Do({x +— 3, y—3})> Dy = % while Do({z — 3})D2({y — 3}) = 24%.

4.3 One-step Reduction

If v has label Branch(B), with vy (v2) the successor taken when B is true (false),
we define

— (v, D) EN (v1, D7) where Dy (s) equals D(s) when [B]s but is 0 otherwise;

- (v,D) RN (va, D3) where Dy(s) is 0 when [B]s but equals D(s) otherwise.
Thus D = D; + Ds. Given v such that v has exactly one successor v/, the one
step reduction (v, D) — (v', D’) is given by defining D’(s’) as follows:

Skip ‘ z:=F ‘ x := Random(v)) ‘ Observe(DB)
L=} ¢(5’(1‘))D(s> { D(S ) if [[B]]S

0 otherwise

D(Sl> ZSG}- | S’ZS[IHHE]]S] D(S) ZSE}- ‘ s/

If (v,D) — (v',D’) then Y. D' < > D with equality if v is not an Observe node.

4.4 Multi-step Reduction and Loops

The key semantic relation is of the form (v, D) = (v, D) where v’ postdominates
v, saying that distribution D transforms to distribution D’ as “control” moves
from v to v’ along paths that may contain multiple branches and even loops
but which do not contain v until the end. To define that relation, we need an

auxiliary relation of the form (v, D) X (v', D") where k is a non-negative integer
that bounds the number of times control is allowed to move “away” from the
End node; if K = 1 then we only take into account paths that for each step
get closer to the End node, but if £ = 2 we also allow paths with one cycle,
etc. (k=0 corresponds to “L” in denotational semantics.) Our goal is to let D’



8 Torben Amtoft and Anindya Banerjee

be a function of v, D, v’ and k, and we do so by a definition that is inductive
first in k, and next on the length of the longest acyclic path from v to v’ (proving
properties of the relation will involve a case analysis on the various clauses).
Definition 4 (:k>) Given v and v' where v’ postdominates v, and given k and
D, (v,D) X (v', D’) holds when D' is defined as follows:

1. if k = 0 then D’ = 0;

2. otherwise, if v/ = v then D’ = D;

3. otherwise, if with v”/ = 1PPD(v) we have v’ # v”, we recursively first find
D" with (v, D) LY (v, D") and next find D’ with (v, D) LY (v, D");

4. otherwise, if v has exactly one successor, which must be v/, we let D’ be such
that (v, D) — (v, D’);

5. otherwise, if v has two successors with (v, D) KN (v1,D1) and (v, D) EN
(v, D) (thus v' postdominates v; and vy), we recursively find D} and Dj
such that (v, Dy) LA (v', D}) and (va, D2) LY (v', D%), and let D" = D} + Dj.
Here k; (i = 1,2) is given as follows: if the longest acyclic path from v; to
v’ is shorter than the length of the longest acyclic path from v to v’ then
k; = k, otherwise k; = k — 1.

Example 7 Consider the CFG for Py (Fig. 1(right)) with E chosen as “y+1”

and with Dy, such that (1, D1) LY (6,Dy). Ifi € {0,1} and j € {0,1,2,3} then for
1 1

all k > 1 we have Dy({z — i, y— j}) = 6 and thus Di({x — i}) = —. But if

i € {2,3} then we have Dy({x — i, y— 6}) =0ifk <3; Dy({z — i, y > 6}) =

75 (for y initially 3); Ds({z — i, y = 6}) = =; De({z — i, y — 6}) = =,

and Dy({z i, y—6}) = 1= if k> T.

Note also that for k > 0, (4,D) LY (4, D") only holds if D' = D, since the only
path from 4 to 4 where 4 does not occur until the end is the empty path. Still, the
cycle between nodes 4 and 5 is taken into account. For if (4, D) LY (6,D") then
D’ = D} + Dy where D = Dy + Dy (D3 is D restricted to states where y > 5)
and D1 is such that for some DY, (5, D1) =S (4, DY) and (4, DY) = (6, D).
D’ is a monotone function of D and of kk .

Lemma 1 (monotonicity) If (v,D;) = (v/,D}) and (v, D) = (v', Db) with
k1 < kg and Dy < Dq then Dy < Dj. If (v, D) X (v, D) then Y- D' <> D.

Equality between > D" and > D can fail due to Observe nodes (c¢f. Examples 1—
3), or due to infinite loops (c¢f. Example 4) which cause k to be eventually zero.

4.5 Top-Level Semantics

Definition 5 (=) Given (v, D), and v' which postdominates v, (v, D) = (v, D)
holds when D’ is defined as follows: with Dy, (for k£ > 0) the unique distribution
such that (v, D) LY (v', Dy), let D' =limy_,o0 Dy (the limit is taken pointwise).
Observe by Lemma 1 that Dy, < Dg, when k1 < ko; for each s we thus have
Dy(s) < Dy(s) < ... < Di(s) < Dg41(s) < ... and hence it is well-defined to
let D'(s) = klirgo Dy (s). Also at top-level, monotonicity holds:
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Lemma 2 If (v,D) = (v',D') then Y. D' <> D.
Example 8 Continuing Example 7, we see that the limit D' is given as follows:
D'({e i, y 1) = & ifi € {0,1}, j € {0,1,2,3}; D'({w > i, y o j}) = &
ifi€{2,3},5=6; and D'({x — i, y— j}) =0 otherwise.

We may define the meaning of a CFG with End node Return(z) as Av.D'({z —
v}) where D’ is such that (Start, Dz) = (Return(z), D’).

4.6 Semantics of Slicing

A slice set is a set of nodes (which must satisfy certain conditions, cf. Def. 9).
Slicing amounts to ignoring nodes not in the slice set:
Definition 6 (=) Given a slice set (), we define the semantics of the CFG
that results from slicing wrt. @ as follows:

Let (v, A) LN (v', A”) be defined as (v, D) X (v, D") (Def. 4), except that
whenever v ¢ Q U {End} then v is labeled Skip and the successor of v becomes
1PPD(v). And let (v, A) = (v/, A) be defined by letting A" = leIrolo Ay, where

for each k > 0, Ay, is the unique distribution such that (v, A) LN (v, Ag).

5 Conditions for Slicing

With @ the slice set, we now develop conditions for () that ensure semantic
correctness. It is standard to require ) to be closed under data dependence,
and additionally also under some kind of “control dependence”. In this section
we first elaborate on the latter condition after which we study the extra condi-
tions needed in our probabilistic setting. Eventually, Def. 9 gives conditions that
involve not only @ but also another slice set ()¢ containing all Observe nodes
to be sliced away. As stated in Proposition 1, these conditions are sufficient to
establish probabilistic independence of @) and Q. This in turn is crucial for
establishing the correctness of slicing, as stated in Theorem 1 (Sect. 6).

Weak Slice Sets. Danicic et al. [5] show that various kinds of control dependence
can all be elegantly expressed within a general framework whose core is the
following notion:

Definition 7 (next observable) With @ a set of nodes, v’ is a next observ-
able in Q of v iff v/ € QU {End}, and v’ occurs on all paths from v to a node in
Q U {End}.

A node v can have at most one next observable in Q. It thus makes sense to
write v/ = nextg(v) if v is a next observable in @ of v. We say that Q) provides
next observables iff nextg(v) exists for all nodes v. If v’ = nextg(v) then v’ is
a postdominator of v, and if v € Q U {End} then nextg(v) = v.

In the CFG for P5 (Fig 1), letting @ = {1, 3,5}, node 5 is a next observable
in @ of 4: all paths from 4 to a node in ) will contain 5. But no node is a
next observable in @ of 2: node 3 is not since there is a path from 2 to 5 not
containing 3, and node 5 is not since there is a path from 2 to 3 not containing
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5. Therefore () cannot be the slice set: node 1 can have only one successor in
the sliced program but we have no reason to choose either of the nodes 3 and 5
over the other as that successor. This motivates the following definition:
Definition 8 (weak slice set) We say that Q is a weak slice set iff it pro-
vides next observables, and is closed under data dependence.
While the importance of “provides next observable” was recognized already in
[11,1], Danicic et al. were the first to realize that it is the key property (to-
gether with data dependence) to ensure semantically correct slicing. They call
the property “weakly committing” (thus our use of “weak”) and our definition
differs slightly from theirs in that we always consider End an “observable”.

It is easy to see that the empty set, as well as the set of all nodes, is a weak
slice set. Moreover, if (1, Q2 are weak slice sets, so is @1 U Q.

Adapting to the Probabilistic Setting. The key challenge in slicing probabilistic
programs is, as already motivated through Examples 1-4, to handle Observe
nodes. In Sect. 2 we hinted at some tentative conditions a slice set ¢ must
satisfy; we can now phrase them more precisely:

1. @ must be a weak slice set that contains End, and

2. there exists another weak slice set Qg such that (a) @ and Qg are disjoint

and (b) all Observe nodes belong to either @ or Q.

For programs P;, P», the control flow is linear and hence all nodes have a next
observable (so a node set that is closed under data dependence is a weak slice
set). For P; we may choose @ = {1,4} and Qo = {2, 3} as they are disjoint, and
both closed under data dependence. Hence we may use {1,4} as a slice set; from
Def. 6 we see that the resulting slice is 1: x := Random(¢4); 2: Skip; 3: Skip; 4:
Return(z), which is obviously equivalent to P, as defined in Sect. 2.

Next consider the program P, where @ should contain 4 and hence (by data
dependence) also contain 1. Now assume, in order to remove the Observe node
(and produce P,), that @ does not contain 3. Then Qo must contain 3, and (as
Qo is closed under data dependence) also 1. But then @ and @ are not disjoint,
which contradicts our requirements. Thus @ does contain 3, and hence also 2.
That is, @ = {1,2,3,4}. We see that the only possible slicing is the trivial one.

Any slice for P53 will also be trivial. From 5 € @ we infer (by data dependence)
that 1 € Q. Assume, to get a contradiction, that 4 ¢ Q. Then 4 € Qy, and for
node 2 to have a next observable in )y we must also have 2 € )y which by data
dependence implies 1 € Qg which as 1 € @ contradicts @) and Qg being disjoint.
Thus 4 € @ which implies 3 € @ (by data dependence) and 2 € @ (as otherwise
2 has no next observable in Q).

For Py, it is plausible that @ = {1,6} and Qo = 0, since for all v # 1 we would
then have 6 = nextg(v). From Def. 6 we see that after removing unreachable
nodes, the resulting slice is: 1: x := Random(t)4); 2: Skip; 3: Skip; 6: Return(z).
Yet, in Example 4 we saw that this is in general not a correct slice of P;. This
reveals a problem with our tentative correctness conditions; they do not take
into account that Observe nodes may be “encoded” as infinite loops. To repair
that, we demand that just like all Observe nodes must belong to either @ or Qo,
also all cycles must touch either @ or Qg. With this requirement, it is no longer
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possible that @ contains only nodes 1 and 6. For if so, then @y would have to
contain node 4 or node 5 since these two nodes form a cycle. But then, in order
for node 3 to have a next observable in (), it must be the case that Q)¢ contains
node 3, and hence (by data dependence) also node 1 which contradicts ) and
Qo being disjoint. Thus we have motivated the following definition.

Definition 9 (slicing pair) Let @, Qo be sets of nodes. (Q, Qo) is a slicing
pair iff (a) Q, Qo are both weak slice sets with End € Q; (b) @, Qo are disjoint;
(c) all Observe nodes are in Q U Qo; and (d) all cycles contain at least one
element of Q U Q.

If (Q,Qo) is a slicing pair then rvg(v) N rvg,(v) = O for all nodes v. For,
if x € rvg(v) N rvg,(v) then a definition of x, known to exist, would be in
@ N Qo which is empty. Moreover, the @Q-relevant variables are probabilistically
independent (as defined in Def. 3) of the Qg-relevant variables, as stated by the
following preservation result which is one of the main contributions of this paper
in that it gives a syntactic condition for probabilistic independence:
Proposition 1 (Independence) Let (Q,Qo) be a slicing pair. Assume that
(v, D) X (v',D") where v' postdominates v. If rvg(v) and rvg,(v) are indepen-
dent in D then rvg(v') and rvg,(v') are independent in D’.

6 Slicing and its Correctness

We can now precisely phrase the desired correctness result:

Theorem 1 Given a CFG with End of the form Return(zx), and let (Q, Qo) be a
slicing pair. Let D' and A’ be the unique distributions such that (Start, Dr) =
(End, D') and (Start, D7) = (End, A") where the latter denotes slicing wrt. Q
(cf. Sect. 4.6). Then there exists a real number ¢ with 0 < ¢ < 1 such that for
all v, D'({z — v}) = cA'({z — v}).

This follows from a more general proposition (allowing an inductive proof) stated
below, with v = Start so that (from the requirement that a variable must be
defined before it is used) R and Ry are both empty (and thus independent), with
v’ = End = Return(z) so that R’ = {z}, and with A = D = Dz.

Proposition 2 Let (Q,Qq) be a slicing pair. Let v postdominate v, with R =
rvg(v), R = rvg(v'), and Ry = rvg,(v). Assume that D is such that R and

Ro are independent in D, and that A is such that D B A Let D' and A’ be the
unique distributions such that (v, D) = (v',D’) and (v,A) = (v', A’). Then

there exists a real number ¢ with 0 < ¢ <1 such that D’ & cA'.

Moreover, ¢ = 1 if v stays outside Qo until v' (since then the conditions for a
slicing pair guarantee that no observe nodes, or infinite loops, are sliced away).
That is, for the relevant variables, the final distribution is the same in the sliced
program as in the original program, except for a constant factor ¢ such that
S D'=c> AL

To prove Proposition 2, we need a similar result that involves k and where the
proof of sequential composition (case 3 in Definition 4) employs Proposition 1
to ensure that the independence property still holds after the first reduction, so
that we can apply the induction hypothesis to the second reduction.
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7 Computing the (Least) Slice

There always exists at least one slicing pair, with @ the set of all nodes and with
Qo the empty set; in that case, the sliced program is the same as the original.
Our goal, however, is to find a slicing pair (Q, Q) where @ is as small as possible
while including the End node. This section describes an algorithm BSP for doing
so. The running time of our algorithms is measured in terms of n, the number
of nodes in the graph. Note that the number of edges is at most 2n and thus
in O(n). Our algorithms use a boolean table DD* such that DD* (v, v’) is true iff

v ﬂ* v’ where ﬂ* is the reflexive and transitive closure of %¢. Given DD*, it is
easy to ensure that sets are closed under data dependence, and we shall do that
in an incremental way: there exists an algorithm DD®°%® which given a node set
Qo that is closed under data dependence, and a node set )1, returns the least
set () containing @)y and ) that is closed under data dependence.

Computing the Least Weak Slice. In Fig. 2(upper right) we define a function LWS
which constructs the least weak slice set that contains a given set; it works by
successively adding nodes to the set until it is closed under data dependence,
and provides next observables.

To check the latter, we employ a function PN? as defined in Fig. 2(left): given
@, it does a backward breadth-first search from Q U {End} to find the first node
(if any) from which two nodes in that set are reachable without going through
@; such a node must be included in any superset providing next observables.
Lemma 3 Given Q, the function PN? runs in time O(n) and returns C such that
(a) if C is empty then @Q provides next observables, and (b) if C' is non-empty
then C N Q =0 and all supersets of Q that provide next observables contain C.
Lemma 4 Given Qq, the function LWS returns @ such that Q is a weak slice set
and Qo C Q. Moreover, if Q' is a weak slice set with Qg C Q', then Q C Q'.
Finally, given DD*, LWS runs in time O(n?).

Computing the Best Slicing Pair. We now develop an algorithm BSP which given
a CFG returns a slicing pair (Q, Qo) with @ as small as possible. From Def. 9 we
know that each Observe node has to be put either in @ or in @, and also that
at least one node from each cycle has to be put either in @ or in Q. Especially
the latter requirement may suggest that our algorithm will have to explore a
huge search space, but fortunately it is sufficient to consider only the node(s)
with minimal height. Here node v’s height, denoted H(v), is the length of the
shortest path(s) from v to End. This motivates

Definition 10 A node v is essential if either (a) v is an Observe node, or (b)
v belongs to a cycle m where H(v) < H(vy) for all v; € 7.

For disjoint weak slice sets (Q, Qo) with End € @ to be a slicing pair, it is
sufficient and necessary that each essential node be placed either in @) or in Q.
Lemma 5 (Sufficient) Let Q and Qo be disjoint weak slice sets with End € @,
and assume that all essential nodes are in QUQqy. Then (Q, Qo) is a slicing pair.
Lemma 6 (Necessary) Let (Q,Qo) be a slicing pair. If v is essential then

UEQUQ().
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PN?(Q) LWS(Qo)
F + QU {End}; Q = DD*°(0, Qo); C + PN?(Q);
foreach v € V while C # ()
ifveF Q + DD**(Q, O);
N[v] < v C <+ PN?(Q)
else return Q
Nv] + L;
C « 0 BSP()
while F£0 AN C=10 W < the set of essential nodes;
F' 0 foreach v € W U {End}
foreach edge from v ¢ Q Qo < Lus({v});
tov € F Q + 0; F < Qgna;
if N(v)= 1 while F # 0
N(v) + N(v'); Q+ QUF; F«+;
F' « F'U{v} foreach v € W
else if N(v) # N(v') ifQ,NQ#0
C + CU{v}; W+ W\ {v}; F < FUQ.;
F«F QOHUerQm
return C return (Q, Qo)

Fig.2. Algorithms for: checking if a set provides next observables (PN?); finding the
least weak slice set containing a given set (LWS); finding the best slicing pair (BSP).

Fig. 2(lower right) presents the algorithm BSP that computes the best slicing
pair (@, Qo). The idea is to built @ incrementally, initially containing only End,
and then add v whenever v is essential but cannot be placed in @)y as then @
and Qg would overlap. That BSP produces the best slicing pair is captured by
Proposition 3 The algorithm BSP returns (on a given CFG) Q and Qo such
that (Q, Qo) is a slicing pair, and if (Q',Qy) is a slicing pair then Q C Q'.
After analyzing the running times, we get:

Theorem 2 For a given CFG, there is an algorithm that in time O(n®) com-
putes a slicing pair (Q, Qo) where Q@ C Q' for any other slicing pair (Q', Q).
Also the algorithm given in [5] for computing (their version of) weak slices runs in
cubic time. We do not expect that there exists an algorithm wih lower asymptotic
complexity, since we need to compute data dependencies which is known to
involve computing a transitive closure.

Hllustrating the algorithms. First consider the program P; from Example 1 where

the non-trivial true entries of DD* are (1,4) (since 1 % 4) and (2,3), and where
3 is the only essential node. BSP thus computes LWS({4}) and LwS({3}). When
running LWS on {4}, initially @ = {1,4} which is also the final value of Q
since PN?({1,4}) returns @ (after a sequence of iterations where F is first {1,4}
and next {3} and next {2} and finally §). Thus Q4 = {1,4} and similarly we
get Q3 = {2,3}. When the members of W = {3} are first examined in the
BSP algorithm, we have Q = Q4 and thus Q3 N Q = . Hence the while loop
terminates with @ = {1,4} and subsequently we get Qo = Q3 = {2, 3}.
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Next consider the CFG for P, (Fig. 1) with F containing only y free. Here
9 s given as follows: 1 i 3,1 i 6, 2 a4 4, 2 44 5,5 i 4, and 5 9 5. Since
H(4) =1 and H(5) = 2, node 4 is the only essential node. BSP thus has to
compute LWS({6}) and LwS({4}):

— LWS({6}): initially, @ = {1, 6} which is also the final value of @ since PN?({1,6})
returns @) (after a sequence of iterations where F is first {1,6} and next {3,4}
and next {2,5} and finally 0). Thus Q¢ = {1,6}.

— LWS({4}): initially, Q = {2,4,5}. In PN? we initially thus have F = {2,4,5,6}
which causes the first iteration of the while loop to put 3 in C so that {3}
is eventually returned. Since 1 43 holds, the next iteration of LWS will have
Q =1{1,2,3,4,5} on which PN? will return . Thus Q4 = {1,2,3,4,5}.

When the members of W = {4} are first examined in the BSP algorithm, we have

Q = Qg and thus Q,NQ = {1} # (. Hence Q will equal QsUQ4 = {1,2,3,4,5,6}

and as W is now empty, the loop will terminate and we get Qo = 0.

8 Extensions and Future Work

Sect. 7 presented an algorithm for computing the least syntactic slice. But there
may exist even smaller slices that are still semantically correct: recall Example 4
where the only correct syntactic slice is the program itself (as shown in Sect. 7)
but where a much smaller slice may be semantically correct for certain instan-
tiations of the generic “E”. Similarly, a node labeled Observe(B) can be safely
discarded if B always evaluates to true. For example, the CFG with textual
representation 1 :  := Random(¢y); 2 :y :=7; 3 :if x > 2 (4 : Observe(y =
7)); 5 : Return(z) is semantically equivalent to the CFG containing only nodes
1 and 5. But the former has no smaller syntactic slice, since if (Q, Qo) is a slicing
pair with 5 € @ (and thus 1 € Q) then Q = {1,2,3,4,5} as we now show. If
4 € Qo then 3 € Qy (as Qo provides next observables) and thus 1 € Qy which
contradicts @ N Qg = 0. Hence (as 4 must belong to Q U Qo) 4 € @Q; but then
2 € @ (by data dependence) and 3 € @ (as @ provides next observables).

Simple analyses like constant propagation may improve the precision of slic-
ing even in a deterministic setting, but the probabilistic setting gives an extra
opportunity: after an Observe(B) node, we know that B holds. As richly ex-
ploited in [7], a simple syntactic transformation often suffices to get the benefits
of that information, as we illustrate on the program from [7, Fig. 4] whose CFG
(in slightly modified form) is depicted in Fig. 3. In our setting, if (Q, Qo) with
18 € @ is the best slicing pair, then @ will contain everything except nodes
12, 13, 14, as can be seen as follows: 16,17 € @ by data dependence; 15 € @
as @ provides next observables; 6,7,8,9 € @ by data dependence; 3,4,5 € Q
as @ provides next observables; 1,2 € @ by data dependence; also 10 € @Q as
otherwise 10 € Qo and thus also 9 € Qy which contradicts Q N Qo = 0.

Alternatively, suppose we insert a node 11 labeled g := 0 between nodes 10
and 12. This clearly preserves the semantics, but allows a much smaller slice:
choose @ = {11,15,16,17,18} and Qo = {1,2,3,4,5,6,7,8,9,10}. This is much
like what is arrived at (through a more complex process) in [7, Fig. 15].
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Obs(g = 0)

Fig. 3. The program from [7, Fig. 4] (modified).

Future work involves exploring a larger range of examples, and investigating
useful techniques for computing slices that are smaller than the least syntactic
slice yet semantically correct. (Of course it is in general undecidable to compute
the least semantically correct slice.) We have recently augmented our theory such
that we can ignore loops that are known (by some means) to always terminate.
That is, for a slicing pair (Q, Qo), a cycle which cannot go on forever (or does it
with probability zero) does not need to contain a node from Q U Q.

9 Conclusion and Related Work

We have developed a theory for the slicing of probabilistic imperative programs.
We have used and extended techniques from the literature [10,3,11,1] on the
slicing of deterministic imperative programs. These frameworks, some of which
have been partly verified by mechanical proof assistants [13,4], were recently
coalesced by Danicic et al. [5] who provided solid semantic foundations to the
slicing of a large class of deterministic programs. Our extension of that work
is non-trivial in that we need to capture probabilistic independence as done in
Proposition 1 which requires two slice sets rather than just one.

We were directly inspired by Hur et al. [7] who point out the challenges in-
volved in the slicing of probabilistic programs, and present an algorithm which
constructs a semantically correct slice. The paper does not state whether it is
in some sense the least possible slice; neither does it address the complexity of
the algorithm. While Hur et al.’s approach differs from ours, for example it is
based on a denotational semantics for a structured language (we expect the two
semantics to coincide for CFGs of structured programs), it is not surprising that
their correctness proof also has probabilistic independence (termed “decompo-
sition”) as a key notion. Our theory separates specification and implementation
which we believe provides for a cleaner approach. But as mentioned in Sect. 8,
they incorporate powerful optimizations that we do not (yet) allow.
Acknowledgements. Thanks to Gordon Stewart for comments on earlier drafts.
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